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ABSTRACT

We present a novel, conditional generative probabilistic model of set-valued data
with a tractable log density. This model is a continuous normalizing flow governed
by permutation equivariant dynamics. These dynamics are driven by a learnable
per-set-element term and pairwise interactions, both parametrized by deep neural
networks. We illustrate the utility of this model via applications including (1)
complex traffic scene generation conditioned on visually specified map information,
and (2) object bounding box generation conditioned directly on images. We train
our model by maximizing the expected likelihood of labeled conditional data under
our flow, with the aid of a penalty that ensures the dynamics are smooth and
hence efficiently solvable. Our method significantly outperforms non-permutation
invariant baselines in terms of log likelihood and domain-specific metrics (offroad,
collision, and combined infractions), yielding realistic samples that are difficult to
distinguish from real data.

1 INTRODUCTION

Invariances built into neural network architectures can exploit symmetries to create more data efficient
models. While these principles have long been known in discriminative modelling (Lecun et al.,
1998; Cohen & Welling, 2015; 2016; Finzi et al., 2021), in particular permutation invariance has
only recently become a topic of interest in generative models (Greff et al., 2019; Locatello et al.,
2020). When learning a density that should be invariant to permutations we can either incorporate
permutation invariance into the architecture of our deep generative model or we can factorially
augment our observations and hope that the generative model architecture is sufficiently flexible to at
least approximately learn a distribution that assigns the same mass to known equivalents. The former
is vastly more data efficient but places restrictions on the kinds of architectures that can be utilized,
which might lead one to worry about performance limitations. While the latter does allow unrestricted
architectures it is often is so data-inefficient that, despite the advantage of fewer limitations, achieving
good performance is extremely challenging, to the point of being impossible.

In this work we describe a new approach to permutation invariant conditional density estimation that,
while architecturally restricted to achieve invariance, is demonstrably flexible enough to achieve high
performance on a number of non-trivial density estimation tasks.

Permutation invariant distributions, where the likelihood of a collection of objects does not change if
they are re-ordered, appear widely. The joint distribution of independent and identically distributed
observations is permutation invariant, while in more complex examples the observations are no longer
independent, but still exchangeable. Practical examples include the distribution of non-overlapping
physical object locations in a scene, the set of potentially overlapping object bounding boxes given
an image, and so forth (see Fig. 1). In all of these we know that the probability assigned to a set of
such objects (i.e. locations, bounding boxes) should be invariant to the order of the objects in the
joint distribution function argument list.

Recent work has addressed this problem by introducing equivariant normalizing flows (Köhler et al.,
2020; Satorras et al., 2021; Biloš & Günnemann, 2021). Our work builds on theirs but differs in
subtle but key ways that increase the flexibility of our models. More substantially this body of prior
art focuses on non-conditional density estimation. The work of Satorras et al. (2021) does consider a
form of implicit conditioning, where the flow is evaluated for different graph sizes. In this work we
go beyond that by making the dynamics that constitute our flow dependent on a conditional input.
To this end, we believe we are the first to develop conditional permutation invariant flows, that are
explicitly dependent on external input.
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Figure 1: Realistic vehicle placement as a permutation invariant modeling problem. At every moment
in time vehicles in the real world exhibit a characteristic spatial distribution of position, orientation,
and size; notably vehicles (green rectangles) do not overlap, usually are correctly oriented (red lines
indicate forward direction), and almost exclusively are conditionally distributed so as to be present
only in driving lanes (shown in grey). The likelihood of each such arrangement does not depend
on the ordering of the vehicles (permutation invariance). Each column shows a particular map with
vehicle positions from real training data and from infraction free samples drawn from our permutation
invariant flow conditioned on the map image. Note that because the image indicates lanes, not
drivable area, the training data includes examples of vehicles that hang over into the black. We invite
the reader to guess which image in each column is real and which is generated by our model. The
answer appears in a footnote at the end of the paper.1

We demonstrate our conditional permutation invariant flow on two difficult conditional density
estimation tasks: realistic traffic scene generation (Fig. 1) given a map and bounding box prediction
given an image. In both the set of permutation invariant objects is a set of oriented bounding
boxes with additional associated semantic information such as heading. We show that our method
significantly outperforms baselines and meaningful ablations of our model.

1.1 BACKGROUND

1.1.1 NORMALIZING FLOWS

Normalizing Flows (Tabak & Vanden-Eijnden, 2010; Tabak & Turner, 2013; Rezende & Mohamed,
2015) are probability distributions that are constructed by combining a simple base distribution pz(z)
(e.g., a standard normal) and a differentiable transformation T with differentiable inverse, that maps
z to a variable x

x = T−1(z). (1)

We can then express the density using the change of variables formula

px(x) = pz(T (x))

∣∣∣∣det ∂T−1(z)

∂z

∣∣∣
z=T (x)

∣∣∣∣−1

, (2)

where p denotes the respective densities over variables x and z connected by transformation T with
inverse T−1. The transformation T can be parametrized and used to approximate some distribution
over data x ∼ π by maximizing the likelihood of this data under the approximate distribution using
gradient descent. An important feature distinguishing normalizing flows from other models is that in
addition to a method to generate samples they provide a tractable log density, enabling maximum
likelihood training and outlier detection among others. This formulation, while powerful, has two
noteworthy design challenges: the right hand side of Eq. (2) has to be efficiently evaluable and the
aforementioned requirement that T be invertible. The approach in the field generally is to define a
chain of transformations T0 ◦ · · · ◦ Tn, each of which satisfy both conditions. In this manner, they
can be comparatively simple, yet when joined together provide a flexible approximating family.
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1.1.2 CONTINUOUS NORMALIZING FLOWS

Continuous normalizing flows were first introduced in Chen et al. (2018), and then further developed
in Grathwohl et al. (2019). The concept is to use a continuous transformation of variables, described
by dynamics function v parametrized by t in the form of an ordinary differential equation (ODE)

x(t1) = x(t0) +

∫ t1

t0

vθ(x(t), t)dt. (3)

We set x(t0) = z and x(t1) = x, so that Eq. (3) provides our definition of T−1 as defined in
Eq. (1). Similarly, if we integrate backward in time from t1 to t0 we obtain T . The dynamics
vθ(x(t), t) can be represented by a flexible function. As long as the dynamics function is uniformly
Lipschitz continuous in x and uniformly continuous in t, the solution to the ODE is unique, and the
transformation is invertible (Coddington & Levinson, 1955). In this case, we can write the probability
density as another ODE (Grathwohl et al., 2019)

d log pt (x (t))

dt
= −∇x · vθ(x(t), t). (4)

The term on the right hand side is the divergence (not gradient) of the dynamics (sometimes equiva-
lently written as the trace of the Jacobian, note that vθ is vector valued in Eq. (4)). Integrating this
ODE from the probability density at t0 gives the density at t1

log pt1(x(t1)) = log pt0(x(t0))−
∫ t1

t0

∇x · vθ(x(t), t)dt. (5)

Eq. (5) is the equivalent of Eq. (2) for continuous normalizing flows. Together with a suitable base
distribution (e.g. a standard normal), the above transformation constitutes a distribution with a
tractable likelihood and generative mechanism, which we will exploit to construct our flows.

1.1.3 INVARIANCE AND EQUIVARIANCE

We seek to construct distributions that have a permutation invariant density via permutation equivariant
transformations. We state here the definition of permutation invariance and equivariance we adopt.
Definition 1. Let x = (x1 . . .xN ) where each xn ∈ RD, and let permutations σ act on x via

σx = (xσ1
. . .xσN

) . (6)

A function G : RN×D → R is permutation invariant if for any permutation σ,

∀x ∈ RN×D, G(σx) = G(x). (7)

A function F : RN×D → RN×D is permutation equivariant if for any permutation σ,

∀x ∈ RN×D, F (σx) = σF (x). (8)

1.2 RELATED WORK

Permutation invariant models have been studied in the literature for some time. Examples include
models of sets (Zaheer et al., 2017; Lee et al., 2019), and graphs (Duvenaud et al., 2015; Kipf
& Welling, 2017; Kipf et al., 2018). Recently, also generative models for sets have made an
appearance, (Zhang et al., 2019; Burgess et al., 2019; Greff et al., 2019; Locatello et al., 2020;
Zhang et al., 2020). Our conditional permutation invariant flows belong to the larger class of
generative models, such as variational autoencoders (Kingma & Welling, 2014), generative adversarial
networks (Goodfellow et al., 2014), and normalizing flows (Rezende & Mohamed, 2015). Among
these, normalizing flows are the only class of models that enables likelihood evaluation.

Other work belonging to the generative category is “Equivariant Hamiltonian flows” (Rezende et al.,
2019), which relates to our work since it models interactions elements of a set using Hamiltonian
dynamics. The choice of these dynamics allows the use of a symplectic integrator, and the transfor-
mation is volume conserving, eliminating the need to integrate a divergence term. However, this
requires the introduction of a set of momentum variables that preclude the exact calculation of a
density. In Liu et al. (2019), the authors present a flow for graphs with tractable density. Although
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the target domain is similar, their flow differs from ours as it is based on the mechanism developed in
RealNVP (Dinh et al., 2017), whereas our flow uses continuous normalizing flows.

Our work is strongly related to, and draws inspiration from recent work that uses continuous normal-
izing flows with permutation invariant dynamics (Köhler et al., 2020; Satorras et al., 2021; Biloš &
Günnemann, 2021). However Köhler et al. (2020) and Satorras et al. (2021) focus also on rotation
and translation invariance, in order to model molecular graphs. Our work is also related to PointFlow,
a continuous normalizing flow for point clouds (Li et al., 2021). We focus on sets like in Biloš &
Günnemann (2021) and Li et al. (2021), however these studies focus on reducing evaluation cost
for large set sizes. Our dynamics function on the other hand focuses on strong interactions between
set elements, more akin to Satorras et al. (2021) and Köhler et al. (2020). Importantly, none of this
previous work considers the problem of conditioning on external inputs and learning a distribution
that is able to deal with a varying conditional input distribution.

2 CONDITIONAL PERMUTATION INVARIANT FLOWS

2.1 PERMUTATION INVARIANT FLOWS

In this work, we will construct normalizing flows that are characterized by a permutation equivariant
transformation T (σx) = σT (x); we will demonstrate these flows produce a permutation invariant
density p(x) = p(σx). We construct our permutation invariant flows using a dynamics function that
is based on a global force term and pairwise interaction terms

vθ,i(x) =
∑
j,j ̸=i

fθ(xi,xj) + gθ(xi). (9)

Here, vθ,i(x) ∈ RD denotes the ith element of vθ, x ∈ RN×D, gθ : RD → RD, and fθ :

R2D → RD. This construction can be interpreted as objects xi moving in a global potential with
corresponding force field gθ(xi), and interacting with other objects through the pairwise interaction
fθ(xi,xj). We proceed to construct a continuous normalizing flow using the function in Eq. (9) as
the dynamics. If we use a permutation invariant base distribution p(x(t0)) = p(z) we obtain the
following:

Theorem 1. If the transformation z = T (x) defined in Eq. (3) has dynamics vθ(x) defined in Eq. (9),
then T is permutation equivariant. If in addition p(z) is permutation invariant, then the density p(x)
is permutation invariant.

The proof of Theorem 1 is given in Appendix A.1. We note that this theorem can be seen as a special
case of theorems presented in previous work (Köhler et al., 2020; Zaheer et al., 2017), but add it here
for a complete exposition. The dynamical system this theorem represents is similar to an interacting
set of particles in a global potential. The dynamics as presented in Eq. (9) are independent of time; in
a few cases, however, we have found it useful to make the dynamics time-dependent, i.e. vθ(x, t), by
passing time to both gθ and fθ as an input. A complete overview of when time dependence is used is
given in the supplementary information Appendix A.2.3. In practice we represent fθ and gθ by neural
networks, which satisfy the criterion of uniform Lipschitz continuity if activation functions are chosen
appropriately, guaranteeing invertibility. Implementation details can be found in Appendix A.2.1.

2.2 DIVERGENCE

Given the dynamics in Eq. (9), we compute the density at time t in Eq. (4) using the divergence

∇x · vθ(x) =
∑

i,j,j ̸=i

∇xi · fθ(xi,xj) +
∑
i

∇xi · gθ(xi). (10)

A naïve computation of the divergence in Eq. (4) using automatic differentiation is expensive, as
computing the Jacobian requires ND evaluations, one for each of the ND terms in vθ (Chen et al.,
2018; Grathwohl et al., 2019). Since the cost of evaluating Eq. (9) is quadratic in N , this would result
in an asymptotic computational cost of N3D2 for the forward and backward pass. Earlier work has
suggested the use of the Hutchinson’s trace estimator (Chen et al., 2018) for the divergence, which
reduces the cost of the divergence to that of v, but suffers from high variance (Chen & Duvenaud,
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2019). Instead we opt to re-express the divergence of vθ in terms of derivatives of f(xi,xj) and
g(xi), resulting in Eq. (10). The form in Eq. (10) is quadratic in N , and therefore same cost in N as
the evaluation of vθ itself, both in the forward and backward pass.

2.3 REGULARIZATION

Continuous normalizing flows have no inherent mechanism that penalizes very complex dynamics.
While in theory there is no reason to prefer simple dynamics, in practice, the numerical integration
of complex dynamics can result in long computation when using an adaptive scheme. This effect
has been previously observed in the literature, and suggestions to regularize the dynamics have been
proposed in previous work (Finlay et al., 2020; Kelly et al., 2020). While the work of Kelly et al.
(2020) is more comprehensive, we find that an adaptation of the solution proposed in Finlay et al.
(2020) works well for our purposes. The proposed solution in Finlay et al. (2020) is to add a term
proportional to the squared Frobenius norm of the Jacobian, and the ℓ2-norm of the dynamics. We
use the ℓ2-norm for the dynamics; however, since we do not estimate the full Jacobian we calculate

ℓ2div =
∑

i ̸=j,d,d′

(
∂fd(xid, xjd)

∂xid′

)2

+
∑
i,d,d′

(
∂gd(xid)

∂xid′

)2

. (11)

We find that this penalty significantly reduces the number of evaluations of our trained flows. We
visualize the effect this penalty has on the dynamics in some examples in Appendix A.3.4.

2.4 CONDITIONAL PERMUTATION INVARIANT FLOWS

When performing amortized inference, in which a family of posterior distributions is learned, a
requirement is a flexible variational family that can be made to depend (i.e. conditioned) on external
input. An example would be to produce a valid distribution of a set of bounding box locations
and sizes x for objects in an image y selected from a distribution of images. We will denote
the conditioning input as y, coming from some data distribution π(y). To model such cases we
construct a dynamics function that depends on y by modifying the pair forces, and the global force to
fθ(xi,xj ,y) and gθ(xi,y). The dynamics then become:

vθ,i(x,y) =
∑
j\i

fθ(xi,xj ,y) + gθ(xi,y). (12)

Note that here too, the dynamics can be made time dependent by passing time t as an argument.

We will train our flows by minimizing the Kullback-Leibler divergence to the joint distribution
π(x,y) = π(x|y)π(y) over data x and condition y:

argmin
θ

DKL (π(x,y)||pθ(x|y)π(y)) = argmin
θ

E
y∼π(y)

DKL (π(x|y)||pθ(x|y))) . (13)

In other words, we optimize our flow to match the distribution of x in expectation over π(y).

3 EXPERIMENTS

3.1 SYNTHETIC EXAMPLES

We start our experiments with two pedagogical examples that demonstrate the capabilities and mecha-
nisms of our flows. The first example task is to model the spatial distribution of five non-overlapping
squares of width w = 1, that furthermore do not overlap with the prohibited regions shown in
blue. This example is representative of placing assets into a physically realizable configuration in
accordance with constraints imposed by an environment. We fit our conditional flow to a dataset
generated by first sampling a prohibited region—three boxes of width w = 1.5 from a standard
normal prior—and then sampling box locations independently from a standard normal prior, with
rejection for overlap with previous boxes or the prohibited region, until a total of five boxes are
sampled. The prohibited region is input to our conditional flow as an image tensor. Since the
dataset was generated via rejection sampling, we can compare our sample efficiency against it. The
conditional flow provides a substantial sampling efficiency improvement (77% valid) over rejection
sampling (0.02% valid), in addition to a tractable density.
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Figure 2: Two pedagogical permutation invariant modeling tasks. The left two panels illustrate the
first task; conditionally modeling non-overlapping squares (green), which also do not overlap with
the blue boxes whose arrangement varies between datapoints. The right two panels illustrate the
second task; modeling boxes that are conditionally distributed so as to bound the underlying blue
boxes. Samples from the base p(z) and final distribution pθ(x|y) are plotted in dashed grey and
green lines respectively. The conditional input is plotted as a blue on white image. Red lines indicate
the trajectories the objects follow by integrating the dynamics function v(x(t),y).

The second example task is bounding box prediction, or conditionally generating object bounding
boxes x directly from an image y. Here the objects are monochrome blue squares. Data is generated
in a similar manner as in the first experiment: squares are sampled indepenently from a standard
normal prior, and rejected if they overlap. The conditional input is an image of the generated boxes.
Sampled bounding boxes from our trained flow achieve an average intersection over union (IOU) of
0.85 with the ground truth bounding boxes.

We display representative samples and their trajectories through time in Fig. 2 for both experiments.
In the left two panels it can be seen that initial samples are transported around the space to avoid one
another; in the right two, the boxes coordinate through the pairwise interactions to each surround
exactly one of the objects in the scene. Further details for these experiments appear in Appendix A.3.

3.2 TRAFFIC SCENES

Modeling and being able to sample realistic traffic scenes is an essential task related to autonomous
driving simulation and control. Referring back to Fig. 1, the problem—similar to the first pedagogical
task above—is one of modeling the physical configuration a collection of agents conditioned on a
representation of the environment. Until recently, the predominant methods for generating realistic
vehicle configurations were rule-based (Yang & Koutsopoulos, 1996; Lopez et al., 2018). Rule-based
systems can be tailored to have desirable properties such as avoiding occurences of offroad and
vehicle overlap, but they produce vehicle arrangements that are distributionally dissimilar to real data.

Recent work addressing this problem uses non-rule-based autoregressive model (Tan et al., 2021) that
enables sequential generation of vehicle and agent positions conditioned on a visual representation of
a map. While this model-based approach closes the gap between simulation and reality, modeling sets
autoregressively introduces a factorial data augmentation requirement, as there is no intrinsic ordering
of actors. The authors of Tan et al. (2021) avoid this by imposing an arbitrary order, sampling agents
from left to right. Our experiments indicate that, at least for this specific task, directly addressing
permutation invariance is preferred, and avoids the need to arbitrarily fix the order of elements.

To test the performance of our flows on this task, we train them to generate a scene of cars in the
INTERACTION dataset (Zhan et al., 2019), conditioned on a rendered image of the drivable area y.
The properties that our flows predict are two-dimensional position, size, aspect ratio and orientation
for each of N agents, i.e. x ∈ RN×5. An advantage of the formulation of the dynamics in Eq. (12) is
that they can be applied with the same f and g regardless of the number of agents N . We make use
of this property, and train a single model on a varying amount of agents N . At test time, generating
N agents is accomplished simply by initializing the flow appropriately.

We train our flows until the likelihood of the data stops increasing, or the likelihood of a held
out validation sets starts decreasing, whichever comes fist. Examples of the data we train on, and
representative samples from our trained flow are shown in Fig. 1.
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Table 1: Results for scene generation and bounding box prediction.

(a) Quantitative results for traffic scene generation. NLL indicates negative log-
likelihood in nats, while the other metrics indicate the fraction of samples exhibiting
offroad, collision, or either (lower is better).

Method NLL Offroad Collision Infraction

Gaussian 46.3 ± 0.0 0.99 ± 0.00 0.27 ± 0.00 0.99 ± 0.00
RealNVP 30.4 ± 1.4 0.96 ± 0.01 0.26 ± 0.00 0.98 ± 0.00
CNF 20.8 ± 0.9 0.86 ± 0.01 0.33 ± 0.00 0.92 ± 0.01
Autoregr. 11.0 ± 1.7 0.72 ± 0.02 0.14 ± 0.01 0.76 ± 0.02

PIF Single 7.3 ± 0.2 0.09 ± 0.01 0.57 ± 0.00 0.61 ± 0.01
PIF Pair 6.3 ± 0.3 0.17 ± 0.01 0.18 ± 0.02 0.32 ± 0.02
PIF Pair MF 7.0 ± 0.1 0.11 ± 0.02 0.56 ± 0.01 0.61 ± 0.00
PIF (ours) 6.5 ± 0.3 0.12 ± 0.01 0.09 ± 0.01 0.20 ± 0.01
Cond. single 7.1 ± 0.3 0.11 ± 0.01 0.12 ± 0.00 0.22 ± 0.01
Cond. pair 7.2 ± 0.1 0.18 ± 0.02 0.17 ± 0.03 0.32 ± 0.03
Cond. base 16.5 ± 2.2 0.91 ± 0.01 0.05 ± 0.01 0.92 ± 0.01

(b) Quantitative re-
sults for bounding box
prediction. IOU refers
to the intersection over
union of object area
covered by the sam-
ples (higher is better).

Data IOU

3 0.732

6-3 0.759
6-4 0.711
6-5 0.644
6-6 0.596
6 0.679

3.2.1 BASELINES

We compare our conditional flows against several baselines. Three are non-permutation invariant
flows: a unimodal Gaussian model, a RealNVP based model (Dinh et al., 2017), and a “vanilla”
continuous normalizing flow (“CNF”). We also implement an autoregressive model consisting of a
convolutional neural net paired with a recurrent neural network and a 10 component Gaussian mixture
for every prediction component, and adopt the canonical ordering discussed in Tan et al. (2021). We
also test two ablations of our model: one where the dynamics are restricted only to single particle
terms gθ (“PIF Single”), and one the dynamics only include the pair term fθ (“PIF Pair”). The flow
where the dynamics are restricted to single particle terms only corresponds to a conditional version of
PointFlow (Li et al., 2021). We also compare against a conditional version of the model presented in
Biloš & Günnemann (2021) (“PF Pair MF”), in which interactions are addressed, but only in terms of
a mean field (being cheaper to calculate). Both these methods result in a significantly worse collision
and resulting infraction rate.

To compare to non-permutation invariant methods, we have to fix the number of agents, as these
architectures cannot straightforwardly be provisioned to generate and score sets that differ in car-
dinality. We exclude all data with less than seven agents, and cases with more than seven agents
are pruned to retain only the agents closest to the center. The cardinality of seven was chosen to
retain as much data as possible while not making each individual scene too small. Furthermore, we
restricted the INTERACTION dataset to the roundabout scenes in order to better match the seven
agent target while still maintaining a semantically similar set of possible y. We compare the negative
log likelihood (NLL) of the various models on a held-out test dataset. For these traffic scenarios
there are two other useful metrics we can compare: the fraction of offroad (i.e. an agent is on the
undrivable area), collision (i.e., an agent overlaps with another agent) and total infractions (offroad or
collision) the model makes. We note that these metrics are sensitive indicators of model fitness, in
the sense that the training data contains no offroad or colliding data examples. Samples that exhibit
these infractions are evidence of model error, and additionally inform whether modeling mistakes are
made globally (i.e. offroad) or through interactions (i.e. collisions). We report our results in Table 1.

Comparing the likelihood and infraction metrics demonstrates the clear advantage of using a permu-
tation invariant model. The non-permutation invariant version of our flow does not converge to a
competitive likelihood, and struggles to generate infraction-free examples. While the canonically
ordered autoregressive model is much more capable than the non-permutation invariant flows, it still
underperforms compared to ours. The two ablations of our model provide an insightful result: the
function of gθ is to define the collective behavior of the agents (all of them need to stay on the road,
independently of one another), whereas fθ provides the necessary interaction between them (agents
should not collide with one-another). These functions are evident from the respective infraction
metrics. Furthermore, there appears to be a certain amount of competition between the pair and single
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Figure 3: Bounding box prediction on CLEVR3 images. Each image shows 50 samples from our
conditional flow (green, ground truth in blue), conditioned on the background image. The bottom row
shows the trajectories of the boxes with time along the trajectory encoded by the color of the box.

terms: as the agents are steered onto the road, they have a higher density and thus a higher chance to
collide. The opposite is equally true, as repelling agents can push each other off-road. As such it is
not terribly surprising that the “single-only” (gθ-based) flow performs better when only considering
offroad infractions. Nevertheless, the combined flow has the best performance overall, both in overall
infraction rate and negative log likelihood.

To better understand the effects of our conditioning inputs, we report the performance of two ablations,
one where the conditional input is only used in gθ (“Cond. Single”), and one where it is only used
in fθ (“Cond. Pair”). In the former, the interactions between actors are independent of the scene,
which one may expect to be a reasonable approximation. However, the results in Table 1 indicate
that this input is in fact important, which may be understood from the fact that different locations
lead to different traffic configurations. In the case where conditioning on gθ is ignored, we also do
worse than conditioning both, while surprisingly maintaining a fairly competitive result. Finally, we
show a variant of our model where we condition the base distribution (i.e. pθ(z|y) vs. p(z)), but
otherwise remove the conditional dependence from fθ and gθ. Although in this case the collision rate
is lowest, this can be attributed to the poor performance with respect to offroad infractions. Overall,
this variation fails to provide a competitive result.

3.2.2 VARIABLE SET SIZE

Since our model is trained on a variety of different set sizes, and performs well for each of the
different set sizes, we can investigate whether the it generalizes beyond the number of agents it has
seen during training. We therefore generate samples in our roundabouts model with a previously
unseen number of agents. Such samples are presented in the last column of Fig. 1, which have 28
agents, while the maximum number of agents present in the training data is 22. These results indicate
the the inductive bias of the representation in Eq. (12) not only performs well in sample with respect
to set size, but generalizes to larger set sizes too.

3.3 BOUNDING BOX PREDICTION

Our final experiment considers bounding box prediction. The gold standard in this sub-problem
of object detection remains so-called “non-max-suppression,” in which a large number of putative
bounding boxes are scene-conditionally generated and then “pruned” by a greedy selection algo-
rithm (Girshick et al., 2014; Ren et al., 2015). Some very recent studies (Hu et al., 2018; Zhang et al.,
2019; Carion et al., 2020) have proposed the use of conditional set generators for object detection.
We build on this idea by illustrating how our flow can be used to conditionally generate and score
sets of object bounding boxes. Being able to compute the log density of a configuration of bounding
boxes eliminates the need for a differentiable matching algorithm (Hu et al., 2018; Carion et al.,
2020). Having a tractable density also opens up uncertainty-preserving approaches to downstream
tasks such as outlier detection and object counting.

We assess the viability of our approach through the CLEVR (Johnson et al., 2017) dataset, which is
a standard benchmark for set-generation models (Greff et al., 2019; Zhang et al., 2019; Locatello
et al., 2020). While this former work combines localization with classification (i.e., predicting object
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Figure 4: Bounding box prediction on CLEVR6 images. Each image shows 50 samples (green,
ground truth blue) from our flow conditioned on the corresponding background image.

position and type), we focus on the task of bounding box prediction (i.e predicting object position and
size). The CLEVR dataset does not provide bounding boxes, so we generate ground truth bounding
boxes from object metadata. The full details on how to create bounding boxes for the CLEVR dataset
are described in Appendix A.4.1.

We begin with a subset of the CLEVR dataset only containing three objects. We find that our flows
perform well on this task, and show example predictions in Fig. 3. For each conditional image
(displayed in the background), 50 samples from the conditional distribution are shown, graphically
illustrating the variance of the conditional density. For each column, the bottom row displays the
trajectory taken to generate a single one of these samples. The trajectories show the interactions
between the bounding boxes over time, as they coordinate through the use of repulsive forces. Note
that by sorting out which of the base distribution samples goes to which of the objects, the flow solves
the assignment problem along the way. It is worth pointing out that the third sample has an occluded
object, and the variance of the object position is clearly higher than that for objects where there is
no occlusion, which we take to be evidence that these flows for bounding box prediction should be
useful in uncertainty aware downstream applications. Importantly, the variance of the size is not
significantly increased, which is correct behavior for this example. Additional samples are presented
in the appendix. The averaged IOU with the ground truth is reported in Table 1b, and corresponds
approximately to an average mismatch of 15% in each spatial dimension.

We continue our exploration with a larger subset of the CLEVR dataset, including images that have
between three and six objects. This subset has also been used in Locatello et al. (2020) for object
detection. We assume that the number of objects is given, and only predict the bounding box locations
and sizes given the number of bounding boxes and the image. Some example samples are displayed
in Fig. 4, with green boxes displaying samples from the distribution that is conditioned on the image
in the background. We provide baseline results of Deep Set Prediction Networks (Zhang et al., 2019),
which does not provide a tractable log density, in Appendix A.4.2. More samples are presented in
Appendix A.3.5. The flow generalizes well over set cardinalities, hinting that some generalizing
principles are learned by the flow about these bounding boxes interact, even with different set size.
We moreover see that the more crowded the image becomes, the more spread there is in the predicted
bounding boxes, representing increased uncertainty about object sizes and positions, also representing
more occlusion. The overall IOU (“3” and “6”), as well as the IOU’s separated by set cardinality
(“6-3”, etc.) are given in Table 1b. These results show that the flow trained on data with variable set
size performs marginally better on the CLEVR3 subset than a flow trained only on that data, which
we speculate is due to the larger amount of available data. A modest decrease in IOU can be observed
as the sets become larger, resulting in an overall performance that is slightly lower.

4 DISCUSSION AND CONCLUSIONS

This work introduced conditional permutation invariant flows, a framework built on continuous
normalizing flows that enables conditional set generation with a tractable density. We have applied
our flows to two problems: realistic traffic scene generation, and bounding box prediction. For traffic
scene generation, we significantly outperform baselines, and are the first to present a permutation
invariant solution. Ablations to our flows highlight their intuitive mechanism, that can be understood
as objects moving jointly in a field, augmented with pairwise interaction potentials. We have moreover
shown that bounding box prediction can be enhanced with a tractable log density, opening an avenue
to develop downstream vision algorithms that deal with uncertainty in a more principled way.

1By column from left to right, the flow samples are: top, top, top, bottom, both. For the last column in
particular, our flow is able to produce more vehicles than ever appeared on that map in the training data.
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A APPENDIX

A.1 PROOF

We provide here the proof for Theorem 1.

Proof. We will consider equivariance of T to a transposition of elements i and j, denoted σi,j . A
transposition σi,j is a permutation for which σi = j, σj = i, and σk = k for all k ∈ {1 . . . N}\{i, j}.
Since any permutation can be constructed from a series of transpositions, proving that T is equivariant
to a transposition, trivially extends to equivariance to all permutations. In the following we have
dropped the dependence on y and t for notational clarity. We have

T (σi,jx) = σi,jx+

∫ t1

t0

vθ(σi,jx)dt. (14)

The first term σi,jx trivially satisfies the equivariance condition. Focusing on the ith term of the
dynamics function vθ,i

vθ,i(σi,jx) =
∑
k\{i}

fθ ((σi,jx)i, (σi,jx)k) + gθ ((σi,jx)i) (15)

=
∑

k\{i,j}

fθ ((σi,jx)i, (σi,jx)k) + fθ ((σi,jx)iv, (σi,jx)j) + gθ (xj) (16)

=
∑

k\{i,j}

fθ (xj ,xk) + fθ (xj ,xi) + gθ (xj) (17)

=
∑
k\{j}

fθ (xj ,xk) + gθ (xj) (18)

= vθ,j (x) = (σi,jvθ(x))i, (19)

thus demonstrating the dynamics are equivariant and

T (σi,jx) = σi,jx+

∫ t1

t0

σi,jvθ(x)dt = σi,jT (x). (20)

For continuous normalizing flows, the inverse transformation T−1(x) is obtained by reversing the
integration limits, and an identical derivation can be made to show T−1(x) is also equivariant. For
the density, we have

log pt1(σi,jx(t1)) = log pt0
(
T−1 (σi,jx(t1))

)
−

∫ t1

t0

∇x · v(σi,jx)dt. (21)

Here, the divergence ∇x · vθ (σi,jx) denotes the divergence with respect to the argument of v,
evaluated at σi,jx. Since the base distribution pt0 is permutation invariant, and T−1 is equivariant

log pt0
(
T−1 (σi,jx(t1))

)
= log pt0

(
σi,jT

−1 (x(t1))
)

(22)

= log pt0
(
T−1 (x(t1))

)
. (23)

The divergence in the second term ∇x · vθ (σi,jx) is a sum over derivatives with respect to all its
arguments, so is invariant to σi,j

∇x · vθ (σi,jx) = ∇x · vθ (x) . (24)

We therefore have

log pt1(σi,jx(t1)) = log pt1(x(t1)), (25)

thus showing that the dynamics are equivariant, and the density is invariant.
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Table 2: Hyperparameters used for experiments. Abbreviations are defined in the appendix text.

Experiment gθ fθ yemb

n h n h n c h t batch

Example conditional 5 200 5 200 3 16 200 yes 100
Example bounding box 5 200 5 200 3 16 200 yes 100

Traffic baseline 5 200 4 100 3 32 500 no 100

CLEVR3 4 188 5 196 5 18 409 no 100
CLEVR6 5 100 5 200 5 28 478 no 100

A.2 EXPERIMENTAL DETAILS

A.2.1 FORCE FUNCTION IMPLEMENTATION

We model the force functions fθ(xi,xj) and gθ(xi) by feed forward neural networks. For the pair
force fθ(xi,xj), we concatenate the inputs xi and xj . In the case a time variable (t) is used, it
is also concatenated. For the conditional input, we construct an embedding vector yemb, which
we concatenate to the second layer inputs of gθ and fθ. The embedding vector yemb is generated
using a separate neural network, here chosen to be a convolutional network, since all our conditional
distributions have images as inputs.

A.2.2 SOLVING THE ODE

We use the adaptive solver of Dormand and Prince of order 4 to solve the ODE (Dormand & Prince,
1980). To calculate the gradients of the ODE with respect to its parameters we use the adjoint method
(Coddington & Levinson, 1955). This enables calculation of the gradients without back propagating
through the computational graph. This functionality is all available in the torchdiffeq package
(Chen et al., 2018), which is the implementation we use in our experiments.

A.2.3 TABLE OF EXPERIMENTAL HYPERPARAMETERS

In all experiments gθ, fθ are implemented as neural networks of n layers and h neurons per layer.
The convolutional embedding network has n layers of c channels, followed by a single feed forward
layer of h neurons. We use sigmoid-linear units in all our dynamics functions, which satisfy the
requirement of Lipschitz continuity, provided the networks are evaluated on a finite domain. The
use of a time variable in the dynamics is indicated with t ∈ {yes, no}. For each experiment, these
parameters are presented in Table 2.

A.2.4 COMPUTATIONAL COST

Summing over all pairs of interactions is necessary to make the transformation permutation equivari-
ant, but it comes at a quadratic cost in N . While not problematic for the set sizes in this study, this is
clearly a limited approach for large numbers of objects. In these cases, it would be possible to set a
boundary on the interaction range, or use a fixed set of M < N inducing points, for a total cost of
MN . Such approximations have been studied for example in transformers (which are also quadratic
in the sequence length) (Vaswani et al., 2017; Wang et al., 2020). Furthermore, the divergences with
respect to xi are still quadratic with respect to D. This has been addressed in recent work by using
functions that have divergences that can be easily evaluated using automatic differentiation (Chen
& Duvenaud, 2019; Biloš & Günnemann, 2021). Although these types of functions are compatible
with our framework, the current work only considers cases where D ≤ 5, and therefore we do
not implement it. Our overall algorithm therefore is of cost N2D2. If it is necessary to construct
distributions with larger D (in for example object detection, rather than bounding box prediction), it is
possible to use the methodologies from the aforementioned work to end up with a total computational
cost of MND.

15



Under review as a conference paper at ICLR 2023

Figure 5: Conditional samples. The condition is an image, which is plotted as a blue on white
background. The distribution is trained on samples that do not overlap with the blue regions, or with
oneanother. The grey boxes are samples from the base distribution, the green boxes are samples from
the flow. The red curves indicate the traveled trajectory for each box.

Table 3: Acceptance rates for conditional sampling. Results presented are the acceptance rate (AR)
for Prior samples and the Conditional Permutation Invariant Flows (PIF)

Set Size Prior AR PIF AR

2 0.01 0.83
3 2.01 · 10−3 0.79
5 1.76 · 10−4 0.77

A.2.5 COMPUTATIONAL RESOURCES

All our experiments were performed on a single GPU, all permutation invariant models were trained
between 2 and 7 days of wall-clock time. The “vanilla” continuous normalizing flow, realNVP, and
autoregressive model were trained over 14 days of wall-clock time.

A.2.6 REJECTION SAMPLING

All samples presenting traffic scenarios in the main text of this manuscript have been checked by an
automated procedure, and in a small amount of cases were rejected if an infraction occurred based on
actors being offroad or vehicle overlap.

A.2.7 DATASETS

The datasets used in this study are the INTERACTION datset (Zhan et al., 2019) (available for
research purposes), and the CLEVR dataset (Johnson et al., 2017) (available under the Creative
Commons CC BY 4.0 license).

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 CONDITIONAL NON-OVERLAPPING BOXES

Additional samples of of the conditional generation of non-overlapping boxes (Section 3.1) are
presented in Fig. 5, for cardinalities 2, 3 and 5. Performance in terms of acceptance rate against an
independent prior are reported in Table 3.
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Figure 6: Additional samples of the example bounding box prediction problem.
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Figure 7: Sample and its log probability (left panel) and three corrupted variations where actors in
blue have been turned around (last three panels).

A.3.2 BOUNDING BOX PREDICTION

Additional samples for the example bounding box prediction task (Section 3.1) are presented in
Fig. 6.

A.3.3 OUTLIER DETECTION

Since our model has a tractable density, we can use it for outlier detection. In the traffic scene task,
we study the case of mislabelled examples, which we artificially generate by rotating one of the actors
in the scene by π. The original and corrupted scenes and corresponding log probabilities are shown
in the last three panels of Fig. 7. It is clear that reversing one of the actors substantially decreases
the probability. Moreover the model correctly captures the severity of the resulting infraction, which
is less when an actor is going the wrong way on a two-way road, without the presence of other
surrounding actors.

A.3.4 REGULARIZATION

We present the effect of our regularization term on the bounding box prediction task, in which the
effect is most pronounced. The proportionality constants of the ℓ2 and ℓ2div penalty terms are denoted
as λ and λdiv respectively. Results for various λ and λdiv are presented in Fig. 8. The increase of the
parameters λ and λdiv evidently creates more direct trajectories. We further find empirically that it
drastically reduces the number of calls to the dynamics made by the ODE solver.
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Figure 8: The effect of regularization on the dynamics. The penalty proportionality constants are
reported per column in the top panel.

Table 4: Results for DSPN (Zhang et al., 2019)

Set size IOU

3 0.89
4 0.88
5 0.84
6 0.83

A.3.5 CLEVR

Additional samples for the CLEVR3 dataset are presented in Fig. 9.

Additional samples for the CLEVR6 dataset are presented in Fig. 10.

A.4 BOUNDING BOX PREDICTION

A.4.1 CLEVR SIZE

The CLEVR dataset contains the pixel positions of objects, but not the bounding box sizes. The
dataset does however provide the center locations of the objects in the global frame {xi, yi, zi}. Since
the objects are sitting on a flat plane at z = 0, its z coordinate is equal to half its size. Furthermore,
the dataset provides the distance to the camera along the viewpoint axis, dz . Using these quantities,
we approximate the bounding box size ∆ as:

∆ ≈ zi√
dz

. (26)

We find empirically that this results in reasonable bounding boxes.

A.4.2 CLEVR DSPN

We use Deep Set Prediction Networks (Zhang et al., 2019) to provide some experimental context for
the CLEVR results. We note that this method does not provide a tractable log density, and therefore
comparison between this method and ours is limited. The network was trained for 100 epochs and
results are provided in Table 4 for set sizes reported in the main text.
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Figure 9: Additional examples for the CLEVR3 dataset. The blue boxes show ground truth bounding
boxes, while the green boxes are all samples from the learned conditional distribution.

A.4.3 DETECTION

In order to turn our bounding box detector in an object detection system, the objects need to be
classified as well, which requires the use of categorical variables. While a full treatment of these is
beyond the scope of this work, we provide some pointers to ways in which these could be included.
Categorical variables are not trivially reparameterizable, but there has been a significant body of
work that presents techniques to do this (Maddison et al., 2017; Hoogeboom et al., 2021), none of
which provides an exact likelihood. Alternatively, the object classes could be treated as conditionally
independent given the image and bounding box, in which case the likelihood is available, but this
would neglect correlations between object classes other than those through the image and their
bounding boxes.
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Figure 10: Additional examples for the CLEVR6 dataset. The blue boxes show ground truth
bounding boxes, while the green boxes are all samples from the learned conditional distribution.
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