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Abstract

We establish a simple connection between robust and differentially-private algo-
rithms: private mechanisms which perform well with very high probability are
automatically robust in the sense that they retain accuracy even if a constant fraction
of the samples they receive are adversarially corrupted. Since optimal mechanisms
typically achieve these high success probabilities, our results imply that optimal
private mechanisms for many basic statistics problems are robust.

We investigate the consequences of this observation for both algorithms and com-
putational complexity across different statistical problems. Assuming the Brennan-
Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental
tradeoff between computational efficiency, privacy leakage, and success probability
for sparse mean estimation. Private algorithms which match this tradeoff are not
yet known — we achieve that (up to polylogarithmic factors) in a polynomially-large
range of parameters via the Sum-of-Squares method.

To establish an information-computation gap for private sparse mean estimation, we
also design new (exponential-time) mechanisms using fewer samples than efficient
algorithms must use. Finally, we give evidence for privacy-induced information-
computation gaps for several other statistics and learning problems, including PAC
learning parity functions and estimation of the mean of a multivariate Gaussian.

1 Introduction

Avoiding leakage of sensitive data and robustness to data corruption or model misspecification are
often key goals for designers of statistical estimators. Both these properties admit mathematical
formalizations, and a great deal of recent work in (algorithmic) statistics has gone into designing and
analyzing algorithms that satisfy them.

Differential privacy (DP) is the gold-standard formal definition of privacy for algorithms processing
sensitive data [DMNSO06]. DP requires that the distribution of outputs of an algorithm (or “mecha-
nism”’) M is insensitive to exchanging a small number of individuals in its input dataset. It offers
such strong guarantees against privacy leakage that in addition to its ongoing adoption in industry,
the US Census Bureau employs DP to satisfy its legal mandate to protect privacy [AACM™*22].

The n-contamination model is a stringent formalization of robustness against model misspecification.
It generalizes the classical model of i.i.d. samples: a dataset is 1)-corrupted for some 17 > 0 if it is
first drawn i.i.d, but then an 7-fraction of samples have been arbitrarily corrupted by a malicious
adversary (who may look at the whole dataset) [Hub65, Tuk75, Hub11]. An n-robust algorithm is
one which maintains guarantees of accuracy when given 7-corrupted samples.
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Both robustness and privacy demand that the output of some statistical method not “change too
much” when one or a few input samples are modified arbitrarily. This conceptual similarity has not
gone unnoticed: [DL09] observe that “robust statistical estimators present an excellent starting point
for differentially private estimators,” and recent works have even made good on this idea in high-
dimensional settings, taking inspiration from robust statistics to design private mechanisms [LKKO21,
HBK?22]. However, a general account of which private algorithms can be made robust, or vice versa,
remains an open problem. Here we take a small step by tackling:

Question 1: When are private algorithms (also) robust?

While common wisdom holds that privacy and robustness are not formally comparable, we give a
meta-theorem Theorem 2.1 which quantifies the degree of robustness that private mechanisms exhibit:
at a high level, mechanisms satisfying quantitatively-strong versions of DP are automatically robust.

This connection between robustness and privacy gives us the tools to investigate a second basic
question, concerning tradeoffs among computational resources, privacy, and statistical accuracy.
Accuracy-privacy tradeoffs appear in even the most elementary statistical settings. For instance,
estimating the mean of a d-dimensional Gaussian to ¢, error a requires ©(d/a?*) samples non-
privately, but subject to e-DP* requires (roughly) @(d/a? + d/(a¢)) samples [BKSW19]. While
important in their own right, these two-way tradeoffs are not the whole story. In numerous cases,
even including the Gaussian mean estimation problem, computationally efficient algorithms which
achieve the optimal privacy-accuracy tradeoffs are not known. This brings up the question:

Question 2: Does requiring differential privacy introduce computational barriers in statistics?

While computational barriers to efficient private algorithms are known in some settings [GHRU13,
Ull16, Bun20], these apply only to algorithms with worst-case accuracy guarantees — in statistical
settings we are asking only for average-case accuracy guarantees (although privacy should still hold
with respect to all possible datasets).

An archetypal problem for which computational barriers arise when estimators are required to satisfy
criteria beyond accuracy is that of sparse mean estimation. The goal there is to estimate a k-sparse
vector [ € R? using independent samples from a distribution with mean (. With no requirements
on privacy or robustness, this can be accomplished with O(k log d) samples in polynomial time
via simple thresholding-based estimators. In exponential time, it is possible to retain O(k log d)
sample complexity and satisfy privacy and robustness (as we show in this paper), but in polynomial
time Q(k?) samples are required (under a variant of the planted clique conjecture) just to satisfy
robustness [BB20]. Given the outlined connection between robustness and privacy, the existence of
an information-computation gap for robust sparse mean estimation naturally leads to:

Question 3: How many samples do poly-time private algorithms for sparse mean estimation require?

1.1 Our Contributions

We make three main contributions: (a) a meta-theorem characterizing robustness of private mecha-
nisms; (b) a case study of sparse mean estimation, including a computational lower bound arising
from robustness, and a new Sum-of-Squares-based algorithm whose sample complexity matches
that lower bound in parameter regimes where no such algorithms were previously known; and (c) a
collection of computational and information-theoretic lower bounds for private mechanisms, inherited
from lower bounds for robust algorithms.

Robustness of Optimal Private Mechanisms Our first contribution is a simple but useful observa-
tion: mechanisms with strong group privacy guarantees are automatically robust! By “strong group
privacy,” we mean guarantees strong enough to retain privacy and accuracy when a constant fraction
of individuals in the dataset are exchanged with others. We capture this in Theorem 2.1.

In spite of its simplicity, robustness of strongly-group-private mechanisms has significant con-
sequences for simultaneously robust and private mechanisms, a topic of much recent interest
[KMV21, LKO21, LKKO21, UKRK?22, CS22], because mechanisms with optimal privacy-accuracy
tradeoffs often automatically satisfy strong group privacy.

*See Section 2 for formal definitions.



Table 1: Algorithms for sparse mean estimation. In the input column, N signifies that the algorithm
takes i.i.d. samples from N'(u, I), and £ < I — samples from a distribution with bounded covariance.
The sample complexity column hides polylogarithmic factors in the ambient dimension d and a priori
mean bound (in &) R. In the auto-robust column we indicate whether our meta-theorem (Theorem 2.1)
implies that the algorithm is robust to corruptions of an 1 = 1/poly log(d, R) fraction of the samples.

Algorithm Input  Runtime Sample Complexity Auto-robust
Hypothesis Sel. [BKSWI19] N exp k+1°§(1/ﬁ) " k+10g(1/ﬁ) v
Subset Sel. [Theorem C.7] X <[ exp k+‘°g(‘/ﬁ) v
SoS [Theorem 1.2] N poly k2+1§§£1 /B) v
Threshold [Theorem 4.1] N poly K2 12%(;/ﬁ) X
Peeling [CWZ21] ! N poly R (k"s loe(1/6) kl-slzg;l/ﬁ)) X

1 Peeling is stated only for (&, 6)-DP in [CWZ21]. We use a (mildly) modified e-DP version, which we
formally state in Appendix G.

The privacy guarantees needed for automatic robustness rely on quantitatively-strong forms of
differential privacy: either so-called pure DP, or approximate DP, but with the additive error parameter
0 taken exponentially small, and high success probability. (By contrast, typical convention in the
privacy literature is to take 6 only polynomially small in other parameters.) For this reason, we focus
primarily on mechanisms satisfying pure DP and achieving high success probability.

Sparse Mean Estimation Recall that in sparse mean estimation the goal is to estimate a k-sparse
vector u € R to {>-error a, succeeding with probability 1— 8, using i.i.d. samples from a distribution
with mean . We contribute (a) new exponential-time e-DP mechanisms using O (k log d) samples,
(b) evidence that poly-time DP algorithms with high success probabilities require f)(kz) samples,
and (c) new poly-time algorithms using O(k?) samples (in certain parameter regimes). One of these
algorithms, using the SoS exponential mechanism of [HKM21], is our main technical contribution.

Information-theoretic bounds: First, as a baseline, we study sparse mean estimation without worrying
about running time. We show that even subject to both privacy and robustness, O(k log d) samples
suffice, with sample complexities differing in their dependence on & and ¢ on between the cases that
the underlying distribution is assumed to be Gaussian versus allowing for heavy-tailed distributions
(assuming only bounded covariance), as in the case of non-sparse mean estimation. See the estimators
Hypothesis Sel and Subset Sel in Table 1, and Appendix C for formal statements.

Computational lower bound: Next, we give evidence for a privacy-samples-success probability
tradeoff for efficient private algorithms: a private algorithm for sparse mean estimation with high
success probability will satisfy strong group privacy, and hence robustness, but efficient and robust
algorithms for sparse mean estimation require Q(k?) samples (assuming the planted clique conjecture).

Corollary 1.1 (of Theorem 2.1 and [BB20], Theorem 3.1). Assume the secret-leakage planted
clique conjecture [BB20]. For polynomially-related n, k, and d, with k = o(Vd), B €(0,1), and
a, e > 0, assume f < 27V et m(B, n, €) be the greatest value less than log(1/B)/(en) in the
set {n=°WY U {n='@) . t € N,t > 1}. Every polynomial-time, e-DP algorithm which, for any
k-sparse i € R with ||u|| < poly(d) can take n samples from N(u, 1) and return fi such that
I — ull < a with probability 1 — B requires n > L]l
a4-poly10g(d,z,a)

Pretending m = log(1/B)/(en) and ignoring logarithmic factors in d, -
( e (log(l/ﬁ)

e the lower bound says n >

1/3
e — ) ) samples are required by efficient e-DP algorithms for sparse mean estimation.

k2 and log 1/ log(1/p) (twice). We conjecture that the max of

log(l/ﬂ) _

This is the geometric mean of three terms

these is actually a lower bound: n > 2 o+



Even if this stronger lower bound were true, existing efficient algorithms for sparse mean estimation
would not match it. The state-of-the-art for sparse ¢-DP mean estimation using techniques in
the literature is a modification (to achieve pure DP) of an algorithm by [CWZ21], whose sample
complexity scales with k'3 log(1/8) (see Appendix G).

Efficient algorithms — SoS: Are there polynomial-time algorithms which match the tradeoff from
Corollary 1.1, or the stronger conjectured one above? Our main algorithmic contribution is a new
algorithm for sparse mean estimation which matches the tradeoff of Corollary 1.1 (up to polylog
factors) under the conditions: (1) @, ¢ > 1/polylog(d), (2) k* ~ log(1/B), and (3) k > d%*. Of
these conditions, (2) could be removed if the stronger conjectural lower bound above were true, while
we believe that (1) and (3) are shortcomings of our algorithm, and might be removable. We are not
aware of any previous efficient private algorithm which matches the above conjectured tradeoff for
any simultaneously super-constant k and log(1/8).

Theorem 1.2. There exists C > 0 such that for every ¢,R > 0, ,a, € (0, 1), and large-enough
d, k € N such that k > d°*, there is a polynomial-time e-DP algorithm SoS with the following
guarantees. For every k-sparse u € RY with ||u|| < R, given n-corrupted samples X1, ..., X, ~
N(u, 1), with probability at least 1 — B, the algorithm outputs I € R such that ||u — ol <

a+0 (\/(log(Rd))Cr]), so long as n > (log(Rd))C - K1oel/f)log ogR |

Our algorithm employs the Sum-of-Squares exponential mechanism invented by [HKM21] for
a private mean estimation algorithm, but adapting this approach to the sparse setting requires
overcoming several technical roadblocks (see Section 3 and Appendix D). Our approach hits a
technical obstacle related to the volume of the d-dimensional ¢; ball when k < d%4, and we leave as
an open problem to match or approach the tradeoff in Corollary 1.1 for a wider range of parameters.

Linear-time coordinate selection: Finally, what can be accomplished with a “truly efficient” algorithm
— one which does not require solving large semidefinite programs as in the SoS exponential mecha-
nism? The state-of-the-art private algorithm for sparse mean estimation, of [CWZ21], is a simple
iterative coordinate-selection procedure. With a minor modification to achieve a pure DP guarantee,
that algorithm uses Og(k'~ log d) to estimate k-sparse mean vectors u € R with ||| < R, with
probability 1 — f. However, the Og(-) hides a linear, rather than logarithmic, dependence on R,
which is very costly even for moderately-large values of R!

While it is now well understood how to obtain logarithmic-in-R sample complexity for non-sparse
mean estimation, standard approaches introduce a linear dependence on ambient dimension d. We
improve over the algorithm of [CWZ21] while maintaining linear running time by designing a simple
thresholding procedure for estimating the support of i requiring a number of samples which is
independent of R. Once the support is known, the ambient dimension of the problem can be reduced
from d to k, and a off-the-shelf private non-sparse mean estimation algorithm can be run. A formal
statement is given in Section 4. We demonstrate with experiments on synthetic data (Section 3) that
the coordinate-selection procedure Threshold, is substantially more accurate than that used by prior
state of the art [CWZ21].

By contrast to SoS, the linear-time algorithm Threshold has sample complexity that scales with
k?1og(1/B) rather than k* + log(1/B). While this difference might appear minor at first, it has
significant consequences: the linear-time algorithm cannot match the computational lower bound in
Corollary 1.1, and it does not have strong-enough privacy guarantees to be robust via Theorem 2.1.
Note that our results do not preclude other tradeoffs between k and log(1/g). For instance, we leave
it as an exciting open problem to design an efficient algorithm with sample complexity scaling with

klog(1/p).

Information-Computation Gaps in Private Statistics A problem in private statistics has an
information-computation gap if the accuracy-privacy tradeoffs achieved by optimal (exponential-time)
mechanisms for that problem cannot be achieved by polynomial-time algorithms. Our connection
between privacy and robustness can be used to give evidence for several information-computation
gaps in private statistics beyond sparse mean estimation.

Gaussian mean estimation (Corollary B.2): Gaussian mean estimation, where the goal is to estimate

U € R? given i.i.d. samples from N (u,1), is arguably even simpler than sparse mean estimation.
We give evidence for an information-computation gap: polynomial-time e-DP algorithms obtaining



accuracy a with probability at least 1 —  require 1 > log(1/B) - (log(1/a))'/?>=° /(ave)) samples,
unless there exist robust polynomial-time algorithms for Gaussian mean estimation which would
contradict known statistical query lower bounds [DKS17] — this is a log(1/ az)l/ 2-0(1) factor gap.

Learning parities (Corollary B.3): We also consider one of the most fundamental supervised learning
problems: privately PAC learning parity functions from labeled examples. For each S C [n],
we can define a parity function fs : {£1}" — {£1} by fs(x) = [l;es xi. The goal is to take
labeled examples (x, ) drawn from some distribution D and find a parity function fs such that
Pr(;y)~p(fs(x) = y) = 1, assuming one exists. While polynomial-time private algorithms for
learning parities are known [KLN*11], we show, via Theorem 2.1 that the failure probabilities of any
such algorithms must be larger than what can be achieved in exponential time, or else RP = NP.

Information-Theoretic Lower Bounds in Private Statistics Finally, we show that the connection
to robustness can provide information-theoretic lower bounds for private mechanisms. As an example,
we study private covariance testing (Corollary B.4), where the goal is to take samples from N (0, X)
and detect whether & = I € R orif ||£ — I||[r > y. Appealing to the lower bound of [DK21]
for robust covariance testing, we give a lower bound for private covariance testing, showing that
Q)(d?) samples are required by private algorithms with high success probabilities, while O(d) suffice
non-privately.

Formal statements for the results on Gaussian mean estimation, learning parities, and covariance
testing can be found in Appendix B.

1.2 Related Work

Privacy and robustness. As mentioned in Section 1, there is a rich history of connections between DP
and robustness, starting from the propose-test-release (PTR) framework of Dwork and Lei [DL09].
Building on top of PTR, a number of recent works tackle high-dimensional statistics problems
by leveraging robust primitives [BGS*21, LKO21], themselves inspired by a recent revolution in
high-dimensional robust statistics [DK19]. On the flip side, private algorithms for certain problems
have been shown to “automatically” exhibit a small amount of robustness [TS13, HKM21].

Sparse mean estimation. Without privacy or robustness requirements, it is a folklore result that the
truncated empirical mean achieves the information-theoretically optimal rate. In the approximate
DP case, [TS13] show that the stability of LASSO can be leveraged for private support selection
and private sparse regression via the sample-and-aggregate framework [NRS07]. Cai, Wang, and
Zhang [CWZ21] show information-theoretic lower bounds for approximate DP (based on tracing
attacks [HSR*08]) and computationally efficient algorithms that match those bounds with constant
probability under additional assumptions on the ¢, norm of the mean p. In the presence of 1-
corruptions of the samples, [BDLS17] gives an o} (k2 log(d)/ nz)—sample algorithm matching SQ
lower bounds from [DKS17].

Computational Roadblocks to Privacy. Several prior works investigate computational roadblocks to
privacy arising from cryptographic considerations, e.g. [Ull16, UV11]. The hard problem instances
constructed in such works have a worst-case flavor, while we are interested in computational hardness
for typical datasets/those drawn i.i.d. from an underlying probability distribution.

Sum-of-Squares Method. The SoS method for algorithm design in high-dimensional statistics has led
to a number recent of algorithmic advances — see the survey [RSS18]. [HKM?21], which introduces the
SoS exponential mechanism, is most closely related, and provides the foundations for Theorem 1.2.

Lower bounds for private mechanisms There are multiple works leveraging group privacy to derive
lower bounds for private algorithms, both for pure and approximate DP [HT10, Del2, SU15, BS16].
They are all information-theoretic in nature, while we also provide computational hardness results.
Additionally, to the best of our knowledge, there are no existing work relating lower bounds for
privacy to ones for robustness.

2 Automatic Robustness Meta-Theorem and Private Robust Mechanisms

We formally define DP in Appendix A. With this in hand, With this in hand, we are ready to state and
prove our meta-theorem on automatic robustness of private algorithms.



Theorem 2.1 (Automatic Robustness Meta-Theorem). Let M : X* — O be an (&, d)-private
map from datasets X* to outputs O. For every dataset Xy, ..., Xy, let Gx,,..x, C O be a set of
good outputs. Suppose that M(X,, ..., X,) € Gx,,.. x, with probability at least 1 — B for some
B = B(n). Then, for every n € N, on n-element datasets M is robust to adversarial corruption of

any 1n(n)-fraction of inputs, where

3 . [logl/B log1/6
r](n)—O(mm( en 'en+logn))

meaning that for every X, ..., Xy and X{, ..., X, differing on only nn elements, MIX,..., X)) e
Gx,,...x, with probability at least 1 — B0,

,,,,,

Proof of Theorem 2.1. Consider nn intermediate datasets (Xi,...,X,) = Xo,..., Xin
(X7,...,X}), where a single coordinate X; is modified in passing from X; to Xj4;. Let p; =
Pr(M(X;) € Gx;,...x,)- Then we have the following recurrence for (1 — p;):

(1-pj)<e“(1—pj1)+06forj>1,and(1-po) <p,

from which we obtain (1 — py,) < e“" (B + nd). The conclusion follows. m]

An analogous statement for concentrated DP [BS16] is presented in Appendix H.

Theorem 2.1 can be applied broadly to show that optimal private mechanisms are automatically
robust, frequently even with optimal dependence of the lost accuracy on the rate of corruption.
This breadth is possible because, for many statistical problems, private mechanisms obtaining
information-theoretically optimal privacy-accuracy tradeoffs automatically have the strong group
privacy guarantees needed to apply Theorem 2.1. This is because strong group privacy for a
mechanism M is implied by two other desirable properties of private mechanisms: (1) M satisfies
pure DP (or, (&,0)-DP for small choices of 0), and (2) M produces accurate results with high
probability over the randomness used internally by the mechanism. We give two examples of this
phenomenon below.

On the success probabilities of private algorithms: Before turning to examples, we observe that
Theorem 2.1 only gives robustness to a constant fraction of corrupted samples for private algorithms
which have very high probability of succeeding — to obtain n > Q(1) requires § < 2790 In most
work on randomized algorithm design, the difference between succeeding with probability 2/3 versus
1 — 3 for small 8 can be treated as an afterthought, because algorithms can be repeated to amplify
success probability. But this kind of naive repetition causes privacy leakage!

In spite of this, optimal private mechanisms in statistics often do succeed with high probability, using
more sophisticated approaches than naive repetition: in fact, high success probability is generally
implied by M’s outputs having (asymptotically) optimal confidence intervals. Our work points to
a need for algorithm designers to focus on the confidence intervals/success probabilities of private
algorithms: the payoff is robustness for free.

On Black-Box Robustification of Optimal Private Mechanisms: We observe that Theorem 2.1 can
be used to automatically obtain robust and private mechanisms from private ones with high success
probabilities. For instance, (1) Hypothesis selection: The private hypothesis selection procedure
of [BKSW19], already proved robust against non-adaptive adversaries, is additionally robust to
corruptions made by adaptive adversaries. (2) Affine-invariant mean estimation: [BGS*21, LKO21]
study mean-estimation mechanisms which provide error guarantees in the Mahalanobis distance
|==2(f1 — p)|| given samples from N(u, £). [BGS™21] give a private mechanism for this problem
with high success probability, and [LKO21] give a simultaneously private and robust mechanism. In
either case, because both mechanisms provide strong-enough privacy guarantees to apply Theorem 2.1,
robustness can be obtained in a black-box fashion knowing only the privacy guarantees.

From Theorem 2.1 to Lower Bounds for Private Statistics: As we discussed in Section 1.1, we
use Theorem 2.1 to prove both computational and information-theoretic sample-complexity lower
bounds for private algorithms for sparse mean estimation (Corollary 1.1), non-sparse mean estimation,
learning parities, and covariance testing. We prove Corollary 1.1 in the next section, and defer the
remaining statements and proofs of lower bounds to the supplement.



3 Sparse Private Mean Estimation: Techniques

In this section, we overview ideas which go into our results on sparse mean estimation, starting
from the information-theoretic results, and moving on to computational barriers and polynomial-time
algorithms.

Information-theoretic bounds In the absence of computational considerations, the landscape for
Gaussian sparse mean estimation can be understood via standard tools: a packing-based lower bound,
and a matching (exponential-time) mechanism can be constructed as a direct corollary of existing
results in the literature on private hypothesis selection [BKSW19]. For completeness, we carry out
those in Appendix C.

In the heavy-tailed case, assuming only that the samples Xj, ..., X,, are drawn from a distribution
with k-sparse mean p and with bounded covariance, one can no longer construct a small cover of
the set of possible distributions; this precludes an approach as general as hypothesis selection from
directly applying. Instead, we design a mechanism which first selects a subset of k coordinates, then
hands off to a non-sparse mean estimation mechanism run just on those coordinates.

To select the coordinates, we use the exponential mechanism. To define a score function, we take
inspiration from recent ideas in high-dimensional statistics [LM19] using empirical quantiles of
univariate projections of the samples. The key idea for coordinate selection is to restrict attention to
projection in sparse directions. For samples X, . .., X}, we define the following score function on
subsets of coordinates T C [d]:

n

S{Xitien, TiL) = _max > 1o Xir 2 L}, (1)

veR [oll=1 4
parametrized by a scalar threshold L'. Then we sample T from the distribution Pr(T) o
exp(eS({X;}i<n, T;L). Since S has sensitivity A(S) = 1,% the resulting mechanism satisfies &-
DP. We show using standard concentration tools that if n > O(klog(d) + log(1/B)/(a>¢)) then
this mechanism identifies a subset T containing all but « of the ¢,-mass of u, with probability at
least 1 — B. To do so, we choose the threshold L such that with high probability all “bad” subsets
containing a small portion of the £, mass of i have “low” score compared to “good” ones for which
llurll = [|pll; finally, we use bucketing to control the variance of samples such that we can set L as
close to zero as possible without allowing “bad” subsets to achieve high score.

We then delegate the mean estimation on the candidate set of coordinates to any information-
theoretically optimal (non-sparse) mean estimation mechanism. For the matching lower bound,
standard packing-based arguments suffice (see Proposition C.13 for a formal argument).

Computational barrier Now we turn to the landscape when we require polynomial-time. Starting
with barriers, we first show how to get Corollary 1.1 from our meta-theorem.

Proof of Corollary 1.1. First of all, since n > log(1/8)*/e?, there exists a value m in
the given set. Now suppose a polynomial-time private algorithm exists tolerating n <
k2>m?/(a*polylog(d, 1/¢,1/a)). By adjusting parameters f3, ¢ to artificially weaken the guaran-
tees as necessary, we may assume that m(B, n, €) = log(1/g)/(en). Now, Theorem 3.1 of [BB20]
shows that no algorithm for sparse mean estimation under these parameters can tolerate an 1)-fraction
of adversarial corruptions with k>1? /a* > n, where > hides polylogarithmic factors. But from Theo-
rem 2.1 our hypothesized private algorithm tolerates an 1 = log(1/8)/(en) fraction of adversarial
corruptions, which is a contradiction. O

Overview of SoS Algorithm for Sparse Mean Estimation (Theorem 1.2) We remain informal in
this section and defer mathematical rigor to the supplement. For now, let @ = ©(1). A standard trick
reduces from o < 1 to this case.

As with prior work on both private and robust mean estimation (e.g. [CFB19, HKM21]) our algorithm
produces a series of iterates xg, X1, . .., x7 for T = O(log d), where x is the origin, with the invariant

TFor a sample X € R4, Jet Xr to be the projection onto the basis vectors with indices in the set T C [d].
*That is, it changes by at most 1 when any sample is exchanged for another.



that ||x; — u|| < 0.9||x¢-1 — p||. To accomplish this, given x;—; with ||y — x;—;|| > 1, and samples
Xi,..., Xy ~ N(u,I), we find a unit vector v such that (v, u — x¢_1) > 0.9||u — x¢_1]|; then we
could take x; = x4—1 + Q(||p — x1-1])v.

Unlike prior works, for reasons we will see shortly, we also need the invariant that x; is k-sparse. So,
we actually take x; to be x;— + Q(||p — x¢—1]|)v with all but the largest-magnitude k coordinates set
to 0; we show that this thresholding step cannot increase the distance to u by too much (Lemma D.4).

Picking a gradient in exponential time: To find such a gradient vector v, we use the SoS exponential
mechanism [HKM21]. Let us first see how we would pick a gradient vector v using the (non-SoS)
exponential mechanism, but allowing exponential running time. For a given dataset X = X1, ..., X;,
the goal is to find a score function sx(v) € R which assigns each (2k)-sparse unit vector a score, such
that for neighboring datasets X, X’ we always have |sx(v) — sy (v)| < 1 (“bounded differences”).
Here we choose 2k-sparse because 1 — x;_ is itself 2k sparse. Then outputting a random v, where
each is chosen with probability o exp(esx(v)), gives an e-DP mechanism. The goal is that vs with
high scores are closer to i — x;_.

A good choice of score function turns out to be sx(v) = 3;<, 1{{v, Xi—x—1) = ||xi—1 —pl| - O(1)}
— using standard concentration of measure one can show that as long as n > klogd, for v s.t.
sx(v) = 0.9n we will have (v, — x;—1) = 0.9||u — x;—1|| (“utility”). Furthermore, if one were to
sample a uniformly random k-sparse unit vector, it would satisfy (v, yu — x;—1) > 0.9]|pt — x;_1|| with
probability d=O%) (since  — x;_; is 2k-sparse). So, the distribution given by Pr(v) o exp(es x(v))
puts 1 — B probability on v with sx(v) > 0.9n, so long as n > (klogd + log(1/B))/ ¢, since it
“boosts” the probabilities of these high scoring vectors by a factor of exp(Q(d log k)) > d(K).

Here we have crucially used the fact that x;_;, and hence u — x;_1, is sparse: otherwise, the gradient
v we need to select would not be sparse, and we would need to use exponential mechanism to sample
v from a bigger set. This, in turn, would require us to draw more samples #, to ensure that the
score function is well-behaved for a bigger set of vectors, because the probability of (v, u — x;-1) >

0.9]|t = x;1|| for uniformly-random v would be < d~*.

Of course, the major drawback of the above is that it is not clear how to sample from the necessary
distribution of vs efficiently — in fact, doing so would violate the lower bound of Corollary 1.1. There
is also a second drawback: to evaluate the score function given above, we would need to know
|| — x¢—1||; however, we are able to adapt the strategy of [HKM21] for this task to the sparse setting,
re-using several of the ideas below.

From exponential to polynomial time with SoS exponential mechanism: The SoS exponential
mechanism allows potentially exponential-time instances of the exponential mechanism to be con-
verted into polynomial time algorithms, so long as (a) the bounded-differences and utility properties
of the score function can be proved in a certain restricted proof system (the SoS proof system), and (b)
the set over which the exponential mechanism is run is convex.

Convexity: The 2k-sparse unit vectors — used by the above exponential-time algorithm — do not form
a convex set. A natural idea is to relax from the 2k-sparse vectors to the (scaled) £ ball. This creates

a substantial difficulty: the set {U ol <O (\/E)} has much more volume near the origin than

the set of 2k-sparse unit vectors. In particular, it is no longer true that (v, y — x;—1) > 0.9(|pt — x4—1 ||
with probability d=O®) for uniformly-random v; this probability will be exponentially small in d.

To fix this, we “fatten” the {; ball: we use the exponential mechanism over the set C =
{v cFJw st |lv —wl| £0.01, |w| <1, ||w|; £O (\/E)} While perhaps counterintuitive that
adding vectors is helpful here, it is possible (Lemma E.5) to show roughly the following statement:
over randomly-chosen v in this set, Pr({v, u—x¢-1) > 0.9||p—x;-1|) = ¢~0W/Vk).g-0() = 3-0(*)

for k > d%*. To see this, note that all w with ||w — iﬂ%ll < 0.01 are in C and have

(w, = x¢—1) = 0.0]|p — x4—1||, and, using Sudakov minoration, C can be covered by dOK*) ¢, balls
d

of radius 1/Vk + 0.01. So at least a d—O(¥’) (ﬁ?) = d~O®) exp(-O(d/Vk))-fraction of the

volume of C lies on such “good” ws. So, as long as n > (k?logd + log(1/B))/¢ and k > d*4, the

arguments we used for the exponential-time method will still work.



Utility and Bounded-Differences in SoS: Finally, we turn to (a), the need to capture the proofs of the
bounded-differences and utility in the SoS proof system. Here we take “intuitively simple” as a proxy
for “expressible in SoS,” deferring technical definitions to the supplement. The bounded-differences
property for sum-of-threshold based score functions like sy above has a standard SoS proof [Hop20],
so we won’t address it further here.

The concentration of measure arguments we referred to above to establish utility are not captured by
the SoS proof system! So we actually need to devise a new proof of utility for the score function syx.
The key step is a proof that if n > (log d)°V)(k?+log(1/)) then with probability 1— 8, for every unit
vector w with |lw||; < Vk, we have Di<n 1{Xi —p, w) > 1) < 0.1n. To see that this implies utility,
note that if v has sy (v) > 0.9n, then there exists some i such that (v, X; —x;—1) > ||u—x;—1|[-O(1)
but (0, X; — 1) < O(1). Then (0, pt = 1) = (0, X; = x1-1) + (0, = Xi) 2 | = 21| = O(L).
By a standard bounded-differences argument, it suffices to prove that Emax,, >;<, 1((X; — p, w) >
1) <0.01n. Letting M = Y, (X; — u)(X; — u) T, by Cauchy-Schwarz, the quantity on the left-hand
side is at most 0.01y/n - (E max,, (M, wa))l/z. Splitting M = Mgiag + Moft-diag, and applying
Holder’s inequality, (M, ww ™) < ||Mdiag||oo||w||§ + || Moft-diag|loo |||, where || + ||oo is the entry-
wise ¢ norm. The important term here turns out to be the second one; it is possible to bound
E|| Mot diag |0 < (log d)°M+/1, for an overall bound of 0.0173/*k (up to log factors), which gives
the desired bound if 7 > k?. See Lemma E.3 and E.4 for the formal version of this argument.

4 Fast Algorithms and Experiments

In this section, we describe a practical algorithm — Algorithm 1 (Threshold in Table 1). We use
standard DP tools to guarantee privacy and utility — the exponential mechanism [MTO7] with a
sensitivity-1 score function in a coordinate-wise fashion, followed by a black-box application of a
univariate mean estimator.

Algorithm 1 The subroutine exp-mech refers to the exponential mechanism [MTO07], and KV-1D —
to the univariate sparse mean estimator of [KV17].

Input: {x;}i<,, T, b, 02, n; f— 6, selected < []

I mj % Z;:lgb xi forj € [[n/b]] > compute bucketed means
2 zj «— Z]ri{b] 1{(m;); = T} fori € [d]. > coordinate-wise threshold
3: for j < k do

4: f eXP_meCh({Zi}iE[d]\selected)

5: selected.insert(t)

6: fiy KV-1D({(mi)t}’j=1) > univariate estimation

Output: mean estimate i

Theorem 4.1. Let X1, ..., Xy, ~ N(u,0?). Algorithm 1 is e-DP outputs an estimate i s.t. ||l —
tll2 < a with probability at least 1 — B as long as

k?c? (logd + log(1/B)) . a’klog(2k/B) . ok log(2k/B) N klog(R)

ale a? ae €
(2)
support estimation dense estimation in k dimensions
k*(log d + log(k
_ 2K (logd +log(k/B))  klog(R)}
ale €

The proof is given in Appendix F. While the statement and proof are given for Gaussians, we only
use the concentration properties of the Gaussian distribution; hence the proof automatically applies
for sub-Gaussian distributions as well.

Instead of the exponential mechanism, we could also use the peeling [DSZ18] algorithm, as is done
for the linear-in-R algorithm in [CWZ21].



4.1 Experimental details

Now we turn to empirically validating the performance of Algorithm 1. To isolate the effects of
each subroutine (support estimation and dense mean estimation), we plot (1) the performance of the
corresponding support estimation steps alone (2) ¢, error for both.

L 60 non-private
2 Cai-Wai-Zhang
Sos 50
- = —— Threshold (ours)
E" 0 non-private | 40
i Cai-Wai-Zhang = w0
E —— Threshold (ours) %
= ~ 20
8 =
B2 e e |
0
20 10 60 80 100 20 10 60 80 100
a priori estimate IR a priori estimate IR
Figure 1: Empirical evaluation of 0.5-DP algo-  Figure 2: Empirical evaluation of Threshold

rithms (and a non-private baseline) for support ~ and the sparse mean estimation algorithm

estimation for 1500 samples from N (y, I) in of [CWZ21] under &-DP with ¢ = 0.5; re-

ambient dimension d = 1000 with [[ullo = 20 sults are shown for Gaussian data X, ..., X, ~

(non-zero coordinates sampled uniformly from  N(p,4-I) for a k-sparse u in R for k = 20,d =

[-10, 10]) as a function of R, the a priori esti- 1000, n = 1000 . The ¢, error of the estimates

mate of ||u||. is plotted against the a priori mean estimate R.
A non-private baseline is also presented to high-
light the cost of privacy.

We address (1) in Fig. 1 — we use the fraction (¢,) mass of y on the k coordinates the algorithms
select as a metric of success, since it is well-suited for mean estimation. Fig. 1 shows that (a) we
significantly outperform the previous state of the art as soon as we introduce very mild uncertainty in
the a priori estimate of ||¢||; (b) our method does not introduce additional constant factors “hiding”
in the asymptotics.

In Fig. 1 we presented results for support estimation, in order to highlight the improvement coming
from coordinate selection alone. In Fig. 2 we evaluate Algorithm 1 directly in terms of our metric of
interest — ¢, error.

As can be seen from Fig. 2, the performance of the sparse mean estimation algorithm of [CWZ21]
degrades rapidly even for very mild levels of uncertainty in the range of the mean - e.g. if we only
know beforehand that the mean lies in the range [—20, 20], instead of the tight range [—10, 10], the
¢, error (expectedly) doubles when we use the [CWZ21] algorithm; in contrast, the performance
of Algorithm 1 is effectively unchanged.

Finally, we highlight a weakness of Algorithm 1 — we gain the mild dependence on R at the cost of

losing the i + % -like sub-Gaussian rate; instead we have heavy-tailed-style (ﬁ)—like rate. This

comes with a practical cost in scenarios where the standard deviation ¢ is much larger than the a
priori mean estimate R.

For all figures, we average results over 10 random seeds and report average results, together with
95% bootstrap confidence intervals. Code necessary to reproduce all experiments is available®. For
all experiments we use commodity hardware (CPU: Intel Core i7-9750H CPU @ 2.60GHz).
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