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Abstract

Large Language Models (LLMs) have demon-
strated impressive capabilities in many tasks
such as code generation and automated pro-
gram repair. However, code LLMs have ig-
nored another important task in programmers’
daily development work, which is to improve
the maintainability, readability, and scalability
of the program. All of these characteristics
are related to code smells and we study how
to improve them by detecting and removing
code smells. Most works on code smells still
rely on using measures formulated by experts
as features, but lack of use of the rich prior
knowledge contained in code LLMs. In this
paper, we propose SmellDetector, a compre-
hensive model for both code smell detection
and refactoring opportunities detection in Java.
We train the model with the designed prompt
which contains both code smells of class-level
and method-level in the same code snippet, in-
cluding more than 20 types. We achieve state-
of-the-art performance on the code smell detec-
tion task and change the basic paradigm of code
smell detection from binary classification prob-
lem to multi-label classification. Finally, it has
been verified through experiments that good
code smell detection helps to detect refactoring
opportunities.

1 Introduction

Recently, Large Language Models (LLMs) have
achieved impressive performance in code genera-
tion (Roziere et al., 2023), especially in the scene
of algorithm competitions, and there are many
commercial code models available on the market.
When it comes to daily development of software
engineers, it is an important but often overlooked is-
sue that how to keep system maintainability (Lowe
and Panas, 2005), or reduce the code smell. Code
smells usually appear in object-oriented program-
ming scenarios that use a large number of class
structures and long codes, bring technical dept to
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Figure 1: Flowchart of code smell detection work.

a software system (Foster et al., 2012) and harm-
ing its maintainability and evolution (Sjgberg et al.,
2012). In other words, code smell does not cur-
rently affect the running of the program and output
correct results, but it hinders its further develop-
ment and iteration. Many researchers have paid
attention to the problem of code smells as early
as the millennium, and proposed that correct code
smell identification can help provide reasonable
refactoring locations and opportunities for code
refactoring (Fowler and Beck, 1997). The tradi-
tional method calculates various metrics for the
code, such as LCOM (Lack of COhesion in Meth-
ods) and NMD (number of methods declared), and
comprehensively determines whether the code has
a certain code smell based on whether it reaches a
threshold. When machine learning and deep learn-
ing algorithms became popular, many researchers
input metrics of code smell as features into the
model for training to avoid the instability caused
by directly selecting thresholds (Jha et al., 2019;
Sharma et al., 2021). Besides, in researches of
code refactoring, an important research direction
is finding refactoring opportunities, which are usu-



ally treated as a binary classification and charac-
terized by calculating various metrics of program
fragments to predict whether a specific refactoring
method should be used (Aniche et al., 2020).

However, some of the above methods have draw-
backs: they rely on calculating measures designed
by experts as features, which is not in line with
the current trend of LLM development. Moreover,
code refactoring opportunity detection and code
smell detection lack a good connection to make
them mutually reinforcing, although they are essen-
tially information-complementing tasks.

In this paper, we present SmellDetector, a com-
prehensive code smell detection and elimination
model, aiming to provide adapters based on LLM
for detecting code smells’ types and find refactor-
ing opportunities.

We summarize our contributions below:

* We propose the first model based on code
LLM fine-tuning for code smell detection and
refactoring opportunities detection. Our train-
ing dataset and method is general and can
be easily applied to other LLMs with greater
capabilities. The model has achieved the state-
of-arts in code smell detection task.

* We collect and organize the first hierarchi-
cal code smell dataset from previous datasets,
which contains multiple code smells in the
same code snippet, including 212,612 code
smells and 22 types.

* We have experimentally proven that effective
code smell detection is helpful in detecting
code refactoring opportunities, and provides
researchers with research ideas that the two
tasks should be reasonably combined.

2 Related Work
2.1 Code Smell Detection

Code Smell is considered as inadequate implemen-
tation and design in code (Fowler and Beck, 1997),
bringing various hazards, such as damaging code
readability and maintainability. Beck et al. pro-
vide a detailed definition of 22 code smells through
natural language. In order to automate the detec-
tion of code smell in batches, Moha et al. pro-
posed a method of calculating program metrics and
determining whether they have reached a preset
threshold. Additionally, Palomba et al. use history
information to detect the code smells and inspire
the ideas of many researchers.

Traditional metric based methods may not be
as accurate in distinguishing some fuzzy and com-
plex code smells because of threshold. Therefore,
some researchers (Fernandes et al., 2016) use ma-
chine learning methods to solve this problem, such
as Bayesian (Khomh et al., 2011), SVM (Maiga
et al., 2012) and Random Forest (Hall et al., 2011).
Although ML algorithms perform well in smell de-
tection, experts are still needed to perform feature
extraction. On the contrary, deep learning algo-
rithms can autonomously learn advanced features.
Some researcher (Guo et al., 2019) use LSTM and
CNN to extract text and metric information sepa-
rately while White use RtNN and RvNN to cap-
ture features in source code and abstract syntax
tree (White et al., 2016). DeepSmell (Ho et al.,
2023) has reached the state-of-art performance be-
fore, but it still has a serious flaw: it needs to train a
separate model for each type of code smell, which
increases training and deployment costs.

2.2 Code Refactoring

When Beck et al. purposed the definitions of 22
code smells, corresponding refactoring methods
have been proposed at the same time, such as Ex-
tract (method, variable...), Rename(method, vari-
able...), Move method and so on, which are still the
most commonly used (Al Dallal and Abdin, 2017).
Refactoring methods and code smells have some
semantic connections and they are not one-to-one
correspondences and one refactoring can mitigate
multiple code smells, such as Extracting Class is
useful for duplicate code/clones, god classes and
data blocks (Lacerda et al., 2020).

Since the usable code refactoring methods re-
main largely unchanged, finding an opportunity
for refactoring means completing one refactoring.
Many researchers use metric to search code snip-
pets suitable for a certain type of refactoring, like
the cohesion metric (Al Dallal and Briand, 2012),
in-class semantic similarities metric (Bavota et al.,
2014) and between-class cohesion metric (Bavota
et al., 2010). Other researchers proved the effective-
ness of using machine learning algorithms (Aniche
et al., 2020) and neural networks (Alenezi et al.,
2020) to find refactoring opportunities. When more
and more reliable refactoring datasets are being
proposed by integration of manual annotation and
detection tools (Tsantalis et al., 2020; Moghadam
et al., 2021), LLM may be a new method to help
break through code refactoring.



Class smell Number Method Smell Number
Feature Envy 8,337 Magic Number 32,157
Insufficient Modularization 575 Long Parameter List 8,296
Deficient Encapsulation 19,943 Complex Method 16,900
Unnecessary Abstraction 8,662 Empty catch clause 7,953
Rebellious Hierarchy 1,173 Long Method 6,366
Multifaceted Abstraction 2,325 Long Statement 34,240
Broken Modularization 8,524 Long Identifier 8,313
Cyclic Hierarchy 2,060 Complex Conditionall 9,919
Missing Hierarchy 2,320 Missing default 8,348
Blob 293 / /
Data Class 356 / /
Class clean 14,631 Method Clean 12,261

Table 1: The specific number of various code smells’ categories in our detection dataset

Refactor Method Number
Extract Variable 8,337
Rename Parameter 8,180
Rename Variable 8,038
Extract Method 8,511
Rename Method 8,253
Extract Class 3,338
none 8,307

Table 2: The specific number of various refactor meth-
ods’ categories in our refactoring dataset

2.3 Code Large Language Models

Recently, Large Language Models (LLMs) have
achieved excellent performance in code generation
tasks, such as codellama (Roziere et al., 2023), Al-
phacode (Li et al., 2022), InCoder (Fried et al.,
2022) and GPT-3 (Brown et al., 2020). Thanks to
the large model’s massive training data and genera-
tion capabilities brought by huge parameters, the
large code model has the ability to generate code
that meets the needs of the problem under the input
of natural language prompts. In addition, it can
also correct erroneous codes (Silva et al., 2023)
According to review of code smell (Malhotra et al.,
2023), the use of LLM for code smell detection is
still a blank area currently.

3 Methodology

3.1 Overview

We provide an overview of the SmellDetector
pipeline in Figure 1. The SmellDetector consists of
two parts: two fine-tuned adapters can be plug-and-
played with LLM to complete code smell detection
and refactoring. In the following subsections, we

will show how the it works through dataset con-
struction, adapter training and conversations round.

3.2 Dataset Construction

We built a detection dataset consists of 97,316 files
and 212,612 code smells including 22 types in class
level and method level. For refactoring, we built
a dataset consists of 16,000 refactoring program
fragments pairs.

Detetion. Through literature research, we have se-
lected two publicly available code smell datasets
as the first step: QScore (Sharma and Kessentini,
2021) and MLCQ (Madeyski and Lewowski, 2020).
These datasets have been verified for their reliabil-
ity by automatic detection and expert certification,
but they usually retain the relationship between a
code snippet and a code smell. We clone the source
code from Github and check for different code
smells that share the same code snippets. When a
class has multiple member methods, we will mark
its class smell and method smell respectively based
on the collected data. Since different code repos-
itories may reference the same third-party code,
when splitting the training and testing data, we
need pairwise matching to filter out repeated iden-
tical fragments. Considering the lack of negative
examples in the data set, we traversed other meth-
ods and classes in the directory where the positive
examples were located and used them as negative
examples(clean). In addition, there is an obvious
category imbalance in the dataset. We select a cer-
tain class or method if and only if it has a code
smell that appears less than k times. Based on the
mean of the less frequent categories, we set k to
10000. The specific number of code smells can be
found in Table 1.

Refactoring. Through literature research, we



Feature Envy Data Class Long Method
Model Name 2 ) ) AveF,
CodeL.Lama-7B 12.50 34.99 15.94 21.14
Baichuan2-7B 15.45 33.77 12.20 20.47
Qwen-7B 15.16 33.61 9.16 19.31

Table 3: Results of few-shot tests of three base models on the MLCQ partitioned data set

choose (Aniche et al., 2020) as source data, which
consists of Apache,F-Droid, and GitHub’s reposito-
ries. Since the original database only contains the
corresponding files and refactoring methods before
and after refactoring, we need to find pairs of actu-
ally refactoring code snippets. If it is a refactoring
of the class, then we extract the class code pairs as
training data, or use string matching to detect mem-
ber methods whose content has changed while it is
a refactoring of the method. Considering the lack
of negative labeling in Aniche’s open dataset, we
firstly collect manually labeled negative examples
from Refactoring Miner2 (Tsantalis et al., 2020).
Since the number of collected negative examples
is still relatively small, we use some successfully
refactored program fragments as negative exam-
ples, which means this type of refactoring is no
longer needed. The specific number of refactoring
methods can be found in Table 2.

3.3 Adapter Training

3.3.1 Base Model Selection

We hope that in addition to having the ability to
finish traditional code smell work (classification
of a single smell or classification of a single level
such as method or variable), the SmellDetector
also has strongr generalization, which means per-
form better in few-shot scenarios. Therefore, we
prefer to choose a base model that has both con-
text understanding and code generation capabili-
ties. We first selected LLMs that have performed
well recently as the first step, like CodeLLama-
7B (Roziere et al., 2023), Baichuan-7B (Baichuan,
2023) and Qwen-7B (Bai et al., 2023). Then,
we use Chain-of-Thought(COT) to test the perfor-
mance of the model on code smell detection when
it is not trained. Specifically, we provide the defi-
nition of a certain code smell, positive examples,
and negative examples as prompts, let the model
imitate and generate predictions and reasons for
code smells, and evaluate its generation quality by
calculating f1 metric. The experimental results can

be referred to Table 3 and we choose CodelLLama
as our base model.

3.3.2 Prompt Design

Since our application scenario is different from the
pre-training scenario of general code models: the
input is code and the output is natural language,
including the classification and explanation of code
smells, we conducted some preliminary experi-
ments using different prompts to verify the training
effect, and finally selected the following prompts,
and specific examples can be seen in Figure 2 and
Figure 3:

In code smell detection, the input and output
prompt format is that:

Detection Input:[Analyze Instruction] + [Java
code]

Detection Output: [Class Name] + [Class
Smell 1,2,..n] + [Method; Name] + [Method
Smell 1,2...m1] + [M ethods Name] + [ M ethods
Smell 1,2...mo] + ... + [Definition of Smelly,
Smells..Smell].

The design of output prompt helps the model to
have the ability to output multiple smells of multi-
ple fragments of code under a class-method struc-
ture after fine-tuning. Since there are too many
types of code smells, it is not feasible to put the
description of code smells as knowledge in the in-
put prompt like the traditional COT idea, which
will exceed the pre-training length limit of the most
model. Therefore, we extract the code smells in-
volved in each sample’s description and put them
into the output term as supervision.

In code smell refactoring, the input and output
prompt format is that:

Refactoring Input:[Refactor Instruction] + [Java
code]

Refactoring Output:[Refactoring Name] + [Refac-
toring code]

The output prompt is designed to make the
model have the ability to identify application refac-
toring opportunities and specific refactoring at the



Detection Prompt

Refactoring Prompt

Input:

Please read the following Java class code and analyze the
code smell of class level and method level separately,
pointing out the reasons:

public class AlphaClass {
//...class variables
public methodA (Entity a) {
// statement 1
// statement 2

Output:

We analyze the code smells at the class level and method
level separately as follows:

In Class level of AlphaClass:

0:There is no class level's code smell and it's clean.

In Method level of methodA:
l:Long Statement because ...//reason 1

The following is my reference standard for determining
whether the smell of the above code exists:

clean: ... // Clean smell definition

Long Statement: ... // Long statement definition

Figure 2: Example of Code Smell Detection Dataset. We
added the definition and description of predicted code
smells as output supervision, with the purpose of en-
hancing the model’s understanding of code smells.

same time. Based on the conjecture that cor-
rect code smell information helps the refactoring
model predict refactoring opportunities, we use the
smell detection model trained previously to per-
form smell detection on the samples in the training
set of the refactoring model, and add the smell infor-
mation to the refactoring model. The input prompt
is adjusted to:

Refactoring Adjusted Input:[Refactor Instruc-
tion] + [Name of Smelly, Smelly..Smell;] +
[Java code]

3.4 Adyvice for Refactoring

In addition to directly adding smell names to fine-
tune the refactoring opportunity detection model,
we also considered another way to utilize code
smell detection. Specifically, we use a code smell
detection model to detect the code of each refac-
tored example and classify it into three levels:
0: No code smell.
1: Only method-level code smells.
2: Exists class-level code smells.

For each predicted refactoring method, we ob-

Input:

Read the following Java code, there are some code smells
in it: Magic Number, Long Method. Please identify the
appropriate refactor method and use it to refactor the code
and remove the code smell:
public class NeedRefactorClass {

//...class variables

public methodBIG(Entity a, Entity b) {...}

QOutput:
The appropriate refactor method is Extract Method and there
is the code after refactoring:
public class NeedRefactorClass {
//...class variables
public m dA(Entity a, Entity b) {methodB(a,b)...}
public methodB(Entity a, Entity b) {...}
1

Figure 3: Example of Code Smell Refactoring Dataset

tain the code smell level it can solve through its
definition. We tested the performance of the refac-
toring opportunity detection model on 6 methods in
total. The classification suggestions for refactoring
methods based on the three code smell levels are:
0: Rename Parameter, Rename Variable, Rename
Method and none.

1: Extract Method and Extract Variable.

2: Extract Class and Extract Method.

We only consider examples for which the actual
prediction matches the opinion on the refactor, i.e.,
we ignore examples for which the actual predicted
reconstruction method is not in the refactoring set
corresponding to the code smell levels.

3.4.1 Model Training

We use QLora-tuning (Dettmers et al., 2023) to
train SmellDetector, which means inserting several
new parameters, called adapters, to the base of the
original model. During training, the parameters of
the original model are frozen and only the param-
eters of the adapter are updated. Instead of fine-
tuning the LLM, lora-based method can achieve
good performance on relatively small datasets.

4 Experiment

We conducted the following experiments, includ-
ing two different topics and corresponding data
sets: code smell detection and refactoring oppor-
tunity detection. The purpose of the experiment
is to explore the following questions: (1)How
does the adapter obtained by fine-tuning based on
the large code model perform in the two tasks of
code smell detection and code refactoring oppor-
tunity detection after combined with the designed



Detect Metric

CodeSmellType Model Precision Recall "
DeepSmell 84713% 0.2;9 8;24
C lex Method AE-Dense . 0.630 547
ompiex Vietho SmellDetector(not tuned) 0934 0366  0.526
SmellDetector(tuned) 0.995 0.925 0.956
DeepSmell 0.575 0.604 0.589
C lex Conditional AE-Dense 0.170 0.387 0.237
OMPpIEx LONAHONAT g eliDetector(not tuned) 0999 0519  0.683
SmellDetector(tuned) 0.998 0.989 0.994
DeepSmell 0.287 0.272  0.279
Multifaceted Abstraction AE-Dense 0.031 0.747  0.060
SmellDetector(not tuned) - - -
SmellDetector(tuned) 0.995 0.710 0.831
DeepSmell 0.341 0.258 0.294
Feature E AE-Dense 0.170 0.387 0.237
cature BIvY SmellDetector(not tuned) ~ 0.959 0079  0.146
SmellDetector(tuned) 0.988 0.899 0.936

Table 4: Comparison of our approach with other 2 baseline code smell detection methods (DeepSmell, AE-Dense)
under 4 kinds of code smells. The precision, recall and f1 score of the baseline are from their paper because they
trained binary-classification model for each type when we conduct experiment with a multi-classification model.

prompt.(2)How does this compare to traditional
work on code smells. (3)How does it compare with
using the COT method with code LLMs.

4.1 Experiment Setup

Dataset. In addition to testing on the dataset we
created, we conduct code smell detection experi-
ment on the benchmark created by (Sharma et al.,
2021). Considering that the original benchmark
had four types of code smells, with significant dis-
tribution imbalance and excessive negative exam-
ples, we set the maximum number of positive and
negative examples for each type of code smell to
10000 and after shuffling the order, divide it into
25% as the test set. In terms of refactoring op-
portunity detection, we conduct experiment on the
benchmark created by (Aniche et al., 2020). Con-
sidering that our current method mainly processes
a single file, we selected 9 types of refactoring
operations that basically complete the refactoring
operation within a single file for detection.
Baseline.For the code smell detection task, we
have chosen DeepSmells (Ho et al., 2023) and
AE-Dense (Sharma et al., 2021) as the baseline.
At the same time, we evaluate the performance
of SmellDetector without secondary fine-tuning
(only fine-tuned on the dataset we created) and af-
ter secondary fine-tuning (also fine-tuned on the
benchmark training set). For the refactoring op-
portunity detection task, we have chosen (Aniche
et al., 2020) as the baseline.

Metric. The two tasks of code smell detection and
refactoring opportunities are actually classification
problems. The SOTA work mentioned in the base-
line all handles it as a binary classification problem,
which means training a separate classifier for each
code smell. On the contrary, we handle it as a multi-
classification problem, because this is more in line
with people’s usage habits and can significantly re-
duce training and deployment costs. For each type,
we report and compare the mean precision, recall
and F1 score. We use classification report tools
to calculate the metric in multi-label classification
scene (Pedregosa et al., 2011).

Training/Inference Settings.For SmellDetector
training, we set max sequence length to 6000 to
handle situations where the code is particularly
long, and use 2 epoch and a learning rate with 1e-4
to train the adapter. For the training parameters
of qlora, we set lora rank to 64, lora alpha to 16
and lora dropout to 0.05. For SmellDetector infer-
ence, we set top p to 0.9, temperature to 0.35 and
repetition penalty to 1.0. For the computing infras-
tructure, we use 2 NVIDIA A100-SXM4-80GB
for training and 8 NVIDIA GeForce RTX 3090
for inference. The number of trainable parameters
is 159,907,840 and the number of all parameters
is 3,660,451,840. All training and inference pro-
cesses are based on data parallelism and do not
require model parallelism to expand GPU memory.



Detect Metric
Class Smell Precision  Recall Fy
Feature Envy 0.864 0.845  0.855
Insufficient Modularization 0.659 0.346  0.454
Deficient Encapsulation 0.990 0.995  0.992
Unnecessary Abstraction 0.995 0.985  0.990
Rebellious Hierarchy 0.905 0.830  0.866
Multifaceted Abstraction 0.910 0.619  0.737
Broken Modularization 0.996 0.990  0.993
Cyclic Hierarchy 0.868 0.800  0.833
Missing Hierarchy 0.922 0.858  0.889
Blob 0.833 0.897  0.864
Data Class 0.913 0.824  0.866
clean 0.916 0.953 0.934
Detect Metric
Method Smell Precision  Recall Fy
Magic Number 0.944 0.868  0.904
Long Parameter List 0.951 0918 0.934
Complex Method 0.946 0.909  0.927
Empty catch clause 0.947 0.945  0.946
Long Method 0.922 0.855 0.888
Long Statement 0.892 0.826  0.858
Long Identifier 0.970 0.762  0.853
Complex Conditional 0.945 0.895 0.919
Missing default 0.957 0.926  0.941
clean 0.634 0.789  0.703

Table 5: The results of testing the code smell detection
task on the dataset we organized. We treat it as a multi-
label classification problem.

4.2 Result of Code Smell Detection

Comparison with baselines.The result of com-
parison with other baselines is in Table 4. AE-
dense (Sharma et al., 2021) propose the benchmark
what we use for testing and DeepSmell (Ho et al.,
2023), which consists of fusion of deep convolu-
tional and LSTM recurrent neural networks, is a
state-of-the-art method on the benchmark. Due to
performance limitations, the code smell detection
task is treated as multiple binary classification prob-
lems, and multiple binary classification models are
trained to exchange space and cost for higher clas-
sification accuracy.

From experimental data, we can see that our
SmellDetector achieved better results, and we es-
sentially tested a multi-class model on a binary
dataset. The three code smell types except Multi-
faceted Abstraction are actually relatively common
in our data set, so SmellDetector without secondary
fine-tuning also achieved good precision in this
benchmark, The reason why recall performs poorly
is that SmellDetector(not tuned) is a classifier with

more than 20 categories and treats other categories
that do not belong to this benchmark as negative
examples, so the recall rate is significantly lower
than the accuracy rate. Since Feature Envy is a
method-level code smell in this benchmark but is a
class-level code smell in our dataset, SmellDetec-
tor without secondary fine-tuning does not perform
well on this type. This experiment can show that
SmellDetector which is based on LLM has made
great progress on the task of code smell detection.
Testing in our dataset including 20 types. The
result of testing in our dataset is in Table 5. Consid-
ering the paradigm of the data set we organized, a
code snippet may have multiple code smells, which
is a multi-label classification problem. For the sake
of convenience, we do not consider the correctness
judgment of the predicted cause of code smell for
the time being. We only consider whether the code
smell itself occurs or not, and extract the predicted
classification items through string matching. For
example, "[1,0,0,1,0,0,0,0,0,0]" means that in this
method, the model predicts that there are two code
smells, Magic Number and Empty catch clause. In
addition, a sample may contain predictions for a
class and multiple member methods at the same
time, so we match the predictions with the class
names and method names in the real labels, and use
the matching code snippets as a more fine-grained
calculation metric. the basic unit. Finally, we use
the scikit-learn tool library to calculate the preci-
sion, recall and fl-score of multi-label classifica-
tion. From experimental data, we find that classifi-
cation performance is basically positively related
to the amount of data and some categories with rel-
atively clear and concise definitions are exceptions,
such as blob and data class.

4.3 Result of Refactoring Opportunities
Detection

Comparison with baselines. The result of com-
parison with other baseline is in Table 6. Aniche
has proposed the benchmark consisting of Class-
level, Method-level and Variable-level refactoring
and Random Forest achieved the best performance
in this benchmark (Aniche et al., 2020). When
we fine-tune a binary-classification model for each
class of refactoring method like the baseline, we
achieve the state-of-the-art performance.

Testing about our refactoring methods. The re-
sult of testing about our refactoring methods is in
Table 7. When we treat refactoring opportunities
detection as a multi-class classification problem



Random Forest

Binary Classification

Refactor Method P R i) P R 7

Rename Parameter 099 0.99 099 098 0.99 0.98
Rename Variable 1.00 099 099 098 098 0.97
Rename Method 0.79 0.85 0.81 098 099 0.98
Extract Variable 090 083 087 098 087 092
Extract Method 0.80 092 084 099 095 0.97
Extract Class 0.85 093 0.89 0.89 093 091
Avg 0.89 092 090 097 095 0.96

Table 6: The results of testing the refactoring opportunities detection task on the benchmark created by the previous
SOTA method , when Random Forest is the previous SOTA method, and Binary Classification is the method that
finetuning a binary-classification model for each class, just like Random Forest.

Refactor Method . Blz;se - +t;a1ned l:vuh SI;‘TH . +acizlce -

Rename Parameter 0.56 048 051 050 059 054 053 053 0.53
Rename Variable 036 039 037 037 031 034 034 037 0.36
Rename Method 074 038 050 054 044 049 0.73 047 0.57
Extract Variable 063 052 057 070 043 053 063 047 0.53
Extract Method 045 026 033 044 018 026 043 042 043
Extract Class 073 041 053 076 030 043 076 041 0.53
none 037 093 052 035 091 051 046 093 0.62
Avg 054 048 048 052 046 045 056 052 051

Table 7: The results of testing the refactoring opportunities detection task on the dataset we organized, when Base is
the lora-tuning method in Chapter 3.3.2, +trained with smell is the lora-tuning method with code smell name as
additional input information, and +advice is selecting examples that comply with advice in the Base method.

and output the refactor code at the same time, the
classification performance is much lower than the
data in Table 6. We try to treat code smell name
as additional input information and the test result
shows that it fails. In our inference, the reason why
it can not make sense is that the given information
of code smell is too little and LLM lacks enough
prior knowledge of individual code smells to judge
at present. Therefore, we added analysis based on
expert prior knowledge and changed the method
of directly using code smell names as additional
input to recommended refactoring methods based
on detected code smells. For details, please refer
to Chapter 3.4 .The experimental data shows its
effectiveness. However, the specific refactoring
performance still does not meet our expectations.
How to reasonably combine the two tasks of code
smell detection and refactoring opportunity detec-
tion still requires further research.

5 Conclusion

In this paper, we proposed SmellDetector, a com-
prehensive code smell detection and elimination
model. We collect and organize the first hierar-
chical code smell dataset from previous datasets,
which contains multiple code smells in the same
code snippet, including 212,612 code smells and
22 types of class level and method level. By testing
on the benchmark built by previous SOTA method,
our model has achieved the state-of-art in code
smell detection and we can detect four times the
number of smell types than before, changing the
basic paradigm of code smell detection from binary
classification problem to multi-label classification.
We have experimentally demonstrated that effec-
tive code smell detection helps detect opportunities
for code refactoring and provide researchers with
ideas for a reasonable combination of two tasks.



Limitations and Future Work

In this paper, we followed the previous research
paradigm on code smell, which focused on the two
tasks of code smell detection and refactoring oppor-
tunity detection. However, we lack further attempts
at specific reconstruction to eliminate odors. Al-
though we have fine-tuned the refactoring model to
output refactored code, we lack powerful tools to
judge whether the refactored code is effective. Sim-
ply applying natural language generated metrics,
such as calculating the BLEU or ROUGE of label-
ing refactoring code and predicting reconstructed
code, is of little significance. In the future, we
should solve this problem by establishing bench-
marks or proposing new metrics, so as to establish
a more direct research paradigm for code smell
refactoring.
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