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Abstract

We survey recent progress on multi-parameter hierarchical clustering, which has
developed in several directions since it was introduced by Carlsson–Mémoli in
2010. These lines of research show that tools originally developed in the setting
of multi-parameter persistent homology can be applied more broadly, without
linearizing via homology.

1 Multi-parameter persistence and hierarchical clustering

1.1 A short bibliography

Multi-parameter hierarchical clustering was introduced by Carlsson–Mémoli [CM10], who were
motivated by the following situation: say you have a finite metric space X , together with a function
f : X → R, which could be a density estimate. For ε > 0 and σ ∈ R, let Gε,σ be the graph with
vertices {x ∈ X : f(x) > σ}, and with an edge between x and x′ if dX(x, x′) ≤ ε. Taking the
connected components of the graphs Gε,σ, along with the functions induced by relations ε < ε′ and
σ > σ′, you get a two-parameter hierarchical clustering of X . This generalizes the single-linkage
hierarchical clustering of X , and filtering by f may reduce the chaining effect of single-linkage.

Multi-parameter hierarchical clustering has developed in several directions. One line of research
concerns zero-dimensional persistent homology [BBOS20, CKMW20]. Another originates with the
HDBSCAN clustering algorithm [CMS13]: the connection with multi-parameter persistence was
first observed in [MH18], and studied further in [Jar19, Jar20, RS20, Sco20].

In many applications, the goal is to understand clustering structure across a range of distance scales
and density thresholds.

1.2 Simplifying hierarchical clusterings

A common theme is that multi-parameter hierarchical clusterings contain rich information about
the clustering structure of the data, and enjoy good stability properties, but they are often too
complicated to use directly. One concrete manifestation of this was established by Bauer, Botnan,
Oppermann, and Steen [BBOS20], who consider the natural subcategory of two-parameter persistence
modules that includes the modules H0(Gε,σ) arising from the two-parameter hierarchical clusterings
π0(Gε,σ) considered by Carlsson–Mémoli. They show that, as with the category of all two-parameter
persistence modules, this subcategory is of wild representation type except in very few cases. So, the
algebraic complications of two-parameter persistent homology are present even in this subcategory.

The easiest way to extract information (such as a single clustering of the data) from a multi-parameter
hierarchical clustering is just to fix some parameters. Of course, this approach cannot capture
clustering structure that occurs at different parameter values across the dataset, and furthermore,
fixing parameters often introduces stability problems. So, several methods have been proposed to
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extract information from a multi-parameter hierarchical clustering without fixing any of the original
parameters. In particular, there are two prominent ways to extract a single clustering from a one-
parameter hierarchical clustering by finding clusters that persist for a long time in the hierarchy.
The ToMATo algorithm [CGOS13] extracts clusters that persist in the sense of zero-dimensional
persistent homology, while the HDBSCAN algorithm [CMS13] extracts clusters that persist in a
sense specific to hierarchical clusterings: this algorithm scores clusters according to their persistence
and the size of their underlying point sets. An analysis of the stability properties of these two
methods appears in [RS20]. By applying these methods after taking a suitable one-parameter slice
of a multi-parameter hierarchical clustering, one can extract a single clustering of a dataset from
a multi-parameter hierarchical clustering, without fixing any of the original parameters. Instead,
one chooses other parameters (the slice, and the internal parameters of the “extraction” method of
[CGOS13] or [CMS13]), but there are stability results for these.

2 Beyond clustering

2.1 Multi-parameter persistence and density estimation

A popular way to frame the clustering problem, which is employed by several of the papers we’ve
mentioned, is density-based clustering. If f is a density function on Euclidean space, then one can
define a hierarchical clustering of the support of f by taking the connected components of its super-
level sets. The problem of density-based clustering is to approximate this hierarchical clustering,
given samples drawn from f . Of course, this problem is closely related to the problem of density
estimation: using samples to approximate f itself.

In [RS20], we define the kernel density bifiltration (generalizing the degree–Rips bifiltration [LW15]),
which filters a metric probability space according to density estimates computed for all possible
choices of a bandwidth (distance scale) parameter s. This bifiltration satisfies a stability theorem,
which implies that, if a sample X is a good approximation of a density function f , then the kernel
density bifiltration of X approximates the kernel density bifiltration of the support of f .

In [RS20], this is used to establish an approach to density-based clustering. Applying single-linkage
to the kernel density bifiltration, we get a three-parameter hierarchical clustering; then we take a
one-parameter slice, as in Section 1.2 (see Fig. 1).

There is a related approach to density estimation. The resulting estimate can be written as a variable-
bandwidth kernel density estimate (a balloon estimate, in the language of [TS92]), and it follows from
the results of [RS20] that this estimate has appealing stability properties. In this application, there is
no longer an invariant from algebraic topology, such as H0 or π0, in the picture. However, both the
method and the proofs of its guarantees are fundamentally guided by the theory of multi-parameter
persistence.

Figure 1: On the left, a probability density function f supported on the real line. On the right, a heat
map representing the kernel density bifiltration of the support of f . The intensity of color at a point
(s, k) in the heat map indicates the proportion of points in the support of f whose density estimate
w.r.t. the bandwidth parameter s is greater than k. The dashed line indicates a possible choice of
one-parameter slice. Figure: [RS20].
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2.2 Further directions

The theory of multi-parameter persistent homology has generated powerful tools for organizing and
comparing data “all at once”. Some of these tools make sense outside of the linearized setting in
which they were first introduced: for example, it is well known that, if one defines a multi-persistent
object in any category C as a functor Rn → C (where Rn is given its usual partial order), then one
immediately obtains an interleaving distance on these multi-persistent objects.

These tools have now been applied in various ways to the problem of clustering, and beyond.
In many applications, the goal is to avoid fixing distance scales or density thresholds. As such
parameters appear in many geometrically motivated algorithms, it is natural to ask: what other
methods of exploratory data analysis have multi-parameter analogues? Where else can the tools of
multi-parameter persistence be applied?
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