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Abstract

We develop an eigenspace estimation algorithm for distributed environments with
arbitrary node failures, where a subset of computing nodes can return structurally
valid but otherwise arbitrarily chosen responses. Notably, this setting encompasses
several important scenarios that arise in distributed computing and data-collection
environments such as silent/soft errors, outliers or corrupted data at certain nodes,
and adversarial responses. Our estimator builds upon and matches the performance
of a recently proposed non-robust estimator up to an additive Õ(σ

√
α) error, where

σ2 is the variance of the existing estimator and α is the fraction of corrupted nodes.

1 Problem overview and background

Modern machine learning has seen the proliferation of heterogeneous distributed environments
for training and deploying data science pipelines. As communication between machines is often
the most time-consuming operation in distributed systems, the design of communication-efficient
algorithms is of paramount importance for scaling to massive datasets [36]. However, the move to
distributed environments also adds several additional layers of complexity in the design of algorithms.
For example, in the distributed setting we would like our algorithms to be robust and providing
meaningful answers even in settings where some nodes contain outlier data [4], silently fail during
the computation [27, 31], or are compromised and returning malicious results designed to corrupt the
central solution.

This work focuses on distributed eigenspace estimation in the context of robustness to node-level
corruptions. Formally, we assume a computing environment with nodes numbered i = 1, . . . ,m,
where every node i observes a local version Ai of an unknown symmetric matrix A ∈ Rd×d; the goal
is to approximate the subspace spanned by the r ≪ d principal eigenvectors of A. Distributed PCA
is a standard example in this framework: every machine draws n i.i.d. samples from an unknown
distribution P with covariance matrix A and forms a local empirical covariance matrix Ai. Recently
proposed communication-efficient algorithms have every node i transmit Vi, the d × r matrix of
principal eigenvectors of Ai, to a central server, which then aggregates all the local solutions via a
carefully-crafted aggregation procedure [10, 18].

We devise and analyze an algorithm that is robust to a wide range of corruptions that can occur to a
subset of the computational nodes. In particular, we assume that some fraction α of the computational
nodes can respond with completely arbitrary, but structurally valid, responses (i.e., they return
arbitrary matrices Vi with orthonormal columns). This model encompasses three common forms of
node-level corruption that cannot be easily detected by the central machine in isolation:

Silent/soft errors. While computational errors may be rare on single machines, as distributed
workloads span large numbers of nodes the probability that some of them fail becomes significant.
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Though catastrophic failures may be detectable, allowing the central server to simply ignore the
output of specific nodes, the more nefarious issue is that of so-called silent (or soft) errors [16, 19,
27]. More specifically, a silent error is one where a node returns an erroneous but structurally valid
response to the central machine query. Because the response is structurally valid and the central
machine may not have access to the per-node data it is not possible to “validate” the response of
each node and, instead, the central estimator must be adapted to be robust to such errors.

Outliers or corrupted data. In certain settings the data collection may be distributed in addition
to the computation. If some of the nodes are drawing samples from an invalid or corrupted data
source they may introduce gross outliers to the set of responses {Vi | i ∈ [m]}. Similarly, in the
distributed PCA example, while most machines draw a sufficient number of samples, a minority of
them may have only a small amount of data available such that the principal eigenspaces of the
local empirical covariance matrices are too far from the ground truth, and thus violate standard
modelling assumptions in distributed learning. Again, robustness to such outlier responses must be
a feature of the estimator since they cannot be detected by individual nodes (as they do not have
information about the global problem).

Adversarial responses. In some settings, a subset of nodes may be compromised by an adversary
who wishes to influence the central solution by crafting and returning malicious Vi. In fact, the
adversarial nodes may be collaborating when constructing their responses. Since the central node
does not get to see all the data it cannot validate responses or directly detect adversaries. Therefore,
the estimator itself must be adapted to be robust to collections of responses designed to push the
solution in specific directions.

The main contribution of our paper is a communication-efficient algorithm that is robust to node
corruptions (as outlined above) for the distributed eigenspace estimation problem. We note that our
corruption model is similar to so-called Byzantine failures [25] in distributed systems.

1.1 Related work

Distributed eigenspace estimation. The problem of distributed eigenspace estimation has been
well-studied in the absence of malicious noise. One of the challenges in the distributed setting is
aggregating local solutions in the presence of symmetry: for example, if v is an eigenvector of A, both
±v are valid solutions to our problem. Various works deal with such symmetries in different ways; in
the algorithms of [5, 18], the central node averages the spectral projectors of the local eigenspaces,
and performs an eigendecomposition of the resulting average to approximate the principal eigenspace.
This approach is similar to the algorithms of [3, 11, 26], although the latter works focus on distributed
low-rank approximations and do not address the issue of approximating the principal eigenspace
directly. Another standard approach is for the central server to aggregate local solutions after an
alignment step designed to remove the orthogonal ambiguity [10, 17, 21] (see also [7] for the non-
distributed setting). Indeed, our work builds on the two-stage algorithm presented and analyzed in
[10] for the non-robust setting. Finally, we briefly mention a recent line of work [12, 21] that adapts
the shift-and-invert preconditioning framework [20] to the distributed setting; however, the latter
approach leads to algorithms that require multiple rounds of communication.

Robust PCA. The literature contains a number of different formulations for robust principal
component analysis. The seminal work of Candés et al. [9] formulated robust PCA as the task of
separating an observed matrix Y ∈ Rd×d into a low-rank and a sparse component – a slightly different
problem from that considered in this paper. Xu et al. [34] considered the problem of approximating
a low-dimensional distribution from a set of n i.i.d. samples, a constant fraction of which have
been individually corrupted by gross outliers. Follow-up works focused on high-dimensional sparse
estimation and applications to sparse robust PCA [2, 15]. However, communication-efficient robust
PCA appears to be overlooked. A notable exception is the sketch-based algorithm of [30], although
the assumptions therein depart significantly from our setting. Another relevant line of work is that
of Byzantine-robust distributed learning (typically focusing on distributed gradient descent); see,
e.g., [1, 6, 8, 13, 14, 24, 29, 35] as well as the survey [23]. In these works, an iterative algorithm
is distributed across machines that send individual updates to a central server, which combines
them using a robust aggregation procedure (e.g., the geometric median [29]). Such works are more
general in scope, but typically lead to estimators that require multiple rounds of communication. For
minimization of strongly convex quadratics, [35] proposes a one-shot algorithm employing a robust
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aggregation scheme. However, this special case departs from our setting as their underlying problem
is convex and solved under the assumption that solutions are unique.

1.2 Notation

We let Sd−1 denote the unit sphere in d dimensions. We write ∥A∥F :=
√
⟨A,A⟩ and ∥A∥2 :=

supx∈Sd−1 ∥Ax∥2 for the Frobenius and spectral norms of a matrix A ∈ Rn×d. We write On,r for
the set of n× r matrices with orthonormal columns and Or ≡ Or,r. Given U, V ∈ On,r we write

dist(U, V ) :=
∥∥(I − UUT)V

∥∥
2
=
∥∥(I − V V T)U

∥∥
2

(1)

for their ℓ2 → ℓ2 subspace distance and Bdist(U ; r) for the scaled unit ball centered at U :

B(U ; r) := {V ∈ Od,r | dist(U, V ) ≤ r} .

Finally, we use the notation A ≲ B to indicate that A ≤ cB for a dimension-independent constant
c > 0 and A ≍ B if A ≲ B and B ≲ A simultaneously.

2 Robust distributed eigenspace estimation

We now formally introduce the problem setting. In particular, we assume there exists an unknown
symmetric matrix A with spectral decomposition

A = V ΛV T+V⊥Λ⊥V
T
⊥ , V ∈ On,r, Λ = diag({λi(A)}ri=1), Λ⊥ = diag({λi(A)}di=r+1), (2)

assuming a nonincreasing ordering on the eigenvalues:

λ1(A) ≥ · · · ≥ λr(A) > λr+1(A) ≥ · · · ≥ λd(A).

Our goal is to approximate the principal r-dimensional eigenspace V := span(V ) of A given m
machines, each of which observes a local version Ai of A, communicating with a central coordinator.
We assume that m is even for simplicity. When queried for a response, machine i responds either with
an eigenvector matrix spanning the principal eigenspace of the local matrix Ai, or with an arbitrary
d × r matrix with orthonormal columns. The latter case corresponds to so-called compromised
machines. In contrast, prior work [10, 18] assumes that every machine responds truthfully.

Assumption 1 (Corruption model). There exists a constant α ∈ (0, 1/2) and an index set Ibad ⊂ [m]
with |Ibad| /m ≤ α such that the following holds: all nodes i /∈ Ibad observe a symmetric matrix
Ai ∈ Rd×d. Moreover, when queried for a response, every node i returns

V̂i =

{
Vi, i ∈ [m] \ Ibad,
Qi, i ∈ Ibad,

(3)

where the columns of Vi ∈ Od,r span the principal r-dimensional eigenspace of Ai and Qi ∈ Od,r is
an arbitrary d× r matrix with orthonormal columns.

For notational convenience, we also define the set of “good” responses:

Igood := [m] \ Ibad, with |Igood| ≥ (1− α)m. (4)

Furthermore, we require the principal eigenspace of A to be sufficiently separated from its complement
and that the local errors Ei := Ai −A are not too large.

Assumption 2. There is a constant δ > 0 such that the following hold:

1. (Gap) The matrix A has a nontrivial eigengap:

δr(A) := λr(A)− λr+1(A) ≥ δ. (5)

2. (Approximation) For all i ∈ Igood, the local observations satisfy:

∥Ai −A∥2 ≤ δr(A)

8
. (6)
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The problem admits a natural proxy of difficulty in the form of the normalized inverse eigengap κ:

(Normalized inverse eigengap) κ :=
∥A∥2
δr(A)

=
λ1(A)

λr(A)− λr+1(A)
. (7)

Our algorithm for the robust distributed eigenspace estimation problem is outlined in Algorithm 1,
which is essentially a robust version of the Procrustes fixing algorithm from [10]. The latter (non-
robust) algorithm operates as follows: first, every machine i computes its local eigenvector matrix Vi

and broadcasts it to the central server. Because invariant subspaces do not admit unique representa-
tions, naively averaging these estimates can fail to reduce the approximation error further. Instead,
the algorithm of [10] first picks one of the local solutions (say V1) as a reference and “aligns” every
other solution with it by solving a so-called Procrustes problem:

Zi := argmin
U∈Or

∥ViU − V1∥F , i = 2, . . . ,m. (8)

After the alignment step (8), the solution of which is available in closed form via the SVD [22], the
central coordinator computes and returns the empirical average (1/m)

∑m
i=1 ViZi.

2.1 Technical challenges and main result

To robustify the algorithm described above against node failures, we need the following ingredients:

Reference estimation. In the presence of corruptions one must guard against the possibility of
choosing an outlier as a reference solution (which would render the alignment step (8) useless).
The first step of our algorithm robustly determines a reference guaranteed to have nontrivial
alignment with the ground truth (Algorithm 2).

Solution aggregation. With the robust reference at hand, the next step of the algorithm aligns other
local solutions with it. However, since some of the solutions are outliers, we use a robust mean
estimation algorithm in the last step of Algorithm 1 to compute the empirical average only over
inliers (and possible “benign” outliers) with high probability.

Combining the above ingredients requires working around additional technical challenges. The first
challenge is showing that averaging over inliers that have been aligned with V̂ref is equivalent (up
to small error) to averaging over inliers that have been aligned with the ground truth V . To do so,
we leverage a path-independence result from [33] to view the aligned estimates as the eigenvectors
arising from a carefully chosen sequence of perturbations to the unknown matrix A (Lemma 1).

After aligning local estimates, we approximate the empirical mean over inliers with a spectral filtering
algorithm. Existing analyses of that algorithm focus on vector-valued inputs and lead to error bounds
in the Euclidean norm (or other vector norms, see [32]). Invoking these error bounds in a black-box
fashion for matrix-valued inputs (by flattening every eigenvector matrix to a (dr)-dimensional vector)
has multiple drawbacks. On one hand, it leads to unnatural scaling as the final result depends on the
empirical covariance over flattened inputs. On the other hand, the resulting error bounds are with
respect to the Frobenius norm, while the spectral norm is a standard error measure in eigenspace
estimation. To avoid this, we modify the iterative filtering algorithm so that inputs are not flattened
and obtain error bounds with respect to the spectral norm (3).

We analyze each ingredient of Algorithm 1 separately, in Sections 2.2 to 2.4; all proofs appear in the
supplementary material. Our analysis is almost completely deterministic: indeed, the only source of
randomness is the filtering algorithm used in the final stage (Algorithm 5).

Algorithm 1 Robust distributed eigenspace estimation

Input: responses
{
V̂i

}
i=1,...,m

, corruption fraction α, failure prob. p, error parameter ω.

V̂ref := RobustReferenceEstimator
(
V̂1, . . . , V̂m

)
. ▷ Algorithm 2; Section 2.2{

Ṽi

}
i=1,...,m

:= ProcrustesFixing
({

V̂1, . . . , V̂m

}
, V̂ref

)
▷ Algorithm 3; Section 2.3

V̄ := AdaptiveFilter(
{
Ṽ1, . . . , Ṽm

}
, 6, ω, p, α) ▷ Algorithm 5; Section 2.4

return V̄
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Our main theorem on the performance of Algorithm 1 follows below. The result is first stated for
inputs from a generic eigenspace estimation problem. In Section 3, we apply it in a black-box fashion
to specialize its results for distributed PCA.
Theorem 1. Let Assumptions 1 and 2 hold and suppose that the corruption level α satisfies

φ := α+
6 log(1/p)

m
<

1

12
. (9)

For a fixed failure probability p and error parameter ω, Algorithm 1 returns V̄ ∈ Rd×r satisfying:

dist(V̄ , V ) ≲
1

δ

∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ai −A

∥∥∥∥
2︸ ︷︷ ︸

Eoracle

+
κ2

|Igood|
∑

i∈Igood

(
∥Ai −A∥2

δ

)2

︸ ︷︷ ︸
Ehigh

+
√

φmax (ω, σ2)︸ ︷︷ ︸
Erobust

.

(10)
with probability at least 1− 2 log (6/ω) · p. Moreover, the variance σ2 satisfies

σ2 ≤
∥∥∥ 1

|Igood|
∑

i∈Igood

ViV
T
i − V V T

∥∥∥
2
+ 2 ·

∥∥∥ 1

|Igood|
∑

i∈Igood

Ṽi − V
∥∥∥
2
. (11)

Remark 1 (Error bound interpretation). The error bound (10) decomposes naturally into three terms
that can be controlled individually in applications. The first term, Eoracle, corresponds to an oracle
estimator that approximates V via the principal eigenspace of 1/|Igood|

∑
i∈Igood

Ai. The second term,
Ehigh, represents high-order errors that occur as a result of the alignment step in Algorithm 3 that are
dominated by Eoracle in “typical” situations. Finally, the term Erobust quantifies the effect of outliers,
vanishing as the fraction of corrupted nodes α ↓ 0. We comment on the scaling of Erobust relative to
the error of the non-robust algorithm in the context of distributed PCA in Section 3.

2.2 The robust reference estimator

This section focuses on the analysis of Algorithm 2, which yields the robust reference estimator V̂ref

used to remove the orthogonal ambiguity from local solutions. We note that the construction of the
estimator dates back to the seminal work of Nemirovski and Yudin [28].

Algorithm 2 RobustReferenceEstimator(Y1, . . . , Ym)

for i = 1, . . . ,m do
εi := min {r ≥ 0 | |Bdist(Yi; r) ∩ {Yi}mi=1| >

m
2 }

return Yi⋆ , where i⋆ := argmini∈[m] εi

Remark 2. The quantities εi in Algorithm 2 can be found in time O(m2dr2) by first computing
rj := dist(Yi, Yj) for all j ̸= i and setting εi := median({rj}j ̸=i).

Note that even though V̂ref could be chosen among some of the compromised samples, its construction
ensures that it inherits the accuracy of the majority of the responses.
Proposition 1 (Robust reference estimator). Given a sample {Y1, . . . , Ym} where Yi ∈ Od,r and
|{i ∈ [m] | dist(Yi, V ) ≤ ε}| > m/2 for a fixed ε > 0, Algorithm 2 outputs Yi⋆ satisfying

dist(Yi⋆ , V ) ≤ 3ε. (12)

2.3 The ProcrustesFixing algorithm

In this section, we formally introduce the Procrustes-fixing procedure and show that it properly
aligns all the non-compromised responses given the reference solution described in Section 2.2. The
procedure is described in Algorithm 3; it accepts a set of d× r matrices with orthonormal columns as
well as a reference matrix Yref of the same shape.

The work [10] provides an error bound for the ProcrustesFixing algorithm under idealized
conditions; namely, that the reference solution is equal to the ground truth V .
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Algorithm 3 ProcrustesFixing({Y1, . . . , Ym} , Yref)

for i = 1, . . . ,m do
Ỹi := YiZi, where Zi := argminZ∈Or

∥YiZ − Yref∥F ▷ Procrustes alignment
return

{
Ỹi | i ∈ [m]

}
Theorem 2 (Theorem 2 in [10]). Let Assumption 2 hold and let

Ṽ :=
1

|S|
∑
i∈S

Ṽi, where
{
Ṽi

}
i∈S

= ProcrustesFixing({Vi}i∈S , V ), S ⊂ Igood.

Then the following bound holds:∥∥Ṽ − V
∥∥
2
≲

1

δ2
1

|S|
∑
i∈S

∥Ai −A∥22 +
1

δ

∥∥∥∥ 1

|S|
∑
i∈S

Ai −A

∥∥∥∥
2

. (13)

While the setting of Theorem 2 is idealized, when the reference chosen by Algorithm 2 is sufficiently
close to V one would expect that the aligned estimates are not far from their ideal version. The next
Lemma shows that aligning the local solutions with V̂ref is equivalent to aligning with the ground
truth V , up to higher-order errors.
Lemma 1. Let Vi ∈ Od,r span the principal r-dimensional eigenspace of the matrix Ai and let
V ∈ Od,r span the principal r-dimensional invariant subspace of A. Suppose that there is a
Vref ∈ Od,r satisfying dist(Vref , V ) = ε < δr(A)/8, and define the sets of aligned estimates

V ideal
i := Vi · argmin

Z∈Or

∥ViZ − V ∥F , V corr
i := Vi · argmin

Z∈Or

∥ViZ − Vref∥F .

Then for any i ∈ Igood the following holds:∥∥V ideal
i − V corr

i

∥∥
2
≲

1

δ2
max

{
∥Ai −A∥22 , ∥A∥22 ε

2
}
. (14)

Putting everything together, we arrive at a deterministic characterization of the error attained by the
empirical average over any subset of responses that come from non-compromised nodes and have
been aligned with the robust reference estimator. Note that this characterization does not immediately
translate to an algorithm, since the set of compromised nodes is not known a-priori.

Proposition 2 (Error of clean samples). Let V̂ref be the output of Algorithm 2 given inputs V̂1, . . . , V̂m.
For any index set S ⊂ Igood and i ∈ S, define

V corr
i := Vi · argmin

Z∈Or

∥∥ViZ − V̂ref

∥∥
F
; V ideal

i := Vi · argmin
Z∈Or

∥ViZ − V ∥F .

Suppose that dist(V, V̂ref) = ε < δr(A)/8. Then the following bound holds:∥∥∥∥ 1

|S|
∑
i∈S

V corr
i − V

∥∥∥∥
2

≲
1

δ2 |S|
∑
i∈S

max
(
∥Ai −A∥22 , ∥A∥22 ε

2
)
+

1

δ

∥∥∥∥ 1

|S|
∑
i∈S

Ai −A

∥∥∥∥
2

. (15)

Proof. From the triangle inequality, Lemma 1 and Theorem 2 it follows that∥∥∥∥ 1

|S|
∑
i∈S

V corr
i − V

∥∥∥∥
2

=

∥∥∥∥ 1

|S|
∑
i∈S

V corr
i − V ideal

i + V ideal
i − V

∥∥∥∥
2

≤
∥∥∥∥ 1

|S|
∑
i∈S

V corr
i − V ideal

i

∥∥∥∥
2

+

∥∥∥∥ 1

|S|
∑
i∈S

V ideal
i − V

∥∥∥∥
2

≲
1

δ2 |S|
∑
i∈S

max
(
∥Ai −A∥22 , ∥A∥22 ε

2
)
+

1

δ

∥∥∥∥ 1

|S|
∑
i∈S

Ai −A

∥∥∥∥
2

.
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2.4 Analysis of robust mean estimation

We now analyze the last phase of the algorithm, which approximates V using the robust mean of the
aligned samples. The mean estimation procedure used is the randomized iterative filtering method
shown in Algorithm 4, which is an appropriate modification of the spectral filtering algorithm from
the robust statistics literature for matrix-valued inputs. Its analysis is available in the Appendix, while
Theorem 3 below summarizes its guarantees.

Algorithm 4 Filter(S := {Xi}i=1,...,m, λub)

Compute empirical mean and covariance:

θS :=
1

|S|
∑
i∈S

Xi, ΣS :=
1

|S|
∑
i∈S

(Xi − θS)(Xi − θS)
T.

Compute leading eigenpair (λ, v) of ΣS .
if λ < 18λub then

return θS
else

Compute outlier scores τi := vT(Xi − θS)(Xi − θS)
Tv for i ∈ S.

Sample Z from S following P (Z = Xi) =
τi∑

j∈S τj
.

return Filter(S \ {Z}, λub)

Theorem 3. Suppose G0 ⊂ [m] and that the corruption level α and failure probability p satisfy

α+
6 log(1/p)

m
≤ 1

12
and |G0| ≥ (1− α)m. (16)

Moreover, let ΣG0
:= 1

|G0|
∑

i∈G0
(Xi − θG0

)(Xi − θG0
)T, where θG0

:= 1
|G0|

∑
i∈G0

Xi, and fix
λub ≥ ∥ΣG0

∥2. Then Algorithm 4 invoked with {Xi}mi=1 and λub returns an estimate θλub
satisfying

P

(∥∥∥θλub
− 1

|G0|
∑
i∈G0

Xi

∥∥∥
2
≥ 18

√
5λub

(
α+

4 log(1/p)

m

)1/2
)

≤ p. (17)

Remark 3. The upper bound α < 1/12 appears to be a proof artifact and could likely be improved
by optimizing choices of constants in the proof of Theorem 3. Numerical evidence in Section 3.1
suggests that the breakdown point of Algorithm 4 is closer to the natural limit of 1/2.

The error in (17) scales with the upper bound λub, which may be far from the “optimal” ∥ΣG0
∥2. We

describe an adaptive version of Algorithm 4 that achieves this at a logarithmic additional cost. Indeed,
suppose an upper bound on α is available and the unknown parameter ∥ΣG0

∥2 lies in an interval
[λlb, λub]. We construct a search grid G as follows:

G :=
{
2j | j ∈ {jlo, jhi}

}
, jlo := ⌊log2(λlb)⌋ , jhi := ⌈log2(λub)⌉ . (18)

We are now in good shape to describe our estimator. To simplify notation, we define the error proxy

f(λ; p, α) := 18
√
5λ

(
α+

4 log(1/p)

m

)1/2

. (19)

Our estimator, θλ̂, is implemented in Alg. 5 and defined as:

θλ̂, where λ̂ := min {λ ∈ G | ∥θλ − θλ′∥2 ≤ f(λ; p, α) + f(λ′; p, α), ∀λ′ ∈ G ∩ [λ,∞)} . (20)

Algorithm 5 AdaptiveFilter(S = {Xi}i=1,...,m, λub, λlb, p, α)

Set up search grid: jlo := ⌊log2 λlb⌋ , jhi := ⌈log2 λub⌉ .
for j = jhi, . . . , jlo do

θ2j = Filter(S, 2j) ▷ Algorithm 4
if ∃k > j such that ∥θ2j − θ2k∥ > f(2j ; p, α) + f(2k; p, α) then ▷ f defined in (19)

return θ2j+1

return θ2jlo
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If ∥ΣG0∥2 ∈ [λlb, λub], the estimator attains the optimal error up to a constant while the success
probability degrades only logarithmically, as shown by the following Proposition.
Proposition 3. If G0, p, and α satify (16) and ∥ΣG0

∥2 ≤ λub, the estimator θλ̂ from (20) satisfies∥∥∥θλ̂ − 1

|G0|
∑
i∈G0

Xi

∥∥∥
2
≤ 171

√
max {∥ΣG0∥2 , λlb}

(
α+

4 log(1/p)

m

)1/2

with probability at least 1− 2 log2 (λub/λlb) p.

2.5 Proof sketch of main theorem

We briefly sketch the proof of Theorem 1 here. We decompose

dist(V̄ , V ) ≲ ∥V̄ − V ∥2 ≤
∥∥∥V̄ − 1

|Igood|
∑

i∈Igood

Ṽi

∥∥∥
2︸ ︷︷ ︸

∆1

+
∥∥∥ 1

|Igood|
∑

i∈Igood

Ṽi − V
∥∥∥
2︸ ︷︷ ︸

∆2

The error ∆1 can be directly controlled by applying Proposition 3 with G0 ≡ Igood combined with
the fact that the spectral norm of the matrix ΣIgood

admits the upper bound in (21); we refer the reader
to the supplement for a complete derivation.

∥ΣIgood
∥
2
≤
∥∥∥∥ 1

|Igood|
∑

i∈Igood

ViV
T
i − V V T

∥∥∥∥
2

+ 2

∥∥∥∥ 1

|Igood|
∑

i∈Igood

Ṽi − V

∥∥∥∥
2

(21)

Finally, we control the error ∆2 by invoking Proposition 2 with S = Igood, since

Ṽi = Vi · argmin
Z∈Or

∥∥ViZ − V̂ref

∥∥
F
, for all i ∈ Igood.

Combining the resulting upper bounds yields the error in Theorem 1.
Remark 4. Both of the terms in (21) are typically small and can be directly controlled in concrete
applications such as distributed PCA. Moreover, while the bound in (21) is not directly computable,
it is immediate that ∥ΣIgood

∥2 ≲ 1 and thus we may initialize Algorithm 5 with λub = O(1) in the
absence of a finer upper bound.

3 Robust distributed PCA

In this section, we specialize the results of Section 2 to robust distributed PCA for subgaussian
distributions. We first formalize the sampling model for the problem.

Assumption 3 (Subgaussian data). Every machine i ∈ Igood draws {X(i)
j }nj=1

iid∼ P , where P
is a zero-mean, subgaussian distribution with covariance matrix A := EX∼P [XXT], and forms
Ai :=

1
n

∑n
j=1 X

(i)
j (X

(i)
j )T.

Our main theorem follows directly from Theorem 1 and control of ∥ΣIgood
∥
2

under Assumption 3.

Theorem 4. Let Assumptions 1 to 3 hold and suppose that n ≳ κ2 · (r⋆ + log(mn/p)) and α, m
and p satisfy (9). Then Algorithm 1 initialized with ω =

√
1/mn returns a V̄ satisfying

dist(V̄ , V ) ≲

√
ϱ

(
α+

log(1/p)

m

)
+ κ

√
r(r⋆ + log(n))

(1− α)mn
+ κ4 · r (r⋆ + log(mn log(mn)/p))

n
,

(22)
with probability at least 1− 2/n − p. Here, r⋆ := Tr (A) / ∥A∥2 and ϱ is given by

ϱ := κ

√
r(r⋆ + log(n))

(1− α)mn
+max {κ2

√
r, κ4} · r⋆ + log(mn log(mn)/p)

n
.

When κ ≍ 1, high-order terms in Theorem 4 can be discarded and we arrive at the following:

8



Corollary 1. Assume that the conditions of Theorem 4 hold and κ ≍ 1. Then:

dist(V̄ , V ) ≲

√
α+

log(log(mn)/p)

m
·
(
r(r⋆ + log(n))

(1− α)mn

)1/4

+

√
r(r⋆ + log(n))

(1− α)mn

with probability at least 1− 2/n − p.

We briefly compare the error of Algorithm 1 to that of its non-robust counterpart from [10] when κ ≍ 1.
The latter algorithm returns an estimate V̄ nonrobust satisfying dist(V̄ nonrobust, V ) = Õ

(√
r⋆/mn

)
.

Ignoring the
√
r factors, which are likely an artifact of our proof, our algorithm also introduces an

additive error of the order Õ(
√

α/1−α · (r⋆r/mn)
1/4

). Note that for a constant absolute number of
corruptions α ∝ 1/m, this additive factor scales as√

α

1− α

( r⋆r
mn

)1/4
≲
( r⋆r

m3n

)1/4
.

If m and n are comparable, this is similar to the error of the non-robust algorithm up to an (r/r⋆)
1/4

factor. Therefore, the performance of Algorithm 1 degrades gracefully as a function of the corruption
level under not too restrictive assumptions on the ratio m/n.

3.1 Numerical study

We provide a brief numerical illustration of the performance of Algorithm 1 on data sampled from an
unknown Gaussian distribution D := N (0, V ΛV T + V⊥Λ⊥V

T
⊥ ), where [V V⊥] ∈ Od is a random

d× d orthogonal matrix and Λ,Λ⊥ are generated according to the following model:

Λ = Ir, (Λ⊥)jj = (1− δ)ηj , j = 1, . . . , d− r, where η = 1− 1− δ

r⋆ − r
∈ (0, 1). (23)

We simulate an adversary by replacing the first ⌊αm⌋ responses by the same Vadv ∈ Od,r, chosen to
be near-orthogonal to V . We fix the gap δ = 0.25 throughout. We compare Alg. 1 (labelled Robust
in our plots) against two baselines: the algorithm from [10] (labelled Naive), which corresponds
to Alg. 3 using the first response – which is always corrupted in our experiment – as the reference
followed by naive averaging; and a version of Alg. 1 without the robust mean estimation step (labelled
Procrustes). Our implementation always removes the sample with the largest outlier score in each
step of Alg. 4 and uses a simplified error proxy f(λ;α) :=

√
λα instead of (19) in Alg. 5.

Our experiment is illustrated in Figure 1. Clearly, the baseline methods break down in the presence
of corruption, yielding solutions nearly orthogonal to V as α approaches 1/2. In contrast, the error
of Alg. 1 degrades gracefully with α. We note that our algorithm yields a nontrivial solution even
when almost half of the measurements are corrupted (α = 45%), in line with intuition suggesting
that α⋆ = 1/2 is a natural breakdown point for outlier-robust algorithms.
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0.6
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1

α

d
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t(
V̄
,V

)

Naive
Procrustes
Robust

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

α

Naive
Procrustes
Robust

Figure 1: Robust distributed PCA with m = 150, n = 50r, r⋆ = 2r, and κ = 5 under Model (23).
We report the mean subspace distance ± one standard deviation over 10 independent runs for subspace
dimension r = 5 (left) and r = 10 (right).
In addition, we study the effect of the number of per-machine samples n and total number of machines
m in distributed PCA. We fix r = 5, r⋆ = 2r, κ = 5 and δ = 0.25 and experiment with
(m,n) =

{
(32, 2i) | i = 5, . . . , 10

}
, (m,n) =

{
(2i, 128) | i = 4, . . . , 9

}
, α ∈ {0.25, 0.45} .
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The results can be found in Fig. 2 and are consistent with our theory: for fixed m, a small number
of samples per machine n leads to inaccurate local solutions and inaccurate final estimates for all
variants, while increasing n leads to a decrease in error for all configurations. On the other hand, the
robust algorithm produces good estimates for all attempted values of m after fixing a sufficiently
large sample size n, and increasing m only decreases the error for the robust variant. Finally, we
observe that the error of the non-robust variants plateaus since the corruption fraction α is bounded
away from zero.
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Figure 2: Top: Effect of sample size n for fixed number of machines m = 32. Bottom: Effect of
number of machines m for fixed sample size n = 128.

4 Discussion

We presented a communication-efficient algorithm for distributed eigenspace estimation that is
robust to α = 1/12 fraction of nodes returning structurally valid but otherwise potentially adversarial
responses. Numerical evidence suggests its breakdown point is closer to the (optimal) α∗ = 1/2, which
might be achievable by an improved analysis of the filtering procedure in Alg 4. Our adaptive version
of the filtering procedure in Alg. 5 trades off knowledge of (an upper bound on) the corruption level α
with the need for a tight bound on ∥ΣIgood

∥2. Alternatively, one can design a version of Algorithm 5
that is adaptive to the corruption level α using a similar construction that evaluates the error proxy
f(λ; p, α) for different values of α and fixed λ ≈ ∥ΣIgood

∥2 instead.
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