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Abstract

Large Language Models (LLMs) have demon-001
strated impressive capabilities in many tasks002
such as code generation and automated pro-003
gram repair. However, code LLMs have ig-004
nored another important task in programmers’005
daily development work, which is to improve006
the maintainability, readability, and scalability007
of the program. All of these characteristics008
are related to code smells and we study how009
to improve them by detecting and removing010
code smells. Most works on code smells still011
rely on using measures formulated by experts012
as features, but lack of use of the rich prior013
knowledge contained in code LLMs. In this014
paper, we propose SmellDetector, a compre-015
hensive model for both code smell detection016
and refactoring opportunities detection in Java.017
We train the model with the designed prompt018
which contains both code smells of class-level019
and method-level in the same code snippet, in-020
cluding more than 20 types. We achieve state-021
of-the-art performance on the code smell detec-022
tion task and change the basic paradigm of code023
smell detection from binary classification prob-024
lem to multi-label classification. Finally, it has025
been verified through experiments that good026
code smell detection helps to detect refactoring027
opportunities.028

1 Introduction029

Recently, Large Language Models (LLMs) have030

achieved impressive performance in code genera-031

tion (Roziere et al., 2023), especially in the scene032

of algorithm competitions, and there are many033

commercial code models available on the market.034

When it comes to daily development of software035

engineers, it is an important but often overlooked is-036

sue that how to keep system maintainability (Löwe037

and Panas, 2005), or reduce the code smell. Code038

smells usually appear in object-oriented program-039

ming scenarios that use a large number of class040

structures and long codes, bring technical dept to041

Figure 1: Flowchart of code smell detection work.

a software system (Foster et al., 2012) and harm- 042

ing its maintainability and evolution (Sjøberg et al., 043

2012). In other words, code smell does not cur- 044

rently affect the running of the program and output 045

correct results, but it hinders its further develop- 046

ment and iteration. Many researchers have paid 047

attention to the problem of code smells as early 048

as the millennium, and proposed that correct code 049

smell identification can help provide reasonable 050

refactoring locations and opportunities for code 051

refactoring (Fowler and Beck, 1997). The tradi- 052

tional method calculates various metrics for the 053

code, such as LCOM (Lack of COhesion in Meth- 054

ods) and NMD (number of methods declared), and 055

comprehensively determines whether the code has 056

a certain code smell based on whether it reaches a 057

threshold. When machine learning and deep learn- 058

ing algorithms became popular, many researchers 059

input metrics of code smell as features into the 060

model for training to avoid the instability caused 061

by directly selecting thresholds (Jha et al., 2019; 062

Sharma et al., 2021). Besides, in researches of 063

code refactoring, an important research direction 064

is finding refactoring opportunities, which are usu- 065
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ally treated as a binary classification and charac-066

terized by calculating various metrics of program067

fragments to predict whether a specific refactoring068

method should be used (Aniche et al., 2020).069

However, some of the above methods have draw-070

backs: they rely on calculating measures designed071

by experts as features, which is not in line with072

the current trend of LLM development. Moreover,073

code refactoring opportunity detection and code074

smell detection lack a good connection to make075

them mutually reinforcing, although they are essen-076

tially information-complementing tasks.077

In this paper, we present SmellDetector, a com-078

prehensive code smell detection and elimination079

model, aiming to provide adapters based on LLM080

for detecting code smells’ types and find refactor-081

ing opportunities.082

We summarize our contributions below:083

• We propose the first model based on code084

LLM fine-tuning for code smell detection and085

refactoring opportunities detection. Our train-086

ing dataset and method is general and can087

be easily applied to other LLMs with greater088

capabilities. The model has achieved the state-089

of-arts in code smell detection task.090

• We collect and organize the first hierarchi-091

cal code smell dataset from previous datasets,092

which contains multiple code smells in the093

same code snippet, including 212,612 code094

smells and 22 types.095

• We have experimentally proven that effective096

code smell detection is helpful in detecting097

code refactoring opportunities, and provides098

researchers with research ideas that the two099

tasks should be reasonably combined.100

2 Related Work101

2.1 Code Smell Detection102

Code Smell is considered as inadequate implemen-103

tation and design in code (Fowler and Beck, 1997),104

bringing various hazards, such as damaging code105

readability and maintainability. Beck et al. pro-106

vide a detailed definition of 22 code smells through107

natural language. In order to automate the detec-108

tion of code smell in batches, Moha et al. pro-109

posed a method of calculating program metrics and110

determining whether they have reached a preset111

threshold. Additionally, Palomba et al. use history112

information to detect the code smells and inspire113

the ideas of many researchers.114

Traditional metric based methods may not be 115

as accurate in distinguishing some fuzzy and com- 116

plex code smells because of threshold. Therefore, 117

some researchers (Fernandes et al., 2016) use ma- 118

chine learning methods to solve this problem, such 119

as Bayesian (Khomh et al., 2011), SVM (Maiga 120

et al., 2012) and Random Forest (Hall et al., 2011). 121

Although ML algorithms perform well in smell de- 122

tection, experts are still needed to perform feature 123

extraction. On the contrary, deep learning algo- 124

rithms can autonomously learn advanced features. 125

Some researcher (Guo et al., 2019) use LSTM and 126

CNN to extract text and metric information sepa- 127

rately while White use RtNN and RvNN to cap- 128

ture features in source code and abstract syntax 129

tree (White et al., 2016). DeepSmell (Ho et al., 130

2023) has reached the state-of-art performance be- 131

fore, but it still has a serious flaw: it needs to train a 132

separate model for each type of code smell, which 133

increases training and deployment costs. 134

2.2 Code Refactoring 135

When Beck et al. purposed the definitions of 22 136

code smells, corresponding refactoring methods 137

have been proposed at the same time, such as Ex- 138

tract (method, variable...), Rename(method, vari- 139

able...), Move method and so on, which are still the 140

most commonly used (Al Dallal and Abdin, 2017). 141

Refactoring methods and code smells have some 142

semantic connections and they are not one-to-one 143

correspondences and one refactoring can mitigate 144

multiple code smells, such as Extracting Class is 145

useful for duplicate code/clones, god classes and 146

data blocks (Lacerda et al., 2020). 147

Since the usable code refactoring methods re- 148

main largely unchanged, finding an opportunity 149

for refactoring means completing one refactoring. 150

Many researchers use metric to search code snip- 151

pets suitable for a certain type of refactoring, like 152

the cohesion metric (Al Dallal and Briand, 2012), 153

in-class semantic similarities metric (Bavota et al., 154

2014) and between-class cohesion metric (Bavota 155

et al., 2010). Other researchers proved the effective- 156

ness of using machine learning algorithms (Aniche 157

et al., 2020) and neural networks (Alenezi et al., 158

2020) to find refactoring opportunities. When more 159

and more reliable refactoring datasets are being 160

proposed by integration of manual annotation and 161

detection tools (Tsantalis et al., 2020; Moghadam 162

et al., 2021), LLM may be a new method to help 163

break through code refactoring. 164
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Class smell Number Method Smell Number
Feature Envy 8,337 Magic Number 32,157
Insufficient Modularization 575 Long Parameter List 8,296
Deficient Encapsulation 19,943 Complex Method 16,900
Unnecessary Abstraction 8,662 Empty catch clause 7,953
Rebellious Hierarchy 1,173 Long Method 6,366
Multifaceted Abstraction 2,325 Long Statement 34,240
Broken Modularization 8,524 Long Identifier 8,313
Cyclic Hierarchy 2,060 Complex Conditional| 9,919
Missing Hierarchy 2,320 Missing default 8,348
Blob 293 / /
Data Class 356 / /
Class clean 14,631 Method Clean 12,261

Table 1: The specific number of various code smells’ categories in our detection dataset

Refactor Method Number
Extract Variable 8,337
Rename Parameter 8,180
Rename Variable 8,038
Extract Method 8,511
Rename Method 8,253
Extract Class 3,338
none 8,307

Table 2: The specific number of various refactor meth-
ods’ categories in our refactoring dataset

2.3 Code Large Language Models165

Recently, Large Language Models (LLMs) have166

achieved excellent performance in code generation167

tasks, such as codellama (Roziere et al., 2023), Al-168

phacode (Li et al., 2022), InCoder (Fried et al.,169

2022) and GPT-3 (Brown et al., 2020). Thanks to170

the large model’s massive training data and genera-171

tion capabilities brought by huge parameters, the172

large code model has the ability to generate code173

that meets the needs of the problem under the input174

of natural language prompts. In addition, it can175

also correct erroneous codes (Silva et al., 2023)176

According to review of code smell (Malhotra et al.,177

2023), the use of LLM for code smell detection is178

still a blank area currently.179

3 Methodology180

3.1 Overview181

We provide an overview of the SmellDetector182

pipeline in Figure 1. The SmellDetector consists of183

two parts: two fine-tuned adapters can be plug-and-184

played with LLM to complete code smell detection185

and refactoring. In the following subsections, we186

will show how the it works through dataset con- 187

struction, adapter training and conversations round. 188

3.2 Dataset Construction 189

We built a detection dataset consists of 97,316 files 190

and 212,612 code smells including 22 types in class 191

level and method level. For refactoring, we built 192

a dataset consists of 16,000 refactoring program 193

fragments pairs. 194

Detetion. Through literature research, we have se- 195

lected two publicly available code smell datasets 196

as the first step: QScore (Sharma and Kessentini, 197

2021) and MLCQ (Madeyski and Lewowski, 2020). 198

These datasets have been verified for their reliabil- 199

ity by automatic detection and expert certification, 200

but they usually retain the relationship between a 201

code snippet and a code smell. We clone the source 202

code from Github and check for different code 203

smells that share the same code snippets. When a 204

class has multiple member methods, we will mark 205

its class smell and method smell respectively based 206

on the collected data. Since different code repos- 207

itories may reference the same third-party code, 208

when splitting the training and testing data, we 209

need pairwise matching to filter out repeated iden- 210

tical fragments. Considering the lack of negative 211

examples in the data set, we traversed other meth- 212

ods and classes in the directory where the positive 213

examples were located and used them as negative 214

examples(clean). In addition, there is an obvious 215

category imbalance in the dataset. We select a cer- 216

tain class or method if and only if it has a code 217

smell that appears less than k times. Based on the 218

mean of the less frequent categories, we set k to 219

10000. The specific number of code smells can be 220

found in Table 1. 221

Refactoring. Through literature research, we 222
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Model Name
Feature Envy Data Class Long Method

F1 F1 F1 AvgF1

CodeLLama-7B 12.50 34.99 15.94 21.14
Baichuan2-7B 15.45 33.77 12.20 20.47

Qwen-7B 15.16 33.61 9.16 19.31

Table 3: Results of few-shot tests of three base models on the MLCQ partitioned data set

choose (Aniche et al., 2020) as source data, which223

consists of Apache,F-Droid, and GitHub’s reposito-224

ries. Since the original database only contains the225

corresponding files and refactoring methods before226

and after refactoring, we need to find pairs of actu-227

ally refactoring code snippets. If it is a refactoring228

of the class, then we extract the class code pairs as229

training data, or use string matching to detect mem-230

ber methods whose content has changed while it is231

a refactoring of the method. Considering the lack232

of negative labeling in Aniche’s open dataset, we233

firstly collect manually labeled negative examples234

from Refactoring Miner2 (Tsantalis et al., 2020).235

Since the number of collected negative examples236

is still relatively small, we use some successfully237

refactored program fragments as negative exam-238

ples, which means this type of refactoring is no239

longer needed. The specific number of refactoring240

methods can be found in Table 2.241

3.3 Adapter Training242

3.3.1 Base Model Selection243

We hope that in addition to having the ability to244

finish traditional code smell work (classification245

of a single smell or classification of a single level246

such as method or variable), the SmellDetector247

also has strongr generalization, which means per-248

form better in few-shot scenarios. Therefore, we249

prefer to choose a base model that has both con-250

text understanding and code generation capabili-251

ties. We first selected LLMs that have performed252

well recently as the first step, like CodeLLama-253

7B (Roziere et al., 2023), Baichuan-7B (Baichuan,254

2023) and Qwen-7B (Bai et al., 2023). Then,255

we use Chain-of-Thought(COT) to test the perfor-256

mance of the model on code smell detection when257

it is not trained. Specifically, we provide the defi-258

nition of a certain code smell, positive examples,259

and negative examples as prompts, let the model260

imitate and generate predictions and reasons for261

code smells, and evaluate its generation quality by262

calculating f1 metric. The experimental results can263

be referred to Table 3 and we choose CodeLLama 264

as our base model. 265

3.3.2 Prompt Design 266

Since our application scenario is different from the 267

pre-training scenario of general code models: the 268

input is code and the output is natural language, 269

including the classification and explanation of code 270

smells, we conducted some preliminary experi- 271

ments using different prompts to verify the training 272

effect, and finally selected the following prompts, 273

and specific examples can be seen in Figure 2 and 274

Figure 3: 275

In code smell detection, the input and output 276

prompt format is that: 277

Detection Input:[Analyze Instruction] + [Java 278

code] 279

Detection Output: [Class Name] + [Class 280

Smell 1,2,...n] + [Method1 Name] + [Method1 281

Smell 1,2...m1] + [Method2 Name] + [Method2 282

Smell 1,2...m2] + ... + [Definition of Smell1, 283

Smell2..Smellk]. 284

The design of output prompt helps the model to 285

have the ability to output multiple smells of multi- 286

ple fragments of code under a class-method struc- 287

ture after fine-tuning. Since there are too many 288

types of code smells, it is not feasible to put the 289

description of code smells as knowledge in the in- 290

put prompt like the traditional COT idea, which 291

will exceed the pre-training length limit of the most 292

model. Therefore, we extract the code smells in- 293

volved in each sample’s description and put them 294

into the output term as supervision. 295

In code smell refactoring, the input and output 296

prompt format is that: 297

Refactoring Input:[Refactor Instruction] + [Java 298

code] 299

Refactoring Output:[Refactoring Name] + [Refac- 300

toring code] 301

The output prompt is designed to make the 302

model have the ability to identify application refac- 303

toring opportunities and specific refactoring at the 304
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Figure 2: Example of Code Smell Detection Dataset.We
added the definition and description of predicted code
smells as output supervision, with the purpose of en-
hancing the model’s understanding of code smells.

same time. Based on the conjecture that cor-305

rect code smell information helps the refactoring306

model predict refactoring opportunities, we use the307

smell detection model trained previously to per-308

form smell detection on the samples in the training309

set of the refactoring model, and add the smell infor-310

mation to the refactoring model.The input prompt311

is adjusted to:312

Refactoring Adjusted Input:[Refactor Instruc-313

tion] + [Name of Smell1, Smell2..Smellk] +314

[Java code]315

3.4 Advice for Refactoring316

In addition to directly adding smell names to fine-317

tune the refactoring opportunity detection model,318

we also considered another way to utilize code319

smell detection. Specifically, we use a code smell320

detection model to detect the code of each refac-321

tored example and classify it into three levels:322

0: No code smell.323

1: Only method-level code smells.324

2: Exists class-level code smells.325

For each predicted refactoring method, we ob-326

Figure 3: Example of Code Smell Refactoring Dataset

tain the code smell level it can solve through its 327

definition. We tested the performance of the refac- 328

toring opportunity detection model on 6 methods in 329

total. The classification suggestions for refactoring 330

methods based on the three code smell levels are: 331

0: Rename Parameter, Rename Variable, Rename 332

Method and none. 333

1: Extract Method and Extract Variable. 334

2: Extract Class and Extract Method. 335

We only consider examples for which the actual 336

prediction matches the opinion on the refactor, i.e., 337

we ignore examples for which the actual predicted 338

reconstruction method is not in the refactoring set 339

corresponding to the code smell levels. 340

3.4.1 Model Training 341

We use QLora-tuning (Dettmers et al., 2023) to 342

train SmellDetector, which means inserting several 343

new parameters, called adapters, to the base of the 344

original model. During training, the parameters of 345

the original model are frozen and only the param- 346

eters of the adapter are updated. Instead of fine- 347

tuning the LLM, lora-based method can achieve 348

good performance on relatively small datasets. 349

4 Experiment 350

We conducted the following experiments, includ- 351

ing two different topics and corresponding data 352

sets: code smell detection and refactoring oppor- 353

tunity detection. The purpose of the experiment 354

is to explore the following questions: (1)How 355

does the adapter obtained by fine-tuning based on 356

the large code model perform in the two tasks of 357

code smell detection and code refactoring oppor- 358

tunity detection after combined with the designed 359
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CodeSmellType Model
Detect Metric

Precision Recall F1

Complex Method
DeepSmell 0.731 0.779 0.754
AE-Dense 0.483 0.630 0.547

SmellDetector(not tuned) 0.934 0.366 0.526
SmellDetector(tuned) 0.995 0.925 0.956

Complex Conditional
DeepSmell 0.575 0.604 0.589
AE-Dense 0.170 0.387 0.237

SmellDetector(not tuned) 0.999 0.519 0.683
SmellDetector(tuned) 0.998 0.989 0.994

Multifaceted Abstraction
DeepSmell 0.287 0.272 0.279
AE-Dense 0.031 0.747 0.060

SmellDetector(not tuned) - - -
SmellDetector(tuned) 0.995 0.710 0.831

Feature Envy
DeepSmell 0.341 0.258 0.294
AE-Dense 0.170 0.387 0.237

SmellDetector(not tuned) 0.959 0.079 0.146
SmellDetector(tuned) 0.988 0.899 0.936

Table 4: Comparison of our approach with other 2 baseline code smell detection methods (DeepSmell, AE-Dense)
under 4 kinds of code smells. The precision, recall and f1 score of the baseline are from their paper because they
trained binary-classification model for each type when we conduct experiment with a multi-classification model.

prompt.(2)How does this compare to traditional360

work on code smells. (3)How does it compare with361

using the COT method with code LLMs.362

4.1 Experiment Setup363

Dataset. In addition to testing on the dataset we364

created, we conduct code smell detection experi-365

ment on the benchmark created by (Sharma et al.,366

2021). Considering that the original benchmark367

had four types of code smells, with significant dis-368

tribution imbalance and excessive negative exam-369

ples, we set the maximum number of positive and370

negative examples for each type of code smell to371

10000 and after shuffling the order, divide it into372

25% as the test set. In terms of refactoring op-373

portunity detection, we conduct experiment on the374

benchmark created by (Aniche et al., 2020). Con-375

sidering that our current method mainly processes376

a single file, we selected 9 types of refactoring377

operations that basically complete the refactoring378

operation within a single file for detection.379

Baseline.For the code smell detection task, we380

have chosen DeepSmells (Ho et al., 2023) and381

AE-Dense (Sharma et al., 2021) as the baseline.382

At the same time, we evaluate the performance383

of SmellDetector without secondary fine-tuning384

(only fine-tuned on the dataset we created) and af-385

ter secondary fine-tuning (also fine-tuned on the386

benchmark training set). For the refactoring op-387

portunity detection task, we have chosen (Aniche388

et al., 2020) as the baseline.389

Metric. The two tasks of code smell detection and 390

refactoring opportunities are actually classification 391

problems. The SOTA work mentioned in the base- 392

line all handles it as a binary classification problem, 393

which means training a separate classifier for each 394

code smell. On the contrary, we handle it as a multi- 395

classification problem, because this is more in line 396

with people’s usage habits and can significantly re- 397

duce training and deployment costs. For each type, 398

we report and compare the mean precision, recall 399

and F1 score. We use classification report tools 400

to calculate the metric in multi-label classification 401

scene (Pedregosa et al., 2011). 402

Training/Inference Settings.For SmellDetector 403

training, we set max sequence length to 6000 to 404

handle situations where the code is particularly 405

long, and use 2 epoch and a learning rate with 1e-4 406

to train the adapter. For the training parameters 407

of qlora, we set lora rank to 64, lora alpha to 16 408

and lora dropout to 0.05. For SmellDetector infer- 409

ence, we set top p to 0.9, temperature to 0.35 and 410

repetition penalty to 1.0. For the computing infras- 411

tructure, we use 2 NVIDIA A100-SXM4-80GB 412

for training and 8 NVIDIA GeForce RTX 3090 413

for inference. The number of trainable parameters 414

is 159,907,840 and the number of all parameters 415

is 3,660,451,840. All training and inference pro- 416

cesses are based on data parallelism and do not 417

require model parallelism to expand GPU memory. 418
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Class Smell
Detect Metric

Precision Recall F1

Feature Envy 0.864 0.845 0.855
Insufficient Modularization 0.659 0.346 0.454
Deficient Encapsulation 0.990 0.995 0.992
Unnecessary Abstraction 0.995 0.985 0.990
Rebellious Hierarchy 0.905 0.830 0.866
Multifaceted Abstraction 0.910 0.619 0.737
Broken Modularization 0.996 0.990 0.993
Cyclic Hierarchy 0.868 0.800 0.833
Missing Hierarchy 0.922 0.858 0.889
Blob 0.833 0.897 0.864
Data Class 0.913 0.824 0.866
clean 0.916 0.953 0.934

Method Smell
Detect Metric

Precision Recall F1

Magic Number 0.944 0.868 0.904
Long Parameter List 0.951 0.918 0.934
Complex Method 0.946 0.909 0.927
Empty catch clause 0.947 0.945 0.946
Long Method 0.922 0.855 0.888
Long Statement 0.892 0.826 0.858
Long Identifier 0.970 0.762 0.853
Complex Conditional 0.945 0.895 0.919
Missing default 0.957 0.926 0.941
clean 0.634 0.789 0.703

Table 5: The results of testing the code smell detection
task on the dataset we organized. We treat it as a multi-
label classification problem.

4.2 Result of Code Smell Detection419

Comparison with baselines.The result of com-420

parison with other baselines is in Table 4. AE-421

dense (Sharma et al., 2021) propose the benchmark422

what we use for testing and DeepSmell (Ho et al.,423

2023), which consists of fusion of deep convolu-424

tional and LSTM recurrent neural networks, is a425

state-of-the-art method on the benchmark. Due to426

performance limitations, the code smell detection427

task is treated as multiple binary classification prob-428

lems, and multiple binary classification models are429

trained to exchange space and cost for higher clas-430

sification accuracy.431

From experimental data, we can see that our432

SmellDetector achieved better results, and we es-433

sentially tested a multi-class model on a binary434

dataset. The three code smell types except Multi-435

faceted Abstraction are actually relatively common436

in our data set, so SmellDetector without secondary437

fine-tuning also achieved good precision in this438

benchmark, The reason why recall performs poorly439

is that SmellDetector(not tuned) is a classifier with440

more than 20 categories and treats other categories 441

that do not belong to this benchmark as negative 442

examples, so the recall rate is significantly lower 443

than the accuracy rate. Since Feature Envy is a 444

method-level code smell in this benchmark but is a 445

class-level code smell in our dataset, SmellDetec- 446

tor without secondary fine-tuning does not perform 447

well on this type. This experiment can show that 448

SmellDetector which is based on LLM has made 449

great progress on the task of code smell detection. 450

Testing in our dataset including 20 types. The 451

result of testing in our dataset is in Table 5. Consid- 452

ering the paradigm of the data set we organized, a 453

code snippet may have multiple code smells, which 454

is a multi-label classification problem. For the sake 455

of convenience, we do not consider the correctness 456

judgment of the predicted cause of code smell for 457

the time being. We only consider whether the code 458

smell itself occurs or not, and extract the predicted 459

classification items through string matching. For 460

example, "[1,0,0,1,0,0,0,0,0,0]" means that in this 461

method, the model predicts that there are two code 462

smells, Magic Number and Empty catch clause. In 463

addition, a sample may contain predictions for a 464

class and multiple member methods at the same 465

time, so we match the predictions with the class 466

names and method names in the real labels, and use 467

the matching code snippets as a more fine-grained 468

calculation metric. the basic unit. Finally, we use 469

the scikit-learn tool library to calculate the preci- 470

sion, recall and f1-score of multi-label classifica- 471

tion. From experimental data, we find that classifi- 472

cation performance is basically positively related 473

to the amount of data and some categories with rel- 474

atively clear and concise definitions are exceptions, 475

such as blob and data class. 476

4.3 Result of Refactoring Opportunities 477

Detection 478

Comparison with baselines. The result of com- 479

parison with other baseline is in Table 6. Aniche 480

has proposed the benchmark consisting of Class- 481

level, Method-level and Variable-level refactoring 482

and Random Forest achieved the best performance 483

in this benchmark (Aniche et al., 2020). When 484

we fine-tune a binary-classification model for each 485

class of refactoring method like the baseline, we 486

achieve the state-of-the-art performance. 487

Testing about our refactoring methods. The re- 488

sult of testing about our refactoring methods is in 489

Table 7. When we treat refactoring opportunities 490

detection as a multi-class classification problem 491
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Refactor Method
Random Forest Binary Classification
P R F1 P R F1

Rename Parameter 0.99 0.99 0.99 0.98 0.99 0.98
Rename Variable 1.00 0.99 0.99 0.98 0.98 0.97
Rename Method 0.79 0.85 0.81 0.98 0.99 0.98
Extract Variable 0.90 0.83 0.87 0.98 0.87 0.92
Extract Method 0.80 0.92 0.84 0.99 0.95 0.97
Extract Class 0.85 0.93 0.89 0.89 0.93 0.91
Avg 0.89 0.92 0.90 0.97 0.95 0.96

Table 6: The results of testing the refactoring opportunities detection task on the benchmark created by the previous
SOTA method , when Random Forest is the previous SOTA method, and Binary Classification is the method that
finetuning a binary-classification model for each class, just like Random Forest.

Refactor Method
Base +trained with smell +advice

P R F1 P R F1 P R F1

Rename Parameter 0.56 0.48 0.51 0.50 0.59 0.54 0.53 0.53 0.53
Rename Variable 0.36 0.39 0.37 0.37 0.31 0.34 0.34 0.37 0.36
Rename Method 0.74 0.38 0.50 0.54 0.44 0.49 0.73 0.47 0.57
Extract Variable 0.63 0.52 0.57 0.70 0.43 0.53 0.63 0.47 0.53
Extract Method 0.45 0.26 0.33 0.44 0.18 0.26 0.43 0.42 0.43
Extract Class 0.73 0.41 0.53 0.76 0.30 0.43 0.76 0.41 0.53
none 0.37 0.93 0.52 0.35 0.91 0.51 0.46 0.93 0.62
Avg 0.54 0.48 0.48 0.52 0.46 0.45 0.56 0.52 0.51

Table 7: The results of testing the refactoring opportunities detection task on the dataset we organized, when Base is
the lora-tuning method in Chapter 3.3.2, +trained with smell is the lora-tuning method with code smell name as
additional input information, and +advice is selecting examples that comply with advice in the Base method.

and output the refactor code at the same time, the492

classification performance is much lower than the493

data in Table 6. We try to treat code smell name494

as additional input information and the test result495

shows that it fails. In our inference, the reason why496

it can not make sense is that the given information497

of code smell is too little and LLM lacks enough498

prior knowledge of individual code smells to judge499

at present. Therefore, we added analysis based on500

expert prior knowledge and changed the method501

of directly using code smell names as additional502

input to recommended refactoring methods based503

on detected code smells. For details, please refer504

to Chapter 3.4 .The experimental data shows its505

effectiveness. However, the specific refactoring506

performance still does not meet our expectations.507

How to reasonably combine the two tasks of code508

smell detection and refactoring opportunity detec-509

tion still requires further research.510

5 Conclusion 511

In this paper, we proposed SmellDetector, a com- 512

prehensive code smell detection and elimination 513

model. We collect and organize the first hierar- 514

chical code smell dataset from previous datasets, 515

which contains multiple code smells in the same 516

code snippet, including 212,612 code smells and 517

22 types of class level and method level. By testing 518

on the benchmark built by previous SOTA method, 519

our model has achieved the state-of-art in code 520

smell detection and we can detect four times the 521

number of smell types than before, changing the 522

basic paradigm of code smell detection from binary 523

classification problem to multi-label classification. 524

We have experimentally demonstrated that effec- 525

tive code smell detection helps detect opportunities 526

for code refactoring and provide researchers with 527

ideas for a reasonable combination of two tasks. 528
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Limitations and Future Work529

In this paper, we followed the previous research530

paradigm on code smell, which focused on the two531

tasks of code smell detection and refactoring oppor-532

tunity detection. However, we lack further attempts533

at specific reconstruction to eliminate odors. Al-534

though we have fine-tuned the refactoring model to535

output refactored code, we lack powerful tools to536

judge whether the refactored code is effective. Sim-537

ply applying natural language generated metrics,538

such as calculating the BLEU or ROUGE of label-539

ing refactoring code and predicting reconstructed540

code, is of little significance. In the future, we541

should solve this problem by establishing bench-542

marks or proposing new metrics, so as to establish543

a more direct research paradigm for code smell544

refactoring.545
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