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Abstract

The rapid advancement of natural language pro-001
cessing, information retrieval (IR), computer002
vision, and other technologies has presented003
significant challenges in evaluating the perfor-004
mance of these systems. One of the main chal-005
lenges is the scarcity of human-labeled data,006
which hinders the fair and accurate assessment007
of these systems. In this work, we specif-008
ically focus on evaluating IR systems with009
sparse labels, taking inspiration from the suc-010
cess of using Fréchet Inception Distance (FID)011
in assessing text-to-image generation systems.012
We propose leveraging the Fréchet Distance013
to measure the distance between the distribu-014
tions of relevant judged items and retrieved re-015
sults. Our experimental results on MS MARCO016
V1 dataset and TREC Deep Learning Tracks017
query sets demonstrate the effectiveness of the018
Fréchet Distance as a metric for evaluating IR019
systems, particularly in settings where a few la-020
bels are available. This approach contributes to021
the advancement of evaluation methodologies022
in real-world scenarios such as the assessment023
of generative IR systems.024

1 Introduction025

With the rapid advancement of technologies in026

fields such as natural language processing, natural027

language generation, computer vision, and informa-028

tion retrieval (IR), evaluating the performance of029

these systems is becoming increasingly challeng-030

ing (Gatt and Krahmer, 2018; Hashimoto et al.,031

2019; Celikyilmaz et al., 2020; Yang and Lerch,032

2020). We must develop new metrics, benchmarks,033

and evaluation protocols that are specifically tai-034

lored to the unique characteristics of the systems035

considering the rapid changes in system architec-036

ture, training data, and model configurations (Theis037

et al., 2015). In many cases, obtaining high-quality038

labeled data that accurately represents the com-039

plexity of real-world scenarios can be expensive,040

time-consuming, or even impractical. This scarcity041

of labeled data adds to the limitations of conduct- 042

ing extensive evaluations and may lead to biased or 043

incomplete assessments (Arabzadeh et al., 2022). 044

Offline evaluation poses a significant challenge 045

due to the sparsity of labeled data (Clarke et al., 046

2023, 2020; Xie et al., 2020). This challenge is par- 047

ticularly prominent in datasets like MS MARCO, a 048

widely used benchmark for ad hoc retrieval reser- 049

ach (Nguyen et al., 2016; Arabzadeh et al., 2021; 050

Mackenzie et al., 2021) in which, the majority of 051

queries are annotated with only one relevant judged 052

document. However, to suit the dataset for effective 053

traininig of deep learning models, a high number 054

of queries are judged, resulting in sparse labels. 055

Consequently, most queries have only one relevant 056

judgment, while the relevance of the remaining 057

documents remains unknown. Other researchers 058

have shown that there are potentially relevant doc- 059

uments that are as good as, or even better than, the 060

judged queries (Qu et al., 2020; Arabzadeh et al., 061

2022). Given the sparsity of ground truth labels, 062

it is crucial to recognize the challenges involved 063

in distinguishing between rankers when the differ- 064

ences in performance are small (Yan et al., 2022). 065

The limited labeled data for retrieved documents 066

introduces noise, making it challenging to defini- 067

tively determine which ranker is performing better 068

(Cai et al., 2022). The incomplete judgments can 069

introduce problems in evaluations, as they do not 070

capture the full range of relevant documents (Aslam 071

et al., 2006; Carterette and Smucker, 2007). This 072

issue becomes even more pronounced in generative- 073

based tasks. It is impractical to reassess the gen- 074

erated results, such as images or text, with each 075

system run due to their non-deterministic nature 076

(Theis et al., 2015; Harshvardhan et al., 2020). 077

Evaluating a generative system’s performance 078

based on the similarity of generated content 079

to sparsely labeled data remains one of the 080

most effective approaches in many generative- 081

based NLP and computer vision benchmarks and 082
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tasks (Soloveitchik et al., 2021; Heusel et al., 2017;083

Obukhov and Krasnyanskiy, 2020; Dimitrakopou-084

los et al., 2020; Zhang et al., 2019). Particularly085

in the evaluation of text-to-image generation task,086

the Fréchet Inception Distance (FID), has gained087

recognition for showing high robustness and corre-088

lation with human judgements (Heusel et al., 2017;089

Saharia et al., 2022; Yu et al., 2022). FID com-090

pares the distribution of generated images across a091

set of prompts to the distribution of target images092

across the same set of prompts. To compute FID,093

features of ground truth images and generated im-094

ages are extracted from both sets, and multivariate095

Gaussian distributions are fitted to these features.096

The Fréchet Distance (FD), which quantifies the097

similarity between two probability distributions, is098

then computed based on the fitted Gaussian dis-099

tributions. A lower FID score indicates a higher100

similarity between the distributions, indicating that101

the generated images closely match the real images102

in terms of their visual features.103

In this paper, we shed light on how evaluating104

generated results is similar to assessing the qual-105

ity of retrieved results with sparse labels in an ad106

hoc retrieval setting. Most benchmarks for both107

tasks have quite sparse labels i.e., not all the items108

are judged and while there are a few annotations109

available for some of the candidates, there can be110

other unjudged relevant items available. While la-111

belling more data is expensive for both tasks, there112

could be more than one correct answer in both113

tasks. In this work, we mimic an Information Re-114

trieval system with sparse relevance judgements as115

a generation task where the ground truth targets116

are sparse. Due to the success of FID in evaluat-117

ing the quality of generated images, especially for118

generative adversarial networks (Gafni et al., 2022;119

Saharia et al., 2022; Yu et al., 2022; Khan et al.,120

2020; Alonso et al., 2019), we explore if we can121

quantify the quality of retrieved documents in an122

ad hoc retrieval system through Fréchet Distance.123

In the context of IR evaluation, we can analogously124

consider the relevant judged items as the ground125

truth set and the retrieved items as the set of gen-126

erated items. Our objective is to extract features127

from both sets, the relevant judged items and the128

retrieved results, and investigate whether metrics129

such as the Fréchet Distance can effectively capture130

the quality of the retrieved results with respect to131

the ground truth labels in IR systems.132

We study the following Research Questions:133

• RQ1. Can the Fréchet Distance effectively evalu- 134

ate IR systems with sparse labels? 135

• RQ2. Can the Fréchet Distance effectively evalu- 136

ate IR systems with comprehensive labels? 137

• RQ3. Can the Fréchet Distance effectively eval- 138

uate the quality of IR systems when the retrieved 139

results are not labelled? 140

• RQ4. How well correlated are the performance 141

of IR systems, as measured by the Fréchet Distance 142

vs. and traditional IR metrics? 143

• RQ5. How robust is the Fréchet Distance for 144

evaluating IR systems with respect to the feature ex- 145

traction methods used to represent both the ground 146

truth and retrieved items? 147

We conduct our experiments by assessing dif- 148

ferent retrieval pipelines on the MS MARCO V1 149

Dev dataset, which has extremely sparse labels, 150

as well as the TREC Deep Learning Track 2019 151

and 2020 datasets, which have more complete la- 152

bels (Nguyen et al., 2016; Craswell et al., 2020, 153

2021). Our study demonstrates the effectiveness 154

of the Fréchet Distance as a metric for quantifying 155

the performance of IR systems especially when the 156

ground truth labels are sparse. 157

2 Fréchet Distance for IR evalaution 158

2.1 Fréchet Distance 159

The Fréchet distance is a measure of dissimilarity 160

between two curves or trajectories and has shown 161

to be useful in numerous applications including 162

computational geometry, computer graphics, bioin- 163

formatics and robotics (Alt, 2009; Alt and Godau, 164

1995; Alt et al., 2001; Jiang et al., 2008; Gheibi 165

et al., 2014). To understand the Fréchet distance, 166

let us consider two curves (or trajectories or paths): 167

A and B. The Fréchet distance between A and B 168

could be exemplified as measuring the minimum 169

leash length required by a dog walking along a path 170

A while its owner walks along path B, with both 171

the dog and owner potentially traversing their re- 172

spective paths at different speeds (Alt and Buchin, 173

2007; Eiter and Mannila, 1994). The leash cannot 174

be shortened or lengthened during the walk. The 175

definition is symmetric i.e., the Fréchet distance 176

would be the same if the dog were walking its 177

owner. Given two curves, A and B, represented as 178

sequences of points in a metric space, the Fréchet 179

distance, denoted as F (A,B) is computed as: 180

F (A,B) = infα,βmaxt∈[0,1]d(A(α(t)), B(β(t))) (1) 181
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where A and B are continues maps from [0, 1] to182

metric space and α and β are reparameterizations183

of the unit interval [0, 1] i.e. they are continuous,184

non-decreasing, surjection functions. The require-185

ment of non-decreasing reparameterizations, α and186

β, ensures that neither the dog nor its owner can187

backtrack along their respective curves. The pa-188

rameter t as represents the progression of time,189

consecutively A(α(t)) and and B(β(t)) represent190

the position of the dog and the dog’s owner at time191

t (or vice versa). The distance d between A(α(t))192

and B(β(t)) corresponds to the length of the leash193

between them at time t. By considering the infimum194

over all potential reparameterizations of the unit195

interval [0, 1], we select the specific paths where196

the maximum leash length is minimized.197

Apart from quantifying the dissimilarity between198

curves, the Fréchet distance can also serve as a mea-199

sure to assess the disparity between probability dis-200

tributions (Heusel et al., 2017).Given we have two201

normal univariate distributions, X and Y , Fréchet202

Distance (FD) is given as:203

FD(X,Y ) = (µX − µY )2 + (σX − σY )2 (2)204

Where µ and σ are the mean and standard deviation205

of the normal distributions, respectively.206

2.2 Fréchet Inception Distance207

In computer vision, the Inception V3 model pre-208

trained on the Imagenet dataset is employed to gen-209

erate feature vectors to be approximated by multi-210

variate normal distribution (Szegedy et al., 2015).211

As such, the Fréchet Inception Distance (FID) for212

a multivariate normal distribution is computed as:213

FID(X,Y ) = ||µX −µY ||2 − Tr(ΣX +ΣY − 2
√
ΣXΣY )

(3)214

In this equation, X and Y represent two distribu-215

tions derived from two sets of embeddings. These216

embeddings correspond to real images and gener-217

ated images, respectively, and are obtained from218

the Inception model. The vectors X and Y have219

magnitudes µX and µY , respectively. The trace220

of the matrix is denoted as Tr, while ΣX and ΣY221

represent the covariance matrices of the vectors.222

2.3 Fréchet Distance for IR223

Let us assume C is a collection of items and224

Q = {q1, q2, . . . , qn} is a set of n queries, where225

each query qi has a set of relevant judged items Rqi .226

We define RQ as a set of relevance judged items for227

queries in Q, where RQ = {d|d ∈ Rqi , qi ∈ Q}.228

Furthermore, we can obtain the top-k retrieved 229

items by a retrieval system M from C for a given 230

query q as Mk(q, C) = Dk
q , where Dk

q is a set of 231

the top-k most relevant retrieved items for query q, 232

i.e., Dk
q = {dq1, d

q
2, . . . , d

k
1}. Given V as a function 233

that maps any retrieved item to a p-dimensional 234

embedding space, we can embed all the retrieved 235

items and relevant judged items through V. For 236

instance, V(d1) returns a p-dimensional vector em- 237

bedding for document d1. To apply Fréchet Dis- 238

tance for assessing the quality of the IR system M , 239

we measure FDM
Q as follows on query set Q: 240

FDMk
Q = FD

(
{V(RQ)}, {V(Mk(Q,C))}

)
(4) 241

Here, FD is the Fréchet Distance (Eq. 3) measures 242

the distance between the distribution of the set em- 243

beddings of the relevant judged items {V(RQ)} 244

and those of the retrieved items {V(Mk(Q,C))}. 245

The lower FDMk
Q represents the retrieved items 246

to have higher similarity with the relevant judged 247

items and thus the better performance of the re- 248

trieval system M on the query set Q. 249

3 Experimental Setup 250

3.1 Dataset and Query sets 251

We perform experiments on the MS MARCO pas- 252

sage retrieval collection V1 , which includes over 253

8.8 million passages (Nguyen et al., 2016). First, 254

in section 4, we experiment on the 6980 queries 255

in MS MARCO small dev set, which are sparsely 256

labelled. The majority of the queries in this set 257

(over 94%) have only one relevant judged doc- 258

ument per query. Second, in Section 5, we ex- 259

periment on the TREC Deep Learning (DL) track 260

2019 and 2020 to study how varying and extending 261

the relevance judgments would affect the evalua- 262

tion process (Craswell et al., 2021, 2020). The 263

difference between the two query sets is that while 264

the MS MARCO dev set has a higher number of 265

queries (6980) judged, with mostly one relevant 266

document per query, it leaves us with no extra infor- 267

mation about the unannotated documents. On the 268

other hand, the TREC DL tracks have fewer queries 269

judged (97), but each query has a comprehensive 270

set of judgments with multi-level judgments rang- 271

ing from 0-4, indicating the degree of relevance. 272

We compare the results of the FD score with the 273

official traditional IR evaluation metrics of each 274

benchmark, i.e., MRR@10 for MS MARCO and 275

nDCG@10 for TREC Deep Learning tracks. 276
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3.2 Retrieval models277

We consider a set of 12 retrieval methods that are278

well-distinguished for their efficiency or effective-279

ness, ranging from traditional high-dimensional280

bag-of-word sparse retrievers to more recent dense281

retrievers well as trained high-dimensional sparse282

models.Specifically, we consider BM25 as the rep-283

resentative of the sparse retrievers standalone as284

well as applying BM25 to expanded documents285

through DeepCT and DocT5Query document ex-286

pansion methods (Robertson et al., 1995; Nogueira287

et al., 2019a,b; Dai and Callan, 2019). We in-288

clude a set of dense retrievers including RepBERT289

(Zhan et al., 2020), ANCE (Xiong et al., 2020),290

Sentence-BERT (SBERT) (Reimers and Gurevych,291

2019), COLBERT (Khattab and Zaharia, 2020)292

and COLBERT-V2 (Santhanam et al., 2021). We293

also employ the more recently proposed high di-294

mensional learnt sparse retrievers, UniCOIL and295

SPLADE (Formal et al., 2021; Lin and Ma, 2021).296

Furthermore, we consider hybrid retrievers (Lin297

et al., 2021b) that fuse the retrieved items from298

BM25 and dense retrievers, to cover a variety of299

retrievers and assess the ability of FD to quantify300

the quality of retrieval fairly. We note that we em-301

ploy some of the retrieval models from Pyserini(Lin302

et al., 2021a) and some of the others from the pa-303

per’s original GitHub repository. For more informa-304

tion about each of the retrieval models, we kindly305

refer to the original papers of each method.306

For our experiments with the TREC DL19 and307

DL20 query sets, we took the submitted runs for308

each track from the NIST website1. Our exper-309

iments compare the results when assessing with310

Fréchet distance as well as nDCG@10 for 37 sub-311

mitted runs to TREC DL2019 and 59 submitted312

runs to TREC DL 2020. These runs cover a com-313

prehensive set of retrieval pipelines, typically with314

from sparse and/or dense retrieval as a retrieval first315

stage followed by one or more neural re-ranking316

stages (Craswell et al., 2020, 2021).317

3.3 Embeddings318

To examine the robustness of FD on IR systems,319

we perform experiments using two different types320

of transformer-based contextualized models to em-321

bed the documents and extract their features. We322

employ a general-purpose DistilBERT (Sanh et al.,323

2019) to obtain the documents embeddings2 as well324

1https://trec.nist.gov/
2https://huggingface.co/distilbert-base-uncased

Table 1: Performance of different retrievers in terms
of MRR@10 as well as Fréchet distance FD on MS
MARCO dev set. A smallest Fréchet distance corre-
sponds to better performance.

Category Method MRR@10 FD@1 FD@10

Sparse
BM25 0.187 7.446 4.410
DeepCT 0.242 1.453 2.354
DocT5 0.276 3.047 2.050

Dense

RepBERT 0.297 1.881 1.223
ANCE 0.330 1.529 0.995
SBERT 0.333 1.387 1.008
ColBERT 0.335 1.456 0.980
ColBERT V2 0.344 1.453 0.982

Trained
Sparse

UniCOIL 0.351 1.387 0.980
SPLADE 0.368 1.328 0.964

Hybrid
(BM25)

ColBERT-H 0.353 1.494 0.973
ColBERT V2 -H 0.368 1.464 0.998

as fine-tuned pre-trained language models on MS 325

MARCO3 (Reimers and Gurevych, 2019). Both 326

models were adapted from hugging face. We note 327

that unless we explicitly mention (Section 7.2) all 328

the results are reported with the first model, i.e., 329

the DistilBERT model that was fine-tuned on MS 330

MARCO. We believe that by exploring different 331

document representations, we may better under- 332

stand the influence of document quality on the uti- 333

lization of FD for evaluating IR systems. 334

4 Assessment with Sparse labels 335

We are interested in investigating how FD can as- 336

sess the performance of different retrievers when 337

there are only sparse labels available i.e., on 6980 338

queries from MS MARCO small dev set. We 339

present the performance of the 12 retrieval method- 340

sintroduced in Section 3.2 in terms of MRR@10 341

as well as measuring the Fréchet Distance between 342

two sets of retrieved items and relevant judged 343

items on the cut-offs of 1 and 10 in Table 1. 344

The results for FD@1 and FD@10 demonstrate 345

the ability of FD to quantify the performance of 346

retrievers. For example, for the BM25 retriever, 347

FD@1 is measured as 7.446 and FD@10 as 4.410. 348

However, for a neural retriever like ColBERT, 349

which has shown superior performance to BM25 350

on various benchmarks (Santhanam et al., 2021; 351

Khattab and Zaharia, 2020; Thakur et al., 2021), 352

the FD values are reported as 1.456 and 0.980 for 353

FD@1 and FD@10, respectively. This indicates 354

that FD can effectively pickout the better retriever, 355

particularly when there is a significant difference 356

between their performances. On the other hand, 357

3https://huggingface.co/sentence-transformers/msmarco-
distilbert-base-v2
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when the performance of two retrievers is quite358

similar, such as in the case of ColBERT vs. Col-359

BERT V2, it becomes more challenging for eval-360

uation metrics to assess their performance . For361

instance, while MRR@10 for ColBERT vs. Col-362

BERT V2 is reported as 0.334 vs. 0.343, FD@10363

for the two retrievers is reported as 0.980 and 0.982.364

Therefore, as expected, the discriminative power365

of FD decreases when it becomes harder to dis-366

tinguish between retrievers. However, It is im-367

portant to acknowledge that the noise introduced368

by limited labeled data for retrieved documents369

makes it difficult to definitively determine which370

ranker is performing better (Qu et al., 2020). In fact371

Arabzadeh et al. (2022) showed that such a small372

difference in MRR@10 is not a strong indicator373

of which retrieval method is able to address the374

queries better since they might have surfaced other375

unjudged relevant items. They showed that order-376

ing of the rankers solely based on MRR and incom-377

plete relevance judgement is not reliable. Based378

on the results in Table 1 and their comparison with379

MRR@10, we can conclude that in response to380

RQ1, we observe that Fréchet Distance can effec-381

tively evaluate IR systems.382

To examine the robustness of the FD in the con-383

text of IR assessment, and to evaluate the gener-384

alizability of the method across different subsets385

of queries, we employ a bootstrap sampling (John-386

son, 2001; Efron, 2003) from the MSMARCO dev387

set for N = 1000 times. This would allows us388

to investigate whether the results obtained in the389

previous section were influenced by the data or if390

they can be reliable. The results are visualized in391

Figure 1, in which we present the mean and em-392

pirical 0.95% confidence interval for each retriever393

across the 1000 query sets in terms of MRR@10394

and FD@10. It is important to note that for the395

MRR plot, a higher position on the plot indicates396

better performance, while for the FD plot, a lower397

position indicates better performance. The findings398

confirm that despite considering different sample399

sets, we observe a consistent pattern and similarity400

in the performance trends.401

5 Assessing with Comprehensive labels402

In this section, we investigate the performance403

of the Fréchet Distance in evaluating IR systems404

when the labels are not sparse and we have more405

complete labels. We conduct experiments using406

the runs submitted to TREC DL 2019 (37 runs)407
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Figure 1: Performance of bootstrap sampling (N=1000)
of queries in MS MARCO dev set in terms of MRR@10
and FD@10 for the 12 different retrieval methods.

and TREC DL 2020 (59 runs). Unlike the MS 408

MARCO dev set which on average each query has 409

1.06 judged documents, the queries in TREC DL 410

tracks on average have over 210 judged documents 411

per query assessed with four different levels of rel- 412

evanceCraswell et al. (2020). We notice that the 413

number of judged relevant items per query in these 414

benchmarks varies a lot. Due to the TREC-style 415

judgment criteria, only the top few retrieved items 416

from all submitted runs were judged. Depending 417

on the overlap between the top retrieved items from 418

different runs, the number of relevant judged items 419

per query may vary. When applying FD with an 420

imbalanced number of relevant judged items per 421

query, it can introduce biases in the ground truth 422

distribution and potentially lead to problems in eval- 423

uation. To address this issue, we balanced the num- 424

ber of relevant judged items per query by limiting 425
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Figure 2: Performance of all the submitted runs to TREC DL 2019 (first row) and TREC DL 2020 (second row). In
each sub-figure, X-axis and Y-axis indicate nDCG@10 and FD@10 respectively. FD@10 was measured with 1,5
and 10 relevant items per query in the sub-figures in the first, second and third columns respectively.

them to a maximum of 1, 5, and 10 relevant judged426

items per query i.e., we randomly select K relevant427

items from the pool of relevant judged documents428

for the query of interest. We first randomly select429

from the most relevant level i.e., level 3 which are430

perfectly relevant documents and then when there431

is not a sufficient number of perfectly relevant doc-432

uments, we move on to highly relevant level and433

randomly choose from that grade. This experiment434

also allows us to examine how the sparsification435

of judgments affects the performance of evaluation436

metrics. We note that these modifications in rele-437

vance judgements are only applied for measuring438

FD and nDCG@10 is measured with all the judged439

documents without any modification.440

We plotted the nDCG@10 on the x-axis and the441

FD with balanced and sparsified judgments on the442

y-axis of each sub-figure in Figure 2, for all the runs443

submitted to TREC DL19 (first row) and TREC444

DL20 (second row). Consistent with our previous445

experiments, we observe a highly linear relation-446

ship between the two metrics. We also provide the447

Kendall τ correlation under each sub-figure. For448

instance, when sparsifying the labels and consid-449

ering only one relevant judged item per query, we450

obtain a Kendall τ correlation of -0.836 for TREC451

DL2019 and -0.867 for TREC DL2020, between452

nDCG@10 and FD@10 of each dataset.453

The experiments on the TREC DL datasets high-454

light two key points. First, unlike using the Fréchet455

Inception Distance to evaluate the quality of gen-456

erated images in text-to-image generation tasks,457

where a large number of data points (in the order 458

of thousands) are required for the evaluation to be 459

valid, we demonstrated that even with a smaller 460

number of queries (around 40-50), FD is capa- 461

ble of distinguishing the performance of different 462

rankers (Kynkäänniemi et al., 2023; Heusel et al., 463

2017). Second, FD is not sensitive to the spar- 464

sity of the ground truth labels and it performs well 465

with both sparse and more complete labels. It is 466

not affected by the number of judgments, as ev- 467

idenced by the fact that the performance did not 468

differ greatly when increasing the number of rele- 469

vant judged items. However, for TREC DL2019, 470

we observed a small drop in correlation by increas- 471

ing the number of relevant judgments. Further ex- 472

ploration revealed that a higher number of relevant 473

judgments in TREC 2019 resulted in a higher usage 474

of level 2 relevance judgments (highlight relevant) 475

instead of level 3 judgments (perfectly relevant). 476

Consequently, we suggest that FD may be more 477

sensitive to the quality of relevant judged items 478

rather than the quantity. Overall, in response to 479

RQ2, we find that FD works well when using com- 480

prehensive labels, and consistent with the findings 481

in Section 4, sparsifying the labels does not com- 482

promise the quality of assessment. 483

6 Assessing Unlabeled Retrieved Results 484

Here, we undertake an evaluation of different IR 485

systems under an extremely challenging case of 486

assessing unlabeled retrieved results. This scenario 487

presents a situation where each query is assumed 488
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Table 2: Performance of different retrievers in terms
of MRR@10 as well as Fréchet distance FD assuming
under Unlabeled Retrieved Results (URR) setting. We
note that the MRR@10 is measured on the original
ranked list since with URR setting, all the retrievers
would obtain MRR@10 equals to zero. A smallest
Fréchet distance corresponds to better performance.

URR
Category Method MRR@10 FD@1 FD@10

Sparse
BM25 0.187 8.634 4.705
DeepCT 0.242 4.183 2.591
DocT5 0.276 4.066 2.290

Dense

RepBERT 0.297 2.701 1.364
ANCE 0.330 2.353 1.126
SBERT 0.333 2.266 1.156
ColBERT 0.335 2.308 1.115
ColBERT V2 0.344 2.352 1.121

Trained
Sparse

UniCOIL 0.351 2.302 1.128
SPLADE 0.368 2.300 1.117

Hybrid
(BM25)

ColBERT-H 0.353 2.399 1.115
ColBERT V2 -H 0.368 2.365 1.142

to have mostly only one relevant item, and the rel-489

evant judged items are not included in the top-k490

results. Our objective is to investigate the effective-491

ness of the Fréchet Distance in assessing the top-k492

Unlabeled Retrieved Results (URR) when no judg-493

ments are available for any of the top-k retrieved494

items. This is particularly valuable considering the495

high cost and limited availability of labeled data,496

which often exhibit sparsity. Previous research497

has demonstrated that as rankers improve in per-498

formance, they tend to retrieve previously unseen499

content that may be highly relevant to the original500

query (Arabzadeh et al., 2022). If Fréchet Distance501

is capable of evaluating the retrieved results in such502

cases, it would be a valuable tool for assessing the503

relevance of unlabeled data and even beyond that,504

for evaluating generative-based responses.505

We measure the FD between one set consisting506

of the relevant judged items per query and the other507

set consisting of the top-k unjudged retrieved item508

for each query. In other words, we scan down the509

ranked list and retain the first k unjudged document510

to assess. This is an interesting aspect to study be-511

cause traditional IR metrics such as MRR, nDCG,512

and MAP rely on the presence of relevant items in513

the retrieved list and would assign a performance514

score of zero in cases where no relevant items are515

retrieved. They do not account for unjudged doc-516

uments. We argue that by utilizing the FD metric,517

we can capture the similarity between unjudged518

retrieved items and the limited set of judged exam-519

ples and measure the performance of the retriever520

based on this value.521

The results of this experiment are reported in Ta-522

Table 3: Kendall τ correlation between different evalua-
tion metrics over the 12 retrieval methods. URR stands
for “Unlabeled Retrieved Results” and refers to experi-
mental results from section 6. All the correlations are
statistically significant with p-value < 0.05

MRR@10 FD@1
FD@1
URR

FD@10
FD@10

URR
MRR@10 1 -0.473 -0.545 -0.788 -0.636
FD@1 -0.473 1 0.687 0.443 0.290
FD@1-URR -0.545 0.687 1 0.636 0.485
FD@10 -0.788 0.443 0.636 1 0.848
FD@10-URR -0.636 0.29 0.485 0.848 1

ble 2 with two cut-offs of “FD@10” and “FD@1”. 523

Even when no judged documents appear in the 524

top-k, FD is still able to quantify the performance 525

of the retriever. This capability is not present in 526

traditional metrics. For instance, when there are 527

no relevant judged items retrieved in the ranked 528

list, FD@1 quantifies the performance of BM25 as 529

8.634, whereas the performance for ColBERT is 530

measured as 2.308. This indicates that even without 531

relevant judged items, FD is capable of determin- 532

ing that ColBERT performs better than BM25. 533

This experiment demonstrates that, unlike tradi- 534

tional IR metrics, FD is not sensitive to the labeled 535

documents themselves. Indeed, the Fréchet Dis- 536

tance is not reliant on the exact positioning of the 537

relevant judged document in the ranking. Instead, 538

it focuses on measuring the similarity between the 539

retrieved items and the relevant judged documents. 540

This characteristic makes it particularly valuable 541

for evaluating scenarios with extremely sparse la- 542

bels, even in cases where the rankers do not retrieve 543

the labeled data. In response to RQ3, the Fréchet 544

Distance enables assessment of the remaining un- 545

labeled data, offering valuable insights into their 546

relevance. In contrast, traditional IR metrics would 547

be unable to provide any insights without retrieving 548

the labeled documents. 549

7 Further analysis 550

7.1 Correlation with IR Evaluation Metrics 551

We aim to examine the correlation between the FD 552

measure and traditional IR evaluation metrics. To 553

achieve this, we calculate the ranked-based Kendall 554

τ correlation, for each pair of metrics in Table 555

1 and Table 2 on the performance of the 12 re- 556

trievers introduced earlier and report the results in 557

Table 3. This set of evaluation metrics includes 558

MRR@10, FD at cut-offs 1 and 10 (Section 4) and 559

FD at cut-offs 1 and 10 under URR setting when no 560

labeled data is retrieved (Section 6). As anticipated 561

and illustrated in Figure 2, FD exhibits a nega- 562
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Table 4: Comparison of the performance of different
retrievers when assessing with MRR@10 and FD@10
on MS MARCO dev set With DistilBERT fine-tuned on
MSMARCO as well as DistilBERT without any fine-
tuning. DistilBERT fine-tuned on MSMARCO shows
−0.788 Kendall τ correlation with MRR@10 and Dis-
tilBERT without any fine-tuning shows −0.739 Kendall
τ correlation with MRR@10.

FD@10

Category Method MRR@10
DistilBERT
MSMARCO

DistilBERT
No Fine-tuning

BM25 0.187 0.590 4.410
DeepCT 0.242 0.412 2.354Sparse
DocT5 0.276 0.331 2.050
RepBERT 0.297 0.159 1.223
ANCE 0.330 0.121 0.995
SBERT 0.333 0.132 1.008
ColBERT 0.335 0.117 0.980

Dense

ColBERT V2 0.344 0.118 0.982
UniCOIL 0.351 0.123 0.980Trained

Sparse SPLADE 0.368 0.120 0.964
ColBERT-H 0.353 0.116 0.973Hybrid

(BM25) ColBERT V2 -H 0.368 0.126 0.998

tive correlation with MRR, as a lower FD value563

indicates better performance. Among these corre-564

lations, FD@10 shows the highest absolute corre-565

lation with MRR@10 i.e., a correlation of -0.788.566

We suggest that this is because FD operates based567

on the distribution of embedded representations568

of documents, which has shown to work most sta-569

bly when the number of samples increases (Chong570

and Forsyth, 2019; Bińkowski et al., 2018). More571

interestingly, FD@1 and FD@1 with Unlabeled572

Retrieved Results (URR), obtain a correlation coef-573

ficient of 0.687. Similarly, the correlation between574

FD@10 (Fréchet Distance at 10) and FD@10 with575

unlabeled retrieved items was found to be 0.848.576

The high correlation between evaluating the origi-577

nal retrieved results vs without having any judged578

retrieved results further validates the findings pre-579

sented in sections 4 and 6.The Fréchet Distance580

not only exhibits a high correlation with traditional581

IR metrics but also demonstrates its capability in582

assessing unlabeled retrieved items. These exper-583

iments let us answer RQ4 that FD shows a no-584

table correlation with traditional IR metrics. These585

properties increase the reliability of using FD for586

assessing IR systems.587

7.2 Impact of Document Representation588

Here, we examine the robustness of the Fréchet589

Distance metric for assessing IR systems with re-590

spect to the underlying language model to embed591

the retrieved documents and relevance judgments.592

For previous experiments, we utilized a language593

model that was fine-tuned on the MS MARCO594

dataset for ranking tasks. However, now we study595

how the results would be impacted if we were to 596

embed the retrieved documents and ground truth 597

in a different space. As such, we present the same 598

results as in Table 1, using DistilBERT embed- 599

dings fine-tuned on the MSMARCO training set as 600

well as the same results with a DistilBERT with- 601

out any fine-tuning. This analysis aims to inves- 602

tigate whether a general-purpose language model 603

can capture the necessary information for accu- 604

rate assessment, or if a language model specifically 605

fine-tuned for ranking tasks in retrieval is required. 606

Table 4 displays the obtained results. Surprisingly, 607

we observe that changing the language model from 608

a fine-tuned ranking model to a raw, unfine-tuned 609

BERT model does not substantially impact the as- 610

sessment outcomes. The FD metric remains ca- 611

pable of effectively evaluating the performance of 612

various retrieval methods. For example, from Table 613

4, and under “DistilBERT No fine-tuning” column, 614

we observe that BM25 achieves an FD@10 score 615

of 4.410, whereas COLBERT, which is expected 616

to be a better model, achieves a score of 0.980. 617

The correlation between FD@10 and MRR@10 618

when using DistilBERT without any fine-tuning, 619

is -0.739. Comparatively, when using fine-tuned 620

DistilBERT (as shown in Table 3), the correlation 621

IS -0.788. As such, having a fine-tuned language 622

model specifically for ranking task can improve the 623

correlation with traditional IR metrics. However, 624

even without fine-tuning, FD still demonstrates 625

promising performance. Overall, the results indi- 626

cate that FD remains effective in evaluating the 627

quality of retrieved results, even when employing 628

a general-purpose language model without fine- 629

tuning. Lastly, with respect to RQ5, we note that 630

FD shows promising robustness w.r.t the document 631

embedding representation. 632

8 Conclusion and Future work 633

In this paper, we leverage Fréchet Distance to ad- 634

dress the challenges of evaluating IR systems with 635

sparse labels. Through experiments conducted on 636

datasets with sparse and more complete ground 637

truth labels, we demonstrated that the Fréchet Dis- 638

tance has significant implications for evaluating 639

IR systems in real-world settings where obtaining 640

comprehensive ground truth labels can be challeng- 641

ing and expensive. We believe that future research 642

could utilize the Fréchet Distance to evaluate dif- 643

ferent generative models, expanding the scope of 644

evaluation in IR systems. 645
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9 Limitations646

While our study provides valuable insights into the647

effectiveness of the Fréchet Distance in evaluating648

IR systems with sparse labels, there are a few limi-649

tations that should be acknowledged. First, unlike650

traditional IR evaluation metrics, the Fréchet Dis-651

tance is not applicable to individual queries and652

can only be used with sets of queries. Further ex-653

ploration is needed to understand how the sample654

size of the queries affects the quality of the assess-655

ment. Second, the Fréchet Distance assumes that656

the two distributions follow a multivariate normal657

distribution. Lastly, it is important to note that the658

Fréchet Distance is an unbounded metric, and its659

range varies depending on the dataset’s characteris-660

tics and the number of samples under investigation.661

Building upon the findings of this study,662
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