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ABSTRACT

Evidence accumulation is thought to be fundamental for decision-making in hu-
mans and other mammals. It has been extensively studied in neuroscience and
cognitive science with the goal of explaining how sensory information is sequen-
tially sampled until sufficient evidence has accumulated to favor one decision
over others. Neuroscience studies suggest that the hippocampus encodes a low-
dimensional ordered representation of evidence through sequential neural activity.
Cognitive modelers have proposed a mechanism by which such sequential activ-
ity could emerge through the modulation of recurrent weights with a change in
the amount of evidence. This gives rise to neurons tuned to a specific magnitude
of evidence which resemble neurons recorded in the hippocampus. Here we in-
tegrated a cognitive science model inside a Reinforcement Learning (RL) agent
and trained the agent to perform a simple evidence accumulation tasks inspired
by the behavioral experiments on animals. We compared the agent’s performance
with the performance of agents equipped with GRUs and RNNs. We found that
the agent based on a cognitive model was able to learn faster and generalize bet-
ter while having significantly fewer parameters. We also compared the emergent
neural activity across agents and found that in some cases, GRU-based agents de-
veloped similar neural representations to agents based on a cognitive model. This
study illustrates how integrating cognitive models and artificial neural networks
can lead to brain-like neural representations that can improve learning.

1 INTRODUCTION

Converging evidence from cognitive science and neuroscience suggests that the brain represents
physical and abstract variables in a structured form, as mental or cognitive maps. These maps are
thought to play an essential role in learning and reasoning (Tolman, 1948; Ekstrom & Ranganath,
2018; Behrens et al., 2018). Cognitive maps are characterized by neurons that activate sequentially
as a function of the magnitude of the variable they encode. For instance, neurons called place
cells activate sequentially as a function of spatial distance from some landmark (Moser et al., 2015;
Muller, 1996; Sheehan et al., 2021). Similarly, time cells activate sequentially as a function of
elapsed time from some event (Pastalkova et al., 2008; MacDonald et al., 2011; Cruzado et al.,
2020; Salz et al., 2016).

Similar sequential activity has also been observed for sound frequency (Aronov et al., 2017), prob-
ability (Knudsen & Wallis, 2021) and accumulated evidence (Nieh et al., 2021; Morcos & Harvey,
2016b). For example, in the “accumulating towers task” Nieh et al. (2021) trained mice to move
along a virtual track and observe objects (towers) on the left- and right-hand sides. When mice
arrived at the end of the track, to receive a reward they had to turn left or right, depending on which
side had more towers. The difference in the number of towers here corresponds to the amount of evi-
dence for turning left vs. turning right. Nieh et al. (2021) recorded activity of hundreds of individual
neurons from mice hippocampus, part of the brain commonly thought to play a key role in naviga-
tion in physical and abstract spaces (Bures et al., 1997; Eichenbaum, 2014; Moser et al., 2015). The
results indicated the existence of cells tuned to a particular difference in the number of towers, such
that a population of neurons tiles the entire evidence axis (Nieh et al., 2021) (see also Morcos &
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Harvey (2016b)). This provides valuable insight into how abstract variables are represented in the
brain.

Cognitive scientists have developed elaborate models of evidence accumulation to explain the re-
sponse time in a variety of behavioral tasks (Laming, 1968; Link, 1975; Ratcliff, 1978). These
models hypothesize that the brain contains an internal variable that represents the progress towards
the decision. A neural-level cognitive model proposed that the brain could implement this process
using a framework based on the Laplace transform (Howard et al., 2018). The Laplace framework
gives rise to map-like representations and it has been successful in describing the emergence of
sequentially activated time cells (Shankar & Howard, 2012) and place cells (Howard et al., 2014;
Howard & Hasselmo, 2020).

Artificial neural networks (ANNs) are commonly thought to have a distributed representation that
does not have a map-like structure. While ANNs excel in many domains, they still struggle at many
tasks that humans find relatively simple. Unlike humans, ANNs typically require a large number
of training examples and fail to generalize to examples that are outside the training distribution
(Bengio, 2017; LeVine, 2017; Marcus, 2020). Using cognitive models informed by neural data as
an inductive bias for ANNs is an important direction that can help not only advance the current AI
systems but also improve our understanding of cognitive mechanisms in the brain.

Here we integrate the Laplace framework into reinforcement learning (RL) agents. The Laplace
framework is based on recurrent neurons with analytically computed weights. We use the Laplace
domain to generate a map-like representation of the amount of evidence. This representation is then
fed into a trainable RL module based on the A2C architecture (Mnih et al., 2016). We compare
map-based agents to standard RL agents that use simple recurrent neural networks (RNNs) and
Gated Recurrent Units (GRUs) (Chung et al., 2014) in terms of performance and similarity of the
neural activity to neural activity recorded in the brain.

Contributions of this work are as follows:

• We integrated a cognitive model for evidence accumulation based on the Laplace transform
into an RL agent.

• We showed that symbolic operations in the Laplace domain give rise to individual neurons
that are tuned to the magnitude of the evidence, just like neurons in neuroscience studies
(Nieh et al., 2021; Morcos & Harvey, 2016a).

• We found that agents based on the Laplace framework learn faster and generalize better
than agents based on commonly used RNNs. This indicates that RL agents were able to
efficiently use the brain-like sequential representation of evidence.

• We found that GRUs performed much better than RNNs, suggesting that gating plays an
important role in constructing a neural representation of time-varying latent variables. This
is consistent with the cognitive modeling work, which uses gating to convert a representa-
tion of elapsed time into a representation of accumulated evidence.

Figure 1: Schematic of the accumulating towers environment. In this simple example, two towers
appeared on the right, and one tower appeared on the left, so the agent has to turn right once it
reaches the end of the track. Each tower is encoded with a single pixel value.
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2 METHODS

2.1 ENVIRONMENTS

Inspired by the neuroscience studies from Nieh et al. (2021); Morcos & Harvey (2016b), we de-
signed a simple version of the accumulating towers task. To evaluate robustness and generality
of the proposed approach, aside from default version of the task, we also designed two other tasks,
namely range count task and exact count task. The environments are provided as a part of the supple-
mentary material, and they will be made publicly available and made open source together with the
entire code used to implement the artificial agents and generate all of the results in the manuscript.

2.1.1 ACCUMULATING TOWERS TASK

Agents had to navigate down a virtual track composed of only three inputs: left, right and middle.
In each episode, agents start from the beginning of the virtual track and observe towers (represented
by the input value changing from 0 to 1) on each side of the environment (Fig. 1). Agents had four
available actions: left, right, forward, and backward. Positions of towers were decided randomly
in each episode. Similar to the neuroscience studies, the maximum number of towers on one side
was 14. Once the agent arrived at the end of the track, the middle input changed from zero to one
signifying that it hit the wall. In order to receive the reward, the agent had to turn left or right,
depending on which side had more towers. We set the magnitude of the reward to 10, penalize the
agents for hitting the wall at the end of the track or going backward with a -1 negative reward, and
penalize the agent for hitting the side walls with a -0.1 negative reward.

2.1.2 RANGE COUNT TASK

In this task, agents observed the same environment as in the accumulating towers task, but in order
to obtain a reward, agents had to turn left only if the number of towers on the left-hand side was
larger than five and right in every other case (regardless of the number of towers on the right-hand
side).

2.1.3 EXACT COUNT TASK

In the counting task, agents again observed the same environment as in the accumulating towers
task, but the maximum number of towers on each side was 5 instead of 14, and agents had to turn
left only if the number of towers on the left-hand side was exactly 5 and right in every other case.

2.2 RNN IMPLEMENTATION OF EVIDENCE ACCUMULATION USING THE LAPLACE DOMAIN

Evidence accumulation implemented through the Laplace domain is a key component of the
cognitively-inspired RL agent (Fig. 2). We will first describe the Laplace framework for functions
of time and then convert a representation of time into a representation of evidence and show how it
can be implemented as an RNN.

Figure 2: The agent architecture. We compare simple RNN, GRU and Laplace-based RNN de-
scribed here.
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Figure 3: Example of the Laplace and inverse Laplace transform with and without modulatory
input. (a) In the absence of modulatory input (α = 1) the impulse response of the Laplace transform
decays exponentially with decay rate s. The impulse response of the inverse Laplace transform has
a unimodal shape. Note that if time t was shown on the log-scale, the unimodal curves would be
equally wide and equidistant. (b, c) α modulates the decay rate of F and it is proportional to the
change in the count (b) or distance (c). This makes units in f̃ develop unimodal basis functions that
are tuned to count or distance rather than to time and peak at n∗ or x∗ respectively.

2.2.1 LAPLACE FRAMEWORK

We define the Laplace transform of function f(t) from −∞ to the present t:

F (s; t) =

∫ t

0

e−s(t−t′)f(t′)dt′. (1)

We restrict variable s to real positive values. 1

The above equation can be expressed in a differential form where s appears as a rate constant of a
leaky integrator:

dF (s; t)

dt
= −sF (s; t) + f(t). (2)

Fig. 3a shows the impulse response of the above equation for several values of s.

To convert a representation of time into a representation of numerosity n(t) (how many times some
input was observed) extend Eq. 2 and modulate s with a rate of change α expressed as a time
derivative of numerosity (α = dn/dt):

dF (s; t)

dt
=

dn

dt
(−sF (s; t) + f(t)) . (3)

By reorganizing terms in the above equation and applying the chain rule we can rewrite the equation
as a function of n, instead of t (Fig. 3b):

dF (s;n)

dn
= −sF (s;n) + f(n), (4)

and we set f(n) = δ(0).

Note that the same approach can convert a function of time into a function of any variable, which
derivative can be learned from the environment. For instance, if α = dx/dt is velocity, then the
network would represent traveled distance x (Fig. 3c).

1The Laplace transform defines s as a complex variable. This choice would result in exponentially growing
and oscillatory neural activity, causing numerical instabilities when computing the inverse Laplace transform.
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Inverting the Laplace transform reconstructs the input as a function of the internal variable n∗, which
corresponds to n. The inverse, which we denote as f̃(n∗; t) can be computed using the Post inversion
formula (Post, 1930):

f̃(n∗;n) = L−1
k F (s;n) =

(−1)k

k!
sk+1 dk

dsk
F (s;n), (5)

where n∗ := k/s and k → ∞. As we show below, the reconstruction gives rise to units tuned to
a particular n. By solving ∂f̃n∗;n/∂n = 0 we see that f̃(n∗;n) peaks at n∗ = n. For s being a
continuous variable and k → ∞, the width of the peak is infinitesimally small, providing a perfect
reconstruction of the observed quantity.

2.2.2 DISCRETE IMPLEMENTATION

For a neural network implementation, we discretize the Laplace and inverse Laplace transform for
both s and t. To select values s in an informed way, we compute the impulse response of f̃n∗;n:

f̃n∗;n =
1

u(t)

kk+1

k!

(
u(t)

n∗

)k+1

e−k
u(t)
n∗ , (6)

where u =
∑t

i=0 α(ti). When s is discrete and k is finite, f̃n∗;n is a set of unimodal basis functions
(when s is continuous and k → ∞, those unimodal basis functions turn into delta functions with
spacing → 0). The coefficient of variation of f̃n∗;n is independent of n∗ and n: c = 1/

√
k + 1.

This implies that the width of the unimodal basis functions increases linearly with their peak time.
When observed as a function of log(n), the width of the unimodal basis functions is constant. This
property of the Post inversion formula is relevant for modeling human perception due to the Weber-
Fechner law (Fechner, 1860/1912; Portugal & Svaiter, 2011). This law states that the relationship
between the perceived magnitude of the stimulus and its true magnitude is logarithmic, motivating
the use of logarithmic units such as decibel and candela. To ensure equidistant spacing of unimodal
basis functions along the log-axis we space n∗ logarithmically. This results in dramatic conservation
of resources, especially when representing large quantities since the number of units in f̃n∗;n grows
as a function of log(n) rather than n. Note that fixing the values of n∗ and choosing k also fixes
values of s since s = k/n∗.

We now write a discrete-time approximation of Eq. equation 3 as an RNN with a diagonal connec-
tivity matrix and a linear activation function:

Fs;t = WFs;t−1 + ft, (7)

where W = diag(e−α(t)s∆t). A discrete approximation of the inverse Laplace transform, f̃n∗;t, can
be implemented by multiplying Fs;t with a derivative matrix L−1

k computed for some finite value of
k.

2.2.3 SUBTRACTION OF FUNCTIONS USING THE LAPLACE DOMAIN

In the accumulating towers task, Eq. 4 can enable the agent to learn to represent the number of
towers on each side. However, the latent variable that should determine the agent’s decision is not
the number of towers on each side but the difference between those numbers (the agent needs to turn
towards the side which had more towers). This is a non-trivial problem since the number of towers is
not represented as a scalar but as a function over n. Fortuitously, the Laplace domain enables access
to a number of useful operations, including subtraction of two functions (Howard et al., 2015). To
show this, let us define f(a) and g(a) as functions representing two distributions of possible values
for the number a in the range 0 to amax. Outside this range, the functions are assumed to vanish. We
define the operation of subtraction of these two distributions [f − g](a) to be the cross-correlation
of the two functions:

[f − g](a) ≡
∫ ∞

0

f(x′)g(a+ x′)dx′. (8)

To illustrate that the above operation results in subtraction of two functions, consider a simple case
where each of the functions is a delta function: f = δ(a1) and g = δ(a2). Then [f − g] is a
delta function at a1 − a2. To implement cross-correlation in the Laplace domain we can turn Eq. 8
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a b c

Figure 4: Agent performance on (a) accumulating towers task, (b) range count task, and (c) exact
count task. In each task proposed architectures (either f̃sub or Fsub) learned the task faster than
GRU despite having almost three orders of magnitude fewer parameters.

into convolution by reflecting g(a) around amax: gr = g(amax − a). Point-wise product of the
Laplace transforms of two functions, f(a) and g(a), corresponds to their convolution in the time
domain. Point-wise multiplication of the Laplace transform of f(a) and gr(a) corresponds to cross-
correlation of f(a) and g(a) in the time domain, which is equivalent to their subtraction [f − g](a).
Note that for subtraction we need to consider both positive and negative values. Since we only use
positive values of s, we are not able to directly represent the negative axis. To work around this, we
compute both [f − g](a) and [g − f ](a).

2.3 AGENT ARCHITECTURE

The agents received three inputs from the environment that were fed into the recurrent layer (Fig. 2).
The recurrent layer was either RNN, GRU or an RNN based on the Laplace framework as described
above. When the Laplace framework was used we had three independent f̃ modules. Each module
had 20 n∗ values spaced logarithmically from 5 to 100. The value of parameter k was set to 8.
Parameter k controls the sharpness of the unimodal basis functions and this value was chosen to
ensure no gaps between them. Note also that the input into f̃ was delivered to α, which controls
recurrent weights of the population of units F . This is a conceptual difference in comparison to other
RNNs, where recurrent weights are tuned separately for each unit. The strength of the proposed
approach is that the population of neurons encodes a function over a latent variable that the network
needs to learn such that f̃ directly represents the count of the objects. In addition to computing f̃ ,
we also computed the subtraction f̃sub of each pair of f̃ . This was done by computing the product in
the Laplace domain between each pair of F as described in the previous section. The total number
of units was 180 (20 units per module, 3 independent modules and 6 subtraction modules). When
other RNNs were used, the dense layer was mapped to 180 recurrent units.

The output of the recurrent layer was passed to an actor network and a critic network. Both actor
and critic consist of a single layer fully connected neural network. We set the discount rate to γ = 0
(since in this task, the reward was immediately available to agents after they made a correct turn).
For all agents, we explored two different learning rates 0.001 and 0.0001.

3 RESULTS

3.1 PERFORMANCE OF RL AGENTS

We trained and evaluated agents in three different RL environments: accumulating towers, range
count and exact count. We compared several agents based on the Laplace framework: the proposed
agent using the inverse Laplace transform and the subtraction (f̃sub), without the subtraction (f̃ ),
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a b c d

Figure 5: Neural activity of (f̃sub) agents after 100k episodes of accumulating towers task. Similar
to plots in Nieh et al. (2021); Morcos & Harvey (2016b), neurons are sorted by peak activity. Each
row is normalized such that the activity ranges from 0 to 1.

a b c d

Figure 6: Same as Fig. 5 but for GRU agents.

with the subtraction but without the inverse Laplace transform (Fsub), and without both subtraction
and the inverse Laplace transform (F ). This was done to evaluate the importance of different com-
ponents of the Laplace framework. We also compared agents based on existing RNNs, including a
simple RNN and GRU, as well as versions of those agents but with frozen recurrent weights. The
control experiment with frozen recurrent weights was conducted because the Laplace agents have
analytically computed recurrent weights s which are modulated on a population level with α as
shared weight.

d=300 d=3000 d=10000 # Parameters
f̃sub 10.000 ± 0.000 10.000 ± 0.000 10.000 ± 0.000 724
f̃ 9.903 ± 0.066 9.925 ± 0.065 9.925 ± 0.041 244

Fsub 10.000 ± 0.000 10.000 ± 0.000 10.000 ± 0.000 724
F 8.995 ± 0.287 8.675 ± 0.361 8.900 ± 0.272 244

RNN 4.475 ± 0.456 4.600 ± 0.281 4.700 ± 0.576 34024
GRU 9.98 ± 0.000 9.600 ± 0.146 8.425 ± 0.504 100624

RNNFROZEN −21.0 ± 0.000 −201.0 ± 0.000 −601.0 ± 0.000 724
GRUFROZEN −14.473 ± 5.653 −149.3 ± 44.77 −449.4 ± 131.3 724

Table 1: Results of agents trained of the accumulating towers task. The table shows mean reward
+/- standard error across four runs after 100k episodes of training in d=300 steps long environment.
Validation was done in 300, 3000 and 10000 steps long environments.

The agents were trained and evaluated in 300 steps long environment. We trained four different
agents for each of the eight models and performed 100 validation runs every 1000 episodes.
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d=300 d=3000 d=10000 # Parameters
f̃sub 10.000 ± 0.000 10.000 ± 0.000 10.000 ± 0.000 724
f̃ 10.000 ± 0.000 10.000 ± 0.000 10.000 ± 0.000 244

Fsub 9.325 ± 0.074 9.525 ± 0.096 9.400 ± 0.122 724
F 9.150 ± 0.075 9.350 ± 0.115 9.375 ± 0.147 244

RNN −3.225 ± 8.033 −45.550 ± 44.875 −145.2 ± 131.6 34024
GRU 9.125 ± 0.758 4.15 ± 0.557 4.300 ± 0.696 100624

RNNFROZEN −31.00 ± 0.000 −201.0 ± 0.000 −601.0 ± 0.000 724
GRUFROZEN −31.00 ± 0.000 −201.0 ± 0.000 −601.0 ± 0.000 724

Table 2: Results of agents trained of the range count task. The table shows mean reward +/- standard
error across four runs after 100k episodes of training in d=300 steps long environment. Validation
was done in 300, 3000 and 10000 steps long environments.

d=300 d=3000 d=10000 # Parameters
f̃sub 10.000 ± 0.000 10.000 ± 0.000 10.000 ± 0.000 724
f̃ 10.000 ± 0.000 10.000 ± 0.000 10.000 ± 0.000 244

Fsub 10.000 ± 0.000 10.000 ± 0.000 10.000 ± 0.000 724
F 7.975 ± 0.129 8.250 ± 0.075 8.275 ± 0.246 244

RNN 7.975 ± 0.222 8.000 ± 0.146 8.225 ± 0.222 34024
GRU 9.375 ± 0.375 8.050 ± 0.545 8.175 ± 0.219 100624

RNNFROZEN −21.10 ± 8.574 −148.7 ± 45.27 −448.8 ± 131.8 724
GRUFROZEN −21.23 ± 8.465 −148.7 ± 45.27 −448.8 ± 131.8 724

Table 3: Results of agents trained of the exact count task. The table shows mean reward +/- standard
error across four runs after 100k episodes of training in d=300 steps long environment. Validation
was done in 300, 3000 and 10000 steps long environments.

3.2 AGENTS BASED ON THE COGNITIVE MODEL LEARNED THE TASKS FASTER THAN
GRU-BASED AGENTS

While in some cases other agents had a better start, f̃sub agents were the first to learn the tasks and
converge to a reward value of 10 (see supplemental video of f̃sub agent performing the accumulating
towers task). This indicates that the cognitive model provided a good representation, and once the
A2C algorithm learned to use it, it was able to perform perfectly (Fig. 4 and the first column in
Table 1, Table 2, and Table 3; see also Fig. 13, Fig. 14, and Fig. 15 for results on a wider training
range). In accumulating towers task and exact count task, Fsub agents converged next. While the
difference between f̃sub and Fsub agents is only in the inverse Laplace transform which is just
a linear projection, this result suggests that the sequential map-like activation in f̃sub was more
useful in learning to perform the task with perfect accuracy than the Laplace representation with
exponentially decaying traces. f̃ and F agents performed above chance (agents reached the end of
the track and made a correct decision in more than 50% of cases), but did not reach the performance
of 10 during 100k episodes on accumulating towers task suggesting that the subtraction operation
which constructed a map-like representation for evidence was important for learning.

GRU agents managed to reach performance close to 10, indicating that they can learn the tasks
as well (see supplemental video of GRU agent performing the accumulating towers task). On the
other hand, the RNN agents did not learn the tasks in 100k episodes indicating that gating was
important for correct performance. It is important to note that the cognitive model also constructed
the representation of evidence by a gating mechanism. Similarly, GRU can learn to modulate the
range of change in neural activity by the amount of change in the evidence. Frozen models were
not able to learn the task, failing to even reach the end of the track and make a random decision as
indicated by the total reward being negative.
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3.3 AGENTS BASED ON THE COGNITIVE MODEL WERE ROBUST TO CHANGES IN THE
ENVIRONMENT

To test the ability of agents to generalize, we also evaluated them on 3000 and 10000 steps long
tracks without ever training them on tracks of that length (second and third column in Table 1,
Table 2 and Table 3). Agents based on the cognitive model showed great resilience to this kind
of rescaling. This is not surprising since the representation was designed to change as a function
of change in the amount of evidence, so rescaling the environment did not have any impact. On
the other hand, the performance of GRU agents dropped at unseen track lengths but remained well
above chance. This suggests that GRU agents were able to learn to modulate their activity by the
change in the amount of evidence: when there was no new evidence, there was little to no change in
the activity, making the impact of track rescaling relatively small.

We also evaluated agents in environments that had 1 to 30 towers on each side instead of 1 to 14
towers (Table 4). While all agents suffered some loss in reward, GRU and f̃sub seem most resilient
to this change, indicating potential similarity in the form of those two representations.

3.4 NEURAL ACTIVITY INSIDE THE RECURRENT LAYER RESEMBLES ACTIVITY IN MICE
HIPPOCAMPUS

We visualized the neural activity of each of the four agents for each of 8 models after 100k episodes
of training on the accumulating towers task. As expected, neurons in f̃sub agents activated sequen-
tially as a function of evidence resembling the activity in neural recordings from the hippocampus
(Nieh et al., 2021; Morcos & Harvey, 2016b) (Fig. 5). f̃ neurons also showed some tuning to the
amount of evidence, but since they were able to only count objects on each side (and not subtract
them), the tuning is blurry (Fig. 7). Neurons in F and Fsub agents showed gradual changes as a func-
tion of evidence rather than tuning to a particular magnitude of evidence reflecting the exponential
dynamics of the Laplace transform (Fig. 8 and Fig. 9 respectively).

Some of the neurons in GRU agents showed tuning to the magnitude of evidence with often promi-
nent asymmetry between positive and negative amount of evidence (Fig. 6). (See supplemental video
of changes in the neural representation during training of GRU agent.) In comparison to neurons
in RNN agents (Fig. 11), GRUs had a firing pattern significantly more dependent on the amount of
evidence. Neurons in frozen GRU agents also showed some tuning to the magnitude of evidence
(Fig. 10), although less than neurons in trained GRU agents.

4 CONCLUSIONS

We evaluated different artificial agents on three tasks 1) evidence accumulation task that mimicked
the procedure of a recent neuroscience study (Nieh et al., 2021; Morcos & Harvey, 2016b), 2) range
count task, and 3) exact count task. We used a simple setup with only three inputs and compared
agents based on a cognitive model with agents based on simple RNN and GRU.

Agents based on a cognitive model were able to learn faster and generalize better despite having
almost three orders of magnitude fewer parameters than GRU-based agent (244 vs 100624). This
is an indicator that the A2C algorithm was able to use the neural representation from the cognitive
model. This representation also resembled data from neural recordings in Nieh et al. (2021); Mor-
cos & Harvey (2016b) characterized with the sequential activation as a function of the amount of
evidence.

Agents based on the cognitive model represented perceptual information on a logarithmic scale,
consistent with the Weber-Fechner law. This type of representation saves resources and can explain
human behavioral outputs in perceptual tasks.

While we focused on experiments that involve numerosity, the proposed architecture can represent
any latent variables (e.g., size, distance or luminosity) as a log-compressed number line. The only
condition is that the latent variables change over time such that their time derivative can be extracted
from the input signal (see Fig. 3 for examples of log-compressed number lines for discrete and
continuous signals).
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A APPENDIX

d=300 d=3000 d=10000 # Parameters
f̃sub 9.892 ± 0.067 9.850 ± 0.056 9.925 ± 0.041 724
f̃ 7.060 ± 0.220 7.175 ± 0.343 6.800 ± 0.242 244

Fsub 8.845 ± 0.151 8.775 ± 0.137 8.525 ± 0.248 724
F 7.293 ± 0.257 7.625 ± 0.410 7.350 ± 0.109 244

RNN 4.538 ± 0.449 4.800 ± 0.429 4.775 ± 0.461 34024
GRU 9.895 ± 0.016 9.725 ± 0.054 9.025 ± 0.219 100624

RNNFROZEN −21.000 ± 0.000 −201.0 ± 0.000 -601.0 ± 0.000 724
GRUFROZEN −14.555 ± 5.582 −149.6 ± 44.5 -449.7 ± 131.0 724

Table 4: Mean reward +/- standard error across four runs on accumulating towers task after 100k
episodes of training in d=300 steps long environment and 1 to 14 towers shown to agents. Validation
was done in 300, 3000 and 10000 steps long environments and with 1 to 30 towers shown to agents.

a b c d

Figure 7: Neural activity (top row) and psychometric curves (bottom row) of f̃ agents after 100k
episodes of accumulating towers task. Top row conveys the same information as Fig. 5. Since f̃ did
not have perfect accuracy, we also show the psychometric curves. Dots in the psychometric curves
indicate actions taken by the agent at different amounts of evidence.
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a b c d

Figure 8: Same as Fig. 7 but for F agents

a b c d

Figure 9: Same as Fig. 7 but for Fsub agents.
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a b c d

Figure 10: Same as Fig. 7 but for GRUfrozen agents. Note that some psychometric curves are
empty, indicating that those agents did not learn to reach the end of the environment.

a b c d

Figure 11: Same as Fig. 7 but for RNN agents.
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a b c d

Figure 12: Same as Fig. 7 but for RNNfrozen agents. Note that psychometric curves are empty,
indicating that the agents did not learn to reach the end of the environment.

Figure 13: Agent performance on the accumulating towers task (same data as in Fig. 4a but different
scale).
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Figure 14: Agent performance on the range count task (same data as in Fig. 4b but different scale).

Figure 15: Agent performance on the exact count task (same data as in Fig. 4c but different scale).
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