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ABSTRACT

Learning new knowledge, not forgetting previous ones, and adapting it to future
tasks occur simultaneously throughout a human’s lifetime. However, this learning
procedure is mostly studied individually in deep learning either from the perspec-
tive of lifetime learning without forgetting (continual learning) or adaptation to
recognize unseen tasks (zero-shot learning, ZSL). Continual ZSL (CZSL), the
desired and more natural learning setting, has been introduced in recent years, and
mostly developed in transductive setting, which is unrealistic in practice. In this
paper, we focus on inductive continual generalized zero-shot learning (CGZSL)
by generative approach, where no unseen class information is provided during
the training. The heart of the success of previous generative-based approaches
is that learn quality representations from seen classes to improve the generative
understanding of the unseen visual space. Motivated by this, we first introduce
generalization bound tools and provide the first theoretical explanation for the
benefits of generative modeling to ZSL and CZSL tasks. Second, we develop
a pure Inductive Continual Generalized Zero-Shot Learner using our theoretical
analysis to guide the improvement of the generation quality. The learner employs
a novel semantically-guided Generative Random Walk (GRW) loss, where we
encourage high transition probability, computed by random walk, from seen space
to a realistic generative unseen space. We also demonstrate that our learner contin-
ually improves the unseen class representation quality, achieving state-of-the-art
performance on AWA1, AWA2, CUB, and SUN datasets and surpassing existing
CGZSL methods by around 3-7% on different datasets. Code is available here
https://anonymous.4open.science/r/cgzsl-76E7/main.py

1 INTRODUCTION

Researchers have invested a lot of effort in designing human-like AI learners. Zero-shot learning
(ZSL), as one of these endeavors, aims at identifying instances of unseen classes. This can be achieved
by either the transductive methods that leverage semantic information to characterize unseen classes
or the inductive approaches that do not require any knowledge of unseen classes. To develop a robust
technique, recent ZSL works propose to evaluate models in the generalized setting where test samples
are from both seen and unseen classes, noted as Generalized ZSL (GZSL) (Pourpanah et al., 2022).

Human zero-shot learning skill, on the other hand, expands over their lifetime, where the distributions
of seen and unseen tasks temporally change. With the ever-growing knowledge over more seen tasks,
people’s ability to recognize unseen tasks and distinguish them from seen ones improves over time.
In the meantime, the continual learning community also strives to design models with enhanced
zero-shot future task transferability (Lin et al., 2021; Douillard et al., 2021). Towards bridging the
gap between continual learning and zero-shot learning in a more realistic setting, Skorokhodov &
Elhoseiny (2021) extended ZSL to continual ZSL (CZSL). In CZSL, the model is continually trained
and evaluated by zero-shot learning metrics, where classes up until the current task are regarded as
seen classes and those in the future are regarded as unseen classes. Since the unseen world changes
in a dynamic and unexpected manner, it is unrealistic to use the knowledge about unseen classes in
CZSL. However, most existing methods struggle to work well without semantic information in the
CZSL setting.
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Table 1: Showing Seen-Unseen AUC results of ZSL
experiments on noisy text description based datasets
CUB and NAB(Easy and Hard Splits)

Metric Seen-Unseen AUC (%)

Dataset CUB NAB
Split-Mode Easy Hard Easy Hard

ZSLNS (Qiao et al., 2016) 14.7 4.4 9.3 2.3
SynCfast (Changpinyo et al., 2016) 13.1 4.0 2.7 3.5
ZSLPP (Elhoseiny et al., 2017) 30.4 6.1 12.6 3.5
FeatGen (?) 34.1 7.4 21.3 5.6

LsrGAN (tr) (Vyas et al., 2020) 39.5 12.1 23.2 6.4
+GRW 39.9+0.4 13.3+1.2 24.5+1.3 6.7+0.3

GAZSL (in) (Zhu et al., 2018) 35.4 8.7 20.4 5.8
+ CIZSL (Elhoseiny & Elfeki, 2019) 39.2 11.9 24.5 6.4
+ GRW 40.7 +5.3 13.7+5.0 25.8+5.4 7.4 +1.6

Table 2: Showing Seen Unseen harmonic results
of ZSL experiments on attribute based datasets
AwA2, aPY and SUN.

Seen-Unseen H

AwA2 aPY SUN

SYNC Changpinyo et al. (2016) 18.0 13.3 13.4
SAE (Kodirov et al., 2017) 2.2 0.9 11.8
DEM (Zhang et al., 2016) 25.1 19.4 25.6
FeatGen (?) 17.6 21.4 24.9
cycle-(U)WGAN (Felix et al., 2018) 19.2 23.6 24.4

LsrGAN (tr) (Vyas et al., 2020) 48.7∗ 31.5∗ 44.8
+ GRW 49.2+0.5 32.7+1.2 46.1+1.3

GAZSL (in) (Zhu et al., 2018) 15.4 24.0 26.7
+ CIZSL (Elhoseiny & Elfeki, 2019) 24.6 25.7 27.8
+ GRW 39.0+23.6 27.2+3.2 27.9+1.2

Generative models, especially GANs, have gained much progress in producing photorealistic images
by learning high dimensional probability distributions. This promising ability has motivated various
researchers to adapt GAN to ZSL to generate missing data of unseen classes (Guo & Viktor, 2004).
The generative model can reduce model prediction bias towards seen data, contributing to competitive
and strong performance (Li et al., 2019; Vyas et al., 2020; Narayan et al., 2020). In spite of all these
empirically developed generative ZSL approaches, theoretical reasons for why zero-shot learning
benefits from generative structures are rarely explored. However, there are firm foundations on the
theoretical study of related topics, such as embedding-based zero-shot learning (Rostami et al., 2022),
domain adaptation (Ben-David et al., 2010), and continual learning (Wang et al., 2022). Recent
analysis on training the generative model (Chang et al., 2019) with synthetic data also provides a
possible route towards the desired theoretical explanation. All of these considerations lead us to
develop a generalization bound tool to understand the learning mechanism in generative-based CZSL.

Figure 1: The generative random walk pro-
cess starts from each seen class (in green)
and go through generated examples of hallu-
cinated unseen classes (in orange).

In our analysis, we quantified the factors that it is
critical for a CZSL learner to generate realistic visual
generations of unseen classes to 1) reduce the dis-
tance between the generated and actual unseen visual
space and 2) prevent the model from shifting so much
that it becomes difficult to learn future tasks discrim-
inatively. However, the lack of ground truth seman-
tic descriptions/attributes of unseen classes makes it
challenging to generate realistic samples of unseen
classes. A similar problem has been tackled in novel
style artworks generation, where GANs’ training is
augmented with a loss to encourage deviation from
existing art style classes (Elgammal et al., 2017; Sbai
et al., 2018; Hertzmann, 2018; Jha et al., 2021; Hertz-
mann, 2020). Inspired by the improved feature rep-
resentation achieved by generative models in novel
art generation and its connection to unseen samples
in GZSL, we propose a purely inductive semantically guided Generative Random Walk (GRW)
loss in CGZSL.

As illustrated in Figure 1, GRW start the transition from seen class and perform a random walk
through generated examples of hallucinated unseen classes for R steps, detailed later (Section 5.2.2).
GRW then encourages high transition probability to the realistic unseen space by deviating from the
seen visual space and avoiding the less real space. Then, the landing representations are realistic
but distinguishable from seen classes, and this quality enhances generative understanding of unseen
classes1.The design of hallucinated semantic descriptions of unseen classes instead of real ones
is what makes GRW purely inductive. To validate this, exploratory experiments were conducted
with GRW loss when integrated with existing generative GZSL methods in non-continual setup. As
shown in Table 1 and Table 9, the method with GRW improves up to 5.4% Seen-Unseen AUC (Chao
et al., 2016) results in the hardest textual description dataset, and even up to promisingly 23% in the
attribute-based dataset. We will later show its effectiveness in a CZSL setting as part of our approach.

1The ability to produce generations of unseen classes that are distinguishable from each other and seen ones
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Motivated by the promising empirical and theoretical generative approach in GZSL, we develop
generalization bound tools to analyze the use of random walk in continual zero-shot learning in
Section 4, formally describe our theoretical guided inductive continual generalized zero-shot learning
method, ICGZSL, in Section 5, and show experimental results in Section 6. Our contribution
includes 1) We give the first theoretical analysis, to our knowledge, of (continual) generalized zero-
shot learning; 2) Guided by the analysis, we develop methods in pure inductive continual zero-shot
learning setting; 3) Our model achieves SOTA results in standard continual zero-shot learning tasks.

2 RELATED WORKS

Generative Approach in Zero-shot Learning. Zero-Shot learning can be divided into embedding-
based and generative-based methods. Embedding-based approaches project visual and semantic
information into a shared embedding space, where classification is based on class projection and
sample representation similarity. (Frome et al., 2013; Akata et al., 2015; Romera-Paredes & Torr, 2015;
Liu et al., 2020). Generative-based approaches (Xian et al., 2018b; Vyas et al., 2020; Kuchibhotla
et al., 2022) convert the zero-shot learning problem to a traditional supervised learning problem by
using the generator to produce visual samples of unseen classes during training.

Inductive generalized zero-shot learning using generative approaches. There are varying degrees
of accessibility to unseen information in zero-shot learning. Transductive methods use unlabeled
samples and attributes of unseen classes during the training (Paul et al., 2019; Rahman et al., 2019).
Semantically transductive methods only use attributes of unseen classes in training (Xian et al., 2018b;
Wang et al., 2021). In the inductive setting, any usage of unseen information is not allowed (Zhu et al.,
2018; Elhoseiny & Elfeki, 2019; Liu et al., 2019; Xian et al., 2019). This can result in a bias towards
seen classes (Pourpanah et al., 2022). Generative methods produce unseen samples utilizing only
seen class information during training to solve this. Liu et al. (2019) proposes to combine both GAN
and VAE with an unconditional discriminator to generate features of unseen samples. Elhoseiny &
Elfeki (2019) relate ZSL to human creativity (Martindale, 1990) to generate images that deviate from
seen classes during training. Chandhok et al. (2021) used unlabeled samples from out-of-distribution
data to gather knowledge about unseen data. In contrast, we investigate the relationship between the
unseen generated samples and the seen samples, which leads to the GRW loss.

Continual Learning. The majority of continual learning works try to tackle the problem of catas-
trophic forgetting that the data representation has biased towards the most recent task in sequential
learning. There are three primary groups of used techniques, i.e., regularization based methods (Li
& Hoiem, 2017; Aljundi et al., 2018), structure-based methods (Rajasegaran et al., 2019; Ebrahimi
et al., 2020), and replay based methods (Shin et al., 2017; Xiang et al., 2019). Recent research also
explores forward transfer in continual learning, with the belief that as knowledge accumulates, higher
next-task transferability measured by zero-shot assessment should be attained. Their evaluation
space either includes the next task (Lin et al., 2021) or the whole class space (Douillard et al., 2021).
However, compared to our setting, Lin et al. (2021) did not evaluate the model in a generalized
manner, and (Douillard et al., 2021) only paid attention to the seen accuracy.

Continual Zero-shot learning. Chaudhry et al. (2019) introduced A-GEM for continual learning
and applied the learner to deal with zero-shot tasks sequentially, constituting the initial work of CZSL.
Skorokhodov & Elhoseiny (2021) proposed the inductive CZSL scenario for this work and found
that a class-based normalization approach can improve continual zero-shot learning performance.
Both Gautam et al. (2021) and Ghosh (2021a) explore the CZSL problem but use unseen class
descriptions to train a classifier before inference. Recently Kuchibhotla et al. (2022) provided a
generative adversarial approach with a cosine similarity-based classifier supporting dynamic addition
of classes. Although their classifier does not need to be trained by unseen samples, they still use
unseen class descriptions for the seen-unseen deviation, making it semantically transductive. This
motivates us to explore the inductive method for the seen-unseen deviation and unseen realism.

3 PROBLEM SETUP AND NOTATIONS

We formally describe our problem and notation following Chang et al. (2019); Skorokhodov &
Elhoseiny (2021). A labelled dataset is defined as a tuple D = {(x,a, y)|y = f(x), (x,a, y) ∼ D},
where D represents the data distribution, composed of the tuple of data point of extracted image
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features and its corresponding attribute (x,a) ∈ Rdx+da (x ∈ Rdx ,a ∈ Rda), and a label y. Here
dx is the dimension of the visual feature space, and da is the dimension of the attribute space. Each
distribution has a specific labeling function f . Our goal is to learn a model on top of D to estimate f .

In inductive generalized zero-shot learning, we hope our model learned on seen dataset Ds can be
generalized to unseen distribution Du without using any unseen class information. Moreover, we
assume the seen class n and unseen class are disjoint, that is Ds ∩ Du = ϕ. During the training
time, the model f̂ is trained on the seen dataset Ds as well as the synthesized dataset Dug. Dug is
generated by conditioning on unseen attribute aug and prior Z ∼ N (0, 1). The labelling function fug
of the generated dataset is a look-up table of the generated features x ∈Xug and the corresponding
attribute condition aug. During the inference time, the model is evaluated on test examples of both
seen dataset Ds and unseen dataset Du. In continual zero-shot learning, we solve the zero-shot
learning problem sequentially, and the unseen distribution converts dynamically into seen distribution.
This procedure is illustrated in the bottom part of Figure 2

Notation. We use several notational conventions in this paper that are stated here. 1) We use
the subscript ·s(·sg), ·u(·ug) to specify the variables in seen real ( seen generated) space or unseen
real (unseen generated ) space; 2) We use variable with hat ·̂ for the values and model empirically
computed; 3) We use superscripted ·t or ·1:t to specify the variable is for task t or for task 1 : t. In
practice, ·1:t refers to the current variable plus previous ones in the buffer. ; 4) D is for empirical
sample set, and D is for distribution; 5) We use Ns, Nu for the number of seen or unseen class.

4 THEORETICAL ANALYSIS

4.1 ESSENTIAL FACTORS IN INDUCTIVE ZERO-SHOT LEARNING

We analyze the major components in our approach that influence continual zero-shot learning perfor-
mance by generalization bound. Given the whole training distribution, a learning algorithm can output
a hypothesis h to estimate the ground truth labeling function f . Due to the limitation in the volume
of training data, our learning algorithm outputs ĥ instead to estimate fs ∪ fu, which can be measured
by risk (Kearns & Vazirani, 1994). We define the actual risk ϵ(h, f) = E(x,a)∼D[1f(x)̸=h(x,a)], and
the empirical risk ϵ̂(h, f) = 1

|D|
∑

(x,a)∈D[1f(x)̸=h(x,a)].

We start our analysis by proposing a distance measure of the generated unseen distribution and real
unseen distribution, as well as its empirical counterpart by
Definition 4.1 (Generative distance). Given two feature distributions Dug and Du, the ground truth
labelling function fug, fu, and the optimal hypothesis h∗ = argminh∈H ϵ(h, fug) + ϵ(h, fu). The
h∗∆f -distance between Dug and Du is defined as

dh∗(Dug,Du) = |P(x,a)∼Dug
[fug(x) ̸= h∗(x,a)]− P(x,a)∼Du

[fu(x) ̸= h∗(x,a)]| ,
and its empirical counterpart when we only have the limited empirical generated and real unseen
samples is

d̄GDB(Dug,Du) = |ϵ̂(ĥ∗, fu)− ϵ̂(ĥ∗, fug)| ,
where ĥ∗ = argminh∈H ϵ̂s(h, fs) + ϵ̂ug(h, fug) is the optimal hypothesis of during the training.

Note that this proposed d̄GDB enjoys the property of a pseudo-metric, and it represents the distribution
distance computed by empirical samples depending on the hypothesis space, i.e. the type of model.
And these two distances can be used in general problems irrespective to unseen generated and unseen
real distribution.
Theorem 4.2 (Generalization bound of generative ZSL). Given the ZSL procedure described in
section 3, with confidence 1− δ the risk on the unseen dataset is bounded by

ϵu ≤ ϵ̂(h, fs) +
1

2
dH∆H(Ds,Du) + λ̄+

1

2
d̄GDB(Du,Dug) , (1)

where ĥ∗ = argminh∈H ϵ̂(h, fs) + ϵ̂(h, fug), λ̄ = ϵ̂(ĥ∗, fs) + ϵ̂(ĥ∗, fug).

The detailed derivation of this theorem is in Appendix A.1. Note that dH∆H(Ds,Du) is fixed when
we are facing a specific problem, but d̄GDB(Du,Dug), λ̄, and ϵ̂s(h, fs) can be improved by our
algorithm. We further extend the generalization bounds of ϵ(h, fs) to the continual setting following
the theorem proposed by Wang et al. (2022); see Appendix A.2.
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4.2 REDUCING THE BOUND USING MARKOV CHAIN AND CONNECTION TO THE LEARNING
ALGORITHM

In Equation 1, ϵ̂(h, fs) and λ̄ can be reduced by adversarial training, which will be illustrated in
Section 5.2.2. d̄GDB(Dug,Du) can be reduced by decreasing the difference between Du and Dug .
Assuming we can establish aug as a compact support of au, this can be further achieved by generating
quality unseen generations to increase P[Du ⊂ Dug], where the probability is taken over all the
possible generations. To quantify the probability value P[Du ⊂Dug], we view the generations as
nodes in a Markov chain, and define the transition probability between two states as how often one
sample is classified as another. Then P[Du ⊂Dug] can be bounded by the self transition probability
by the generalization bound. When the self-transition probability is the same in two set of generations,
we prefer the one with higher diversity quantified by DDP. Detailed explanations are illustrated in
Appendix A.3. Here we give the informal statement.

Statement 4.3. Finding unseen generated samples to “carefully” increase the determinant and the
diagonal entries of the transition matrix of the above described Markov Chain can reduce d̄GDB .

Connection of the analysis to the learning algorithm. The analysis gives guidelines for the
development of the algorithm. However, some notions are intractable to compute in practice. We
apply the following two adjustments to our algorithm. Firstly, we represent transition matrix among
unseen classes (noted as B ∈ RNu×Nu ) in seen class space by a congruent transformation ABA⊤,
where A ∈ RNs×Nu is the transition probability matrix from seen to unseen. Secondly, generating
compact support of unseen class attributes whose transition matrix is diagonal requires a huge number
of generations. To reduce this number, we encourage the generated samples of hallucinated unseen
classes to have “relatable deviation” to seen classes instead, where the transition matrix B may not be
strictly diagonal but encouraged to be. And to still keep the diversity, i.e., low values of non-diagonal
entries, we design the sampling strategy of hallucinated unseen classes to explore more unseen classes
during training, as detailed later in Sec. 5.2.1.

To quantify the transition probability, we adapt the random walk framework (Häusser et al., 2017;
Ayyad et al., 2021) originally used in the semi-supervised few-shot learning setting to the generative
zero-shot learning setting with few changes. Compared to the semi-supervised version of the loss, we
use generated examples instead of unlabeled samples and try to push the generated samples away from
seen class centers. This is the opposite of a semi-supervised case where they use an attraction signal
instead of a deviation signal (see Appendix B.6 for more details). Then the transitions going from the
seen centers to unseen class generations for R steps and back to seen centers is ABRA⊤ ∈ RNs×Ns .
We encourage “relatable deviation” of unseen class generations from seen classes by having ABRA⊤

close to uniform, detailed later in Equation. 22. This makes the generations not attracted by any seen
classes, yet by design, also transfer knowledge between seen classes to enable knowledge transfer.

5 GENERATIVE-BASED INDUCTIVE CZSL APPROACH

5.1 PRELIMINARY: GENERATIVE-BASED CONTINUAL ZERO-SHOT LEARNING

Our model contains a generator G(a, z) ∈ Rdx and a discriminator D(a) ∈ Rdx (See Figure 2). The
generator takes the concatenated semantic information (denoted by a) and the prior (denoted by z)
sampled from a standard normal distribution Z as input and outputs visual features. Discriminator
projects semantic information a into visual space. The conditional adversarial training can be
illustrated by the discriminator loss and generator loss as:

LD = −Lreal-fake + λclsLclassification + λrdRD,

LG = Lreal-fake + λclsLclassification + Linductive + λrgRG .
(2)

Lreal-fake is the standard GAN loss taken on current task real and generated seen classes following
Goodfellow et al. (2014), and Lclassification is cosine similarity based entropy loss taken over the seen
classes of all the tasks, shown in the following

Lreal-fake =E(x,a)∼Dt
s

[
log⟨x, D(a)⟩

]
− Ez∼Z,(a,x)∼Dt

s

[
log⟨G(z,a), D(a)⟩

]
Lclassification =E(x,y)∼D1:t

s

[
Le(⟨x, D(A1:t

s )⟩, y)
]
+ Ez∼Z(x,a,y)∼D1:t

s

[
Le(⟨G(z,a), D(A1:t

s )⟩, y)
]
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Figure 2: The bottom illustrates a continual zero-shot setting, where unseen classes dynamically
become seen. The upper part displays our CZSL learner. It generates unseen at

ug at each time step t,
based on the seen attributes at

s. The discriminator embeds the attributes into the visual feature space,
and the generator generates seen and unseen features xt

ug,x
t
s conditioning on the corresponding

attributes. Inductive loss applied to the visual feature space encourages the unseen features to be real
and characterized. Features of previous tasks are stored in the buffer of fixed size.

where ⟨·, ·⟩ is the cosine similarity, A1:t
s is the matrix of attributes of seen class up to the current

task and Le is the cross entropy loss. In practice, the D1:t
s consists of current samples and previous

samples in the buffer.

Linductive is the main loss to improve inductive continual zero-shot learning, which will be described
in detail in section 5.2. RD,RG are regularization terms for discriminator and generator respectively
that follow Kuchibhotla et al. (2022). λc,rd,i,rg are hyperparameters. Following the standard GAN
training procedure, the discriminator, and the generators are optimized alternatively. See Appendix
B.1 and Algorithm 1 for more details about our baseline algorithm.

5.2 INDUCTIVE UNSEEN ATTRIBUTE AND SAMPLE GENERATION

5.2.1 ATTRIBUTE AND SAMPLE GENERATION OF UNSEEN CLASSES

Interpolation-based method. With the assumption that the attributes are distributed uniformly in the
attribute space, which can be compact-supported by the seen attribute, we use an interpolation-based
method to estimate unseen attribute at every mini-batch, introduced by Elhoseiny & Elfeki (2019).
Unseen attributes are generated by aug = αas1 + (1− α)as2 , where α ∼ U(0.2, 0.8), as1 and as2
are two random seen attributes. The sample interval is chosen as (0.2, 0.8) to avoid interpolated
attributes being too close to seen attributes.

Dictionary-based method.With the assumption that attributes are sparsely distributed in the attribute
space, we suggest learning a sparse attribute dictionary in RNt

s×da space during training and randomly
picking an attribute from it. The use of a learnable dictionary permits the attributes to change more
freely in accordance with the loss function. The dictionary is randomly initialized by interpolation of
seen attributes. This is more useful for classification at a finer level.

See Table 3 and appendix B.3 for the analysis and visualization of the above two assumptions.
Conditioning on the generated attributes, the unseen samples can be generated by the Generator,
xug = G(aug, z), where aug is obtained by either of the two aforementioned methods. For each
unseen attribute, we only generate one unseen sample to encourage the diversity of unseen attributes.

5.2.2 IMPROVE GENERATION QUALITY BY INDUCTIVE LOSS

As there are no real examples of unseen classes for adversarial training, we need to construct
additional learning signals to encourage the unseen generations to be realistic and characterized. As
introduced in Section 4.2, we perform a random walk to compute the transition probability using
Dt

s,D
t
sg and Dt

ug. The random walk starts from each generative seen class center C ∈ RN1:t
s ×dx
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computed by the mean of generated seen samples from the corresponding class attributes, where N1:t
s

are the number of seen classes till step t. Then we take R steps of transitions within unseen samples
Dug with the final landing probability over seen classes so far:

PCDugC(R) = σ(A)σ(B)Rσ(A)⊤ ∈ RN1:t
s ×N1:t

s (3)

where σ(·) is the soft-max activation, and as mentioned in Section 4, A ∈ RN1:t
s ×Nt

u is the similarity
between seen centers and unseen samples, B ∈ RN1:t

s ×N1:t
s is similarities among unseen samples

(see Appendix B.2 for the details). Here N t
u is the number of unseen classes at step t. We hope the

probability PCDugC(R) to be uniformly distributed over all the seen classes, and the probability
PC→Dug = σ(A)σ(B) ∈ RN1:t

s ×Nt
u to be uniformly distributed over all the generated examples to

encourage as many generations to be visited in the random walk, and hence influence the learning.
Hence, our Generative Random Walk (GRW) loss is defined by

LGRW =

R∑
r=0

γrLe(P
CDugC(r),U1) + Le(P

C→Dug ,U2) , (4)

where Le(·, ·) is the cross-entropy loss, U1 ∈ RN1:t
s ×N1:t

s and U2 ∈ RN1:t
s ×Nt

u are uniform matrices
with values of 1/N1:t

s and 1/N t
u respectively, R is the random walk steps, and γ is exponential decay.

In addition, we empirically found that the GRW loss can also work as a regularizer to encourage the
consistency of generated seen visual space as well, which we defined as

RGRW =

R∑
r=0

γrLe(P
CDsgC(r), I) + Le(P

C→Dsg , I) , (5)

where I ∈ RN1:t
s ×N1:t

s are identity matrix, and Dsg represent the matrix for generated seen samples.
We numerically show that the random walk based penalty can reduce d̄GDB (Def 4.1) by the
relationship between d̄GDB and LGRW . Details are shown in Appendix B

We also adapt the loss proposed in (Elhoseiny & Elfeki, 2019) to directly prevent the generated
unseen samples from being classified into seen classes, i.e.,

Lcreativity = Ez∼Z,aug∼Dug
DKL

(〈
G(z,aug), D(A1:t

s )
〉
∥u

)
, (6)

where DKL(·∥·) is the KL divergence, A1:t
s ∈ RN1:t

s ×da is the matrix of attributes vec-
tors of seen classes until task, aug is generated unseen attributes according to Section 5.2.1,〈
G(z,aug), D(A1:t

s )
〉
∈ RN1:t

s are the logits over seen classes so far for a given G(z,aug), u
is the uniform distribution in RN1:t

s , where u[i] = 1/N1:t
s

Inductive loss Combining Equation 4,5 and 6 our final inductive loss is

Linductive = λcLcreativity + λiLGRW + λiRGRW (7)

5.3 REPLAY-BASED KNOWLEDGE RETENTION

As discussed in Section 2, there are mainly three knowledge retention methods for sequential tasks.
Skorokhodov & Elhoseiny (2021) found the replay-based method is the most desirable continual
learning tool. Some existing method (Ghosh, 2021a;b; Kuchibhotla et al., 2022) tend to use the
generative replay method proposed by Gautam et al. (2021), where the correctly predicted seen
generated features from the previous task are stored in buffers. Nonetheless, the buffer size increases
significantly over task since a fixed number of samples for each class is stored. Additionally, if the
model struggles to make accurate predictions for certain classes, samples from these classes are
absent in the buffer. (see Appendix B.5)

We empirically find that the class balanced experience replay method (Prabhu et al., 2020) can be
extremely helpful. At every task, we save the class attribute in A1:t, class center matrix C, and
modify the buffer with current features noted as D1:t

s such that the buffer is balanced across all the
seen classes. Note that we store real features in the buffer instead of the raw data, which is a fair
replacement of the saved generated features but significantly improves the performance. We study
the impact of using both real and generative replay in our experiments in Appendix D.5.
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Table 3: Our proposed learner ICGZSL achieves SOTA results when comparing with recent inductive
(in) method, and is even shows competitive results in mHA (D.2) with recent semantic transductive
methods (tr)

Dataset AWA1 AWA2 CUB SUN

Metric mSA mUA mHA mSA mUA mHA mSA mUA mHA mSA mUA mHA

DVGR (tr) 65.1 28.5 38.0 73.5 28.8 40.6 44.9 14.6 21.7 22.4 10.7 14.5
A-CGZSL (tr) 71.0 24.3 35.8 70.2 25.9 37.2 34.3 12.4 17.4 17.2 6.3 9.7
BD-CGZSL (tr) 62.9 29.9 39.0 68.1 33.9 42.9 19.8 17.2 17.8 27.5 15.9 20.0

CN-CZSL (in) - - - 33.6 6.4 10.8 44.3 14.8 22.7 22.2 8.2 12.5
BD-CGZSL-in( in) 62.1 31.5 40.5 67.7 32.9 42.3 37.8 9.1 14.4 34.9 14.9 20.8

ours + interpolation 67.0 34.2 43.4 71.1 34.9 44.5 42.2 22.7 28.4 36.0 21.6 26.8
ours + dictionary 67.1 33.5 41.6 70.2 35.1 44.6 42.4 23.6 28.8 36.5 21.8 27.1

6 EXPERIMENT

6.1 CONTINUAL ZERO-SHOT LEARNING EXPERIMENTS

Data Stream and Benchmarks: We adopt the continual zero-shot learning proposed in Skorokhodov
& Elhoseiny (2021). In this setting, a T -split dataset D1:T forms T − 1 tasks. At time step t, the split
D1:t is defined as seen set of tasks, and the split Dt+1:T is an unseen set of tasks; see Figure 2. We
conduct experiments on four widely used CGZSL benchmarks for a fair comparison: AWA1 (Lampert
et al., 2009), AWA2 (Yu et al., 2020), Caltech UCSD Birds 200-2011 (CUB) (Wah et al., 2011), and
SUN (Patterson & Hays, 2012). We follow Skorokhodov & Elhoseiny (2021); Kuchibhotla et al.
(2022) for the class split for continual zero-shot learning setting; see Appendix 10 for the details.

Baselines, backbone, and training: We use the method in Kuchibhotla et al. (2022) as the main
baseline and compare it with recent CGZSL methods in the setting we mentioned above, including
transductive method DVGR (Ghosh, 2021b), A-CGZSL (Ghosh, 2021a), BD-CGZSL (Kuchibhotla
et al., 2022), and inductive method CN-CZSL (Skorokhodov & Elhoseiny, 2021). ‘BD-CGZSL-in’
denotes our modified inductive version of Kuchibhotla et al. (2022) by naively getting rid of the use
of unseen attribute. We use vanilla GAN’s Generator and Discriminator, both are two-layer linear
networks. Image features are extracted by ResNet-101 pre-trained on Imagenet-1k in advance. The
attributes from Xian et al. (2018a) and extracted features are used as our model input. We use the
replay buffer size of 5k. We run all experiments for 50 epochs and 64 batch sizes with the Adam
optimizer. We use a learning rate of 0.005 and a weight decay of 0.00001. Results reported in Table 3
are based on one NVIDIA Tesla P100 GPU. We tuned our hyperparameters, random walk steps R,
coefficient of inductive loss terms λi with a validation set (Chaudhry et al., 2019). See the appendix
D.4 for the hyperparameters we use and ablations.

Metrics: Following (Skorokhodov & Elhoseiny, 2021), we use the mean seen accuracy mSA, mean
unseen accuracy mUA and mean harmonic seen/unseen accuracy mHA to measure the continual
zero-shot learning ability. We also use the backward transfer, adapted from the continual learning
literature Chaudhry et al. (2019); Aljundi et al. (2018); see Appendix D and D.2 for more details.

Results Our accuracy results are shown in Table 3, and the task-wise mHA is shown in Figure 3.
In coarse-grained datasets AWA1 and AWA2, our proposed learner achieves 43.4% and 44.6% in
mHA, respectively, surpassing all the current inductive and transductive methods. In the fine-grained
datasets and longer sequential tasks (CUB, SUN), our method achieves 28.8% and 27.1%, surpassing
all the current CZSL methods. We observe that even though other methods have comparable mSA,
they have far lower mUA than ours. We believe that our method achieves this improved knowledge
transfer ability from seen visual space to unseen visual space through the proposed inductive learning
signals (i.e., Linductive). Table 4 shows the forgetting of different continual zero-shot learner. Our
model exhibits a good backward transfer capability, especially on longer task sequences where BWT
is more needed. We have the highest BWT, 0.19, on CUB. On SUN, forgetting (negative BWT)
appears on most other models, but our method can still retain knowledge from the past. The results
imply that the analysis tools we created allow us to determine which aspects are crucial for zero-shot
learning, and the design of tools for continual learning enhances our capacity to retain information.

6.2 ABLATION STUDY

Effect of random walk-based penalty. To better understand the effect of our novel random
walk-based penalties LGRW and RGRW , we conducted experiments with and without them; see
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Figure 3: Average Harmonic accuracy up until
each task on SUN dataset. Our method outper-
forms both transductive and inductive methods

Table 4: Backward-transfer of different CGZSL
methods. Higher results mean less forgetting.
Our proposed learner achieves competitive results
in backward transfer in coarse-grained datasets
and SOTA in fine-grained datasets

Dataset AWA1 AWA2 CUB SUN

DVGR tr 0.09 0.10 -0.07 -0.20
A-CGZSL tr 0.11 0.05 0.10 0.005
BD-CGZSL tr 0.18 0.14 0.13 -0.02

CN-ZSL in - - -0.04 -0.02
BD-CGZSL-in in 0.18 0.15 0.14 -0.03

ours + interpolation in 0.12 0.10 0.19 0.01
ours + dictionary in 0.11 0.11 0.19 0.01

Table 5: Effect of the random walk-based
penalty with mH measure on CUB dataset.

interpolation dictionary

withRGRW + LGRW 28.4 28.8
- Lcreativity 27.72 27.66

w/oRGRW, LGRW 19.07 20.75
- Lcreativity 14.43 14.43

with LGRW 26.73 27.39

Table 6: Comparison of generative replay and real re-
play methods on CUB dataset. Dictionary-based at-
tribute generation is used

Buffer
Size

Ours BD-CGZSL

mHA BWT mHA

generative 28.5k 0.14 21.06 17.76
real 10k 0.17 28.44 27.79
real 5k 0.19 28.8 26.55
real 2.5k 0.08 26.99 26.77

Table 5. The improvements are mainly from LGRW , and RGRW contributes around an additional
1%. Lcreativity is also part of the inductive loss. We show in Table 5 that removing Lcreativity while
using our GRW losses have an insignificant effect on the performance; see Table 11 for more details.

Effect of experience replay. As mentioned in section 5.3, we found that real feature replay has
advantages over generative feature replay. We make a comparison here on the CUB dataset between
them. It shows that with around 1/10 of the generative replay buffer size, the method with real replay
can surpass that with generative replay in harmonic accuracy. With around 1/5 of the generative
replay buffer size, the method with real replay can have comparable BWT with the generative replay-
based method. Moreover, the method with real replay is not sensitive to the buffer size. DVGR,
A-CGZSL, and BD-CGZSL tend to use generative replay, and only CN-CGZSL uses real replay. We
add the last column here in the Table 6 to show that our proposed replay method is also helpful for
mHA of other methods.

7 CONCLUSION AND DISCUSSION

We studied continual zero-shot learning in this paper, where we believe inductive limitation needs
more focus and exploration toward more realistic learning systems. We started our exploration by
developing the first framework for the theoretical analysis of generative zero-shot learning. It helps
us distinguish the influential factors, d̄GDB when the unseen information is not accessible during
training in continual zero-shot learning. We also proposed a continual zero-shot learner, ICGZSL,
to reduce the d̄GDB bound. To empirically evaluate our learner, we conducted experiments on four
popular continual zero-shot learning benchmarks, AWA1, AWA2, CUB, and SUN. We increased
around 3% harmonic accuracy in the small dataset and around 7% in the more extensive dataset
compared to the previous inductive and transductive methods. We demonstrated that unseen semantic
information is not essential with well-analyzed seen distribution and method.

Although d̄GDB is satisfactory for the numerical analysis of a method, a more strict version of the
relationship between dh

∗
and d̄GDB can be developed, and the multi-class classification condition

should also be considered. Moreover, the distance can be written in those distance measure that has a
relationship with GAN performance, such as the Wasserstein distance. Meanwhile, similar to most
continual learning learners, there is still a performance gap to bridge between sequential tasks (Table
3) and non-sequential tasks (Table 9).
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A DERIVATION OF THEOREMS IN SECTION 4

A.1 THEOREM 3.2

Definition A.1 (H∆H-distance in Ben-David et al. (2010)). Given two feature distributions Dg and
Dr, and the hypothesis classH, theH∆H-distance between Dg and Dr is defined as

dH∆H(Dg,Dr) = 2 sup
h,h′∈H

|Px∼Dg
[h(x) ̸= h′(x)]− Px∼Dr

h(x) ̸= h′(x)| .

Note that the following inequality related to dH∆H(Dg,Dr) holds for any h and h∗

dH∆H(Dg,Dr) = 2 sup
h,h′∈H

|Px∼Dg
[h(x) ̸= h′(x)]− Px∼Dr

h(x) ̸= h′(x)|

≥ 2|Ex∼Dg
[1h(x) ̸=h∗(x)]− Ex∼Dr

[1h(x)̸=h∗(x)]|
= 2|ϵg(h, h∗)− ϵr(h, h∗)| .

(8)

Notation Statement in the Appendix To involve risk between hypotheses and between hypothesis
and ground truth models, we use ϵ·(h, f) or ϵ·(h, h∗) to specify which space the risk is computed on.
Lemma A.2 (Abu-Mostafa et al. (2012)). For a fixed hypothesis, the actual risk can be estimated
from the empirical error with probability 1− δ

ϵ(h, f) ≤ ϵ̂(h, f) +
√

1

2m
log

2

δ
, (9)

where ϵ(h, f) is the actual risk, ϵ̂(h, f) is the empirical risk, and m is the number of testing samples.
Proposition A.3 (Bound dh∗(Du,Dug) by d̄GDB(Du,Dug) ). The distribution distance
dh∗(Du,Dug) can be bounded by it empirical counterpart by

dh∗(Du,Dug) ≤ d̄GDB(Du,Dug) + C(
1

m
,
1

δ
) , (10)

where C( 1
m ,

1
δ ) is a constant term depending on the training sample size m and confidence 1− δ.

Here D· represent the distribution, and D· represents the dataset sampled from the corresponding
distribution.

Proof. Similar to Equation 8, we can write our generative distance as

dh∗(Du,Dug) = 2|ϵug(h∗, f)− ϵu(h∗, f)| . (11)

Combining Lemma A.2, we have

1

2
dh∗(Du,Dug) = |ϵug(h∗, f)− ϵu(h∗, f)|

≤ |ϵ̂ug(h∗, f)− ϵ̂u(h∗, f)|+ |(ϵ̂ug(h∗, f) + ϵ̂u(h
∗, f))− (ϵug(h

∗, f) + ϵu(h
∗, f))|

≲
1

2
d̄GDB(Du,Dug) + C(

1

m
,
1

δ
) ,

(12)

where h∗ = argminh′∈H ϵs(h
′, fs)+ϵug(h

′, fug), and ĥ∗ = argminh′∈H ϵ̂s(h
′, fs)+ ϵ̂ug(h

′, fug).
Following the discussion of Chang et al. (2019), we assume the optimal hypothesis ĥ∗ we can achieve
is very close to the global minimum when the training sample is large, then we can estimate h∗ in
Equation 12 by ĥ∗. C( 1

m ,
1
δ ) is obtained from Lemma A.2

Proof of theorem 3.2 Given the zero-shot learning procedure described in section 3.1, a model is
trained on Ds and generate data Dug by hallucinated unseen attribute âug , then its risk on the unseen
dataset is bounded by

ϵu(h, fu) ≤ ϵ̂s(h, fs) +
1

2
dH∆H(Ds,Du) + λ̄+

1

2
d̄GDB(Du,Dug) , (13)

where ĥ∗ = argminh′∈H ϵ̂s(h
′, fs) + ϵ̂ug(h

′, fug), λ̄ = ϵ̂s(ĥ
∗, fs) + ϵ̂ug(ĥ

∗, fug).
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Proof. Let h∗ = argminh′∈H ϵs(h
′, fs) + ϵug(h

′, fug), and λ = ϵs(h
∗, fs) + ϵug(h

∗, fug), It
follows that

ϵu(h, fu) = ϵs(h, fs) + ϵu(h, h
∗)− ϵs(h, h∗) + ϵug(h

∗, fug) + ϵs(h
∗, fs)− ϵug(h∗, f) + ϵu(h

∗, f)

− ϵs(h, fs)− ϵu(h, h∗) + ϵs(h, h
∗)− ϵs(h∗, fs)− ϵu(h∗, f) + ϵu(h, fu)

≤ ϵs(h, fs) + |ϵu(h, h∗)− ϵs(h, h∗)|+ |ϵug(h∗, fug) + ϵs(h
∗, fs)|+ |ϵug(h∗, f)− ϵu(h∗, f)|

− ϵs(h, fs) + ϵs(h, h
∗)− ϵs(h∗, fs)− ϵu(h, h∗) + ϵu(h, fu)− ϵu(h∗, f)

≤ ϵs(h, fs) +
1

2
dH∆H(Ds,Du) + λ+ dh∗(Dug,Du)

− ϵs(h, fs) + ϵs(h, h
∗)− ϵs(h∗, fs)− ϵu(h, h∗) + ϵu(h, fu)− ϵu(h∗, f) ,

(14)

Note that for any distribution

|ϵD(h, fD)− ϵD(h, h∗)| = |Ex∼D[1h̸=fD ]− Ex∼D[1h̸=h∗ ]|
= |Ex∼D[1h̸=fD − 1h̸=h∗ ]|
≤ Ex∼D[1h∗ ̸=fD ] = ϵD(h

∗, fD) ,

(15)

where the inequality holds by the triangle inequality of the characteristic function, i.e. 1[a ̸= b] ≥
1[a ̸= c]− 1[b ̸= c] for ∀a, b, c ∈ R. Equation (15) shows that the fourth line in Equation (14) is less
than or equal to zero.

Combining Equation 15, the Equation 14 can be written as

ϵu(h, fu) ≤ ϵs(h, fs) +
1

2
dH∆H(Ds,Du) + λ+ dh∗(Dug,Du) , (16)

However, Equation (16) involves unknown risk and unsolvable distribution. We combine the expected
risk and the actual observed risk by Lemma A.2. Let ĥ∗ = argminh′∈H ϵ̂s(h

′, fs) + ϵ̂ug(h
′, fug)

be the optimal hypothesis on the training set, and λ̄ = ϵ̂s(ĥ
∗, fs) + ϵ̂ug(ĥ

∗, fug), we have λ ≤ λ̂.
Together with Lemma A.2 and Proposition A.3, we have

ϵu(h, fu) ≤ ϵ̂s(h, fs) +
1

2
dH∆H(Ds,Du) + λ̄+

1

2
d̄GDB(Du,Dug) . (17)

A.2 THEOREM 3.2 IN CONTINUAL LEARNING SETTING

We use real instant replay to improve the model’s continual learning performance. In other words,
our classification loss function at task t can be written as

Lclassification = γ<tL<t
classification + γtLt

classification ,

where γ<t is the portion of replayed data, L<t
classification is the classification loss on the replayed data,

and γt is the portion of current data, Lt
classification is the classification loss on the current data. We have

γ<t + γt = 1.
Definition A.4 (Y-Discrepancy). LetH be a hypothesis class mapping X to Y , and let L : Y ×Y →
R+ define a loss function over Y . The Y-Discrepancy between two distributions Xg and Xr is defined
as

distY(Xg,Xr) = sup
h∈H
|LXg

(h)− LXr
(h)| (18)

Lemma A.5 (Theorem 6 in Wang et al. (2022)). Let h∗ be the optimal solution of the problem
we described above. Assume the loss function is ρ-Lipschitz continuous For any δ ∈ (0, 1), with
probability at least 1− δ, we have

Lt
s(h

∗) ≤ L<t
classification(h

∗) + γ<tdistY(D<t
s ,Dt

s) + β + (∆+ β +
B

N
)

√
N log 1

δ

2
,

where Lt
s(h

∗) is the expected loss of seen classes at task t, Dt
s is the seen class distribution of task

t, N = N<t + N t with N<t the number of replayed data, N t current seen data, B is the upper
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bound of the loss function, β = max{β<t
1 , . . . , β<t

N<t , βt
1, . . . , β

t
Nt}, ∆ =

∑
β∗
∗ , with the stability

coefficients upper bounded by

β∗
i ≤

ρ2R2

Nλ
,

Kindly refer to Wang et al. (2022) for more details.

Instead of connecting the expected version of theorem 3.2 (Equation 16) to its corresponding empirical
counterpart, ϵs(h, fs) also has relationship with the seen loss of previous tasks as implied by Lemma
A.5. This reveals that the knowledge from currently seen classes should be transferred to the test time
and next training time.

A.3 EXPLANATION OF STATEMENT 3.3

Let Dug ∼ Dug be the generated unseen set we are training on, where Dug is the empirical distri-
bution of all possible generations. In unsupervised domain adaptation, van Laarhoven & Marchiori
(2017) uses random walk to select label set for the samples who has small generalization error.
Proposition 3.2 of van Laarhoven & Marchiori (2017) demonstrates that the self transition probability
of a Markov chain represents an upper bound on the margin linear classifier’s generalization error.
This concept is adapted to connect our GDB bound connected to the Markov Chain in below. In
our sample generation procedure, we generate only one sample from each class. Our discussion of
this section will be based on this. We have d̄GDB(Du,Dug) ∝ −

∑
i∈Iu

P(au[i] ∈ Dug), where
the probability is taken over Dug , and Iu is the index set of unseen real attributes. This is because the
difference of the risk will be reduced if the generations contain as much points close to ground truth
unseen ones as possible. Consider the Markov chain with single step transition probabilities pij of
jumping from node i to node j. Each node represents a generated sample. Let

pij = P[h(xi) = yj ] , (19)

where h is the hypothesis trained on Dug, and the h output predictions on the current generation’s
classification space depending on the quality of h, and the probability is taken over Dug . We assume
the training achieves error ϵ, then h(xi) = yi with probability (1 − δ) if the training set contains
class with attribute ai. It is not hard to prove that P(au[i] ∈ Dug) ≥ pii(1 − δ)(1 − ϵ) by the
generalization bound, since if au[i] /∈Dug , yu[i] is not in the current generation’s classification space.
It follows that

d̄GDB(Du,Dug) ∝ −
∑
i

P(au[i] ⊆Dug) ≤ −
∑
i

pii(1− δ)(1− ϵ)

Then we can release the bound d̄GDB(Du,Dug) by increasing
∑

i pii. Note that P(au[i] ∈ Dug)
can be replaced by P(minaug[j]∈Dug |au[i] − aug[j]| < ε) with the robustness assumption of the
model.

When two generations have the same
∑

i pii, we prefer the one having higher diversity. The diversity
of the generated set Dug can be quantified from the perspective of determinantal point process. As
mentioned in Kang (2013) and Elfeki et al. (2019), Determinantal Point Process (DPP) is a framework
for representing a probability distribution that models diversity. More specifically, a DPP over the set
V with |V| = N , given a positive-definite similarity matrix L ∈ RN×N , is a probability distribution
PL over any S ⊆ V in the following form

PL[S] ∝ det(Ls) ,

where Ls is the similarity kernel of the subset S2. Since the point process according to this probability
distribution naturally capture the notion of diversity, we hope to generate a subset with high PL[Dug]
where the V is viewed as Dug and the transition matrix is viewed as the similarity kernel. One way to
generate a set of unseen samples with high det(LDug ) is to encourage the diagonality of the transition
matrix which can be achieved by promoting orthogonality of the generated samples. Moreover, since
actually fug is a look-up table, low

∑
j ̸=i pji can be explained as the large dis-similarity of the

generated unseen samples from different class.

2The feature representation of the similarity space is typically normalized so the highest eigen value is 1, and
hence the determinant (multiplication of the eigen values) is < 1
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B MORE DETAILS OF SECTION 5

Algorithm 1 shows the overall training process. The Discriminator and Generator are alternatively
optimized. During the training of the Generator (line 11 - 22), we propose to generate unseen
attributes (line 12 for interpolation based method and line 12,13 for dictionary based method) and
encourage the generations to be realistic and deviate from the seen generations (line 19). After the
training of each task, we propose to store the current semantic information and real features in the
buffer.

B.1 REGULARIZATION TERMS RD AND RG LOSS FUNCTION 2

We closely follow Kuchibhotla et al. (2022) for the regularization terms of the Generator and
Discriminator. The regularization term on discriminator encourages the semantic embedding to be
close to the class center, i.e., at task t

Rt
D = ∥D(A1:t

s )−C1:t
s ∥2F ,

where A1:t
s is the attribute matrix and C1:t

s is the class mean matrix computed by seen features up
until current task. ∥ · ∥F is the Frobenius norm. The regularization terms on the generator encourage
the seen generations to be close to the seen class centers and have moderately distanced to their
semantic neighborhoods. RG is defined as

RG = Lnuclear + Lsal .

Lnuclear is the Nuclear loss, defined as

Lnuclear = ∥Ct
s −Ct

sg∥2F ,

where Ct
s is the class mean matrix computed by seen features of current task, and Ct

sg is the class
mean matrix computed by generated seen features of current task. Lsal is the incremental bidirectional
semantic alignment loss defined as

Lsal =
1

N t
s

Nt
s∑

i=1

∑
j∈Ii

∥max{0, ⟨Cs[j],Csg[i]⟩ − (⟨ts[i],
t
s[j]⟩+ ε)}∥2

+ ∥max{0, (⟨ts[i],
t
s[j]⟩ − ε)− ⟨Cs[j],Csg[i]⟩}∥2 ,

where N t
s is the number of current seen classes at task t, Ii is the neighbor set of class i, ε is the

margin error, ⟨·, ·⟩ is the cosine similarity.

B.2 DETAILS OF GRW LOSS

We provide more details for the terms in GRW loss in Section 5.2.2. The transition probability matrix
from seen class centers to unseen samples is defined as

PC→Dug = σ(⟨C,D⊤
ug⟩) , (20)

where ⟨·, ·⟩ is a similarity measure, and σ(·) is a softmax operator applied on rows. In practice, we
use negative Euclidean distance for similarity, that is, suppose xug is the i-th row of Dug and c is the
j-th class center,

⟨C,D⊤
ug⟩i,j = −∥xug − c∥2 .

Similarly, the transition probability matrix from unseen samples to unseen samples and to seen class
centers are defined as

PDug→Dug = σ(⟨Dug,D
⊤
ug⟩), PDug→C = σ(⟨Dug,C

⊤⟩) . (21)

Then the random walk staring from each seen class center and taking R step transitions within unseen
samples has probability

PCDugC(R) = PC→Dug · (PDug→Dug )R · PDug→C (22)
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Figure 4: Attribute distribution T-SNE visualizations of AWA1 dataset in different task with interpo-
lation method

B.3 VISUALIZATION OF ATTRIBUTE DISTRIBUTION

Our analysis assumes the generated unseen attributes can compactly support the real unseen attributes.
Here we use the T-SNE embedding method to visualize the distribution of them. Figure 4 shows the
distribution of seen attributes, unseen attributes, and interpolated attributes in different tasks. We
only plotted partial of the generations of every task here. The actual number of generated attributes
equals the number of training samples. As the task progresses, the learner sees more and more seen
classes, and the generated attributes get closer and closer to the unseen attribute. In the areas where
the unseen attribute distribution is sparse, that is the blanks in the figure, the generated attributes are
also very sparse. Therefore, the generated invisible attribute tends to describe the possible visual
space, has deviation from the visible attribute, and produces compact support for the unseen attributes.
This is exactly what we assumed.

B.4 NUMERICAL VERIFICATION OF GRW LOSS

We mentioned in the statement 3.3 that the GRW loss could reduce d̄GDB . Here we plot the figure to
indicate the relationship between the GRW loss and the bound d̄GDB . We use the model at different
epochs for different ĥ∗, and use difference between generated unseen accuracy and test unseen
accuracy to represent d̄GDB = ∥ϵ̂u − ϵ̂ug∥ at a random select task. Figure 5 shows that the d̄GDB

has a strong positive correlation, especially when the loss is getting lower. This indicates that we
can reduce the bound, i.e., the distance between generated unseen space and true unseen space, by
minimizing the GRW loss.

B.5 COMPARISON OF REPLAY METHODS

We mentioned in Section 4.3 that the generative replay method suffers from the increasing buffer and
unbalanced class problems. This problem is severe in early tasks. We plot the number of the buffer
features of every class at task 2 of the SUN dataset in Figure 6. Our proposed real replay method
stores a similar number of features in each class, while the generative replay method stores nearly
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Figure 5: Relationship between d̄GDB and the
GRW loss in CUB dataset

Figure 6: Comparison of replayed number of
features per class in differnt replay method at task
2 in SUN dataset

no features in some classes and doubled number of features in some other classes. However, those
classes with less stored features are precisely those where the model does not perform well because it
only stores the correctly classified generated data in the generative replay method. This may make
the model perform worse in these classes in future tasks.

B.6 RELATION TO OTHER WORK USING RANDOM WALK

We adapt random walk modeling (Ayyad et al., 2021) with three key changes

1. In Ayyad et al. (2021); Häusser et al. (2017), class prototypes/centers are represented by the
few examples provided for each class. In our setting, these class prototypes represent seen
classes that in our case we want to deviate from seen classes and enable knowledge transfer
to unseen classes. To facilitate such transfer through attributes/semantic descriptions, we
define seen class centers C in a semantically guided way computed by as the mean of
generated seen samples from their corresponding attributes ([C]i = mean G(z, ai) for class
i defined by attribute vector ai).

2. Ayyad et al. (2021); Häusser et al. (2017) use unlabeled data points to calculate the random
walk, where we use generated examples.

3. These generated examples, in our case, are from unseen classes instead of unlabeled exam-
ples of the seen classes as in the few-shot learning problem. Hence, Ayyad et al. (2021);
Häusser et al. (2017)’s loss is to attract unlabeled samples to labeled samples, but our goal
is the opposite to rather push unseen samples away from seen samples. Häusser et al. (2017)
encourage global consistency by using a random walk from labeled data to unlabeled data
(their A matrix) and back to labeled samples ( A⊤ matrix). It promotes identity distribution
of paths (AA⊤ → I) where the starting and ending points are of the same class. Ayyad
et al. (2021) investigates a more general case in which the number of random walk steps
between unlabeled classes (B matrix) is greater than one (ABRA⊤). Since we assume that
none of the generated unseen samples belong to the seen classes, and as a deviation signal,
we encourage that all of the paths of the random walk from seen to generated examples of
unseen classes and back to seen classes (our ABRA⊤) to be uniform instead of identity.

van Laarhoven & Marchiori (2017) focuses on unsupervised domain adaptation, which involves doing
a random walk over all potential labeling circumstances on unlabeled target data in order to identify
stationary labeling distribution. Labeling stability is defined from the perspective of a generalization
bound which can be attained through a stationary Markov chain. We borrow the idea of using the
Markov chain to estimate the relationship between different labeling to find a stationary one that can
reduce the generalization bound. We employ the Markov chain to estimate the relationship between
different unseen generations and discover a diverse one that can reduce the generalization bound.
LGRW loss encourages the random walk to find a highly diverse unseen generation which will
reduce the generalization bound.
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Algorithm 1: Training procedure of ICGZSL
Input :Total task number T , training epoch E, random walk length R, decay rate of random

walk γ, and coefficients λc,rd,i,rg , learning rate αG,D,Dic, buffer size B
Data :X1:T

s , y1:Ts , a1:Ts
Initialize :Generator, Discriminator

1 for t = 1 : T do
2 Get train loader by concatenating train set t with buffer data;
3 for e = 1 : E do
4 Get Xt

s, y
t
s sampled from train loader. Get a1:ts from current train set and buffer ;

5 begin Train Discriminator
6 Generate samples conditioning on seen attributes Xt

sg = G(z, ats) ;
7 Compute real-fake loss Lreal-fake in equation (??) using real seen samples Xt

s,
generated seen samples Xt

sg , and current task attribute ats;
8 Compute classification loss Lclassification in equation ?? using real seen samples Xt

s,
generated seen samples Xt

sg , and attributes a1:ts ;
9 Compute LD in equation 2 and update θD ← θD − αD∇LD ;

10 end
11 begin Train Generator
12 Generate atug by interpolation between two random ats ;
13 if Use dictionary based method then
14 Initialize the dictionary with the interpolated attribute and get θDic

15 end
16 Generate samples conditioning on unseen attributes Xt

ug = G(z, atug) ;
17 Compute the second part of real-fake loss Lreal-fake in equation (??) using generated

unseen samples Xt
sg and current task attribute ats;

18 Compute the second part of classification loss Lclassification in equation ?? using
generated unseen samples Xt

sg and attributes a1:ts ;
19 Compute tehe inductive loss in Linductive using Ct

s = mean(Xt
s), generated seen

samples Xt
sg , and unseen generated samples Xt

ug Compute LG in equation 2 and
update θG ← θG − αG∇LG ;

20 if Use dictionary based method then
21 θDic ← θDic − αDic∇LD

22 end
23 end
24 end
25 begin Replay data by section 4.2.3
26 Save ats to the buffer;
27 Save current real features with size B/N1:t

s per class, reduce previous features to size
B/N1:t

s
28 end
29 end
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C ZERO-SHOT LEARNING EXPERIMENTS

C.1 TEXT BASED ZERO-SHOT LEARNING EXPERIMENTS

Text-based ZSL is more challenging because the descriptions are at the class level and are extracted
from Wikipedia, which is noisier.

Benchmarks We perform experiments on existing zero-shot learning (ZSL) benchmarks,
CUB (Wah et al., 2011) and NAB (Van Horn et al., 2015), with text descriptions as semantic
class descriptions. Caltech UCSD Birds-2011 (CUB) contains 200 classes with 11, 788 images, and
North America Birds (NAB) has 1011 classes with 48, 562 images. To evaluate the generalization
capability of class-level text zero-shot recognition, we split the two benchmarks into four subsets
(CUB Easy, CUB Hard, NAB Easy, and NAB Hard). Hard splits are constructed such that the unseen
bird classes from super-categories do not overlap with seen classes (Chao et al., 2016; Zhu et al.,
2018; Elhoseiny & Elfeki, 2019).

Baseline and training We add the proposed GRW loss (LGRW +RGRW ) to the inductive zero-shot
learning method GAZSL (Zhu et al., 2018) and compare it with other inductive zero-shot learning
methods. For the text representation function ψ(·), we used the TF-IDF(Salton & Buckley, 1988)
representation of the input text followed by an FC noise suppression layer. We use the random walk
length R = 10 for our experiments, and show that longer random walk process is more helpful in
ablation study. We launch every ZSL experiment on a single NVIDIA V100 GPU.

Evaluation and metrics During test, the visual features of unseen classes are synthesized by the
generator conditioned on a given unseen text description au, i.e. xu = G(su, z). We generate 60
different synthetic unseen visual features for each unseen class and apply a simple nearest neighbor
classifier on top of them. We use two metrics: standard zero-shot recognition with the Top-1 unseen
class accuracy and Seen-Unseen Generalized Zero-shot performance with Area under Seen-Unseen
curve (Chao et al., 2016).

Results Our proposed approach improves over older methods on all datasets and achieves SOTA
on both Easy and SCE(hard) splits, as shown in Table 1 in the introduction section. We show
improvements in 0.8-1.8% Top-1 accuracy and 1-1.8% in AUC. GAZSL (Zhu et al., 2018) + GRW
also has an improvement of around 2% over other inductive loss ( GAZSL (Zhu et al., 2018) +
CIZSL (Elhoseiny & Elfeki, 2019)).

GRW Loss for Transductive ZSL To better understand how the GRW improves the consistency
of generated seen features space and generated unseen features space, we conduct experiments on
semantic transductive zero-shot learning settings. The improvements are solely from the GRW loss
with the ground truth semantic information. We choose LsrGAN (Vyas et al., 2020) as the baseline
model. Our loss can also improve LsrGAN on text-based datasets on most metrics ranging from
0.3%-3.6%. However, as we expected, the improvement in the purely inductive/more realistic setting
is more significant.

Ablation Table 7 shows the results of our ablation study on the random walk length. We find that
the longer random walk performs better, giving higher accuracy and AUC scores for both easy and
hard splits for CUB Dataset. With a longer random walk process, the model could have a more
holistic view of the generated visual representation that enables better deviation of unseen classes
from seen classes.

GRW loss contains two parts, LGRW andRGRW . Table 8 shows the results of our ablation study on
the RGRW in zero-shot learning. We perform experiments both with RGRW and without RGRW .
Training failed with NaN gradients in 5% of the times withoutRGRW but 0% withRGRW ; thus, it
is important for the training stability.

C.2 ATTRIBUTE BASED ZERO-SHOT LEARNING EXPERIMENTS

Benchmarks We perform these experiments on the AwA2 (Lampert et al., 2009), aPY (Farhadi
et al., 2009), and SUN (Patterson & Hays, 2012) datasets.
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Table 7: Ablation studies on CUB Dataset (text). Each row shows either baseline deviation losses
and or GRW losses with different length on GAZSL (Zhu et al., 2018)

Setting CUB-Easy CUB-Hard

Top-1 Acc (%) SU-AUC (%) Top1-Acc (%) SU-AUC (%)

+ GRW (R=1) 45.41 39.62 13.79 12.58
+ GRW (R=3) 45.11 39.25 14.21 13.22
+ GRW (R=5) 45.40 40.51 14.00 13.07
+ GRW (R=10) 45.43 40.68 15.51 13.70

Table 8: Ablation study using Zero-Shot recognition on CUB & NAB datasets with two split settings.
We experiment with and without the RGRW (second and last row). The first loss is the baseline
method.

Metric Top-1 Accuracy (%) Seen-Unseen AUC (%)

Dataset CUB NAB CUB NAB
Split-Mode Easy Hard Easy Hard Easy Hard Easy Hard

GAZSL (Zhu et al., 2018) 43.7 10.3 35.6 8.6 35.4 8.7 20.4 5.8

GAZSL (Zhu et al., 2018) + GRW 45.4 15.5 38.4 10.1 40.7 13.7 25.8 7.4
GAZSL (Zhu et al., 2018) + only LGRW 45.3 14.8 38.2 10.3 40.1 12.8 25.8 7.4

Baseline, training, and evaluation We perform experiments on the widely used GBU (Xian et al.,
2018a) setup, where we use class attributes as semantic descriptors. The evaluation process and
training devices are the same as text-based experiments. We use seen accuracy, unseen accuracy,
harmonic mean of seen and unseen accuracy, and top-1 accuracy as the evaluation metrics.

Results In Table 9, we see that GRW outperforms all of the existing methods on the seen-unseen
harmonic mean for AwA2, aPY, and SUN datasets. In the case of the AwA2 dataset, it outperforms all
the compared methods by a significant margin, i.e., 15.1% in harmonic mean, and is also competent
with existing methods in Top-1 accuracy while improving 4.8%. GAZSL (Zhu et al., 2018)+GRW
has an average relative improvement over GAZSL (Zhu et al., 2018)+CIZSL (Elhoseiny & Elfeki,
2019) and GAZSL (Zhu et al., 2018) of 24.92% and 61.35% in harmonic mean.

Table 9: Zero-Shot Recognition on class-level attributes of AwA2, aPY and SUN datasets, showing
that GRW loss can improve the performance on attribute-based datasets.

Top-1 Accuracy(%) Seen-Unseen H

AwA2 aPY SUN AwA2 aPY SUN

SJE (Akata et al., 2015) 61.9 35.2 53.7 14.4 6.9 19.8
LATEM (Xian et al., 2016) 55.8 35.2 55.3 20.0 0.2 19.5
ALE (Akata et al., 2016) 62.5 39.7 58.1 23.9 8.7 26.3
SYNC (Changpinyo et al., 2016) 46.6 23.9 56.3 18.0 13.3 13.4
SAE (Kodirov et al., 2017) 54.1 8.3 40.3 2.2 0.9 11.8
DEM (Zhang et al., 2016) 67.1 35.0 61.9 25.1 19.4 25.6
FeatGen (?) 54.3 42.6 60.8 17.6 21.4 24.9
cycle-(U)WGAN (Felix et al., 2018) 56.2 44.6 60.3 19.2 23.6 24.4

LsrGAN (tr) (Vyas et al., 2020) 60.1 34.6 62.5 48.7 31.5 44.8
+ GRaWD 63.7+3.6 35.5+0.9 64.2+1.7 49.2+0.5 32.7+1.2 46.1+1.3

GAZSL (Zhu et al., 2018) 58.9 41.1 61.3 15.4 24.0 26.7
+ CIZSL (Elhoseiny & Elfeki, 2019) 67.8 42.1 63.7 24.6 25.7 27.8
+ GRaWD 68.4+9.5 43.3+2.2 62.1+0.8 39.0+23.6 27.2+3.2 27.9+1.2
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Table 10: Seen and Unseen classes in different
dataset

AWA1 AWA2 CUB SUN

Total classes 50 50 200 705
Number of tasks 5 5 20 15

Initial seen classes 10 10 10 47
Covered class 10 10 10 47

Table 11: Ablation studies on how the Lcreativity in-
fluence our method on CUB dataset

without Lcreativity with Lcreativity

Inter. Dic. Inter. Dic.

w/o GRW loss 14.43 14.43 19.07 20.75
w/ GRW loss 27.72 27.66 28.4 28.8

D CONTINUAL ZERO-SHOT LEARNING EXPERIMENTS

D.1 DATASET AND CONTINUAL ZERO-SHOT LEARNING SETUP

We display the seen and unseen class conversions in each task for each dataset in the Table 10 to
provide a better understanding of the specific implementation of CZSL on different datasets. Covered
class means the number of unseen class converted to seen class per task.

D.2 METRICS

We use the mean seen accuracy, mean unseen accuracy and mean harmonic seen/unseen accu-
racy (Skorokhodov & Elhoseiny, 2021) to measure the zero-shot learning ability. These metrics are
defined as follows,

mSA =
1

T

T∑
t=1

St(D̂
≤t), mHA =

1

T − 1

T−1∑
t=1

H(St(D̂
≤t), Ut(D̂

≥t)), mUA =
1

T − 1

T−1∑
t=1

Ut(D̂
≥t) ,

where H(·, ·) is the harmonic mean and St, Ut are seen and unseen per-class accuracy using the
model trained after time t. We also use the backward transfer (Chaudhry et al., 2019; Yi & Elhoseiny,
2021; Skorokhodov & Elhoseiny, 2021) to measure the continual learning ability, which is defined in
Skorokhodov & Elhoseiny (2021)

BWT =
1

T − 1

T−1∑
t=1

(ST (D̂
≤t)− St(D̂

≤t)) .

Note that this should only be conducted on seen set, since part of the early unseen set become seen
set later. The BWT on unseen set cannot reflect the knowledge retain ability of the model.

D.3 MORE ABLATIONS

Influence of Lcreativity Lcreativity serves as our baseline, borrowed from Elhoseiny & Elfeki (2019).
We do an ablation here on how Lcreativity influence each component of our random walk loss in table
11. The results show that Lcreativity improves the generated unseen as a baseline method alone without
our proposed GRW loss. With GRW loss, Lcreativity serves as an auxiliary term to further encourage
characterization of the generations.

Random seed We experiment with multiple random seeds on the CUB dataset and show the
averaged mH (line) and standard deviation (shadow) in Figure 7. The random seed mainly affects
the generation part of GZSL learners. The generated data is used directly or indirectly to train the
classifier of the unseen class. Figure 7 shows that previous models are sensitive to random seeds, but
our model is not. Previous models use the generated data as replay data or directly train the classifier,
while ours avoids these. Our method uses a non-parametric classifier, a similarity-based classifier.
During training, we pay more attention to improving the generalization ability of our embedder
(discriminator) by encouraging the consistency between the generated visual space and the true visual
space. Plus, we store the real data in the buffer. These all make our model more stable. Although we
only reported the results of one seed (2222) in Table 4, the figure shows that the effect of different
seeds on the results is not significant.

We also report mean and standard deviation of multiple runs of our methods in each dataset in Table
12, 13. It shows that experiments on all the dataset with both attribute generation methods have
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Table 12: Our method in continual zero shot learn-
ing setting with interpolated attributes. Mean and
variance calculated on three runs with different
random seeds.

mSA mUA mHA

Mean Std Mean Std Mean Std

AWA1 65.87 1.19 33.77 1.00 42.69 0.57
AWA2 70.52 0.46 34.52 0.90 44.45 0.79
CUB 42.11 0.88 22.10 0.67 27.80 0.53
SUN 36.29 0.18 21.07 0.33 26.44 0.20

Table 13: Our method in inductive continual
zero shot learning with learnable dictionary of
attributes. Mean and variance calculated using
three runs with different random seeds

mSA mUA mHA

Mean Std Mean Std Mean Std

AWA1 66.35 0.28 32.75 0.94 41.90 0.91
AWA2 70.55 0.51 33.88 0.60 43.49 0.88
CUB 42.22 0.30 22.78 0.91 28.09 0.68
SUN 36.63 0.12 21.39 0.47 26.79 0.37

Table 14: The hyperparameter for Table 3

AWA1 AWA2 CUB SUN

Interpolation Dictionary Interpolation Dictionary Interpolation Dictionary Interpolation Dictionary

λc 10 1 1 10 1 1 1 1
λi 0.5 2 1 5 2 2 5 1
R 3 3 3 3 5 5 5 5

relatively small variance. Although interpolation based method has lower mean harmonic accuracy
on fine-grained dataset CUB and SUN, it is shown to be more stable with less variance than dictionary
based method.

D.4 HYPERPARAMETERS IN GRW LOSS

Hyperparameter for Table 3 We use the validation set to tune the hyperparameter random walk step
R, coefficient of Lcreativity λc, and coefficient of Linductive λi. The hyperparameter used to report Table
3 is shown in Table 14

Walk length R and decay rate γ We do an ablation study on the random walk length R and decay
rate γ of the GRW loss in continual zero-shot learning experiments. Table 15 shows our method with
different random walk lengths in AWA1 dataset and CUB dataset. In the dataset AWA1, moderate
lengths give the highest mHA while in the CUB dataset higher random walk lengths provide the best
mHA. It shows that the more challenging the dataset, the more random walk length is needed. Unlike
ZSL experiments, in CZSL experiments, knowledge is not only transferred to the unseen class space

Figure 7: Mean harmonic accuracy at end of each task with 5 different random seeds on CUB (Wah
et al., 2011). Lines show the averaged mH, and shadows show the standard deviation.
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Table 15: Our method with different random walk length R

(a) Experiments on CUB dataset

Ours Interpolation Ours dictionary

mSA mUA mHA mSA mUA mHA

R
1 41.7 21.2 27.1 43.6 22.7 28.4
3 42.3 22.1 27.7 42.1 20.6 26.6
5 42.2 22.7 28.4 42.4 23.6 28.8

(b) Experiments on AWA1 dataset

Ours Interpolation Ours dictionary

mSA mUA mHA mSA mUA mHA

R
1 65.4 33.9 42.7 66.6 32.7 41.5
3 67.0 34.2 43.4 67.1 33.5 42.8
5 65.8 33.0 42.1 66.8 32.7 41.7

Table 16: Our method with different decay rate γ on CUB dataset

(a) Experiments on CUB dataset

Ours-interpolation Ours-dictionary

mSA mUA mH mSA mUA mH

γ 0.7 40.97 21.78 27.26 42.22 22.03 27.47
1 40.95 21.21 27.05 42.62 21.6 27.43

(b) Experiments on AWA1 dataset

Ours-interpolation Ours-dictionary

mSA mUA mH mSA mUA mH

0.7 66.8 33.42 42.87 66.93 32.41 41.51
γ 1 66.07 32.31 41.69 66.34 32.87 41.76

Table 17: Our method with different inductive coefficients λi

(a) Experiments on CUB dataset

Ours-interpolation Ours-dictionary

mSA mUA mH mSA mUA mH

0.01 41.81 20.93 27.01 42.8 23.07 28.51
0.1 42.32 21.27 27.11 42.73 21.98 27.85λi
1 40.97 21.78 27.26 42.22 22.03 27.47

(b) Experiments on AWA1 dataset

Ours-interpolation Ours-dictionary

mSA mUA mH mSA mUA mH

0.1 66.81 32.82 42.15 66.32 32.11 41.15
1 66.8 33.42 42.87 66.93 32.41 41.51λi
10 66.38 33.77 42.92 66.47 31.81 40.89

but also to the next task. Long walk length could give the model a more holistic view of the current
task but may harm the transformation to the next task. Therefore tuning the number of random walk
steps is required for new datasets.

Decay rate γ works as a scale factor to the GRW loss to prevent a specific area in the probability
matrix from being too close to one, resulting in exponential growth in the multiplication results when
compared to other areas. Compared to the non-decay case when γ = 1 in Table 16, the decayed case
has noticeable improvements in unseen accuracy, resulting in better harmonic accuracy.

Inductive weight λi We also do an ablation study on the inductive coefficient λi in Table 17. This
factor mainly affects the proportion of inductive loss in the overall loss. We found that our model is
not sensitive to this hyperparameter. Whether on the larger dataset CUB or the smaller dataset AWA1,
the difference of mH of different λi on our model does not exceed 1%. Therefore, our model does
not need too much parameter tuning process.

D.5 CONTINUAL ZERO-SHOT LEARNING WITH OTHER COMMON SETTINGS

Although our main research problem is inductive setting, and we think real replay is needed, we
still have an open attitude to other settings and migrate our model naively to their setting. We show
experiment results in these settings in Table 18 and compare them with other methods.

We mentioned earlier that the generative replay method has unbalanced storage and buffer overload
problems, but many models still use generative replay. When data privacy concerns are encountered,
the generative replay method may be an alternative to real replay method. When using the generative
replay, our model outperforms most existing methods. Our problem analysis cannot be applied in this
setting since we believe the replayed feature should have a balanced number in each class.

Our primary focus is on the inductive setting, but we also provide results in the transductive setting
and with generative replay. In the transductive setting, we use the ground truth unseen attributes to
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Table 18: Comparison of our inductive loss in other common CZSL settings

replay method zsl setting AWA1 AWA2 CUB SUN

mSA mUA mHA mSA mUA mHA mSA mUA mHA mSA mUA mHA

CN-ZSL real in - - - 33.55 6.44 10.77 44.31 14.8 22.7 22.18 8.24 12.46
Ours-interpolation real in 62.9 32.77 42.03 67.41 35.4 45.06 40.17 21.78 27.26 36.29 21.05 26.51

Ours-dictionary real in 63.43 32 41.15 68.02 33.22 42.89 41.45 22.03 27.47 36.54 21.31 26.76
DVGR generative tr 65.1 28.5 38 73.5 28.8 40.6 44.87 14.55 21.66 22.36 10.67 14.54

A-CGZSL generative tr 70.16 25.93 37.19 70.16 25.93 37.19 34.25 12.42 17.41 17.2 6.31 9.68
BD-CGZSL generative tr 67.55 36.04 47.88 71.37 38.76 51.6 31 23.97 26.01 30.08 20.07 23.72

Ours-interpolation generative tr 62.43 33.03 42.01 66.84 34.01 43.77 32.53 16.66 21.65 - - -
Ours-dictionary generative tr 62.34 31.5 40.18 68.07 34.45 44.17 30 16.18 20.55 - - -

BD-CGZSL-in generative in 62.12 31.51 40.46 67.68 32.88 42.33 37.76 9.089 14.43 34.93 14.86 20.8
Ours-interpolation generative in 61.43 34.04 42.18 67.34 35.29 44.95 29.78 16.86 21.06 30.9 18.4 22.99

Ours-dictionary generative in 62.26 30.88 39.68 67.44 33.68 43.24 28.34 16.94 20.57 30.13 18.56 22.85

generate the visual features, and our loss works on these generations. Our method is comparable with
other transductive methods, even without carefully designing how to use the semantic information.

Through these knots, we believe that our model has the possibility of being migrated to other settings
and is valuable for further explorations in other settings.
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