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ABSTRACT

Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide,
highlighting the critical need for early diagnosis and treatment. Machine learning
(ML) methods can help diagnose CVDs early, but their performance relies on
access to substantial data with high quality. However, the sensitive nature of
healthcare data often restricts individual clinical institutions from sharing data to
train sufficiently generalized and unbiased ML models. Federated Learning (FL) is
an emerging approach, which offers a promising solution by enabling collaborative
model training across multiple participants without compromising the privacy of
the individual data owners. However, to the best of our knowledge, there has
been limited prior research applying FL to the cardiovascular disease domain.
Moreover, existing FL benchmarks and datasets are typically simulated and may
fall short of replicating the complexity of natural heterogeneity found in realistic
datasets that challenges current FL algorithms. To address these gaps, this paper
presents the first real-world FL benchmark for cardiovascular disease detection,
named FedCVD. This benchmark comprises two major tasks: electrocardiogram
(ECG) classification and echocardiogram (ECHO) segmentation, based on naturally
scattered publicly available datasets constructed from the CVD data of seven
institutions. Our extensive experiments on these datasets reveal that FL faces new
challenges with real-world non-IID and long-tail data.

1 INTRODUCTION

Cardiovascular Diseases (CVDs) cause over 18 million deaths globally each year, positioning them as
one of the most significant global health challenges (Donkada et al., 2023). Early detection and diag-
nosis of CVDs are crucial, as they allow for timely medical interventions and more effective treatment
plans, which in turn significantly lower patient mortality rates (Aversano et al., 2022). Recently, with
the growing availability of electronic health records and other high-quality clinical data, researchers
have increasingly utilized machine learning techniques to automate clinical diagnostics (Yan et al.,
2020; Chen, 2020), a strategy that has proven highly effective in CVDs (Alizadehsani et al., 2019;
Al’Aref et al., 2019). This data-driven approach can facilitate efficient early screening and optimize
the allocation of healthcare resources, improving overall patient outcomes.

However, medical studies usually face the issue of bias, that is, the data distribution is restricted
by factors such as geography, and may even lead to discriminatory outputs. Therefore, multi-
center collaboration is required, as it enables the utilization of richer regional and demographic
characteristics, fostering more precise and comprehensive research outcomes. However, medical
data is considered highly sensitive, and recent privacy regulations (e.g., EU General Data Protection
Regulation (GDPR) (noa, 2016)) restrict its transfer, hindering the expansion of datasets through data
sharing among institutions to train more efficient models, i.e., data isolation.

To address this issue, federated learning (FL) (Yang et al., 2019; McMahan et al., 2017) has been
proposed as a more secure paradigm of distributed machine learning. A typical FL architecture
involves a coordinator (Server) and several participants (Clients) with private data. By aggregating
(e.g., FedAvg (McMahan et al., 2017)) the model parameters or gradients from different Clients on
the Server, participants collaboratively train high-performance models keeping private data within
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Figure 1: The overall architecture of the proposed FedCVD benchmark. We present two main
settings (Fed-ECG, Fed-ECHO) and an experimental platform, highlighting three primary challenges.
Green and blue circles in the challenges section indicate their presence in Fed-ECG and Fed-ECHO,
respectively. The API section highlights user-facing APIs in orange boxes.

their respective domains. This process only involves transmitting model parameters, thus ensuring a
certain degree of data privacy.

In medical applications such as CVD, integrating FL enables medical institutions to harness larger and
more diverse datasets, collaboratively training models that are more unbiased and generalized, thereby
enhancing diagnostic accuracy and clinical decision-making in real-world settings. For instance,
Yang et al. (2021) applied FL for joint case analysis across three institutions during the Covid-19
pandemic, significantly improving CT segmentation performance and facilitating more accurate
detection of Covid-19. Additionally, the effectiveness of FL has been demonstrated in multi-center
research, such as a study involving three centers focused on the medical image analysis task of whole
prostate segmentation (Sarma et al., 2021), further underscoring its relevance in realistic, large-scale
medical scenarios.

Facilitating the application of FL in multi-center medical research, particularly in areas such as CVD,
necessitates the creation of appropriate datasets and benchmarks to support the development of robust
algorithms. However, publicly available cardiovascular disease datasets are limited, and those that do
exist often suffer from incompatibility due to variations in data collection protocols. Furthermore,
there is currently no comprehensive, publicly accessible benchmark specifically designed for FL on
CVD data, which significantly impedes research progress in this domain. Additionally, most existing
FL benchmarks simulate an FL scenario by manually partitioning data—often without considering
geographic distribution—into smaller subsets, resulting in an overly idealized model that fails to
capture the complexities and heterogeneity of real-world, multi-center CVD scenarios. This gap
presents substantial challenges for the development and validation of effective FL algorithms in
practical medical applications.

To address these gaps, we introduce the first multi-center FL benchmark specifically designed for
CVD tasks, named FedCVD. Built from real-world CVD data from seven medical institutions (i.e.,
clients, the two terms will be used interchangeably), FedCVD utilizes a natural partitioning strategy.
It comprises two primary datasets along with their corresponding tasks: electrocardiogram (ECG)
classification and echocardiogram (ECHO) segmentation. FedCVD encapsulates three critical traits
of FL in real-world CVD applications, each of which presents substantial challenges to FL algorithms:

Challenging Trait 1. Non-IID Data: The Non-independently and identically distributed (non-IID)
data among institutions, including non-IID feature (e.g., variations in imaging quality due to different
equipment across institutions) and non-IID label (e.g., differences in disease prevalence across
regions). The non-IID data may significantly hindering global model convergence.
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Table 1: Comparison of FedCVD with Other Federated Datasets or Benchmarks.
Long-tailedness

Considered
Natural
Partition

Incomplete
Label

Covers CVD
Domain

Code
Available

FedDTI (Mittone et al., 2023) ✗ ✗ ✗ ✗ ✓
FedTD (Lindskog & Prehofer, 2023) ✗ ✗ ✗ ✗ ✗
Flamby (du Terrail et al., 2022) ✗ ✓ ✗ ✗ ✓
NIPD (Yin et al., 2023) ✗ ✓ ✗ ✗ ✓
FEDLEGAL (Zhang et al., 2023c) ✓ ✓ ✗ ✗ ✓
FLHCD (Goto et al., 2022) ✗ ✓ ✗ ✓ ✓
FedMultimodal (Feng et al., 2023) ✗ * ✗ ✗ ✓
FedAudio (Zhang et al., 2023b) ✗ * ✗ ✗ ✓
FedCVD ✓ ✓ ✓ ✓ ✓

*: Some datasets included are naturally partitioned.

Challenging Trait 2. Long-tail Distribution: The labels of CVD data from various institutions
exhibit a long-tailed distribution, where a few labels dominate while most labels are sparse. This
challenges the model’s performance on tail classes, a problem that is exacerbated in FL scenarios.

Challenging Trait 3. Label Incompleteness: For the same type of medical images, hospitals with
strong annotation capabilities can identify all key segmentation areas, while those with weaker
capabilities can identify only some. This incomplete annotation can mislead the global model’s
segmentation performance in areas unrecognized by certain institutions.

Focusing on these challenging traits, FedCVD provides new insights and evaluation metrics for
designing FL algorithms in multi-center CVD scenarios. Our contributions are summarized as
follows:

1. We introduce FedCVD, an open-source federated multi-center healthcare dataset and bench-
mark specifically for the CVD domain. To the best of our knowledge, FedCVD is the largest
multi-center CVD benchmark available. This dataset encompasses two critical tasks—multi-
label classification and segmentation—within the CVD domain and includes data of varying
scales. Crucially, all datasets are partitioned using natural splits.

2. Our benchmark emphasizes three critical traits in the FL-CVD scenario: non-IID, long tail,
and label incompleteness. These traits pose significant challenges to existing FL algorithms.

3. We conducted extensive experiments on FedCVD to evaluate the performance of mainstream
FL and centralized learning methods, validating the effectiveness of FL in the CVD context
and the proposed three challenges. Additionally, we have made the open-source code
available at https://anonymous.4open.science/r/ZYNTMBB-8848, ensuring
benchmark reproducibility and facilitating seamless integration into various FL frameworks.

2 RELATED WORK

AI for CVD Research. Numerous studies have leveraged CVD data for disease detection and
diagnostic support, focusing primarily on ECG and ECHO data. ECG, recorded as time-series signals,
captures the heart’s electrical activity and provides insights into cardiac conditions and potential
damage (Donkada et al., 2023). These studies often frame ECG-based tasks as classification problems
for disease diagnosis and heart metric analysis (Thanapatay et al., 2010; Muirhead & Puff, 2004;
Christov et al., 2005; Behadada & Chikh, 2013; Zhang et al., 2021). ECHO, comprising ultrasound
images, enables real-time visualization of heart chambers and blood flow, aiding in diagnoses of
conditions like heart valve disorders and Congestive Heart Failure (CHF). For instance, Goto et al.
(2022) used ECHO data for Hypertrophic Cardiomyopathy detection, while Ostvik et al. (2019)
applied Convolutional Neural Networks (CNNs) for standard view classification to enhance clinical
efficiency. Automated ECHO segmentation, crucial for assessing heart morphology and diagnosing
conditions such as myocardial infarction, addresses the limitations of manual segmentation, which is
time-consuming and subjective. Studies have employed AI models for ventricular (Zhang et al., 2014;
De Alexandria et al., 2014; Qin et al., 2013; Kiranyaz et al., 2020b) and atrial segmentation (Haak
et al., 2015b;a). Although these works highlight the potential of AI in analyzing CVD data, they are
predominantly restricted to single-institution settings.
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FL for Multi-center CVD Research. CVD research necessitates multi-center collaboration, and
FL presents a promising solution. Most current studies simulate FL in multi-institution collaborative
training by manually partitioning data from a single institution. For instance, Sakib et al. (2021)
trained a classification model to detect cardiac arrhythmia using ECG data within a federated
architecture, partitioning data from the MIT-BIH Supraventricular Arrhythmia database (Greenwald
et al., 1990). Similarly, Zou et al. (2023) investigated congestive heart failure detection in a federated
setting by splitting samples from the NSR-RR-interval and CHF-RR-interval databases (Goldberger
et al., 2000) into 2 to 4 clients for simulated training. FedCluster (Lin et al., 2022) tackled the issue
of unbalanced class distributions in ECG data by optimizing algorithms that cluster local parameters
before performing intra- and inter-class aggregation, thus increasing the weight of minority classes.
Their data were also partitioned from the MIT-BIH Arrhythmia database (Goldberger et al., 2000).
However, these partition-based simulations may not fully capture the true distribution characteristics
of CVDs. In contrast, FLHCD (Goto et al., 2022) demonstrated federated training for hypertrophic
cardiomyopathy detection using ECG and ECHO data from four medical institutions (three in the US
and one in Japan), showcasing the effectiveness of FL in a naturally partitioned, multi-center setting.

FL Benchmarks. To further support research in FL, numerous datasets and benchmarks have
been proposed for a wide range of applications. A comprehensive comparison of FedCVD with
these benchmarks is shown in Table 1. Existing studies often manually partition centralized datasets
and introduce perturbations or masking to features and labels to mimic the heterogeneity found in
real-world FL scenarios. For instance, FedTD (Lindskog & Prehofer, 2023) and FedDTI (Mittone
et al., 2023) simulate non-iid data partitioning by altering feature distributions and sample sizes.

Since manual data is incapable of capturing real-world challenges, real-world multi-institution
benchmarks are essential. Several FL benchmarks directly utilize real-world multi-institution data.
For instance, NIPD (Yin et al., 2023) employs data from cameras in different geographical locations
as FL clients for person detection tasks, naturally exhibiting non-iid characteristics. Similarly,
FEDLEGAL (Zhang et al., 2023c) provides a FL benchmark for NLP tasks in the legal domain,
using geographically distributed case-based text data for natural data partitioning. Another example
is FLamby (du Terrail et al., 2022), an FL benchmark for real-world distributed medical data,
offering seven datasets naturally distributed by geography or institution, with corresponding tasks
including segmentation and binary/multiclass classification for medical image analysis and diagnostic
assistance. Some benchmarks combine natural partitioning with simulated partitioning. For instance,
FedAudio (Zhang et al., 2023b) applies simulated partitioning for certain audio data, while introducing
perturbations to mimic noisy data and labels. FedMultimodal (Feng et al., 2023) uses a Dirichlet
distribution to partition multimodal data from various domains, incorporating missing modalities,
labels, and erroneous labels to simulate real-world heterogeneity. Despite these advances, none of
these benchmarks cover the CVD domain. Although FLHCD (Goto et al., 2022), which utilizes
multi-institution data for hypertrophic cardiomyopathy detection, has a setup most similar to ours, it
does not address challenges such as the long-tail distribution and incomplete label issues, which are
specifically tackled by FedCVD.

3 THE PROPOSED FEDCVD

In this section, we present the details of the proposed general FL framework for healthcare tasks as
shown in Figure 1. Our framework is built upon the lightweight open-source framework FedLab
(Zeng et al., 2023) for FL simulation. We present the details of datasets, metrics, and baseline models
in Section 3.1. Then, we discuss the main FL challenges that FedCVD supported in Section 3.2.

3.1 DATASETS

Figure 1 provides an overview of the datasets included in FedCVD. In this section, we provide a brief
description of each dataset.

Fed-ECG. The 12-lead ECG signals in Fed-ECG are sourced from four distinct datasets. The
first and third datasets were collected from Shandong Provincial Hospital (Liu et al., 2022) and
Shaoxing People’s Hospital (Zheng et al., 2022) in China, respectively. The second dataset is from the
PTB-XL database, released by Physikalisch Technische Bundesanstalt (PTB) (Wagner et al., 2020),
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Table 2: Overview of the datasets, tasks and metrics in FedCVD.
Dataset Fed-ECG Fed-ECHO
Task Type Multi-label Classification 2D Segmentation
Input 12-lead ECG Signal Echocardiogram
Prediction (y) Diagnostic Statement Cardiac Structure Mask
Data source SPH PTB-XL SXPH G12EC CAMUS ECHONET-DYNAMIC HMC-QU
Preprocessing Label Alignment Resizing and Label Alignment
Patient Size 21,530 16,699 36,272 UNKNOWN 500 10,024 109
Sample Size 22,425 19,019 36,272 6,205 1000 20,048 2,349
Metrics Micro F1 / mAP DICE / Hausdorff distance
Input Dimension 12 × 5000 112 × 112

and the fourth originates from the PhysioNet/Computing in Cardiology Challenge 2020 (Alday et al.,
2020), which represents a large population from the Southeastern United States. These four datasets,
originating from geographically diverse regions, are naturally suited for the FL setting due to their
separation by location.

The original four datasets consist of ECG data with varying lengths and labels, each based on
different standards, such as AHA (Kligfield et al., 2007), SCP-ECG, and SNOMED-CT, making them
incompatible for use in a FL setting directly. To standardize ECG lengths, we truncate signals longer
than 5000 samples and apply edge padding to those shorter than 5000. Additionally, we retain only
samples whose labels appear in at least two datasets, ensuring alignment across labels. Figures 2(a)
and 2(b) illustrate the heterogeneity in both age and label distributions among institutions. Appendix
D provides further details on the dataset and the preprocessing pipeline.
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(a) Feature non-IID of the Fed-ECG dataset, demon-
strated with the non-identical distribution of patient
age among institutions.

(b) Label non-IID of the Fed-ECG dataset, shown as the
variation in the number of each label (right axis) across
different institutions (left axis).

Figure 2: Demonstration of the non-IID nature of Fed-ECG Dataset.

Fed-ECHO. This dataset is derived from three sources: CAMUS (Leclerc et al., 2019), ECHO-
DYNAMIC (Ouyang et al., 2020), and HMC-QU (Kiranyaz et al., 2020a). CAMUS provides a
database of gray-scale 2D apical four-chamber echocardiographic images, acquired at the University
Hospital of St. Etienne in France, fully annotated with the left ventricular endocardium (LVEndo),
epicardium (LVEpi), and left atrial wall (LA) regions. ECHO-DYNAMIC contains 2D echocardio-
gram videos collected at Stanford Medicine, with only the LVEndo region annotated in two frames.
HMC-QU, released through a collaboration between Qatar University (QU) and Hamad Medical
Corporation (HMC) Hospital, includes 2D echocardiogram videos from Qatar, with annotations
limited to the LVEpi region in frames of a single cardiac cycle.

For consistency among each institution, we only select annotated frames for the experiment. The
followed image pre-processing pipeline includes picture resizing to 1×112×112, and label alignment.
More details about this dataset are available in Appendix E.

3.2 CHALLENGING TRAITS OF FEDCVD

Non-IID. Non-independently and identically distributed (non-IID) is a typical characteristic in FL
scenarios, encompassing non-IID features and non-IID labels, where clients’ data shows heterogeneity
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in both feature and label spaces. Quantity imbalance, where institutions hold uneven sample sizes,
can further exacerbate these non-IID issues. Among these, non-IID labels have the most pronounced
impact on FL model performance. This is because the quantity and types of labels held by each
institution can vary greatly, misleading the local supervised training process and causing ”Client
Drift” (Karimireddy et al., 2020), which hinders global model convergence.

Fed-ECG naturally exhibits these three characteristics. In terms of feature distribution, Figure 2(a)
shows significant age distribution differences among institutions’ patients, with Institution 1 notably
younger, reflected in the ECG features. Regarding sample size, Figure 2(b) depicts significant
differences among the four institutions, with Institution 4 having the fewest samples. For label
distribution in the Fed-ECG multi-label classification task, each sample may belong to multiple
categories, but the quantity and proportion of different labels vary significantly among institutions.
For example, the most common label for Institution 1 and Institution 2 is NORM (Normal), while
for Institution 3 and Institution 4 it is STACH (Sinus tachycardia). Some institutions may even lack
samples with certain labels, such as both Institution 3 and Institution 4 lacking samples labeled as
PAC (Atrial premature complex(es)). These non-IID characteristics challenge the four institutions in
collaboratively training a multi-label prediction model, as institutions struggle to capture information
about the labels they lack during local training, potentially leading to client drift.

Long-tail Distribution. In addition to the inter-institution heterogeneity caused by non-IID labels,
Fed-ECG also exhibits intra-institution and inter-institution heterogeneity in the form of a long-tail
distribution of labels. Figure 2(b) illustrates a clear long-tail characteristic of each institution’s
internal label distribution, with a few dominant labels having many samples and numerous labels
having fewer samples (long-tail). These tail categories are already troublesome during independent
local training, as the model may neglect the tail categories. In FL scenarios with quantity imbalance
and non-IID labels, the long-tail problem is further exacerbated. For instance, categories mainly
found in the disadvantaged institutions’ tails may be in an even worse position within the overall data
of all institutions. The long-tail characteristic challenges FL algorithms in ensuring the effectiveness
and fairness of handling samples from various categories across institutions.

Label Incompleteness. Fed-ECHO presents the most challenging scenario: label-incomplete FL.
In Fed-ECHO, three naturally formed institutions hold ECHO video data with annotations (image
region segmentation). However, due to varying annotation capabilities, the completeness of labels
among the three institutions differs, as shown in Figure 1. Institution 1 has the most complete labels
(four labels) due to its ability to identify and annotate all four key regions (including the background).
In contrast, Institution 2 and Institution 3 each have labels for only one key region (LVEndo and LVEpi,
respectively). This incompleteness introduces (1) label heterogeneity, similar to the label-non-IID
in Fed-ECG, where Institution 2 and Institution 3 lack some labels, and (2) mislabeling, where
Institution 2 and Institution 3 label unrecognized parts as background, conflicting with Institution 1’s
labels and causing misleading information. This scenario significantly challenges FL algorithms to
effectively utilize the different levels of label completeness from each Institution and leverage highly
heterogeneous data to benefit the global model.

3.3 TASKS & METRICS

Fed-ECG. The corresponding task on Fed-ECG’s four datasets involves multi-label classification
for each institution, a challenging problem due to the large number of labels and the long-tail
distribution inherent to the data. To provide a more fine-grained evaluation, we focus on detailed
label distinctions, which are of particular interest to clinicians, rather than broader label categories.
To thoroughly assess performance, we adopt two metrics: micro-F1, which evaluates the overall
performance across all labels, and mean average precision (mAP), which specifically measures the
impact of the long-tail distribution on model performance.

To further illustrate the long-tail distribution challenge posed by Fed-ECG, we introduced two
additional metrics, namely F1-STD and Top-K. The F1-STD metric measures the standard deviation
of F1 scores across classes, reflecting the learning algorithm’s ability to manage long-tail problems;
the larger the F1-STD, the poorer the algorithm’s performance in this regard. Top-K, on the other
hand, refers to selecting the K classes with the most samples and the K classes with the fewest samples,
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calculating the average F1 score for each group, and then computing the relative performance drop
between them. A larger performance drop indicates a more severe long-tail problem.

Fed-ECHO. The common task across Fed-ECHO’s three datasets is the automatic segmentation of
cardiac structures in echocardiograms, a crucial step in further diagnosing cardiovascular diseases.
This task is particularly challenging due to the varying quality of the original echocardiograms across
datasets. To evaluate segmentation accuracy, we use both the Dice similarity index (DICE) and the 2D
Hausdorff distance (dH ). The Dice index measures the overlap between the predicted segmentation
and the ground truth, while the dH quantifies the local maximum distance between the two areas.

4 EXPERIMENT

4.1 EXPERIMENT DETAILS

Baseline Algorithms. Our experiments utilize seven typical FL algorithms across both datasets.
The first four are classical global FL algorithms: FedAvg (McMahan et al., 2017), the oft-cited
FL algorithm, collaboratively trains a global model across participants. FedProx (Li et al., 2020)
addresses statistical heterogeneity in FL by introducing an L2 proximal term during local training,
while Scaffold (Karimireddy et al., 2020) mitigates client drift through control variates and server-
side learning rate adjustments. FedInit (Sun et al., 2023) also tackles client drift by employing
a personalized, relaxed initialization at the start of each local training stage. The last three are
personalized FL methods: Ditto (Li et al., 2021), which excels in balancing accuracy, fairness,
and robustness in FL; FedSM (Xu et al., 2022), which combines model selection with personalized
methods to avoid client drift; and FedALA (Zhang et al., 2023a), which reduces the impact of statistical
heterogeneity by adaptively aggregating both the global and local models. For the Fed-ECHO dataset,
we further evaluate two Federated Semi-Supervised Learning (FSSL) methods: Fed-Consist (Yang
et al., 2021), which uses a consistency-based method for segmentation, and FedPSL (Dong et al.,
2023), which applies separate model aggregation and meta-learning techniques for classification. In
addition to the FL family, we include two other baseline algorithms: Client, which refers to training
models using only local data without collaboration among participants, and Central., which represents
the ideal centralized training scenario where the server has access to all participants’ data.

Setup. We took into account the models that are widely used within the field as the default
implementations of the models in the experiments. For Fed-ECG, a residual network, with its
implementation following that of Strodthoff et al. (2020), was adopted as the default model. For
Fed-ECHO, we utilized a 2D U-net model, following the implementation from Ronneberger et al.
(2015). The number of institutions involved in federated training for each task is listed in Appendix D.
Our experiments mainly focus on the multi-center FL scenario (i.e., cross-silo), where all institutions
participate in training at each communication round. Considering the trade-off between computation
and communication, we set the local training epoch to 1 and the communication rounds to 50
throughout experiments except Fed-Consist. Since Fed-Consist requires extra rounds for training on
clients with full labels before starting federated learning, we set the communication rounds to 100,
where 50 rounds are for labeled clients training and another 50 rounds are normal FL training.

Evaluation Strategies. For a comprehensive evaluation, we build a local and global evaluation
set for both datasets in FedCVD. For the local one, we divide each local data into train/test sets by
8:2. For the global one, we collect each local test set together. Our experiments test all algorithms
using two evaluation strategies: 1) Global test performance (GLOBAL) is evaluated on the global
test set and used to determine whether the model has learned knowledge from other clients in the FL
setting. The better results of GLOBAL indicate that the model is closer to the centralized training. 2)
Local test performance (LOCAL) is evaluated on each local test set. The LOCAL is more practical in
real-world applications than GLOBAL because it indicates performance improvement for its task
without centralizing all local data.

4.2 BENCHMARK ON FED-ECG

The proposed Fed-ECG dataset poses significant challenges for FL scenarios, namely non-IID
data and long-tailed distribution. We first compared the overall performance of mainstream FL
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Table 3: The performance of different FL methods on Fed-ECG is reported using two metrics: Micro
F1-Score (Mi-F1) and Mean Average Precision (mAP), both expressed as percentages (%). The best
results for each configuration are highlighted in bold, while the second-best results are underlined.

LOCAL GLOBAL
Methods SPH PTB-XL SXPH G12EC

Mi-F1↑ mAP↑ Mi-F1↑ mAP↑ Mi-F1↑ mAP↑ Mi-F1↑ mAP↑ Mi-F1↑ mAP↑
SPH 85.8±1.9 58.1±2.6 52.7±3.4 37.8±2.2 61.5±1.2 19.8±1.2 49.8±4.2 26.7±3.0 64.3±2.1 32.3±2.0
PTB-XL 69.9±0.5 38.9±0.3 76.8±0.9 55.7±0.5 26.3±0.8 22.7±0.3 42.2±0.8 31.6±0.6 50.4±0.3 35.9±0.7
SXPH 22.7±0.2 29.8±0.7 17.0±0.4 27.2±0.3 88.1±0.2 37.7±0.4 56.9±0.4 29.4±0.6 51.5±0.2 32.7±0.2
G12EC 23.7±2.0 31.7±2.7 24.7±3.3 30.5±1.5 61.6±5.5 25.3±2.1 72.3±10.2 38.5±2.8 44.7±4.3 29.3±2.5
FedAvg 69.0±10.1 58.5±1.2 50.3±5.3 54.4±0.5 77.6±0.7 37.2±0.3 66.3±0.9 39.5±0.5 67.9±3.8 50.8±0.4
FedProx 74.0±7.5 60.3±2.9 55.6±2.7 56.4±0.6 73.2±1.0 36.0±0.8 70.2±2.3 43.8±1.8 68.8±2.6 52.3±0.9
Scaffold 77.5±2.6 58.0±1.2 56.9±1.7 55.9±0.7 73.3±1.0 36.2±0.6 70.7±2.9 42.7±1.1 70.1±0.8 52.1±0.7
FedInit 73.0±6.6 58.2±0.7 54.1±5.2 55.6±1.3 73.5±0.5 36.6±0.1 67.8±2.0 41.5±1.0 68.1±3.0 51.5±0.9
Ditto 82.8±4.4 63.1±4.2 74.8±1.4 58.3±0.6 86.5±1.5 38.1±0.6 73.4±6.7 42.2±4.0 68.1±2.9 48.7±1.4
FedSM 77.2±7.2 58.8±1.3 59.1±4.5 56.4±1.4 69.8±0.8 35.0±0.5 67.7±3.6 42.9±2.4 68.9±2.5 51.2±0.7
FedALA 84.4±4.0 62.0±7.0 71.7±5.7 57.1±2.2 88.2±0.1 37.4±0.2 66.7±5.9 41.2±2.3 67.8±1.9 50.8±1.3
Central. 84.9±0.5 54.8±0.5 71.4±5.0 55.2±2.9 84.1±1.6 36.5±1.1 72.2±3.7 41.5±1.3 80.0±2.1 63.2±2.8

algorithms on Fed-ECG, with the evaluated local and global performance shown in Table 3. The
results indicate that FL has advantages over local training. However, existing FL algorithms still lag
behind centralized training.

To better illustrate the impact of these two challenges on FL performance, we conducted experiments
under supplementary settings by employing the additional evaluation metrics presented in 3.3. For
the non-IID challenge, we compared the performance differences between natural partitioning and
two simulated partitions (random and non-IID), with the simulated non-IID partition described in
Appendix D. Figure 3 compares the performance (percentage relative to centralized training) between
FL algorithms trained under the three partitioning settings. The results reveal that Fed-ECG’s natural
partitioning poses significantly greater challenges compared to the two simulated partitions.

For the long-tail challenge, we used the mAP metric in Table 3 to evaluate the overall performance of
algorithms across different classes. In general, FL algorithms designed for heterogeneous scenarios
demonstrate an advantage in addressing long-tail issues, with personalized algorithms like Ditto
and FedALA showing better results in local tests. However, in global tests, the FedProx algorithm
more effectively handles long-tail problems. Comparisons with centralized training reveal that FL
scenarios tend to amplify the impact of long-tail distributions.

With regard to the two metrics specifically designed for gauging the long-trail challenge, the GLOBAL
F1-STD results of different FL algorithms are visually presented in Figure 4, showing a pattern
consistent with Table 3 and underscoring the challenges posed by long-tail distributions. Table 4
presents the Top-K metrics for various K values, highlighting the significant long-tail characteristics
of Fed-ECG. The results show that mainstream FL algorithms struggle to address long-tail issues
effectively, performing worse compared to centralized training.
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Figure 3: Demonstration of Fed-ECG’s non-IID challenge: Comparisons of performance (relative
Mean Average Score %) between artificial partitions (simulated random and non-IID partitions) and
Fed-ECG’s natural partition across different FL algorithms.
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Figure 4: Demonstration of Fed-ECG’s long-tail challenge: Average Macro F1-Score (%) and
Standard Deviation across classes for various FL Algorithms.

Table 4: Demonstration of Fed-ECG’s long-tail challenge through the performance (F1-Score (%))
differences (measured by relative performance drop) on head and tail class groups of varying sizes.
“Top-K” denotes the selection of K classes with the most/fewest samples as the head/tail group.
Comparisons are made among various FL algorithms, with the algorithm achieving the best result
(minimum drop) highlighted in bold and the second-best results underlined.

Method
Top-K F1 Performance

K=1(5%) K=3(15%) K=5(25%) K=10(50%)
Head Tail Drop Head Tail Drop Head Tail Drop Head Tail Drop

FedAvg 71.9±12.5 38.1±5.0 47.0 85.8±4.2 16.0±2.2 81.3 74.1±2.5 25.5±1.2 65.6 57.7±2.5 28.7±1.1 50.3
FedProx 76.8±4.5 30.8±2.6 59.9 87.6±1.4 13.1±1.2 85.0 71.2±0.9 22.7±2.6 68.1 57.5±1.8 31.1±2.2 46.0
Scaffold 77.4±3.2 33.8±4.9 56.4 87.7±1.2 14.6±2.2 83.4 71.3±0.7 24.1±1.4 66.3 58.4±1.7 32.1±2.3 45.0
FedInit 77.2±2.8 29.7±2.7 61.5 87.8±1.0 12.9±1.2 87.9 71.3±0.6 23.2±0.5 69.8 56.4±2.5 29.0±0.8 45.8
Ditto 73.5±7.4 23.8±5.8 67.6 86.4±2.5 10.2±1.7 88.2 70.6±2.1 21.4±1.1 69.7 54.4±2.6 27.6±1.7 49.3
FedSM 75.5±8.2 25.8±3.6 65.8 87.2±2.9 10.5±2.2 85.3 69.5±1.8 21.0±0.9 67.5 57.0±1.9 30.9±2.3 48.5
FedALA 72.4±5.4 38.9±5.8 46.2 86.0±1.8 16.2±2.1 81.1 73.7±1.5 25.2±1.2 65.7 57.9±1.7 28.8±1.0 50.3
Central. 88.6±2.3 35.6±5.9 59.8 92.4±1.6 19.5±7.0 78.9 84.1±1.9 29.9±5.5 64.5 71.3±3.6 44.5±4.4 37.6

4.3 BENCHMARK ON FED-ECHO

The proposed Fed-ECHO dataset presents one of the most challenging FL settings: label incom-
pleteness, which can be viewed as an enhanced version of label-non-IID. Specifically, all annotated
video frames from Institution 1 are completely segmented into four regions: BG, LVEndo, LVEpi, and
LA. In contrast, Institution 2 and Institution 3 can only recognize the LVEpi and LVEndo regions in
their annotated video frames, respectively, with the remaining regions simply labeled as ”BG.” For
convenience, we refer to the BG labels from Institution 2 and Institution 3 as ”Maybe-BG,” indicating
these segmentations may be unreliable. This discrepancy introduces potential conflicts between
the ”Maybe-BG” labels of Institution 2 and Institution 3 and the corresponding ”reliable” labels of
Institution 1, resulting in misleading labels that affect model convergence.

To mitigate the impact of misleading labels, we propose a straightforward baseline strategy, supervised-
only. During supervised model training, we input the data from all three Institutions into the model
without additional processing, allowing the model to benefit from the rich data features. However,
when calculating the loss, we mask out the ”Maybe-BG” regions in the video frames from Institution
2 and Institution 3. This means that for samples from Institution 2 and Institution 3, we only compute
the training loss on the ”reliable foreground”. This strategy ensures the model learns segmentation
capabilities from completely reliable labels. Additionally, during model segmentation performance
evaluation, we also exclude the ”Maybe-BG” regions from the test samples, preventing them from
influencing the model’s performance metrics.

Table 5 compares the performance of mainstream FL algorithms with centralized/isolated learning on
Fed-ECHO, evaluated using Dice and Hausdorff distance (dH ). Except for the semi-supervised learn-
ing algorithms Centralized (semi-sup) and Fed-Consist, all algorithms use the previously mentioned
supervised-only strategy. The results underscore the viability of FL in the Fed-ECHO setting, as most
FL algorithms exhibit superior global performance compared to models trained independently by
individual institutions. However, due to high degree of data heterogeneity, none of the evaluated FL
algorithms outperform locally trained models on each client’s test dataset, indicating a need for more
personalized and heterogeneity-resistant FL strategies.
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Table 5: The performance of different FL methods on Fed-ECHO, with DICE (%) and dH repre-
senting DICE index and Hausdorff distance respectively. The best results for each configuration are
highlighted in bold, while the second-best results are underlined.

LOCAL GLOBAL
Mthods CAMUS ECHONET-DYNAMIC HMC-QU

Dice↑ dH↓ Dice↑ dH↓ Dice↑ dH↓ Dice↑ dH↓
CAMUS 88.2±0.8 5.196±0.360 46.5±3.9 24.246±0.442 63.4±4.2 22.000±12.914 66.1±2.8 17.147±4.187
ECHONET-DYNAMIC 24.4±6.0 71.917±2.832 88.9±5.5 5.577±1.413 - - 37.8±3.8 59.165±1.411
HMC-QU 15.8±1.0 76.368±0.988 - - 94.1±0.7 7.110±2.900 36.6±0.3 61.159±0.931
FedAvg 26.2±3.7 48.343±8.719 56.4±8.8 33.127±10.721 67.9±3.5 34.004±5.287 50.2±5.3 38.491±8.058
FedProx 74.8±18.7 13.928±11.742 82.3±3.5 13.402±2.975 66.7±12.4 16.181±16.329 74.6±11.4 14.504±9.134
Scaffold 81.5±2.1 9.981±2.482 81.0±2.1 12.543±2.157 74.6±2.1 7.551±0.885 79.0±0.7 10.025±1.467
FedInit 83.5±0.9 7.799±0.665 81.6±2.2 12.240±1.091 73.4±3.0 7.542±0.918 79.5±0.5 9.193±0.558
Ditto 88.2±0.4 4.796±0.085 56.9±3.3 28.381±4.043 56.3±2.2 27.321±15.627 78.1±1.8 10.658±2.372
FedSM 80.2±6.0 11.339±5.868 81.1±1.5 12.580±1.288 72.7±2.0 10.913±4.128 78.0±2.2 11.611±2.308
FedALA 80.5±1.6 8.700±1.245 51.3±2.4 36.472±2.686 47.1±0.9 52.128±4.356 52.3±2.0 36.811±2.630
Fed-Consist 85.9±0.2 11.904±0.442 75.2±0.9 27.480±1.440 66.3±0.2 34.037±1.777 75.8±0.3 24.474±1.155
FedPSL 53.5±9.3 37.277±9.166 77.0±2.9 12.873±1.589 67.8±14.1 29.166±15.660 66.1±7.5 26.439±7.831
Central.(sup) 89.9±0.4 4.643±0.097 48.5±22.2 43.684±19.659 65.0±14.6 30.557±14.831 67.8±12.1 26.295±11.379
Central.(ssup) 90.3±0.2 3.872±0.067 91.7±0.5 4.370±0.181 91.1±1.7 3.005±0.732 91.0±0.6 3.749±0.242

On the global test set, FL algorithms specifically designed to address heterogeneity, such as FedInit
and Scaffold, consistently demonstrate significant advantages over simpler algorithms like FedAvg.
Notably, these algorithms also outperform the Centralized (sup) model, which we attribute to FL
effectively mitigating the impact of intra-batch heterogeneity(e.g., within the same batch, there are
four-label data from Institution 1 and single-label data from Institution 2 or Institution 3).

Additionally, to leverage the substantial amount of partially labeled data from Institution 2 and
Institution 3 and potentially mitigate label heterogeneity, we introduced semi-supervised learning
algorithms for comparison. These include the centralized semi-supervised model, Centralized (ssup),
and federated semi-supervised algorithms such as Fed-Consist and FedPSL. The Centralized (ssup)
model significantly outperformed its fully supervised counterpart, underscoring the value of utilizing
unlabeled video frames. Similarly, Fed-Consist outperformed FedAvg and FedProx, although it still
exhibited a noticeable performance gap compared to the centralized semi-supervised algorithm and
lagged behind fully supervised FL algorithms like Scaffold and FedInit. While FedPSL performed
well on certain participating client, it showed greater instability overall, largely due to its sensitivity
to client-side feature heterogeneity.

Therefore, the highly heterogeneous Fed-ECHO scenario poses significant challenges for FL algo-
rithms, requiring them to adapt to heterogeneous data and effectively leverage unlabeled data across
different data domains.

5 CONCLUSION

This paper has introduced FedCVD, the first real-world multi-center FL benchmark for CVD data,
which consists of two datasets and their respective tasks: Fed-ECG and Fed-ECHO. It presents three
major challenges due to the heterogeneous distribution of real-world data: non-IID, long-tailed labels,
and label incompleteness. We conducted extensive comparative and validation experiments, testing
mainstream FL algorithms and centralized training on these tasks. Experimental results show that the
natural non-IID characteristics in FedCVD are more challenging than the manually partitioned setups
in most previous federated benchmarks, and mainstream algorithms perform poorly in the long-tail
tests of FedCVD. For the most difficult task, i.e., the label-incomplete Fed-ECHO, mainstream FL
algorithms barely maintain utility but are still better than non-cooperative algorithms that only utilize
unlabeled data on each client. Federated semi-supervised learning algorithms that leverage unlabeled
data achieve some performance improvement. Beyond, as a flexible and extensible framework,
FedCVD is meant to be a step towards developing FL in the CVD domain.

Limitations and Future Work. FedCVD presents a realistic and challenging scenario that tests FL
algorithms’ ability to mitigate data heterogeneity, handle long-tailed classes, and utilize unlabeled data.
However, FedCVD currently offers only two tasks and a limited variety of data types. Additionally,
the FL algorithms compared in experiments, particularly semi-supervised ones, are limited. In future
work, we will expand the data range of FedCVD, aiming for it to inspire future FL research in
real-world medical contexts, especially with CVD data.
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Salman Avestimehr, Aurélien Bellet, Aymeric Dieuleveut, Martin Jaggi, Sai Praneeth Karim-
ireddy, Marco Lorenzi, Giovanni Neglia, Marc Tommasi, and Mathieu Andreux. Flamby:

11

http://data.europa.eu/eli/reg/2016/679/oj/eng
http://data.europa.eu/eli/reg/2016/679/oj/eng
https://doi.org/10.1016/j.compbiomed.2019.103346
https://doi.org/10.1016/j.compbiomed.2019.103346
https://doi.org/10.1109/EAIS51927.2022.9787720
https://doi.org/10.1109/EAIS51927.2022.9787720
https://doi.org/10.5430/air.v2n3p45
https://doi.org/10.1109/TMI.2022.3231017
https://doi.org/10.1109/TMI.2022.3231017
https://doi.org/10.48550/arXiv.2308.13714


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Datasets and benchmarks for cross-silo federated learning in realistic healthcare settings.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/
2022/hash/232eee8ef411a0a316efa298d7be3c2b-Abstract-Datasets_
and_Benchmarks.html.

Tiantian Feng, Digbalay Bose, Tuo Zhang, Rajat Hebbar, Anil Ramakrishna, Rahul Gupta, Mi Zhang,
Salman Avestimehr, and Shrikanth Narayanan. Fedmultimodal: A benchmark for multimodal
federated learning. In Ambuj K. Singh, Yizhou Sun, Leman Akoglu, Dimitrios Gunopulos,
Xifeng Yan, Ravi Kumar, Fatma Ozcan, and Jieping Ye (eds.), Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA,
USA, August 6-10, 2023, pp. 4035–4045. ACM, 2023. doi: 10.1145/3580305.3599825. URL
https://doi.org/10.1145/3580305.3599825.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215–e220, 2000.

Shinichi Goto, Divyarajsinhji Solanki, Jenine E John, Ryuichiro Yagi, Max Homilius, Genki Ichihara,
Yoshinori Katsumata, Hanna K Gaggin, Yuji Itabashi, Calum A MacRae, et al. Multinational feder-
ated learning approach to train ecg and echocardiogram models for hypertrophic cardiomyopathy
detection. Circulation, 146(10):755–769, 2022.

Scott David Greenwald, Ramesh S Patil, and Roger G Mark. Improved detection and classification of
arrhythmias in noise-corrupted electrocardiograms using contextual information. IEEE, 1990.

Alexander Haak, Ben Ren, Harriet W Mulder, Gonzalo Vegas-Sanchez-Ferrero, Gerard van Burken,
Antonius FW van der Steen, Marijn van Stralen, Josien PW Pluim, Theo van Walsum, and
Johannes G Bosch. Improved segmentation of multiple cavities of the heart in wide-view 3-d
transesophageal echocardiograms. Ultrasound in medicine & biology, 41(7):1991–2000, 2015a.

Alexander Haak, Gonzalo Vegas-Sanchez-Ferrero, Harriet W Mulder, Ben Ren, Hortense A Kirişli,
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A BROADER IMPACT

Considering that this research exclusively involves the repurposing of existing open-source databases,
the associated risks are limited. However, it is important to acknowledge that all datasets utilized
in this study may be influenced by biases inherent in the original data collection processes, such as
those related to gender, age, or race. Unfortunately, identifying the sources of potential biases is
challenging because the data have been appropriately pseudonymized. Moreover, records such as
electrocardiograms and echocardiograms cannot be easily linked to specific demographic attributes
such as age, ethnicity, or gender by non-medical experts. Nonetheless, our work discloses certain
metadata of the datasets, including geographical origin, gender distribution, and age distribution. This
exposure may aid in identifying underlying geographical biases, which are anticipated in real-world
federated learning scenarios.

While prioritizing simplicity and utility, the current benchmark does not include privacy metrics.
Nevertheless, privacy remains critically important in the cardiovascular disease domain, and we
strongly encourage the research community to address these considerations. Thanks to the modularity
of FedCVD, we can add privacy components easily. Therefore, we anticipate that FedCVD will
address privacy concerns related to federated learning within the cardiovascular disease domain in
the future.

B DATASETS REPOSITORY AND MAINTENANCE PLANE

B.1 DATASET REPOSITORY.

The code is now available at https://anonymous.4open.science/r/ZYNTMBB-8848.
Considering licenses, users need to download the data manually through the original dataset link.

B.2 MAINTENANCE PLAN

We shall adhere to a maintenance plan to uphold the integrity of the codebase and ensure the confor-
mity of supplied datasets to requisite standards. In particular, this maintenance plan encompasses:

• Fixing bugs affecting the correctness of our code, whether identified by the community or
ourselves;

• Introducing additional variants of federated learning techniques, including alternative meth-
ods within the scope of cross-silo federated learning and federated semi-supervised learning
methodologies;

• Adding new functional modules, such as privacy protection components.

• Regarding datasets, reviewing potential updates of the datasets referenced in the FedCVD,
including but not limited to introducing new tasks or modalities;

C DESCRIPTION OF USING ALGORITHMS

Semi-supervised: Follows a pseudo-labeling approach by Lee et al. (2013). Specifically, the model
was initially trained exclusively on the labeled data for 10 rounds. Subsequently, pseudo-labels were
generated for the unlabeled data and incorporated into the training process for an additional 40 rounds.
During this phase, we dynamically adjusted the weight of the loss function for the unlabeled data
using a parameter α, ensuring a gradual and adaptive integration of pseudo-labeled data into the
training pipeline.

FedAvg: Implements a simple weighted average of model parameters from all participating clients
during aggregation, without additional constraints.

FedProx: Introduces a regularization term that penalizes the divergence between the local and global
models during training, mitigating the challenges posed by non-IID data distributions.

Scaffold: Utilizes control variates and server-side learning rate adjustments to reduce the impact of
non-IID client updates, enhancing convergence and stability.
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Table 6: Overview of the datasets, tasks, metrics and baseline models in FedCVD.
Dataset Fed-ECG Fed-ECHO
Task Type Multi-label Classification 2D Segmentation
Input 12-lead ECG Signal Echocardiogram
Prediction (y) Diagnostic Statement Cardiac Structure Mask
Data source SPH PTB-XL SXPH G12EC CAMUS ECHONET-DYNAMIC HMC-QU
Original Patient Size 24,666 18,885 45,152 UNKNOWN 500 10,030 109
Original Sample Size 25,770 21,837 45,152 10,344 1000 20,060 2,349
Preprocessing Label Alignment Resizing and Label Alignment
Patient Size 21,530 16,699 36,272 UNKNOWN 500 10,024 109
Sample Size 22,425 19,019 36,272 6,205 1000 20,048 2,349
Model ResNet U-net
Metrics Micro F1 / mAP DICE / Hausdorff distance
Input Dimension 12 × 5000 112 × 112

FedInit: Employs a relaxed, personalized initialization at the beginning of each local training phase,
addressing the disparity caused by non-IID data across clients.

Ditto: Implements personalized federated learning by adding a regularization term to minimize the
gap between the local personalized model and the global model, ensuring both global consistency
and local adaptability.

FedSM: Combines local models, a global model, and a model selector to achieve personalized
federated learning. The selector improves the accuracy and adaptability of the federated learning
process.

FedALA: Adaptively aggregates global and local models at selected layers to address client hetero-
geneity, improving training efficiency.

Fed-Consist: Initially trains a model with data from institutions with complete labels. For institu-
tions with incomplete labels, pseudo-labels are generated using the global model on both raw and
augmented data. Only instances with both predictions exceeding a confidence threshold are retained
as final pseudo-labels, utilizing a consistency-based semi-supervised approach.

FedPSL: Splits the model into a task-agnostic feature extractor and a task-dependent classifier. The
feature extractor is aggregated across all clients using a FedAvg-like approach, while the classifier is
aggregated only among clients sharing the corresponding label.

D FED-ECG

D.1 DESCRIPTION

Fed-ECG consists of four datasets: SPH, PTB-XL, SXPH, and G12EC. The order of leads of each
dataset is I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6. The overview of Fed-ECG is shown in
Table 6. Table 7 shows demographics information for four datasets in Fed-ECG.

SPH. The original Shandong Provincial Hospital (SPH) database contains 25,770 12-lead ECG
records from 24,666 patients, which were acquired from Shandong Provincial Hospital between
2019/08 and 2020/08. The record length is between 10 and 60 seconds. The sampling frequency
is 500 Hz. All ECG records are in full compliance with the AHA standard, which aims for the
standardization and interpretation of the electrocardiogram and consists of 44 primary statements
and 15 modifiers as per the standard. 46.04% records in this dataset contain ECG abnormalities.
Moreover, 14.45% records have multiple diagnostic statements.

PTB-XL. The original PTB-XL database contains 21,837 12-lead ECG records from 18,885
patients of 10 seconds length at the Physikalisch Technische Bundesanstalt (PTB) between October
1989 and June 1996. The original records are resampled to both 100 Hz and 500 Hz. For consistency,
we only use the records whose frequency is 500 Hz. Each data is annotated by up to two cardiologists
with the SCP-ECG standard.
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SXPH. This database contains 12-lead ECGs of 45,152 patients with a 500 Hz sampling rate
under the auspices of Chapman University, Shaoxing People’s Hospital (Shaoxing Hospital Zhejiang
University School of Medicine), and Ningbo First Hospital. The record length is 10 seconds. All
records are labeled by professional experts with the SNOMED-CT standard.

G12EC. This Georgia 12-lead ECG Challenge (G12EC) database is provided by the Phys-
ioNet/Computing in Cardiology Challenge 2020. Only 10,344 training data from this database
are open to the public. The record length is not longer than 10 seconds with a sample frequency of
500 Hz. All records are labeled with the SNOMED-CT standard as well.

Table 7: Demographics information for Fed-ECG.
Client Sex Dataset size Age Age Range

Client1 Female 9,502 48.73 ± 15.67 18 - 92
Male 12,923 50.35 ± 15.49 18 - 95

Client2 Female 8,930 59.80 ± 18.42 3 - 89
Male 10,089 58.40 ± 15.66 2 - 89

Client3 Female 14,830 58.36 ± 20.11 4 - 89
Male 21,442 60.28 ± 19.10 4 - 89

Client4 Female 2,668 61.37 ± 16.51 20 - 89
Male 3,537 61.35 ± 15.04 14 - 89

D.2 LICENSE AND ETHICS

All four databases are open-access. The SPH database is open access at Figshare, while the rest
databases are open access at PhysioNet under a Creative Commons Attribution 4.0 International
Public License.

The PTB-XL database was supported by the Bundesministerium für Bildung und Forschung (BMBF)
through the Berlin Big Data Center under Grant 01IS14013A and the Berlin Center for Machine
Learning under Grant 01IS18037I and by the EMPIR project 18HLT07 MedalCare. The EMPIR
initiative is cofunded by the European Union’s Horizon 2020 research and innovation program and
the EMPIR Participating States.

The institutional review board of Shaoxing People’s Hospital and Ningbo First Hospital of Zhejiang
University approved the study of the SXPH database, granted the waiver application to obtain
informed consent, and allowed the data to be shared publicly after de-identification. The requirement
for patient consent was waived.

D.3 DOWNLOAD AND PREPROCESSING

D.3.1 DOWNLOAD

The four datasets can be downloaded using the URLs below:

1. SPH: https://springernature.figshare.com/collections/A_
large-scale_multi-label_12-lead_electrocardiogram_database_
with_standardized_diagnostic_statements/5779802/1

2. PTB-XL: https://physionet.org/content/ptb-xl/1.0.3/
3. SXPH: https://physionet.org/content/ecg-arrhythmia/1.0.0/
4. G12EC: https://physionet.org/content/challenge-2020/1.0.2/

D.3.2 PREPROCESSING

Raw 12-lead ECG signals have varying sequence lengths and raw 12-lead ECG signals have varying
sequence lengths and annotated standards which must be standardized before FL training. Therefore,
we first set a signal length to 10 seconds. We pad the signal with edge value at the edge for those
whose length is shorter than 10 seconds and cut off the signal at 10 seconds for those whose length is
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Table 8: Label relationship between original label and ours.
Original Labelours SPH PTB-XL SXPH G12EC

NORM (Normal) Normal Normal - -
STACH (Sinus tachycardia) Sinus tachycardia Sinus tachycardia Sinus tachycardia 427084000
SBRAD (Sinus bradycardia) Sinus bradycardia Sinus bradycardia Sinus bradycardia 426177001
SARRH (Sinus arrhythmia) Sinus arrhythmia Sinus arrhythmia - 427393009

PAC (Atrial premature complex(es)) Atrial premature complex(es) Atrial premature complex - -
AFIB (Atrial fibrillation) Atrial fibrillation Atrial fibrillation Atrial fibrillation 164889003

AFLT (Atrial flutter) Atrial flutter Atrial flutter Atrial flutter 164890007
SVTAC (Supraventricular tachycardia) - Supraventricular tachycardia Supraventricular tachycardia 426761007
PVC (Ventricular premature complex) Ventricular premature complex(es) Ventricular premature complex - 164884008

1AVB (First degree AV block) - First degree AV block 1 degree atrioventricular block 270492004
Second-degree AV block, Mobitz type I (Wenckebach) 2 degree atrioventricular block(Type one) 54016002
Second-degree AV block, Mobitz type II 2 degree atrioventricular block(Type two) 28189009
2:1 AV block 164903001
AV block, varying conduction 195042002

2AVB (Second degree AV block)

AV block, advanced (high-grade)

Second degree AV block
2 degree atrioventricular block

284941000119107
3AVB (Third degree AV block) AV block, complete (third-degree) Third degree AV block 3 degree atrioventricular block 27885002

Left anterior fascicular block Left anterior fascicular block 445118002
Left posterior fascicular block Left posterior fascicular block 445211001LBBB (Left bundle branch block)
Left bundle-branch block Complete left bundle branch block

Left bundle branch block
164909002

Incomplete right bundle-branch block Incomplete right bundle branch block 713426002
59118001RBBB (Right bundle branch block) Right bundle-branch block Complete right bundle branch block Right bundle branch block
164907000

LAO/LAE (Left atrial overload/enlargement) Left atrial enlargement Left atrial overload/enlargement - 67741000119109
LVH (Left ventricular hypertrophy) Left ventricular hypertrophy Left ventricular hypertrophy - 164873001

RVH (Right ventricular hypertrophy) Right ventricular hypertrophy Right ventricular hypertrophy - -
AMI (Anterior myocardial infarction) Anterior MI Anterior myocardial infarction - -
IMI (Inferior myocardial infarction) Inferior MI Inferior myocardial infarction - -

ASMI (Anteroseptal myocardial infarction) Anteroseptal MI Anteroseptal myocardial infarction - -

longer than 10 seconds. Next, we only save the records whose label occurs in at least two databases.
Finally, we align the labels of records in different databases. The relationship between the original
label and our label is shown in Table8.

D.4 BASELINE, LOSS FUNCTION AND EVALUATION

Baseline Model. We implement a ResNet1d model with 34 layers. The final layer output is passed
through a sigmoid function to encode the probability that each label corresponds to one 12-lead ECG
signal.

Loss function. The model was directly trained for the Binary CrossEntropy Loss (BCELoss),
defined as:

BCE(y, ŷ) = −[

n∑
i=1

yi log(ŷi) +

n∑
i=1

(1− yi) log(1− ŷi)] (1)

Evaluation Metrics. In multi-label classification for Fed-ECG, the micro F1 score is used as the
main metric to evaluate the performance of the model. Given N labels, the micro-precision (Pmicro)
and micro-recall (Rmicro) are calculated as Pmicro =

∑N
i=1 TPi∑N

i=1(TPi+FPi)
and Rmicro =

∑N
i=1 TPi∑N

i=1(TPi+FNi)
,

where TPi is the number of true positives for label i,FPi is the number of false positives for label
i,FNi is the number of false negatives for label i. The micro F1 score (F1micro) is then calculated as:

F1micro =
2 · Pmicro ·Rmicro

Pmicro +Rmicro
(2)

For Fed-ECG’s Multi-Label Classification task, the Mean Average Precision (mAP) is adopted to
measure the classification performance across all labels (including long-tailed labels), calculated by
averaging the average precision (AP) for each label, defined as:

mAP =
1

L

L∑
i=1

n∑
k=1

Pi(k)∆ri(k) (3)

where L is the total number of labels, and APi is the average precision for the i-th label, Pi(k) is the
precision for label i at the k-th threshold, and ∆ri(k) is the change in its recall at the k-th threshold.

D.5 TRAINING DETAIL

Optimization parameters. We optimize the ResNet1d using SGD optimizer, with a batch size of
32. We train our model for 50 epochs on one NVIDIA A100-PCIE-40GB. To ensure robustness and
statistical reliability, we repeat each experiment five times and report the mean and standard deviation
of the results.
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Hyperparameter Search For centralized and local model training, we first conduct a search for
optimal learning rates from the set {1e-5, 1e-4, 1e-3, 1e-2, 1e-1} during centralized model training.
The learning rate that yields the best micro-F1 score is then used for local model training. For the
federated learning strategies, we employ the following hyperparameter grid:

• For clients’ learning rates (all strategies): {1e-5, 1e-4, 1e-3, 1e-2, 1e-1}.

• For server size learning rate (Scaffold strategy only): {1e-2, 1e-1, 1.0}.

• For FedProx and Ditto strategies, the parameter µ is selected from {1e-2, 1e-1, 1.0}.

• For FedInit, the parameter β is chosen from {1e-1, 1e-2, 1e-3}.

• For FedSM, the parameters γ and λ are set to values from {0, 0.1, 0.7, 0.9} and {0.1, 0.3,
0.5, 0.7, 0.9}, respectively.

• For FedALA, the parameters layer index, η, threshold, and num per loss are fixed at 1, 1.0,
0.1, and 10, respectively, while rand percent is selected from {5, 50, 80}.

Table 9: Hyperparameters used for the Fed-ECG with ResNet model.
Fed-ECG

Methods learning rate optimizer learning rate server mu beta lambda gamma rand percent
Central. 0.1 torch.optim.SGD - - - - - -
FedAvg 0.1 torch.optim.SGD - - - - - -
FedProx 0.1 torch.optim.SGD - 0.01 - - - -
Scaffold 0.1 torch.optim.SGD 1.0 - - - - -
FedInit 0.1 torch.optim.SGD 1.0 - 0.01 - - -
Ditto 0.1 torch.optim.SGD - 0.01 - - - -

FedSM 0.1 torch.optim.SGD 1.0 - - 0.1 0 -
FedALA 0.1 torch.optim.SGD 1.0 - - - - 80

Table 10: Hyperparameters used for the Fed-ECG with Transformer model.
Fed-ECG

Methods learning rate optimizer learning rate server mu beta lambda gamma rand percent
Central. 0.0001 torch.optim.Adam - - - - - -
FedAvg 0.0001 torch.optim.Adam - - - - - -
FedProx - torch.optim.Adam - - - - - -
Scaffold 0.0001 torch.optim.Adam 1.0 - - - - -
FedInit 0.0001 torch.optim.Adam 1.0 - 0.1 - - -
Ditto - torch.optim.Adam - - - - - -

FedSM 0.0001 torch.optim.Adam 1.0 - - 0.3 0 -
FedALA 0.0001 torch.optim.Adam 1.0 - - - - 5.0

Non-IID partition. For the non-IID partition, we first pool the training data from the four clients.
Then, we cluster the samples into 10 categories based on the cosine similarity and order them
according to the number of samples contained in each category. Next, the sorted samples are divided
into 32 shards. finally, 8 random shards are distributed to one client. The label distribution of each
client with the non-IID partition is shown in Figure 5.

D.6 SUPPLEMENTARY EXPERIMENT RESULTS

We provide additional evaluation metrics here. Table 11 presents an extensive array of evaluation
metrics for various federated learning approaches applied to Fed-ECG. The Micro F1-Score (Mi-F1)
and Hamming Loss (HL) serve as indicators of the overall performance, given their insensitivity to
long-tail distributions. In contrast, the mean Average Precision score (mAP) provides insight into the
average performance across individual labels. In addition, Table 12 presents the F1 score for each
label, which more clearly demonstrates the impact of the long-tail distribution on each label.

Result (click ”Generate” to refresh) Copy to clipboard

We conduct pairwise t-tests on the performance metrics mAP and Micro-F1, with the resulting
p-values presented in Figure 13. The findings reveal the following:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 5: Label non-IID of the Fed-ECG dataset with the artificially non-IID partition, shown as the
variation in the number of each label (right axis) across different clients (left axis).

Table 11: The performance of different FL methods on Fed-ECG, with Mi-F1, mAP, and HL
representing Micro F1-Score, mean Average Precision score, and Hamming Loss, respectively. All
metrics are present in percentage (%). The best results for each configuration are highlighted in bold,
while the second-best results are underlined.

LOCAL GLOBAL
Methods SPH PTB-XL SXPH G12EC

Mi-F1↑ mAP↑ HL↓ Mi-F1↑ mAP↑ HL↓ Mi-F1↑ mAP↑ HL↓ Mi-F1↑ mAP↑ HL↓ Mi-F1↑ mAP↑ HL↓

SPH 85.8
±1.9

58.1
±2.6

1.5
± 0.2

52.7
±3.4

37.8
±2.2

5.8
± 0.4

61.5
±1.2

19.8
±1.2

4.4
± 0.1

49.8
±4.2

26.7
±3.0

6.4
± 0.6

64.3
±2.1

32.3
±2.0

4.1
± 0.2

PTB-XL 69.9
±50.0

38.9
±30.0

3.2
± 0.1

76.8
±90.0

55.7
±50.0

3.1
± 0.1

26.3
±80.0

22.7
±30.0

9.0
± 0.2

42.2
±80.0

31.6
±60.0

8.1
± 0.1

50.4
±30.0

35.9
±70.0

6.1
± 0.1

SXPH 22.7
±0.2

29.8
±0.7

8.2
± 0.0

17.0
±0.4

27.2
±0.3

10.3
± 0.1

88.1
±0.2

37.7
±0.4

1.3
± 0.0

56.9
±0.4

29.4
±0.6

5.4
± 0.1

51.5
±0.2

32.7
±0.2

5.5
± 0.0

G12EC 23.7
±2.0

31.7
±2.7

8.4
± 0.9

24.7
±3.3

30.5
±1.5

10.1
± 1.2

61.6
±5.5

25.3
±2.1

5.0
± 1.2

72.3
±10.2

38.5
±2.8

4.1
± 1.8

44.7
±4.3

29.3
±2.5

7.0
± 1.1

FedAvg 69.0
±10.1

58.5
±1.2

3.4
± 1.1

50.3
±5.3

54.4
±0.5

6.2
± 0.7

77.6
±0.7

37.2
±0.3

2.5
± 0.1

66.3
±0.9

39.5
±0.5

4.2
± 0.1

67.9
±3.8

50.8
±0.4

3.7
± 0.5

FedProx 74.0
±7.5

60.3
±2.9

2.9
± 1.0

55.6
±2.7

56.4
±0.6

5.5
± 0.5

73.2
±1.0

36.0
±0.8

3.0
± 0.1

70.2
±2.3

43.8
±1.8

3.8
± 0.3

68.8
±2.6

52.3
±0.9

3.6
± 0.4

Scaffold 77.5
±2.6

58.0
±1.2

2.3
± 0.2

56.9
±1.7

55.9
±0.7

5.2
± 0.2

73.3
±1.0

36.2
±0.6

3.0
± 0.1

70.7
±2.9

42.7
±1.1

3.7
± 0.3

70.1
±0.8

52.1
±0.7

3.4
± 0.1

FedInit 73.0
± 6.6

58.2
± 0.7

3.1
± 1.0

54.1
± 5.2

55.6
± 1.3

5.9
± 0.9

73.5
± 0.5

36.6
± 0.1

3.0
± 0.1

67.8
± 2.0

41.5
± 1.0

4.1
± 0.3

68.1
± 3.0

51.5
± 0.9

3.8
± 0.5

Ditto 82.8
±4.4

63.1
±4.2

1.8
± 0.4

74.8
±1.4

58.3
±0.6

3.5
± 0.2

86.5
±1.5

38.1
±0.6

1.5
± 0.2

73.4
±6.7

42.2
±4.0

3.6
± 0.9

68.1
±2.9

48.7
±1.4

3.6
± 0.3

FedSM 77.2
± 7.2

58.8
± 1.3

2.3
± 0.6

59.1
± 4.5

56.4
± 1.4

5.1
± 0.5

69.8
± 0.8

35.0
± 0.5

3.5
± 0.1

67.7
± 3.6

42.9
± 2.4

4.1
± 0.4

68.9
± 2.5

51.2
± 0.7

3.6
± 0.3

FedALA 84.4
± 4.0

62.0
± 7.0

1.6
± 0.4

71.7
± 5.7

57.1
± 2.2

3.8
± 0.6

88.2
± 0.1

37.4
± 0.2

1.3
± 0.0

66.7
± 5.9

41.2
± 2.3

4.4
± 0.7

67.8
± 1.9

50.8
± 1.3

3.7
± 0.3

Central. 84.9
±0.5

54.8
±0.5

1.6
± 0.1

71.4
±5.0

55.2
±2.9

3.8
± 0.6

84.1
±1.6

36.5
±1.1

1.7
± 0.2

72.2
±3.7

41.5
±1.3

3.6
± 0.3

80.0
±2.1

63.2
±2.8

2.3
± 0.2

Table 12: The performance of different FL algorithms (F1 %) on each label of Fed-ECG. The best
results for each label are marked in bold.

label client1 client2 client3 client4 fedavg fedprox scaffold ditto fedinit fedsm fedala pooled
NORM 79.8 ± 0.6 62.6 ± 0.5 0 0 71.9 ± 12.5 76.8 ± 4.5 77.4 ± 3.2 77.2 ± 2.8 73.5 ± 7.4 75.5 ± 8.2 72.4 ± 5.4 88.6 ± 2.3
SBRAD 88.0 ± 0.8 20.3 ± 2.0 88.2 ± 0.4 81.2 ± 11.5 90.4 ± 0.3 90.6 ± 0.6 90.4 ± 0.7 90.9 ± 0.1 90.8 ± 0.3 90.6 ± 0.3 90.7 ± 0.1 92.8 ± 2.9
STACH 87.9 ± 2.2 87.9 ± 1.4 90.5 ± 0.3 85.3 ± 4.8 95.2 ± 0.4 95.4 ± 0.5 95.3 ± 0.6 95.2 ± 0.3 94.9 ± 0.6 95.5 ± 0.5 94.8 ± 0.4 95.7 ± 0.8
AFLT 13.9 ± 0.9 9.7 ± 5.4 73.8 ± 0.4 18.2 ± 5.1 47.7 ± 3.0 26.1 ± 3.5 26.6 ± 2.6 27.0 ± 3.0 27.3 ± 2.7 19.6 ± 1.5 45.2 ± 4.0 73.2 ± 4.2
RBBB 60.6 ± 1.1 63.7 ± 0.9 40.3 ± 3.8 58.1 ± 9.5 65.0 ± 1.4 67.0 ± 0.8 66.8 ± 1.3 66.5 ± 0.7 66.5 ± 1.2 66.4 ± 1.4 65.3 ± 1.7 70.1 ± 1.5
SARRH 35.5 ± 4.2 2.6 ± 2.2 21.7 ± 0.2 17.2 ± 2.1 36.7 ± 5.8 40.0 ± 7.1 46.3 ± 1.7 39.6 ± 7.2 42.6 ± 6.1 46.0 ± 4.4 36.0 ± 4.5 59.8 ± 3.5
AFIB 44.7 ± 2.1 47.7 ± 0.6 13.7 ± 1.3 46.9 ± 0.9 52.2 ± 0.3 51.5 ± 0.9 52.2 ± 0.7 51.1 ± 1.1 51.1 ± 0.9 50.2 ± 0.9 52.4 ± 0.4 58.2 ± 1.1
LVH 10.4 ± 10.0 43.6 ± 0.6 21.6 ± 2.0 26.1 ± 5.8 26.3 ± 8.1 36.5 ± 10.0 36.3 ± 10.8 28.6 ± 12.6 10.9 ± 7.0 27.6 ± 15.4 29.0 ± 11.3 45.7 ± 17.3
LBBB 47.5 ± 14.3 57.0 ± 1.9 52.1 ± 1.8 47.8 ± 4.8 67.4 ± 1.1 66.9 ± 1.1 67.5 ± 1.0 66.8 ± 2.7 67.5 ± 1.1 66.6 ± 1.3 67.6 ± 0.7 68.7 ± 4.3
IMI 26.2 ± 3.5 44.8 ± 1.3 0 0 24.5 ± 3.4 24.3 ± 4.6 25.1 ± 6.3 20.9 ± 7.3 19.1 ± 4.8 32.5 ± 3.5 25.2 ± 2.7 60.6 ± 5.3
1AVB 0 50.5 ± 4.1 67.2 ± 1.2 56.5 ± 10.1 64.6 ± 2.1 66.3 ± 1.0 66.7 ± 1.7 65.3 ± 0.9 60.8 ± 4.9 60.6 ± 4.8 64.0 ± 2.1 66.6 ± 3.1
ASMI 19.0 ± 5.6 41.4 ± 2.9 0 0 17.1 ± 5.7 24.4 ± 6.7 25.6 ± 4.4 21.4 ± 8.0 29.9 ± 10.3 35.4 ± 15.9 25.6 ± 7.0 68.2 ± 3.1
PVC 67.8 ± 2.2 62.4 ± 1.3 0 1.0 ± 1.0 53.4 ± 2.2 64.3 ± 1.4 63.6 ± 3.4 57.3 ± 4.8 56.7 ± 7.7 64.5 ± 6.0 51.7 ± 3.9 78.6 ± 3.5
LAO/LAE 0.6 ± 0.6 9.0 ± 2.3 0 36.2 ± 6.6 2.3 ± 1.6 17.3 ± 12.5 18.5 ± 10.3 5.4 ± 3.1 3.0 ± 4.2 18.5 ± 3.7 1.4 ± 1.3 34.6 ± 17.2
PAC 35.6 ± 2.2 4.4 ± 1.5 0 0 22.5 ± 5.6 25.0 ± 3.3 26.5 ± 4.5 25.0 ± 5.3 18.5 ± 3.2 25.0 ± 5.7 18.8 ± 5.4 48.0 ± 2.7
SVTAC 0 13.3 ± 6.8 78.4 ± 1.7 30.0 ± 9.2 79.1 ± 1.8 74.2 ± 9.5 76.5 ± 0.9 77.1 ± 1.2 75.9 ± 1.2 73.3 ± 4.3 77.6 ± 2.8 78.7 ± 0.8
AMI 5.3 ± 1.7 9.6 ± 2.6 0 0 0 0 0 0 0.4 ± 0.9 0 0 12.1 ± 9.5
2AVB 5.2 ± 1.4 0 6.1 ± 3.7 0 10.0 ± 1.9 8.6 ± 2.1 10.0 ± 4.3 9.0 ± 2.4 6.8 ± 2.6 5.8 ± 3.7 9.7 ± 1.6 12.7 ± 5.8
RVH 0 14.6 ± 1.6 0 0 0 0 0 0 0 0 0 10.2 ± 13.4
3AVB 13.3 ± 8.4 1.7 ± 3.5 40.2 ± 6.9 0 38.1 ± 5.0 30.8 ± 2.6 33.8 ± 4.9 29.7 ± 2.7 23.8 ± 5.8 25.8 ± 3.6 38.9 ± 5.8 35.6 ± 5.9
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Table 13: The p-values of the pairwise t-tests on the performance, mAP (left) and Micro-F1 (right), of
different FL algorithms on Fed-ECG, where those with significant performance differences detected
are shown in bold.

FedProx Scaffold FedInit Ditto FedSM FedALA
FedAvg 0.009 0.016 0.201 0.048 0.462 0.983
FedProx - 0.704 0.373 0.011 0.063 0.056
Scaffold - - 0.452 0.005 0.069 0.017
FedInit - - - 0.058 0.646 0.531
Ditto - - - - 0.035 0.026
FedSM - - - - - 0.535

FedProx Scaffold FedInit Ditto FedSM FedALA
FedAvg 0.73 0.27 0.94 0.93 0.71 0.99
FedProx - 0.26 0.74 0.74 0.97 0.59
Scaffold - - 0.23 0.29 0.42 0.12
FedInit - - - 0.98 0.63 0.91
Ditto - - - - 0.53 0.88
FedSM - - - - - 0.63

Table 14: The performances of different FL methods on Fed-ECG with Transformer model, with
Mi-F1 and mAP representing Micro F1-Score and mean average precision score, respectively. Both
metrics are present in percentage (%).The best results for each configuration are highlighted in bold,
while the second-best results are underlined.

LOCAL GLOBAL
Methods SPH PTB-XL SXPH G12EC

Mi-F1↑ mAP↑ Mi-F1↑ mAP↑ Mi-F1↑ mAP↑ Mi-F1↑ mAP↑ Mi-F1↑ mAP↑
SPH 86.4 ± 0.4 52.8 ± 3.3 53.6 ± 0.7 36.6 ± 0.6 61.0 ± 1.4 20.7 ± 0.1 51.9 ± 1.0 27.5 ± 1.8 64.7 ± 0.7 32.9 ± 0.9
PTB-XL 69.3 ± 0.4 35.0 ± 0.9 73.7 ± 0.7 48.4 ± 1.4 26.6 ± 2.5 18.5 ± 1.5 40.4 ± 1.2 26.5 ± 0.5 49.3 ± 1.2 31.2 ± 1.6
SXPH 24.4 ± 1.0 26.7 ± 1.6 19.2 ± 1.2 26.1 ± 1.0 86.9 ± 0.3 35.6 ± 0.6 58.6 ± 1.0 27.7 ± 0.8 52.2 ± 0.6 31.2 ± 0.7
G12EC 27.3 ± 2.1 27.0 ± 1.4 27.1 ± 1.4 28.4 ± 1.0 67.2 ± 2.5 24.9 ± 1.1 76.5 ± 1.6 37.4 ± 0.9 49.0 ± 2.0 28.1 ± 1.0
FedAvg 85.6 ± 0.5 56.7 ± 1.0 58.7 ± 1.0 55.0 ± 0.4 77.2 ± 0.8 36.7 ± 0.5 68.6 ± 0.8 39.0 ± 0.6 74.1 ± 0.4 52.9 ± 1.0
FedProx - - - - - - - - - -
Scaffold 86.3 ± 0.5 58.8 ± 1.2 60.7 ± 0.5 57.6 ± 1.4 74.0 ± 0.6 35.8 ± 0.5 71.7 ± 0.4 42.5 ± 1.0 73.6 ± 0.1 53.8 ± 0.2
FedInit 86.4 ± 0.3 57.8 ± 1.9 60.6 ± 0.3 56.8 ± 1.0 74.2 ± 0.8 35.9 ± 0.5 71.5 ± 0.9 42.6 ± 2.0 73.7 ± 0.3 53.7 ± 0.5
Ditto - - - - - - - - - -
FedSM 85.9 ± 0.1 58.4 ± 1.4 58.5 ± 0.2 54.9 ± 0.7 77.3 ± 0.8 36.7 ± 0.2 68.7 ± 0.6 39.1 ± 1.4 74.2 ± 0.4 53.0 ± 0.7
FedALA 82.1 ± 11.2 47.0 ± 21.0 61.3 ± 30.7 46.5 ± 19.8 71.0 ± 35.5 30.8 ± 12.5 63.6 ± 31.8 36.7 ± 15.1 73.4 ± 0.8 51.9 ± 2.3
Centralized 85.8 ± 0.2 52.2 ± 0.8 74.8 ± 0.4 53.9 ± 0.8 85.3 ± 0.8 35.0 ± 0.6 73.5 ± 0.4 41.7 ± 1.7 81.6 ± 0.3 61.5 ± 0.3

• For Micro-F1, the t-test results indicate that the differences among federated learning
algorithms are not statistically significant. This suggests that their performance in this
real-world scenario is largely comparable and continues to lag behind centralized training.

• In contrast, the t-tests for mAP reveal significant differences between algorithms designed
for heterogeneous data, such as FedProx and Scaffold, and simpler algorithms like FedAvg.
These findings align with our earlier observations on the challenges imposed by long-tailed
distributions.

To further evaluate model performance, we conducted additional experiments using Transformer-
based architectures (Natarajan et al., 2020), with results presented in Table 14. Our findings reveal
that Transformer-based models outperformed ResNet in specific federated learning algorithms,
demonstrating their potential advantages. However, we also observed significant instability in
certain scenarios. For example, in regularization-based algorithms such as FedProx and Ditto,
the Transformer model frequently failed to converge. Similar instability was evident in adaptive
algorithms like FedSM and FedALA, where some random seeds resulted in non-convergence. These
challenges are consistent with prior findings, such as those reported in Flamby (du Terrail et al.,
2022), which highlighted difficulties in employing advanced architectures like Transformers within
federated learning frameworks.

E FED-ECHO

E.1 DESCRIPTION

Fed-ECHO consists of three datasets: CAMUS, ECHONET-DYNAMIC, and HMC-QU. The
overview of Fed-ECHO is shown in Table 6.

CAMUS. This database consists of clinical exams from 500 patients, acquired at the University
Hospital of St Etienne (France). All images are labeled with three areas: endocardium of the left
ventricle (LVEndo), epicardium of the left ventricle (LVEpi), and left atrium wall (LA). The image
size varies from 584× 354 to 1945× 1181.
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ECHONET-DYNAMIC. This database contains 10,0230 echocardiogram videos where two frames
are annotated with only LVEndo area. All frames are resized to 112× 112.

HMC-QU. This database contains 109 echocardiogram videos collected at the Hamad Medical
Corporation Hospital in Qatar. The frames of one cardiac cycle in each video are annotated with
LVEpi area. The video frame size varies from 422× 636 to 768× 1024 while all labels are resized
to 224× 224.

E.2 LICENSE AND ETHICS

Both CAMUS and HMC-QU datasets are open-access. HMC-QU database requires the user to have a
Kaggle account, while the ECHONET-DYNAMIC database requires the user to have a Stanford AIMI
account and to accept its agreement. It is licensed under the Stanford University Dataset Research
Use Agreement.

E.3 DOWNLOAD AND PREPROCESSING

E.3.1 DOWNLOAD

The three datasets can be downloaded using the URLs below:

1. CAMUS: https://humanheart-project.creatis.insa-lyon.fr/
database/#collection/6373703d73e9f0047faa1bc8

2. ECHONET-DYNAMIC: https://echonet.github.io/dynamic/index.
html#access

3. HMC-QU: https://www.kaggle.com/datasets/aysendegerli/
hmcqu-dataset/data

E.3.2 PREPROCESSING

Raw echocardiograms have varying frame sizes, modalities, and mask labels, which must be stan-
dardized before training. Therefore, as a first step, we extract frames that are annotated and store
them as images. We then resize them to a common (112× 112) shape. Finally, we align the labels of
records in different databases. We use 1, 2, 3 representing LVEndo, LVEpi and LA respectively. The
samples of Fed-ECHO are shown in Figure6.

(a) Sample from Institution 1. (b) Sample from Institution 2. (c) ample from Institution 3.

Figure 6: Echocardiogram of each institution in Fed-ECHO. LVEndo, LVEpi and LA are shown in
red, green and blue respectively.

E.4 BASELINE, LOSS FUNCTION AND EVALUATION

Baseline Model. A U-net architecture is employed in this study, utilizing echocardiographic images
as input to forecast masks delineating four distinct cardiac regions. The U-net model represents a
conventional convolutional neural network design frequently deployed in the realm of biomedical
image segmentation endeavors. Its application is tailored towards semantic segmentation, a process
wherein individual pixels within an image are categorized based on semantic content.

23

https://humanheart-project.creatis.insa-lyon.fr/database/#collection/6373703d73e9f0047faa1bc8
https://humanheart-project.creatis.insa-lyon.fr/database/#collection/6373703d73e9f0047faa1bc8
https://echonet.github.io/dynamic/index.html#access
https://echonet.github.io/dynamic/index.html#access
https://www.kaggle.com/datasets/aysendegerli/hmcqu-dataset/data
https://www.kaggle.com/datasets/aysendegerli/hmcqu-dataset/data


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Loss function. We use a CrossEntropy Loss (CELoss) for training. Note that, for centralized
supervised learning and client training in FedAvg, FedProx, Scaffold, and Ditto strategies, we ignore
label with value 0 when calculating CELoss for data from client 2 or 3, since region with label 0 may
not be true ground truth in these clients.

Evaluation Metrics. We use the Dice similarity index and 2D Hausdorff distance (dH ) to measure
the accuracy of the segmentation output. Dice index is calculated as:

DICE(y, ŷ) =
2
∑n

i=1 yiŷi∑n
i=1 yi +

∑n
i=1 ŷi

(4)

The Hausdorff distance is calculated as:

dH(y, ŷ) = max{d(y, ŷ), d(ŷ,y)}, (5)

where d(y, ŷ) represents the minimum distance among points at the edge of y and points at the edge
of ŷ.

Note that, to better measure the model segmentation performance, for clients 2, and 3, we select only
200 labeled frames for testing.

E.5 TRAINING DETAIL

Optimization parameters. We optimize our model using the SGD optimizer, with a batch size of
32. We train our model for 50 epochs on one NVIDIA A100-PCIE-40GB. To ensure robustness and
statistical reliability, we repeat each experiment five times and report the mean and standard deviation
of the results.

Hyperparameter Search For centralized and local model training, we first explore learning rates
from the set {1e-4, 1e-3, 1e-2, 1e-1.5, 1e-1} during centralized model training. The learning rate
that achieves the best Dice index is then utilized for local model training. For the federated learning
strategies, we employ the following hyperparameter grid:

• For clients’ learning rates (all strategies except Fed-Consist): {1e-4, 1e-3, 1e-2, 1e-1.5,
1e-1}.

• For server size learning rate (Scaffold strategy only): {1e-2, 1e-1, 1.0}.

• For FedProx and Ditto strategies, the parameter µ is selected from {1e-2, 1e-1, 1.0}.

• For FedInit, the parameter β is chosen from {1e-1, 1e-2, 1e-3}.

• For FedSM, the parameters γ and λ are set to {0, 0.1, 0.7, 0.9} and {0.1, 0.3, 0.5, 0.7, 0.9},
respectively.

• For FedALA, the parameters layer index, η, threshold, and num per loss are fixed at 2, 1.0,
0.1, and 10, respectively, while rand percent is chosen from {5, 50, 80}.

For Fed-Consist, we introduce Gaussian noise with a variance of 0.1 as augmentation. The learning
rates for labeled clients are searched from {1e-2, 1e-3, 1e-4}, while those for unlabeled clients are
explored within {1e-3, 1e-4, 1e-5, 5e-6, 1e-6}. The parameter τ is varied from {0.5, 0.7, 0.9}.

Additionally, for FedPSL, we further search the parameters α and β from {1e-0.5, 1e-1, 1e-1.5,
1e-2, 1e-3} and {1e-1, 1e-1.5, 1e-2, 1e-3, 1e-4, 1e-5}, respectively. The optimal values found are
α = 1e− 1.5 and β = 1e− 5.

E.6 SUPPLEMENTARY EXPERIMENTS

We conducted pairwise t-tests on the DICE and Hausdorff distance (dH ) metrics, with the resulting
p-values presented in Table 17. The t-test results reveal significant differences between advanced
algorithms designed to address heterogeneity or semi-supervised scenarios (e.g., FedConsist) and
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Table 15: Hyperparameters used for the Fed-ECHO with Unet model.
Fed-ECHO

Methods learning rate optimizer learning rate server mu beta lambda gamma rand percent τ
Central.(sup) 0.1 torch.optim.SGD - - - - - - -
Central.(ssup) 0.1 torch.optim.SGD - - - - - - -

FedAvg 0.1 torch.optim.SGD - - - - - - -
FedProx 0.1 torch.optim.SGD - 0.1 - - - - -
Scaffold 0.1 torch.optim.SGD 1.0 - - - - - -
FedInit 0.1 torch.optim.SGD 1.0 - 1e-2 - - - -
Ditto 0.1 torch.optim.SGD - 0.1 - - - - -

FedSM 0.1 torch.optim.SGD 1.0 - - 0.1 0 - -
FedALA 0.1 torch.optim.SGD 1.0 - - - - 5 -
FedPSL 0.1 torch.optim.SGD 1.0 - 1e-5 - - - -

Fed-Consist 0.0001(labeled client)
1e-6(unlabeled client) torch.optim.SGD - - - - - - 0.9

Table 16: Hyperparameters used for the Fed-ECHO with Unetr model.
Fed-ECHO

Methods learning rate optimizer learning rate server mu beta lambda gamma rand percent τ
Central.(sup) 0.00001 torch.optim.Adam - - - - - - -
Central.(ssup) 0.0003162 torch.optim.Adam - - - - - - -

FedAvg 0.00003162 torch.optim.Adam - - - - - - -
FedProx 0.0001 torch.optim.Adam - 0.01 - - - - -
Scaffold 0.0001 torch.optim.Adam 1.0 - - - - - -
FedInit 0.0001 torch.optim.Adam 1.0 - 0.001 - - - -
Ditto 0.0001 torch.optim.Adam - 1.0 - - - - -

FedSM 0.0001 torch.optim.Adam 1.0 - - 0.5 0.1 - -
FedALA 0.0001 torch.optim.Adam 1.0 - - - - 5 -
FedPSL 0.0001 torch.optim.Adam 1.0 - 0.0001 - - - -

Fed-Consist 0.00003162(labeled client)
1e-08(unlabeled client) torch.optim.Adam - - - - - - 0.9

Table 17: The p-values of the pairwise t-tests on the performance, DICE (left) and dH (right), of
different FL algorithms on Fed-ECHO, where those with significant performance differences detected
are shown in bold. Here, FedCon stands for Fed-Consist.

FedProx Scaffold FedInit Ditto FedSM FedALA FedCon FedPSL
FedAvg 0.02125 0.00047 0.00035 0.00034 0.00102 0.54492 0.00059 0.05971
FedProx - 0.45721 0.42670 0.56817 0.52675 0.02464 0.84424 0.04052
Scaffold - - 0.09345 0.40242 0.33671 0.00002 0.00104 0.00005
FedInit - - - 0.23269 0.23387 0.00002 0.00014 0.00002
Ditto - - - - 0.95874 0.00005 0.07293 0.00011
FedSM - - - - - 0.00014 0.14410 0.00045
FedALA - - - - - - 0.00001 0.05358
FedCon - - - - - - - 0.00003

FedProx Scaffold FedInit Ditto FedSM FedALA FedCon FedPSL
FedAvg 0.02125 0.00047 0.00035 0.00034 0.00102 0.54492 0.00059 0.05971
FedProx - 0.45721 0.42670 0.56817 0.52675 0.02464 0.84424 0.04052
Scaffold - - 0.09345 0.40242 0.33671 0.00002 0.00104 0.00005
FedInit - - - 0.23269 0.23387 0.00002 0.00014 0.00002
Ditto - - - - 0.95874 0.00005 0.07293 0.00011
FedSM - - - - - 0.00014 0.14410 0.00045
FedALA - - - - - - 0.00001 0.05358
FedCon - - - - - - - 0.00003
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Table 18: The performances of different FL methods on Fed-ECHO with UNETR, with DICE and dH
representing DICE index and Hausdorff distance respectively.The best results for each configuration
are highlighted in bold, while the second-best results are underlined.

LOCAL GLOBAL
Mthods CAMUS ECHONET-DYNAMIC HMC-QU

Dice↑ dH↓ Dice↑ dH↓ Dice↑ dH↓ Dice↑ dH↓
CAMUS 85.8 ± 0.2 7.101 ± 0.282 56.1 ± 3.2 36.151 ± 2.698 47.1 ± 5.6 39.005 ± 8.338 63.0 ± 2.9 27.419 ± 3.268
ECHONET-DYNAMIC 26.8 ± 1.0 70.407 ± 0.460 91.6 ± 0.1 4.745 ± 0.079 - - 39.5 ± 0.3 58.384 ± 0.150
HMC-QU 17.2 ± 0.4 76.361 ± 0.522 - - 93.5 ± 0.3 5.010 ± 1.026 36.9 ± 0.1 60.457 ± 0.485
FedAvg 36.8 ± 5.7 50.527 ± 7.823 50.4 ± 2.5 44.763 ± 4.976 48.9 ± 11.1 51.500 ± 5.175 45.3 ± 5.0 48.930 ± 5.308
FedProx 76.0 ± 1.0 15.757 ± 1.403 62.5 ± 1.8 43.621 ± 4.113 58.1 ± 4.5 33.886 ± 6.959 65.6 ± 2.0 31.088 ± 3.177
Scaffold 83.1 ± 0.4 9.741 ± 1.395 54.8 ± 2.5 37.102 ± 1.973 53.2 ± 2.5 24.412 ± 4.031 63.7 ± 0.9 23.752 ± 1.841
FedInit 82.6 ± 0.9 10.753 ± 1.823 57.0 ± 6.8 37.314 ± 2.862 53.8 ± 2.8 26.573 ± 7.028 64.5 ± 2.6 24.880 ± 2.933
Ditto 80.9 ± 0.6 12.901 ± 0.724 51.4 ± 3.7 41.215 ± 2.257 49.7 ± 1.7 37.581 ± 6.761 62.1 ± 1.2 31.022 ± 2.428
FedSM 63.0 ± 15.0 21.180 ± 7.045 56.7 ± 5.7 35.526 ± 3.485 53.2 ± 5.5 28.951 ± 5.420 57.6 ± 7.8 28.552 ± 4.105
FedALA 81.2 ± 1.4 13.900 ± 2.548 54.7 ± 2.9 34.515 ± 1.180 36.8 ± 6.6 49.606 ± 7.051 52.3 ± 5.6 35.803 ± 6.580
Fed-Consist 86.1 ± 0.0 6.848 ± 0.020 59.9 ± 0.0 30.296 ± 0.123 51.0 ± 0.0 40.413 ± 0.100 65.7 ± 0.0 25.852 ± 0.042
FedPSL 49.9 ± 8.3 27.877 ± 2.148 48.3 ± 2.9 37.767 ± 2.666 49.7 ± 2.9 45.388 ± 6.942 49.3 ± 3.0 37.011 ± 2.564
Centralized(sup) 82.9 ± 0.5 9.850 ± 0.338 52.9 ± 2.4 37.435 ± 1.326 58.9 ± 3.1 22.309 ± 5.917 64.9 ± 1.8 23.198 ± 2.424
Centralized(ssup) 87.0 ± 0.5 6.315 ± 0.268 91.2 ± 0.2 4.999 ± 0.151 90.8 ± 0.6 3.066 ± 0.170 89.7 ± 0.3 4.794 ± 0.093

simpler methods like FedAvg. These findings further support our conclusion that specialized algo-
rithmic strategies consistently outperform baseline methods under challenging non-IID conditions.

We also conducted experiments using Unetr (Hatamizadeh et al., 2022), a Transformer-based model,
to further validate our findings. The results are shown in Figure 18 While Unetr demonstrated some
performance variations compared to U-Net, the overall conclusions of our study remained robust.
Specifically, federated learning algorithms designed to tackle challenges such as data heterogeneity
(e.g., non-IID data, long-tail distributions, and label incompleteness) and semi-supervised learning
algorithms consistently outperformed simpler baseline methods, regardless of the underlying model
architecture.

26


	Introduction
	Related Work
	The Proposed FedCVD
	Datasets
	Challenging Traits of FedCVD
	Tasks & Metrics

	Experiment
	Experiment Details
	Benchmark on Fed-ECG
	Benchmark on Fed-ECHO

	Conclusion
	Broader Impact
	Datasets repository and Maintenance plane
	Dataset repository.
	Maintenance plan

	Description of Using Algorithms
	Fed-ECG
	Description
	License and Ethics
	Download and preprocessing
	Download
	Preprocessing

	Baseline, loss function and evaluation
	Training Detail
	Supplementary Experiment Results

	Fed-ECHO
	Description
	License and Ethics
	Download and preprocessing
	Download
	Preprocessing

	Baseline, loss function and evaluation
	Training Detail
	Supplementary Experiments


