
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOGRAPE: BAYESIAN OPTIMIZATION OVER GRAPHS
WITH SHORTEST-PATH ENCODED

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph-structured data are central to many scientific and industrial applications
where the goal is to optimize expensive black-box objectives defined over graph
structures or node configurations—as seen in molecular design, supply chains, and
sensor placement. Bayesian optimization offers a principled approach for such
settings, but existing methods largely focus on functions defined over nodes of a
fixed graph. Moreover, graph optimization is often approached heuristically, and
it remains unclear how to systematically incorporate structural constraints into
BO. To address these gaps, we build on shortest-path graph kernels to develop a
principled framework for acquisition optimization over unseen graph structures and
associated node attributes. Through a novel formulation based on mixed-integer
programming, we enable global exploration of the combinatorial graph domain
and explicit embedding of problem-specific constraints. We demonstrate that
our method, BoGrape, is competitive both on general synthetic benchmarks and
representative molecular design case studies with application-specific constraints.

1 INTRODUCTION

Graph-structured data are playing an emerging role across scientific and industrial fields, giving rise
to a series of decision-making problems over graph domains, such as graph-based molecular design
(Korovina et al., 2020; Mercado et al., 2021; Yang et al., 2024) and neural architecture search (Elsken
et al., 2019; White et al., 2023). Broadly speaking, there are two classes of graph optimization
problems (Wan et al., 2023): (i) optimizing over nodes, with a given (unknown) graph as the search
space and a function over nodes as the objective, and (ii) optimizing over graphs, with the entire
(constrained) graph domain as the search space and a function over graphs as the objective. The
latter case, which this work studies, is usually more challenging since the graph structure itself is
optimized, resulting in a complicated combinatorial optimization task.

For both aforementioned scenarios, the objective function can be a black-box, and, when expensive
to evaluate, discourages gradient- and population-based methods. These characteristics motivate
several works to extend Bayesian optimization (BO) (Frazier, 2018; Garnett, 2023) to graph domains
(Cui & Yang, 2018; Oh et al., 2019; Wan et al., 2023; Liang et al., 2024) given its potential sample
efficiency. BO relies on two main components: a surrogate model, e.g., Gaussian processes (GPs),
trained on available data to approximate the underlying function, and an acquisition function used
to suggest the next sample. To translate BO to graph domains, one needs a surrogate model over
graph inputs with suitable uncertainty quantification, leading existing approaches to adapt GPs with
various graph kernels (Ramachandram et al., 2017; Borovitskiy et al., 2021; Ru et al., 2021; Zhi et al.,
2023). However, a general graph BO framework is missing, since existing works either (i) limit the
searchable graph set to a given fixed graph (Oh et al., 2019; Wan et al., 2023; Liang et al., 2024),
directed labeled graphs (Ru et al., 2021; Wan et al., 2021; White et al., 2021), unlabeled graphs (Cui
& Yang, 2018), etc. or (ii) rely on task-specific similarity metrics (Kandasamy et al., 2018).

When optimizing over graphs, the search space includes both continuous and discrete variables,
thus limiting the choice of optimization techniques. For example, acquisition function optimization
in graph BO is mostly performed using evolutionary algorithms (Kandasamy et al., 2018; Wan
et al., 2021) or sampling (Ru et al., 2021; Wan et al., 2023), which are incapable of (i) effectively
exploring the search domain, (ii) embedding problem-specific constraints, and (iii) guaranteeing
optimality in terms of acquisition function, which is essential for optimization convergence. To

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Key components of BoGrape. The graph kernel comprises kG and kF on the graph and
feature levels, resp. The graph GP is subsequently trained using the chosen kernel, and its posterior is
used to build the acquisition function, e.g., LCB. Note that graph GP includes discrete graph domains;
the continuous domain is only for illustration purposes. Acquisition optimization is formulated and
solved as a MIP using the encoding of shortest paths and graph kernels, giving the next query point.

mitigate these issues, this paper explores mixed-integer programming (MIP) as an alternative to
represent an analytic expression of the graph function. The challenges this paper addresses are to
manage both the black-box setting and MIP encodings of surrogates for graph BO.

Recent advances on applying MIP to optimize trained machine learning (ML) models (Ceccon et al.,
2022; Schweidtmann et al., 2022; Thebelt et al., 2022b) suggest pathways to address these challenges.
By equivalently encoding surrogates, e.g., GPs (Schweidtmann et al., 2021), trees (Mišić, 2020;
Mistry et al., 2021; Ammari et al., 2023), neural networks (NNs) (Fischetti & Jo, 2018; Anderson
et al., 2020; Tsay et al., 2021; Wang et al., 2023), as constraints in larger decision-making problems,
several MIP-based BO methods are proposed, allowing global optimization over mixed-feature
domains (Thebelt et al., 2021; 2022a; Papalexopoulos et al., 2022; Xie et al., 2024). Moreover, some
works develop MIP-based techniques to handle optimization problems constrained by graph neural
networks (GNNs), with applications to molecular design (Zhang et al., 2023; McDonald et al., 2024;
Zhang et al., 2024) and robustness certification (Hojny et al., 2024; Gaines et al., 2025). However,
given the data requirements of GNNs, the computational cost of solving the large resulting MIPs, and
the lack of uncertainty quantification, GNNs are impractical surrogates for graph BO.

This paper proposes BoGrape, a MIP-based graph BO method to optimize functions over connected
graphs with attributes. GP surrogates are formulated and optimized using global acquisition function
optimization techniques introduced in Xie et al. (2024). We develop four variants of the classic
shortest-path graph kernel (Borgwardt & Kriegel, 2005), as well as MIP encodings of graph search
space, for use in BoGrape. By introducing a representation of the shortest paths as decision variables,
the acquisition function optimization is formulated as a MIP with a mixed-feature search space, graph
kernel, and relevant problem-specific constraints. Figure 1 illustrates the BoGrape pipeline. Our main
contributions include:

• We propose graph representations with their corresponding shortest paths, and theoretically
prove that the feasible domain of our formulation is equivalent to the graph space consisting
of all connected graphs.

• We formulate shortest-path graph kernels, node attribute kernels, and GP posterior in-
formation based on our graph encoding as MIP constraints, enabling global acquisition
optimization.

• We provide a principled BO framework over graph spaces from a discrete optimization
viewpoint. BoGrape is compatible with problem-specific constraints over graph structures,
node attributes, and their interactions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

2.1 BAYESIAN OPTIMIZATION (BO)

BO (Frazier, 2018) is a derivative-free optimization framework to iteratively approach the optimum
of an expensive-to-evaluate, black-box function. At each iteration, a surrogate model, usually a
GP (Schulz et al., 2018), is trained on the current observed dataset. With the surrogate constructed
and trained, an acquisition function is then formulated based on the posterior information, e.g.,
probability of improvement (PI) (Kushner, 1964), expected improvement (EI) (Jones et al., 1998),
lower confidence bound (LCB) (Srinivas et al., 2010), predictive Entropy search (PES) (Hernández-
Lobato et al., 2014), etc.. Optimizing the acquisition function returns the next query, whose function
value is evaluated to form the next data point. This process repeats until meeting a stopping criterion.

2.2 GLOBAL OPTIMIZATION OF ACQUISITION FUNCTIONS

Most theoretical results for regret bounds in BO rely on the global optimization over acquisitions
(Srinivas et al., 2012), i.e., they assume the global minimizer/maximizer of the acquisition function is
found at each step, which may not be satisfied using gradient- and sample-based optimizers. Xie et al.
(2024) introduce PK-MIQP, a global acquisition optimization framework based on mixed-integer
quadratic programming (MIQP). The core of PK-MIQP is the piecewise linearization of a stationary
or dot-product kernel, e.g., RBF, Matérn, etc., based on which the acquisition optimization is then
formulated as an MIQP. PK-MIQP is useful because of its (i) compatibility with various kernels (note
the piecewise linearization is unnecessary if the kernel can be expressed linearly), and (ii) theoretical
guarantee on regret bounds. We present its formulation for the LCB acquisition function here:

min µ− β
1/2
t σ ← LCB acquisition (1a)

s.t. µ = KxXK−1
XXy ← GP posterior mean (1b)

σ2 ≤ Kxx −KxXK−1
XXKXx ← GP posterior variance (1c)

KxXi = k(x,Xi), ∀1 ≤ i < t ← kernel function (1d)
x ∈ X ← search space (1e)

2.3 SHORTEST-PATH GRAPH KERNELS

Graph kernels extend the concept of kernels to graph domains and are used to measure the similarity
between two graphs. Mathematically, a graph kernel k(·, ·) : G × G → R is given by k(G,G′) =
⟨ϕ(G), ϕ(G′)⟩H, where ϕ : G → H is a feature map from graph domain G to a reproducing kernel
Hilbert spaceH with inner product ⟨·, ·⟩H (Kriege et al., 2020). Past research develops graph kernels
using a variety of graph patterns, e.g., neighborhoods, subgraphs, walks, paths. We refer the reader
to (Vishwanathan et al., 2010; Borgwardt et al., 2020; Kriege et al., 2020; Nikolentzos et al., 2021)
for more details on graph kernels. Several works also use graph kernels to optimize over nodes (Oh
et al., 2019; Borovitskiy et al., 2021; Wan et al., 2023; Liang et al., 2024), but the involved kernels
measure the similarity of two nodes on one given graph and do not support optimizing over graphs
(see Section 1 for this distinction). We focus on the shortest-path (SP) kernel (Borgwardt & Kriegel,
2005) in this paper, owing to its ability to (i) handle both directed and undirected graphs, (ii) consider
node labels, and (iii) capture the relationship between non-adjacent graph nodes, making it more
general than kernels based on subgraph patterns (Shervashidze et al., 2009; Costa & Grave, 2010).
We further discuss the choice of kernels in Appendix B.1. For graph G, denote lu as the label of
node u, eu,v as the shortest path from u to v (which may not be unique), and du,v as the shortest
distance from node u to v (which is unique). The SP kernel between graphs G1 = (V 1, E1) and
G2 = (V 2, E2) is defined as:

kSP (G
1, G2) =

∑
u1,v1∈V 1,u2,v2∈V 2

kv(lu1
, lu2

) · ke(du1,v1 , du2,v2) · kv(lv1 , lv2). (2)

where kv is a kernel comparing node labels and ke is a kernel comparing path lengths.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

3.1 VARIANTS OF THE SHORTEST-PATH GRAPH KERNELS

We build on Eq. (2) and develop variants of the shortest-path kernel. Both kv and ke in Eq. (2) are
usually chosen as Dirac kernels, giving the explicit representation of the SP kernel as:

kSP (G
1, G2) =

1

n2
1n

2
2

∑
u1,v1∈V 1,u2,v2∈V 2

1(lu1
= lu2

, du1,v1 = du2,v2 , lv1 = lv2), (SP)

where n2
1n

2
2 is a normalizing coefficient with n1, n2 as the node numbers of G1, G2, resp.

Each node may additionally have problem-specific features beyond a single label. From here on, we
use X = (G,F) to denote an attributed graph with G as the underlying labeled graph and F as node
features. Intuitively, we can compare the features of two nodes instead of labels in kv . However, this
could unnecessarily reduce the number of matching paths between two graphs, as requiring identical
node features is restrictive and may introduce additional subgraph information into path comparison.
Another option is to use a more complicated kernel kv that measures similarity between features of
two nodes, which may significantly increase the computational cost of optimization (similarity is
computed for all node pairings). Therefore, we borrow from (Cui & Yang, 2018) the idea to separate
the implicit and explicit information of graphs, i.e., the kernel value between two attributed graphs
X1, X2 becomes:

k(X1, X2) = α · kG(G1, G2) + β · kF (F 1, F 2), (3)
where kG is any graph kernel, e.g., (SP), kF is any kernel over features, and α, β are learnable
parameters controlling the trade-off between graph similarity and feature similarity.

Since node label is usually included as a node feature and considered in kF term, and comparing
labels in Eq. (SP) increases the complexity of our upcoming optimization formulations, we further
propose a simplified shortest-path (SSP) kernel corresponding to an unlabeled SP kernel:

kSSP (G
1, G2) =

1

n2
1n

2
2

∑
u1,v1∈V 1,u2,v2∈V 2

1(du1,v1
= du2,v2

). (SSP)

Lemma 3.1. SP and SSP kernels are positive definite (PD).

Proof. Borgwardt & Kriegel (2005) prove the SP kernel is PD. The SSP kernel is a special case of
the SP kernel where all nodes have the same label, hence is also PD.

Observe that both the SP and SSP kernels are linear kernels if we pre-compute all shortest paths in
each graph and count the number of occurrence for each shortest path length. Such linearity simplifies
the optimization step (which still requires the non-trivial representation of shortest paths), but reduces
the representation ability of the kernels and limits the maximal rank of the Gram matrix. Motivated
by the practically strong performance of exponential kernels such as RBF, Matérn, graph diffusion
kernel (Oh et al., 2019), etc., we propose two nonlinear graph kernels based on SP and SSP kernels:

kESP (G
1, G2) = exp(kSP (G

1, G2))/σ2
k, (ESP)

kESSP (G
1, G2) = exp(kSSP (G

1, G2))/σ2
k, (ESSP)

where variance σ2
k is added to control the magnitude of kernel value.

Lemma 3.2. ESP and ESSP kernels are PD.

Proof. SP and SSP kernels can be rewritten into linear forms, so ESP and ESSP are exponential
kernels, which are known to be PD (Fukumizu, 2010).

Remark 3.3. The nonlinear kernels introduce additional difficulties for optimization, as discussed
later in Section 3.4, but may demonstrate better empirical performance compared to their linear
counterparts, owing to increased representation ability.

3.2 GLOBAL ACQUISITION FUNCTION OPTIMIZATION

To extend the prior formulation in Eq. (1) to optimize LCB acquisition in graph space (see Appendix
B.2 for the applicability to other acquisition functions), we replace Eq. (1d) by our graph kernels in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: List of variables introduced to represent the shortest path, where n is the number of nodes.

variables type description

Au,v ∈ {0, 1}, u, v ∈ [n] binary the existence of edge from node u to v
du,v ∈ [n], u, v ∈ [n] integer the length of shortest path from node u to v

δwu,v ∈ {0, 1}, u, v, w ∈ [n] binary the presence of node w on the shortest path from u to v

Section 3.1 and define a combinatorial graph search space for Eq. (1e) as x = (G,F) ∈ X = G × F .
To maintain consistency with the general BO setting, we denote x = (G,F) as the next sample and
X = {(Gi, F i), yi}t−1

i=1 as the previous samples at the t-th iteration. The difference is that now we
need to optimize over both the graph domain G ∈ G and the feature domain F ∈ F . W.l.o.g., assume
that each node has M features F i ∈ Rn(Gi)×M , and the first L features denote the one-hot encoding
of its label, i.e.,

∑
l∈[L] F

i
l = 1, where [n] denotes set {0, 1, . . . , n− 1}. This modified formulation

allows: (i) discrete variables, which is a key challenge of graph optimization, (ii) problem-specific
constraints over graph domain, and (iii) theoretical guarantees on regret bounds.

A binary adjacency matrix is sufficient to represent the graph domain; however, encoding correspond-
ing shortest-path information (for an unknown graph) is not straightforward and comprises a main
technical contribution of this work. We first introduce the formulation of shortest paths in Section 3.3
and then explicitly derive Eq. (1d) in Section 3.4 for the graph kernels in Section 3.1.

3.3 ENCODING OF THE SHORTEST PATHS AS OPTIMIZATION CONSTRAINTS

For the sake of exposition, we first consider all connected graphs G with fixed size, i.e., node number
n is given (Appendix A.3 discusses formulations for graphs of unknown size). Table 1 summarizes
the optimization variables. Since our formulations involve constant graph information and their
variable counterparts, for each variable Var , we use Var(G) to denote its value on a given graph G.
For example, du,v(G) is the shortest distance from node u to node v in graph G.

If graph G is given, all variables in Table 1 can be computed using classic shortest-path algorithms,
such as the Floyd–Warshall algorithm (Floyd, 1962). In graph optimization tasks, however, we need
to encode the relationships between these variables as constraints. Motivated by the Floyd–Warshall
algorithm, we first present the constraints in Eq. (5) of Appendix A.2 and then prove there exists a
bijective between the feasible domain given by these constraints and all connected graphs with size n.
Here we directly give the final encoding of the shortest paths in the following linear MIP (details in
Appendix A.2):

Av,v = 1, dv,v = 0, δwv,v = 1(w = v) ∀v, w ∈ [n]

du,v ≤ 1 + n · (1−Au,v), ∀u, v ∈ [n], u ̸= v

du,v ≥ 2−Au,v, ∀u, v ∈ [n], u ̸= v

du,v ≤ du,w + dw,v − (1− δwu,v), ∀u, v, w ∈ [n]

du,v ≥ du,w + dw,v − 2n · (1− δwu,v), ∀u, v, w ∈ [n]

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v∑
w∈[n]δ

w
u,v ≤ 2 + (n− 2) · (1−Au,v), ∀u, v ∈ [n], u ̸= v∑

w∈[n]δ
w
u,v ≥ 2 + (1−Au,v), ∀u, v ∈ [n], u ̸= v

(MIP-SP)

Lemma 3.4. (Au,v(G), du,v(G), δwu,v(G)) is a feasible solution of Eq. (MIP-SP) with size n = n(G)
given any connected graph G.

Proof. Trivial to verify by definition.

Theorem 3.5. Given any n ∈ Z+, for any feasible solution (Au,v, du,v, δ
w
u,v) of Eq. (MIP-SP) with

size n, there exists a unique graph G such that:
(Au,v(G), du,v(G), δwu,v(G)) = (Au,v, du,v, δ

w
u,v),

i.e., there is a bijection between the feasible domain of Eq. (MIP-SP) with size n and the set consisting
of all connected graphs with n nodes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The formulation becomes more complicated when the graph size is unknown (but bounded). Denote
n0 and n as the minimal and maximal node numbers, resp., and use Av,v to represent the existence
of node v. Variables du,v and δwu,v need to be properly assigned when either u or v does not exist.
Moreover, we extend the domain of du,v from [n] to [n+ 1] and use n to denote infinity. Eq. (MIP-
SP-plus) in Appendix A.3 presents the encoding and Theorem 3.6 extends Theorem 3.5 to unknown
size.
Theorem 3.6. There is a bijection between the feasible domain of Eq. (MIP-SP-plus) with size [n0, n]
and all connected graphs with number of nodes in [n0, n].

See Appendix A.4 for proofs of Theorems 3.5 and 3.6, which guarantee the equivalence of our
encoding for directed and strong connected graphs. Appendix A.6 shows how to further simplify our
encoding for undirected graphs. Appendix B.3 discusses the effectiveness of our encoding.

3.4 ENCODING OF GRAPH KERNELS AS OPTIMIZATION CONSTRAINTS

We now rewrite Eq. (1d) using Eq. (3) as:

KxXi
= k(x,Xi) = α · kG(G,Gi) + β · kF (F, F i).

Given that kF is independent of the choice of graph kernel kG, and that kernels on continuous features
are studied in Xie et al. (2024), here we focus on formulating kG. See Appendix A.5 for respective
kernel encoding with binary features.

Formulating kG(G,Gi) is straightforward for SP and SSP kernels:

kSSP (G,Gi) =
1

n2n2
i

∑
u1,v1∈[n]

∑
u2,v2∈[n(Gi)]

d
du2,v2

(Gi)
u1,v1 =

1

n2n2
i

∑
u,v,s∈[n]

Ds(G
i) · dsu,v,

where ni := n(Gi) is the node number of Gi, dsu,v = 1(du,v = s) are indicator variables:∑
s∈[n+1]

dsu,v = 1,
∑

s∈[n+1]

s · dsu,v = du,v, ∀u, v ∈ [n],

and Ds(G
i) is the number of shortest paths with length s in Gi:

Ds(G
i) = |{(u, v) | u, v ∈ [ni], du,v(G

i) = s}|.
Remark 3.7. dnu,v is not used in evaluating the kernel, since it means the shortest path does not exist.

Similarly, introducing indicator variables ps,l1,l2u,v as:

ps,l1,l2u,v = 1(Fu,l1 = 1, du,v = s, Fv,l2 = 1), ∀u, v, s ∈ [n], l1, l2 ∈ [L],

and counting the numbers of each type of paths in Gi:

Ps,l1,l2(G
i) = |{(u, v) | u, v ∈ [ni], lu(G

i) = l1, du,v(G
i) = s, lv(G

i) = l2}|,
the SP kernel is formulated as:

kSP (G,Gi) =
1

n2n2
i

∑
u,v,s∈[n],l1,l2∈[L]

Ps,l1,l2(G
i) · ps,l1,l2u,v .

There are several ways to handle the exponential kernels: (i) directly use (local) nonlinear solvers,
losing optimality guarantees, (ii) piecewise linearize the exponential function following Xie et al.
(2024), or (iii) utilize nonlinear MIP functionalities in established solvers such as Gurobi (Gurobi
Optimization, LLC, 2024) or SCIP (Vigerske & Gleixner, 2018). In our experiments, we choose to
use Gurobi, which by default employs a dynamic piecewise-linear approximation of the exponential
function given an error tolerance.

It is noteworthy that Kxx in Eq. (1c) is not constant with a non-stationary kernel, making it the most
complicated term in the whole formulation. By definition, kSSP (G,G) has a quadratic form:

kSSP (G,G) =
1

n4

∑
s∈[n]

D2
s ,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 BoGrape at t-th iteration.

1: Input: dataset X = {(Gi, F i), yi}t−1
i=1 , hyperparameter βt, graph kernel

2: Model training: kernel parameters α, β, σ2
k ▷ graph GP fit to X

3: Acquisition formulation:
4: represent KxXi and Kxx in Eqs. (1b) – (1d) ▷ Section 3.4
5: search space X in Eq. (1e) ▷ problem-specific
6: Optimization: initialize and solve MIP Eq. (1) ▷ global optimization
7: Output: proposed sample (Gt, F t)

where Ds =
∑

u,v∈[n] d
s
u,v, ∀s ∈ [n]. Reusing the indicator trick and introducing Dc

s = 1(Ds = c),
the quadratic form is equivalently linearized as:

KSSP (G,G) =
1

n4

∑
s∈[n],c∈[n2+1]

c2 ·Dc
s,

where indicator variables Dc
s, ∀s ∈ [n], c ∈ [n2 + 1] should satisfy:∑

c∈[n2+1]

Dc
s = 1,

∑
c∈[n2+1]

c ·Dc
s = Ds, ∀s ∈ [n].

Repeating the procedure for the SP kernel, we have:

KSP (G,G) =
1

n4

∑
s∈[n],l1,l2∈[L],c∈[n2+1]

c2 · P c
s,l1,l2 ,

where indicator variables P c
s,l1,l2

= 1(Ps,l1,l2 = c), ∀s ∈ [n], l1, l2 ∈ [L], c ∈ [n2 + 1] satisfy:∑
c∈[n2+1]

P c
s,l1,l2 = 1,

∑
c∈[n2+1]

c · P c
s,l1,l2 = Ps,l1,l2 , ∀s ∈ [n], l1, l2 ∈ [L].

With the above graph GP model and optimization encodings, we have presented all the pieces needed
to implement an end-to-end graph BO procedure. Algorithm 1 outlines BoGrape.

4 EXPERIMENTS

All experiments are performed on a 4.2 GHz Intel Core i7-7700K CPU with 16 GB memory. We use
GPflow (Matthews et al., 2017) to implement GP models, GraKel (Siglidis et al., 2020) to implement
the classic graph kernels, PyG (Fey & Lenssen, 2019) to implement GNNs, and Gurobi (Gurobi
Optimization, LLC, 2024) to solve MIPs.

There are few synthetic benchmark functions f : G × F → R for general graph domains since most
graph BO works focus on specific types of graphs. W,o.l.g., we consider GNNs as graph functions
that maps general labeled connected graph to real values. We conduct experiments considering two
settings: (i) randomly initialized GNNs which serves as random synthetic functions, and (ii) GNNs
trained on molecular datasets as graph property predictor in real-world case studies. It is noteworthy
that the architectures of GNNs, the training mechanism, and the choice of datasets are not major
components of our work, since they merely serve as benchmarks of black-box graph functions.

4.1 MODEL PERFORMANCE

Before conducting the optimization tasks, we first compare the performance of graph GPs with
various graph kernels on randomly sampled molecules from the QM7 dataset (Blum & Reymond,
2009; Rupp et al., 2012). Figure 2 shows that four shortest-path kernels have comparable prediction
accuracy, while the two exponential kernels quantify uncertainty more accurately (also supported by
Table 4). For larger graph sizes, Table 3 shows that the more complicated kernels, i.e., SP and ESP,
are generally better at predicting graph properties, since they impose stronger criteria on comparing
shortest-paths between two graphs.
Remark 4.1. See Appendix C.1 for similar illustrations of other graph kernels and more evaluations,
and Appendix B.4 for complexity analysis of different graph kernels.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Compare predictive performance of GP with different kernels. 100 samples are randomly
chosen from the QM7 dataset with various graph sizes, 30 of which are used for training. The
predictive mean with one standard deviation (predicted y) of the remaining 70 graphs are plotted
against their real values (true y). Notice that the error bars for SSP kernel are too small to be observed
in this visualization due to its weak uncertainty quantification.

4.2 OPTIMIZATION OF SYNTHETIC BENCHMARKS

We first evaluate the performance of BoGrape over synthetic benchmarks, i.e., arbitrary functions over
graphs. Specifically, given their ability as universal approximators, we cover the range of black-box
graph functions using randomly initialized GNNs including GAT (Veličković et al., 2017), GCN (Kipf
& Welling, 2017), and GraphSAGE (Hamilton et al., 2017). Each GNN consists of two convolutional
layers to learn graph embeddings, and two linear layers. Each hidden layer has 64 features. The
search space is the set of all connected, undirected graphs with N nodes, and each node has one-hot
features with length L = 5 as its label. We propose these functions as benchmark problems, given:
(i) there are no existing synthetic benchmarks in graph BO literature, (ii) these benchmarks impose
neither problem-specific constraints nor assumptions over the graph space (except for connectivity),
making them suitable for comparison of a wide class of methods. These benchmark functions for
graph BO are available at: [link to be added after peer review].

BoGrape is compared against the following baselines: (i) Random: random sampling, i.e., randomly
sample one connected graph at each iteration, (ii) RW-rand: use graph GP with random walk (RW)
kernel as surrogate, and sampling-based acquisition optimization, i.e., choosing the sample with
the best LCB value among 20 random graphs, (iii) WL-rand: use Weisfeiler-Lehma (WL) kernel in
RW-rand, (iv) WL-evol: use evolutionary algorithm for acquisition optimization in WL-rand.
Remark 4.2. WL-rand and WL-evol are adapted from Ru et al. (2021), which is specifically designed
for neural architecture search (NAS). WL-evol could be regarded as the state-of-the-art method in
graph BO.

For each benchmark with size N = 10, 20, we conduct BO with 10 initial samples and 50 iterations.
When solving Eq. (1), we observed good solutions to be found early (since more time is spent on
proving optimality) and set 600s as the MIP time limit. As shown in Figure 3, BoGrape with all
kernel variants outperforms baselines in most cases. When the graph size is small, SP and ESP
perform better, since they are more expressive. For larger sizes, using simpler kernels reduces model
complexity and produces better solutions within the given time limit. The trade-off is between
the expressiveness of kernel and the complexity of the resulting optimization problem. We further
discuss this computational limitation in Appendix B.5, possible solutions in Appendix B.6, and kernel
selection in Appendix B.8.

4.3 REAL-WORLD CASE STUDY

We next consider optimal molecular design (McDonald et al., 2024; Zhang et al., 2024) as a real-
world case study. Following Zhang et al. (2023), we train two GNNs on dataset QM7 (Blum &
Reymond, 2009; Rupp et al., 2012) and QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014)
as oracle predictors, i.e., the functions that we seek to optimize. The additional challenge of this
task compared to Section 4.2 is that molecules are not arbitrary labeled graphs: the molecular
graph should be compatible with atom features. We found these structural constraints to effectively
prevent the sampling- and evolutionary-based methods used in Section 4.2 from producing feasible

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) GAT, N = 10 (b) GCN, N = 10 (c) GraphSAGE, N = 10

(d) GAT, N = 20 (e) GCN, N = 20 (f) GraphSAGE, N = 20

Figure 3: Bayesian optimization results on synthetic benchmarks with N ∈ {10, 20}. Best objective
value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.

(a) QM7, N = 10 (b) QM7, N = 20 (c) QM7, N = 30

(d) QM9, N = 10 (e) QM9, N = 20 (f) QM9, N = 30

Figure 4: Bayesian optimization results on QM7 and QM9 with N ∈ {10, 20, 30}. Best objective
value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.

solutions. Therefore, we modify Random to only consider randomly generated feasible molecules
from Limeade (Zhang et al., 2025), and we remove WL-evol from comparison. We also adapt
molecular feasibility constraints from Limeade and add them to our MIP formulation to ensure only
valid molecules are considered during the optimization. Further related details are given in Appendix
C.3. The computational results in Figure 4 show that BoGrape again generally outperforms baselines
regardless of which kernel is used. We discuss this application further in Appendix B.7.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 CONCLUSION

This work proposes BoGrape to optimize black-box functions over graphs. Four shortest-path graph
kernels are presented and tested on both prediction and Bayesian optimization tasks. The underlying
mixed-integer formulation provides a flexible and general platform including mixed-feature search
spaces, graph kernels, acquisition functions, and problem-specific constraints. Our results show
promising performance and suggest trade-offs between query-efficiency and computational time
when choosing a suitable kernel. Future work may further simplify the formulations of BoGrape and
relax the requirement on graph connectivity.

REPRODUCIBILITY STATEMENT

We take the following measures to facilitate the reproducibility of our work. Theoretical contributions
are detailed and explained in both Section 3 in the main paper and Appendix A. Theoretical claims are
supported by formal proofs provided in Appendix A.4. To support the replication of empirical findings,
we provide code implementations including our method, synthetic graph functions mentioned in
Section 4.2 and models used in experiments in the supplementary materials.

REFERENCES

Bashar L. Ammari, Emma S. Johnson, Georgia Stinchfield, Taehun Kim, Michael Bynum, William E.
Hart, Joshua Pulsipher, and Carl D. Laird. Linear model decision trees as surrogates in optimization
of engineering applications. Computers & Chemical Engineering, 178, 2023.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical Programming,
183(1):3–39, 2020.

Lorenz C. Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening
in the chemical universe database GDB-13. Journal of the American Chemical Society, 131(25):
8732–8733, 2009.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray, Bastian Rieck, et al.
Graph kernels: State-of-the-art and future challenges. Foundations and Trends® in Machine
Learning, 13(5-6):531–712, 2020.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In International
Conference on Data Mining, 2005.

Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc Peter
Deisenroth, and Nicolas Durrande. Matern Gaussian processes on graphs. In International
Conference on Artificial Intelligence and Statistics, 2021.

Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D. Laird,
and Ruth Misener. OMLT: Optimization & machine learning toolkit. Journal of Machine Learning
Research, 23(1):15829–15836, 2022.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In ICML,
2010.

Jiaxu Cui and Bo Yang. Graph Bayesian optimization: Algorithms, evaluations and applications.
arXiv preprint arXiv:1805.01157, 2018.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: a survey. Journal
of Machine Learning Research, 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. Con-
straints, 23(3):296–309, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Robert W Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345–345, 1962.

Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Kenji Fukumizu. Kernel method: Data analysis with positive definite kernels. Graduate University
of Advanced Studies, 2010.

Blake B Gaines, Chunjiang Zhu, and Jinbo Bi. Explaining graph neural networks with mixed-integer
programming. Neurocomputing, pp. 130214, 2025.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning Theory and Kernel Machines, 2003.

Gurobi Optimization, LLC. Gurobi optimizer reference manual, 2024. URL https://www.
gurobi.com.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, 2017.

José Miguel Hernández-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
search for efficient global optimization of black-box functions. NeurIPS, 2014.

Christopher Hojny, Shiqiang Zhang, Juan S Campos, and Ruth Misener. Verifying message-passing
neural networks via topology-based bounds tightening. In ICML, 2024.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455–492, 1998.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with Bayesian optimisation and optimal transport. NeurIPS, 31, 2018.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff
Schneider, and Eric Xing. Chembo: Bayesian optimization of small organic molecules with
synthesizable recommendations. In AISTATS, 2020.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In ICML, 2012.

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels and
applications to graph classification. NeurIPS, 2016.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5:1–42, 2020.

Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Basic Engineering, 86(1):97–106, 1964.

Huidong Liang, Xingchen Wan, and Xiaowen Dong. Bayesian optimization of functions over node
subsets in graphs. NeurIPS, 2024.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis Boukouvalas,
Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process
library using TensorFlow. Journal of Machine Learning Research, 18(40):1–6, 2017.

Tom McDonald, Calvin Tsay, Artur M. Schweidtmann, and Neil Yorke-Smith. Mixed-integer
optimisation of graph neural networks for computer-aided molecular design. Computers &
Chemical Engineering, 185:108660, 2024.

Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2021.

11

https://www.gurobi.com
https://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Velibor V. Mišić. Optimization of tree ensembles. Operations Research, 68(5):1605–1624, 2020.

Miten Mistry, Dimitrios Letsios, Gerhard Krennrich, Robert M. Lee, and Ruth Misener. Mixed-
integer convex nonlinear optimization with gradient-boosted trees embedded. INFORMS Journal
on Computing, 33(3):1103–1119, 2021.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. Journal
of Artificial Intelligence Research, 72:943–1027, 2021.

Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial Bayesian
optimization using the graph cartesian product. NeurIPS, 2019.

Theodore P Papalexopoulos, Christian Tjandraatmadja, Ross Anderson, Juan Pablo Vielma, and
David Belanger. Constrained discrete black-box optimization using mixed-integer programming.
In International Conference on Machine Learning, pp. 17295–17322. PMLR, 2022.

Joel A Paulson and Calvin Tsay. Bayesian optimization as a flexible and efficient design framework
for sustainable process systems. Current Opinion in Green and Sustainable Chemistry, pp. 100983,
2024.

Dhanesh Ramachandram, Michal Lisicki, Timothy J Shields, Mohamed R Amer, and Graham W
Taylor. Structure optimization for deep multimodal fusion networks using graph-induced kernels.
arXiv preprint arXiv:1707.00750, 2017.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):1–7, 2014.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via Bayesian optimisation with Weisfeiler-Lehman kernels. In ICLR, 2021.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration of
166 billion organic small molecules in the chemical universe database gdb-17. Journal of Chemical
Information and Modeling, 52(11):2864–2875, 2012.

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O. Anatole Von Lilienfeld. Fast
and accurate modeling of molecular atomization energies with machine learning. Physical Review
Letters, 108(5):058301, 2012.

Eric Schulz, Maarten Speekenbrink, and Andreas Krause. A tutorial on Gaussian process regression:
Modelling, exploring, and exploiting functions. Journal of mathematical psychology, 85, 2018.

Artur M Schweidtmann, Dominik Bongartz, Daniel Grothe, Tim Kerkenhoff, Xiaopeng Lin, Jaromił
Najman, and Alexander Mitsos. Deterministic global optimization with Gaussian processes
embedded. Mathematical Programming Computation, 13(3):553–581, 2021.

Artur M Schweidtmann, Dominik Bongartz, and Alexander Mitsos. Optimization with trained
machine learning models embedded. In Encyclopedia of Optimization, pp. 1–8. Springer, 2022.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, and
Michalis Vazirgiannis. GraKel: A graph kernel library in Python. Journal of Machine Learning
Research, 21(54):1–5, 2020.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design. In ICML, 2010.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Information-theoretic
regret bounds for Gaussian process optimization in the bandit setting. IEEE Transactions on
Information Theory, 58:3250–3265, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alexander Thebelt, Jan Kronqvist, Miten Mistry, Robert M. Lee, Nathan Sudermann-Merx, and
Ruth Misener. Entmoot: A framework for optimization over ensemble tree models. Computers &
Chemical Engineering, 151:107343, 2021.

Alexander Thebelt, Calvin Tsay, Robert M. Lee, Nathan Sudermann-Merx, David Walz, Tom Tranter,
and Ruth Misener. Multi-objective constrained optimization for energy applications via tree
ensembles. Applied Energy, 306:118061, 2022a.

Alexander Thebelt, Johannes Wiebe, Jan Kronqvist, Calvin Tsay, and Ruth Misener. Maximizing
information from chemical engineering data sets: Applications to machine learning. Chemical
Engineering Science, 252:117469, 2022b.

Calvin Tsay, Jan Kronqvist, Alexander Thebelt, and Ruth Misener. Partition-based formulations for
mixed-integer optimization of trained ReLU neural networks. In NeurIPS, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In ICLR, 2017.

Stefan Vigerske and Ambros Gleixner. SCIP: Global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. Optimization Methods and Software, 33(3):563–593,
2018.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

Xingchen Wan, Henry Kenlay, Binxin Ru, Arno Blaas, Michael Osborne, and Xiaowen Dong.
Adversarial attacks on graph classifiers via Bayesian optimisation. In NeurIPS, 2021.

Xingchen Wan, Binxin Ru, Pedro M Esperança, and Zhenguo Li. On redundancy and diversity in
cell-based neural architecture search. In ICLR, 2022.

Xingchen Wan, Pierre Osselin, Henry Kenlay, Binxin Ru, Michael A Osborne, and Xiaowen Dong.
Bayesian optimisation of functions on graphs. NeurIPS, 2023.

Keliang Wang, Leonardo Lozano, Carlos Cardonha, and David Bergman. Optimizing over an
ensemble of trained neural networks. INFORMS Journal on Computing, 2023.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In AAAI, 2021.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta
Dey, and Frank Hutter. Neural architecture search: insights from 1000 papers. arXiv preprint
arXiv:2301.08727, 2023.

Yilin Xie, Shiqiang Zhang, Joel Paulson, and Calvin Tsay. Global optimization of Gaussian
process acquisition functions using a piecewise-linear kernel approximation. arXiv preprint
arXiv:2410.16893, 2024.

Nianzu Yang, Huaijin Wu, Kaipeng Zeng, Yang Li, Siyuan Bao, and Junchi Yan. Molecule generation
for drug design: a graph learning perspective. Fundamental Research, 2024.

Shiqiang Zhang, Juan S. Campos, Christian Feldmann, David Walz, Frederik Sandfort, Miriam
Mathea, Calvin Tsay, and Ruth Misener. Optimizing over trained GNNs via symmetry breaking.
In NeurIPS, 2023.

Shiqiang Zhang, Juan S Campos, Christian Feldmann, Frederik Sandfort, Miriam Mathea, and
Ruth Misener. Augmenting optimization-based molecular design with graph neural networks.
Computers & Chemical Engineering, 186:108684, 2024.

Shiqiang Zhang, Christian W Feldmann, Frederik Sandfort, Miriam Mathea, Juan S Campos, and
Ruth Misener. Limeade: Let integer molecular encoding aid. Computers & Chemical Engineering,
pp. 109115, 2025.

Yin-Cong Zhi, Yin Cheng Ng, and Xiaowen Dong. Gaussian processes on graphs via spectral kernel
learning. IEEE Transactions on Signal and Information Processing over Networks, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ENCODING OF GRAPH KERNELS

A.1 NOTATIONS

We provide details for all variables introduced in this paper in Table 2. Recall that the search domain
considered here consists of all connected graphs with node number ranging from n0 to n, each node
has M binary features with the first L node features as the one-hot encoding of node label.

Table 2: All variables introduced in the optimization formulation for graph kernels.

Variables Domain Description

Au,v, u, v ∈ [n] {0, 1} the existence of edge from u to v
du,v, u, v ∈ [n] [n+ 1] the length of shortest path from u to v

δwu,v, u, v, w ∈ [n] {0, 1} if w appears at the shortest path from u to v

dsu,v, u, v ∈ [n], s ∈ [n+ 1] {0, 1} indicator: 1(du,v = s)
Ds, s ∈ [n] [n2 + 1] # shortest paths with length s

Dc
s, s ∈ [n], c ∈ [n2 + 1] {0, 1} indicator: 1(Ds = c)

ps,l1,l2u,v , u, v, s ∈ [n], l1, l2 ∈ [L] {0, 1} indicator: 1(Fu,l1 = 1, du,v = s, Fv,l2 = 1)
Ps,l1,l2 , s ∈ [n], l1, l2 ∈ [L] [n2 + 1] # shortest paths with length s and labels l1, l2

P c
s,l1,l2

, s ∈ [n], l1, l2 ∈ [L], c ∈ [n2 + 1] {0, 1} indicator: 1(Ps,l1,l2 = c)

Nm, m ∈ [M] [N + 1] sum of m-th feature over all nodes
Nc

m, m ∈ [M], c ∈ [M + 1] {0, 1} indicator: 1(Nm = c)

A.2 SHORTEST PATH ENCODING FOR GRAPHS WITH FIXED SIZE

We first present necessary conditions that Au,v, du,v, δ
w
u,v should satisfy in Eq. (5):

Av,v = 1, ∀v ∈ [n] (5a)
dv,v = 0, ∀v ∈ [n] (5b)

du,v

{
= 1, Au,v = 1

> 1, Au,v = 0
, ∀u, v ∈ [n], u ̸= v (5c)

du,v

{
= du,w + dw,v, δwu,v = 1

< du,w + dw,v, δwu,v = 0
, ∀u, v ∈ [n], u ̸= v (5d)

δwv,v =

{
1, w = v

0, w ̸= v
, ∀v ∈ [n] (5e)

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v (5f)∑
w∈[n]

δwu,v

{
= 2, Au,v = 1

> 2, Au,v = 0
, ∀u, v ∈ [n], u ̸= v (5g)

Eq. (5) restricts Au,v, du,v, δ
w
u,v in the following rules:

• Eq. (5a) initializes the diagonal elements.

• Eq. (5b) initializes the shortest distance from v to itself.

• Eq. (5c) forces the shortest distance from node u and v be 1 if edge u→ v exists, and larger
than 1 otherwise.
Rewrite Eq. (5c) as:

du,v ≤ 1 + n · (1−Au,v), ∀u, v ∈ n], u ̸= v

du,v ≥ 2−Au,v, ∀u, v ∈ [n], u ̸= v

where n is a big-M coefficient using du,v ≤ n− 1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Eq. (5d) is the triangle inequality for distance matrix d.
Rewrite Eq. (5d) as:

du,v ≤ du,w + dw,v − (1− δwu,v), ∀u, v, w ∈ [n]

du,v ≥ du,w + dw,v − 2n · (1− δwu,v), ∀u, v, w ∈ [n]

where 2n is a big-M coefficient since du,w + dw,v < 2n.
• Eq. (5e) initializes δwv,v by definition.
• Eq. (5f) initializes δuu,v and δvu,v by definition.
• Eq. (5g) ensures that there is at least one node at the shortest path from node u to v if there

is no edge from node u to v. Otherwise, no node except for u and v could appear at the
shortest path from u to v.
Rewrite Eq. (5g) as:∑

w∈[n]

δwu,v ≤ 2 + (n− 2) · (1−Au,v), ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≥ 2 + (1−Au,v), ∀u, v ∈ [n], u ̸= v

where n− 2 is a big-M coefficient since
∑

w∈[n] δ
w
u,v ≤ n.

Replacing disjunctive constraints accordingly in Eq. (5) gives the final formulation Eq. (MIP-SP).

A.3 SHORTEST PATH ENCODING FOR GRAPH WITH UNKNOWN SIZE

We extend constraints in Eq. (5) to handle changeable graph size. Full constraints are as follows:

Av,v ≥ Av+1,v+1, ∀v ∈ [n− 1] (6a)∑
v∈[n]

Av,v ≥ n0, (6b)

2Au,v ≤ Au,u +Av,v, ∀u, v ∈ [n], u ̸= v (6c)
dv,v = 0, ∀v ∈ [n] (6d)

du,v

{
= 1, Au,v = 1

> 1, Au,v = 0
, ∀u, v ∈ [n], u ̸= v (6e)

du,v

{
< n, Au,u = Av,v = 1

= n, min{Au,u, Av,v} = 0
, ∀u, v ∈ [n], u ̸= v (6f)

du,v

{
= du,w + dw,v, δwu,v = 1

< du,w + dw,v, δwu,v = 0
, ∀u, v ∈ [n], u ̸= v (6g)

δwv,v =

{
1, w = v

0, w ̸= v
, ∀v ∈ [n] (6h)

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v (6i)

∑
w∈[n]

δwu,v


= 2, Au,v = 1

> 2, Au,v = 0, Au,u = Av,v = 1

= 2, min{Au,u, Av,v} = 0

, ∀u, v ∈ [n], u ̸= v (6j)

Eq. (6) restricts Au,v, du,v, δ
w
u,v in the following rules:

• Eq. (6a) forces nodes with smaller indexes exist.
• Eq. (6b) gives the lower bound of the number of existed nodes.
• Eq. (6c) means that there is no edge from node u to v if any of them does not exist.
• Eq. (6d) initializes the shortest distance from one node to itself, even it does not exist.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Eq. (6e) forces the shortest distance from node u and v be 1 if there is one edge from u to v,
and larger that 1 otherwise.

Rewrite Eq. (6e) as:

du,v ≤ 1 + n · (1−Au,v), ∀u, v ∈ [n], u ̸= v

du,v ≥ 2−Au,v, ∀u, v ∈ [n], u ̸= v

where n is a big-M coefficient using the fact that du,v ≤ n.

• Eq. (6f) sets the shortest distance from node u to v as n, i.e.,∞, if any of them does not
exist. Otherwise, the shortest distance is less than n.

Rewrite Eq. (6f) as:

du,v ≥ n · (1−Au,u), ∀u, v ∈ [n], u ̸= v

du,v ≥ n · (1−Av,v), ∀u, v ∈ [n], u ̸= v

• Eq. (6g) is the triangle inequality for the distance matrix d.

Rewrite Eq. (6g) as:

du,v ≤ du,w + dw,v − (1− δwu,v), ∀u, v, w ∈ [n]

du,v ≥ du,w + dw,v − 2n · (1− δwu,v), ∀u, v, w ∈ [n]

where 2n is a big-M coefficient since du,w + dw,v ≤ 2n.

• Eq. (6h) initializes δwv,v by definition, even node v does not exist.

• Eq. (6i) initializes δuu,v and δvu,v by definition, even node u or v does not exist.

• Eq. (6j) makes sure that there is at least on node at the shortest path from node u to v if there
is no edge from node u and v and these two nodes both exist. Otherwise, only δuu,v and δvu,v
equal to 1.

Rewrite Eq. (6j) as:

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) · (1−Au,v), ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) ·Au,u, ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) ·Av,v, ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≥ Au,u +Av,v + (1−Au,v), ∀u, v ∈ [n], u ̸= v

where n− 2 is a big-M coefficient since
∑

w∈[n] δ
w
u,v ≤ n.

To conclude, the formulation for shortest paths of all connected graphs with at least n0 nodes and at
most n nodes is:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026



Av,v ≥ Av+1,v+1, ∀v ∈ [n− 1]∑
v∈[n]

Av,v ≥ n0,

2Au,v ≤ Au,u +Av,v, ∀u, v ∈ [n], u ̸= v

dv,v = 0, ∀v ∈ [n]

du,v ≤ 1 + n · (1−Au,v), ∀u, v ∈ [n], u ̸= v

du,v ≥ 2−Au,v, ∀u, v ∈ [n], u ̸= v

du,v ≥ n · (1−Au,u), ∀u, v ∈ [n], u ̸= v

du,v ≥ n · (1−Av,v), ∀u, v ∈ [n], u ̸= v

du,v ≤ du,w + dw,v − (1− δwu,v), ∀u, v, w ∈ [n]

du,v ≥ du,w + dw,v − 2n · (1− δwu,v), ∀u, v, w ∈ [n]

δwv,v =

{
1, w = v

0, w ̸= v
, ∀v ∈ [n]

δuu,v = δvu,v = 1, ∀u, v ∈ [n], u ̸= v∑
w∈[n]

δwu,v ≤ 2 + (n− 2) · (1−Au,v), ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) ·Au,u, ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≤ 2 + (n− 2) ·Av,v, ∀u, v ∈ [n], u ̸= v

∑
w∈[n]

δwu,v ≥ Au,u +Av,v + (1−Au,v), ∀u, v ∈ [n], u ̸= v

(MIP-SP-plus)

A.4 PROOFS OF THEOREMS

Proof of Theorem 3.5. If such G exists, it is unique since Au,v gives the existence of every edge.
Thus it suffices to show that (du,v(G), δwu,v(G)) = (du,v, δ

w
u,v) for G defined with Au,v .

We are going to prove it by induction on the shortest distance sd from node u to v in graph G.
Specifically, we want to show that for any 0 ≤ sd < n, and for any pair of (u, v) such that
min(du,v(G), du,v) = sd, we have du,v(G) = du,v and δwu,v(G) = δwu,v, ∀w ∈ [n].

For sd = 0, min(du,v(G), du,v) = 0 if and only if u = v. For any v ∈ [n], it is obvious to have:

dv,v(G) = 0 = dv,v

δvv,v(G) = 1 = δvv,v

δwv,v(G) = 0 = δwv,v, ∀w ̸= v

For sd = 1, consider every pair (u, v) such that du,v(G) = 1, we have Au,v = Au,v(G) = 1, then it
is easy to obtain:

du,v(G) = 1 = du,v

δwu,v(G) = 1 = δwu,v, ∀w ∈ {u, v}
δwu,v(G) = 0 = δwu,v, ∀w ̸∈ {u, v}

where δwu,v = 0, ∀w ̸∈ {u, v} since:∑
w ̸∈{u,v}

δwu,v =
∑
w∈[n]

δwu,v − δuu,v − δvu,v = 0.

On the contrary, du,v = 1 gives Au,v = 1, thus Au,v(G) = 1 and δwu,v(G) = δwu,v, ∀w by definition.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Now assume that for any pair of (u, v) such that min(du,v(G), du,v) ≤ sd, we have du,v(G) = du,v
and δwu,v(G) = δwu,v, ∀w. Since δwu,v(G) = δwu,v, ∀w ∈ {u, v} always holds by definition, we only
consider w ̸∈ {u, v}.
Part 1: We first consider every pair of (u, v) such that du,v(G) = sd + 1. Since sd + 1 ≥ 2, we
know that Au,v = Au,v(G) = 0 and there exists w ̸∈ {u, v} on the shortest path from node u to v in
graph G.

Case 1.1: For every w ̸∈ {u, v} such that δwu,v(G) = 1, since du,w(G) ≤ sd and dw,v(G) ≤ sd, we
have:

du,v ≤ du,w + dw,v = du,w(G) + dw,v(G) = du,v(G) = sd+ 1.

The equality has to hold, otherwise, du,v ≤ sd gives du,v(G) = du,v ≤ sd by assumption. Therefore,
δwu,v = 1 = δwu,v(G).

Case 1.2: For every w ̸∈ {u, v} such that δwu,v(G) = 0, if δwu,v = 1, then du,w+dw,v = du,v = sd+1,
which means that du,w ≤ sd and dw,v ≤ sd. By assumption, we have du,w(G) = du,w, dw,v(G) =
dw,v and then:

du,w(G) + dw,v(G) = du,w + dw,v = du,v = du,v(G).

which contradicts to δwu,v(G) = 0. Thus δwu,v = 0.

Part 2: Then we consider every pair of (u, v) such that du,v = sd + 1. Similarly, we have
Au,v = Au,v(G) = 0.

Case 2.1: For every w ̸∈ {u, v} such that δwu,v = 1, since du,w ≤ sd and dw,v ≤ sd, we have
du,w(G) = du,v and dw,v(G) = dw,v , then:

du,v(G) ≤ du,w(G) + dw,v(G) = du,w + dw,v = du,v = sd+ 1.

This equality also has to hold, otherwise, du,v(G) ≤ sd, by assumption du,v = du,v(G) ≤ sd, which
is a contradiction.

Case 2.2: For every w ̸∈ {u, v} such that δwu,v = 0, if δwu,v(G) = 1, then du,w(G) = dw,v(G) =
du,v(G) = sd+ 1, which means that du,w(G) ≤ sd and dw,v(G) ≤ sd. Therefore,

du,w + dw,v = du,w(G) + dw,v(G) = du,v(G) = du,v,

which contradicts to δu,v = 0.

Proof of Theorem 3.6. Fix the node number as n1 with n0 ≤ n1 ≤ n, Eqs. (6a) – (6b) force:

Av,v =

{
1, v ∈ [n1]

0, v ∈ [n]\[n1]

substituting which to other constraints give us:

Au,v = Av,u = 0, ∀u ∈ [n1], v ∈ [n]\[n1], u ̸= v

dv,v = 0, ∀v ∈ [n]\[n1]

du,v = dv,u = n, ∀u ∈ [n1], v ∈ [n]\[n1], u ̸= v

δwu,v = δwv,u =

{
1, w ∈ {u, v}
0, w ̸∈ {u, v} , ∀u ∈ [n1], v ∈ [n]\[n1]

One can easily check that all constraints associated with non-existed nodes are satisfied. Removing
those constraints turns Eq. (MIP-SP-plus) into Eq. (MIP-SP) with size n1.

A.5 ENCODING FOR KERNEL OVER BINARY FEATURES

Assume that each graph G has a binary feature matrix F ∈ {0, 1}n(G)×M , we need to formulate
kF (F, F

i) and kF (F, F) properly. kF could be defined in multiple ways, here we propose a
permutational-invariant kernel considering the pair-wise similarity among node features. Given
two feature matrices F 1, F 2 corresponding to graphs G1, G2 resp., define kF as:

kF (F
1, F 2) :=

1

n1n2M

∑
v1∈V 1,v2∈V 2

F 1
v1 · F

2
v2 =

1

n1n2M

∑
m∈[M]

Nm(F 1) ·Nm(F 2),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where Nm(F i) =
∑

v∈[ni]

F i
v,m, ∀m ∈ [M], and n1n2M is the normalized coefficient.

Similar to Section 3.4, we have:

kF (F, F
i) =

1

nniM

∑
m∈[M]

Nm(F i) ·Nm,

where Nm =
∑

v∈[n]

Fv,m, ∀m ∈ [M], and:

kF (F, F) =
1

n2M

∑
m∈[M]

N2
m =

1

n2M

∑
m∈[M],c∈[M+1]

c2 ·N c
m,

where indicators N c
m = 1(Nm = c), ∀m ∈ [M], c ∈ [n+ 1] satisfy:∑

c∈[n+1]

N c
m = 1,

∑
c∈[n+1]

c ·N c
m = Nm, ∀m ∈ [M].

A.6 SIMPLIFY PATH ENCODING OVER UNDIRECTED GRAPHS

For undirected graphs, we first add the following constraints to guarantee symmetry:
Au,v = Av,u, ∀u, v ∈ [n], u < v

du,v = dv,u, ∀u, v ∈ [n], u < v

δwu,v = δwv,u, ∀u, v, w ∈ [n], u < v

Since the inverse of any shortest path from node u to v is also a shortest path from node v to u, for
SSP and ESSP kernels, Ds, ∀s ∈ [n] are even and we can fix odd indicators as zero:

Dc
s =

{
1, c is even
0, c is odd

, ∀s ∈ [n], c ∈ [n2 + 1].

Similarly, for SP and ESP kernels, we have:

Ps,l1,l2 = Ps,l2,l1 , ∀s ∈ [n], f1, f2 ∈ [L].

B DISCUSSION

B.1 CHOICE OF GRAPH KERNELS

Various graph kernels are proposed to better fit graph data. However, none of them could be
incorporated as optimization constraints (nor are they designed for this purpose). Thus, current graph
BO works mostly use evolutionary algorithms that generate candidates and then evaluate them, where
graph kernels are used as graph functions to calculate the posterior mean and variance. The major
difference here is that computing k(G1, G2) given both G1 and G2 is quite easy, but representing
k(G1, G2) only given G1 is super challenging since G2 could be any arbitrary graph. BoGrape is
built upon our theoretical contributions on encoding shortest paths into decision variables for arbitrary
connected graphs. Therefore, it is not that we chose shortest-path kernel first for specific reasons then
developed necessary formulations, but that the fundamental advances in graph optimization led us to
shortest-path kernels.

B.2 CHOICE OF ACQUISITION FUNCTIONS

BoGrape formulates acquisition optimization as a MIP, and LCB is chosen as a representative
acquisition function given its popularity in BO and relatively simple form. BoGrape could be easily
applied to other acquisitions functions in linear forms w.r.t. posterior mean and variance. For
nonlinear acquisition functions, one could either use nonlinear solvers to optimize the resulting
MINLP or linearize the acquisition functions. Since the acquisition only appears in objective, all
graph-relevant constraints still work as before.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.3 EFFECTIVENESS OF ENCODING

Different shortest-path algorithms might affect the time complexity when computing the graph
kernels, but they should be asymptotically similar since cost is dominated by computation of the
shortest distance between any pair of nodes. For example, if we use Dijkstra’s algorithm, which
is a single-source shortest path algorithm, then we need to repeat it n times and the complexity is
O(n(e + n logn)) with e as the number of edges. Most importantly, the choice of shortest path
algorithm is irrelevant to our shortest path encoding. Although our encoding is motivated by Floyd’s
algorithm, all constraints in our encoding are the necessary conditions that the shortest paths should
satisfy no matter what algorithm is used. For the optimality of the encoding, our encoding builds
a bijection between all connected graphs and all feasible solutions of Eq. (MIP-SP) as shown in
Theorem 3.5, meaning it is optimal in terms of representations.

B.4 COMPLEXITY ANALYSIS

The time complexity of computing all shortest paths for a graph with n nodes is O(n3). When
computing the covariance between two graphs (assume they both have n nodes for simplicity), a naive
implementation of shortest path kernel is O(n4), but our implementation is O(nL2) with L being
the number of node labels after storing Ps,l1,l2(·) as defined in Section 3.4. For other graph kernels,
Random Walk (RW) (Gärtner et al., 2003) is O(n3), Subgraph Matching (Kriege & Mutzel, 2012) is
O(knk+1) with k as the size of subgraphs considered, and Weisfeiler-Lehman (WL) (Shervashidze
et al., 2011) is O(hm) with h as the number of iterations and m as the number of edges [7]. There
are graph kernels with lower complexity than shortest-path kernels, but the complexity of calculating
kernels in graph BO is less important than encoding the graph kernel as optimization constraints.

B.5 LIMITATIONS

The major limitation of BoGrape (and most MIP-based methods) is the computational complexity.
The BoGrape complexity stems from solving the MIP rather than computing kernel values. The
tradeoff is: (i) BoGrape represents the whole, unavoidably large, search space precisely, and (ii)
solving MIP to global optimality is time-consuming since proving optimality of a solution usually
takes much more time than finding this solution. To better demonstrate this tradeoff, we perform
an ablation study by varying the MIP time limit among {60, 600, 1200} seconds on the molecular
design case study on QM7 dataset with graph size N = 10. As Figure 5 illustrates, extending the
computational time does not improve BO performance significantly. Nevertheless, Figure 6 shows
that increasing time limits results in a smaller MIPgap, i.e. gives the the solver to more time prove
a solution’s optimality. In other words, finding good feasible solutions is easier (and important for
practical BO performance), while closing the MIPgap (important for theoretical BO convergence)
requires more computational effort.

B.6 SCALIBILITY OF BOGRAPE

Scalability issues always exist for combinatorial optimization, since the search space grows quickly.
For BoGrape, there are several ways to improve scalability: (i) reduce the search space, e.g., only
consider graphs that are similar to previous graphs in a trust-region fashion (similar in spirit to muta-
tion over existing samples in evolutionary algorithms (Ru et al., 2021), or adversarial perturbations
with limited budgets (Wan et al., 2021)), (ii) limit the solving time as we did in experiments, letting
the MIP solver return the current best solution, (iii) develop computational heuristics for specific
problems to identify promising candidates earlier, (iv) decompose large graphs into functional groups
and optimize the graph structure over groups instead of nodes. Note that (iv) is frequently applied in
graph tasks, e.g., cell-based neural architecture search (Wan et al., 2022), fragment-based molecular
design (Zhang et al., 2024), etc..

B.7 CHOICE OF APPLICATION

We choose the optimal molecular design task since (i) molecules can be represented as attributed,
connected graphs, (ii) molecular properties, either measured or predicted, are suitable functions over
graphs, and (iii) the MIP-based framework for molecular design is well-established. The baselines

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) SSP kernel (b) SP kernel

(c) ESSP kernel (d) ESP kernel

Figure 5: Performance of varying the time limit for BoGrape over QM7 datasets with graph size
N = 10. Best objective is plotted at each iteration. Mean with 0.5 standard deviation over 10
replications is reported.

Figure 6: Comparison of the average MIPgap over all iterations when varying the time limit. Experi-
ment conducted on QM7 dataset with graph size N = 10.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

used in our experiments are less tailored to molecular design, and there are definitely more advanced
methods. But the purpose of this case study is not showing BoGrape is a state-of-the-art method in
molecular design, but investigating this problem from a constrained discrete optimization perspective.
Meanwhile, although molecular design is a promising and important application area for BO (Paulson
& Tsay, 2024), our proposed BoGrape procedure is general for any setting with functions defined
over connected graphs.

B.8 KERNEL SELECTION

Kernel selection is an interesting question explored in BoGrape. As discussed in Section 4.2, there is
a trade-off between the kernel’s expressiveness and the complexity of resulting optimization problems.
With sufficient computational resources, more expressive kernels like ESP is preferred. But simpler
kernels like SSP yield optimization problems that are easier to solve. As the graph size increases,
linear kernels usually achieve better performance due to the overhead associated with formulating
exponential kernels.

C ADDITIONAL NUMERICAL RESULTS

C.1 KERNEL PERFORMANCE

Besides four shortest-path graph kernels, we also test the performance of several classic graph
kernels, including Random Walk (RW) (Gärtner et al., 2003), Subgraph Matching (SM) (Kriege
& Mutzel, 2012), Weisfeiler-Lehman (WL) (Shervashidze et al., 2011), and Weisfeiler-Lehman
Optimal Assignment (WLOA) (Kriege et al., 2016) kernels. To justify the effectiveness of the feature
component in Eq. (3), we also test the combination of these four kernels with the same feature kernel
used in shortest-path kernels. All GPs are trained by maximizing the log marginal likelihood. During
GP training, we set bounds for kernel parameters, i.e., α, β, σ2

k, to [0.01, 100] with 1 as their initial
values, and set noise variance σ2

ϵ as 10−6. β1/2
t defined in Eq. (1a) is set as 1.

Datasets QM7 (Blum & Reymond, 2009; Rupp et al., 2012) and QM9 (Ruddigkeit et al., 2012;
Ramakrishnan et al., 2014) are used to test the kernel performance and train GNNs as graph functions.
Each dataset consists of molecules with quantum mechanic properties. Following the setting in Zhang
et al. (2024), we represent each molecule as a graph with M = 15 node features with L = 4 labels
included, use the same structural constraints, and train a GNN as a predictor for each dataset. The
trained GNN on QM7 has train and test errors of 0.0356 and 0.0337 respectively. Both the train and
test errors of the GNN on QM9 are 0.0082. We provide an example of the node feature and label in
such molecular graph to better distinguish the difference in their definitions:

Example. In the molecular design example on QM7 dataset, we followed the same setting as in Zhang
et al. (2024). Each node (atom) has one label from {C,N,O, S} and a feature vector with length
M = 15, e.g. (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0) where the first four elements indicate the atom
has label C, the 5th − 8th elements indicate the atom has two neighbors, the 9th − 13th elements
indicate the atom is connected to 2 hydrogen atoms, the 14th element indicates the atom is included
in a double bond and the 15th element indicates it is not included in a triple bond. More detailed
definitions can be found in the Table 2 & 3 of Zhang et al. (2024).

Based on the molecular size N , we consider two settings (a) if the dataset includes molecules of size
N , we randomly choose molecules from the dataset and use their real properties, and (b) for larger N ,
we use Limeade to generate molecules and use the trained GNN to predict their properties. To show
the performance of different kernels on representing similarity between graphs, we apply setting (a)
and perform a property prediction task using GPs equipped with the various kernels, shown in Figure
8. For larger graph sizes, we apply setting (b). The root mean square errors (RMSE) is reported in
Figure 9 and Table 3, the mean negative log likelihood (MNLL) is reported in Table 4.

Two observations from these results are: (i) adding feature component largely improves the per-
formance of all kernels in terms of predictive accuracy and uncertainty quantification, and (ii) our
shortest-path kernels achieve comparable performance comparing to other graph kennels, which
further justifies our choice of these kernels for global acquisition optimization.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.2 ABLATION STUDIES ON THE CHOICE OF βt

BoGrape leverages the classical LCB acquisition function, where exploration and exploitation are
balanced through its coefficient βt (Srinivas et al., 2010). We set βt = 1 in our experiments for
simplicity, as using constant values for βt is a standard approach in BO literature, e.g., Thebelt et al.
(2021). Although changing βt does not affect the complexity of the acquisition optimization, we
provide an ablation study on varying the value of βt as an investigation on the convergence behavior
of BoGrape regarding different exploration-and-exploitation factor. We consider the same setup of
the real-world case study on the QM7 dataset using SSP kernel with graph size N = 10 as in Section
4.3. We include three common choices of β1/2

t in BO literature: (1) 1 as in this work; (2) 1.96,
e.g. Thebelt et al. (2021); (3) a time-dependent schedule of 3 ·

√
0.5 log(2(t+ 1)) as suggested by

recent graph BO literature (Ru et al., 2021). We present the average minimal objective value (with
0.5 standard deviation in brackets) found over 50 iterations with 10 replications in Figure 10. This
study confirms that, though there may indeed be value in tuning βt for a particular setting, BoGrape
variants with different choices for βt largely exhibit similar convergence behavior. This observation
justifies the choice on βt and further proves the robustness of BoGrape over key hyperparameters.

C.3 DETAILS FOR CASE STUDY

Random sampling is a common baseline, but is excluded in Section 4.3 since it rarely produces
even feasible solutions. Randomly sample feasible graphs is untrivial in molecular generation task
because the graph structure and features should be reasonable and compatible with each other, e.g.,
satisfying structural feasibility, dataset-specific constraints, etc.. Here we consider random sampling
over QM7 and QM9, to guarantee the feasibility of samples and compare it with Limeade (Zhang
et al., 2025). Limeade is proposed as a feasible molecule generator, which is further enhanced by
incorporating the composition constraints and symmetry-breaking constraints (Zhang et al., 2023).
Figure 11 plots the regret curve over 50 iterations for both sample methods. In all cases, Limeade
outperforms random sampling, showing the limitations of random sampling. Therefore, we choose
Limeade as our sampling baseline.

For evolutionary algorithm, we apply the same random sampling and mutation procedure as in Ru
et al. (2021). First, none of 106 random samples is feasible, which is expected since the sample
domain is 2N(N−1)/2LN (∼ 1020 for N = 10, ∼ 1062 for N = 20), while the feasible domain is
relatively much smaller. Then we give evolutionary algorithms 104 feasible molecules generated
by Limeade as an initial population and mutate each one 100 times, but only 0.35% mutations are
feasible for N = 10, and 3 out of 106 are feasible for N = 20. Although a tailored evolutionary
algorithm could be designed with better performance, it is neither the main focus of this work nor
compatible with general settings. Therefore, we exclude WL-evol from baselines.

Given the trained GNNs used in Section C.1 as unknown graph functions, we conduct BoGrape
to optimize them. In our experiments, 10 random molecules sampled by Limeade are used as the
initial dataset, and 50 BO iterations are performed. We set PoolSearchMode=2 in Gurobi to generate
feasible solutions using Limeade. For each BO run, we show the mean with 0.5 standard deviation
of the best objective value over 10 replications. For the two baselines where we use Limeade as a
sampling-based solver for the acquisition functions, we conduct an ablation study by increasing the
number of candidates from 20 to 100. Figure 7 shows the results. While multiplying the number of
candidates evaluated by five in each acquisition optimization step indeed improves the performance
of the sampling-based baselines, BoGrape (which only proposes one sample per iteration) still
outperforms Limeade. This ablation study emphasizes the importance of global acquisition function
optimization.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

(a) QM7, N = 30 (b) QM7, N = 30

(c) QM9, N = 30 (d) QM9, N = 30

Figure 7: Performance of varying the number of samples used in acquisition optimization for baselines
over QM7 and QM9 datasets with graph size N = 30. ∗ indicates 100 candidates used in each
iterations. Best objective is plotted at each iteration. Mean with 0.5 standard deviation over 10
replications is reported.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 8: Compare predictive performance of GP with different kernels. * indicates linear combination
of given kernel and feature kernel. 100 samples are randomly chosen from the QM7 dataset with
various graph sizes, 30 of which are used for training. The predictive mean with one standard
deviation (predicted y) of the remaining 70 graphs are plotted against their real values (true y).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: Violin plots to demonstrate GP regression performance on different graph kernels and graph
sizes N . * indicates linear combination of given kernel and feature kernel. Each violin plots 25%
percentile, median and 75% percentile of the RMSEs over the 100 replications.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

Under review as a conference paper at ICLR 2026

Ta
bl

e
3:

M
od

el
pe

rf
or

m
an

ce
of

G
Ps

eq
ui

pp
ed

w
ith

di
ff

er
en

tg
ra

ph
ke

rn
el

s.
*

in
di

ca
te

s
lin

ea
rc

om
bi

na
tio

n
of

gi
ve

n
ke

rn
el

an
d

fe
at

ur
e

ke
rn

el
.F

or
ea

ch
gr

ap
h

si
ze

N
,

w
e

us
e

L
im

ea
de

to
ra

nd
om

ge
ne

ra
te

20
an

d
10

0
m

ol
ec

ul
es

fo
rt

ra
in

in
g

an
d

te
st

in
g,

re
sp

ec
tiv

el
y,

ro
ot

m
ea

n
sq

ua
re

er
ro

r(
R

M
SE

)o
fp

re
di

ct
iv

e
er

ro
ri

s
re

po
rt

ed
ov

er
10

0
re

pl
ic

at
io

ns
.

K
er

ne
l

N
=1

0
N

=1
5

N
=2

0
N

=2
5

N
=3

0

R
W

1.
15

1(
0.

96
5)

1.
45

6(
1.

07
4)

0.
81

9(
0.

79
2)

1.
25

5(
2.

94
9)

1.
81

5(
3.

91
1)

SM
1.

30
1(

0.
94

5)
1.

69
3(

1.
22

1)
1.

39
8(

4.
28

4)
1.

67
8(

3.
04

1)
2.

81
6(

6.
66

7)
W

L
1.

18
5(

0.
89

4)
1.

47
5(

1.
05

7)
0.

68
2(

0.
50

1)
0.

93
4(

2.
08

5)
1.

38
9(

2.
75

8)
W

L
O

A
1.

25
6(

0.
93

0)
1.

61
2(

1.
08

4)
0.

68
2(

0.
50

8)
1.

00
2(

2.
07

5)
1.

49
2(

2.
75

0)

SS
P

0.
71

0(
0.

68
0)

1.
81

0(
2.

81
9)

0.
68

2(
0.

68
3)

0.
63

8(
1.

70
1)

1.
12

2(
3.

08
5)

SP
0.

70
9(

1.
15

0)
0.

78
5(

0.
64

0)
0.

35
4(

0.
31

8)
0.

54
0(

1.
60

2)
1.

07
3(

3.
09

5)
E

SS
P

0.
61

9(
0.

77
2)

0.
92

8(
0.

73
2)

0.
43

6(
0.

55
0)

0.
76

6(
1.

61
5)

1.
86

2(
4.

90
7)

E
SP

0.
53

9(
0.

62
8)

0.
79

0(
0.

69
1)

0.
34

1(
0.

30
4)

0.
75

7(
1.

98
0)

1.
57

4(
4.

51
6)

R
W

*
0.

82
6(

0.
92

2)
0.

98
4(

0.
92

0)
0.

52
0(

0.
61

3)
0.

52
3(

1.
72

3)
0.

99
5(

2.
65

5)
SM

*
0.

51
9(

0.
67

0)
0.

76
5(

0.
69

9)
0.

29
0(

0.
30

1)
0.

59
3(

1.
48

7)
1.

27
8(

3.
74

8)
W

L
*

0.
49

8(
0.

63
6)

0.
72

3(
0.

73
1)

0.
27

8(
0.

28
6)

0.
56

2(
1.

67
6)

1.
00

6(
2.

64
6)

W
L

O
A

*
0.

54
5(

0.
71

0)
0.

86
6(

1.
00

2)
0.

28
9(

0.
29

3)
0.

60
8(

1.
70

2)
1.

04
9(

2.
64

8)

27

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469

Under review as a conference paper at ICLR 2026

Ta
bl

e
4:

M
od

el
pe

rf
or

m
an

ce
of

G
Ps

eq
ui

pp
ed

w
ith

di
ff

er
en

tg
ra

ph
ke

rn
el

s.
*

in
di

ca
te

s
lin

ea
rc

om
bi

na
tio

n
of

gi
ve

n
ke

rn
el

an
d

fe
at

ur
e

ke
rn

el
.F

or
ea

ch
gr

ap
h

si
ze

N
,w

e
us

e
L

im
ea

de
to

ra
nd

om
ge

ne
ra

te
20

an
d

10
0

m
ol

ec
ul

es
fo

r
tr

ai
ni

ng
an

d
te

st
in

g,
re

sp
ec

tiv
el

y,
m

ea
n

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d
(M

N
L

L
)

is
re

po
rt

ed
ov

er
10

0
re

pl
ic

at
io

ns
.

K
er

ne
l

N
=1

0
N

=1
5

N
=2

0
N

=2
5

N
=3

0

R
W

N
A

N
A

N
A

N
A

N
A

SM
15

69
0.

36
7(

70
41

5.
31

6)
79

3.
73

9(
32

87
.2

76
)

43
8.

75
6(

17
97

.4
62

)
33

81
.9

05
(1

00
99

.9
46

)
36

42
6.

89
1(

12
08

15
.0

92
)

W
L

15
68

8.
59

8(
70

41
5.

34
8)

52
1.

06
8(

22
43

.7
26

)
30

4.
24

6(
13

37
.7

50
)

29
44

.2
84

(9
37

2.
51

0)
19

79
3.

17
8(

69
33

3.
82

2)
W

L
O

A
15

68
8.

65
3(

70
41

5.
36

2)
52

1.
24

8(
22

43
.7

69
)

30
4.

28
1(

13
37

.6
85

)
29

46
.1

60
(9

37
2.

89
3)

19
79

4.
52

8(
69

33
3.

02
7)

SS
P

15
92

0.
29

0(
25

86
6.

46
9)

72
10

.2
62

(1
20

25
.1

88
)

17
87

.8
62

(3
45

3.
17

7)
14

47
.4

86
(4

73
8.

23
4)

13
83

5.
08

3(
84

91
2.

36
9)

SP
27

6.
74

5(
98

0.
03

4)
24

.3
16

(8
3.

98
6)

56
.3

68
(3

57
.6

63
)

10
90

.3
70

(4
67

0.
81

7)
12

86
2.

26
6(

84
93

2.
39

9)
E

SS
P

53
.0

93
(1

54
.1

09
)

53
0.

28
9(

34
21

.0
41

)
40

.0
77

(2
22

.7
03

)
38

.8
19

(2
14

.3
90

)
32

7.
39

3(
23

36
.9

68
)

E
SP

4.
96

2(
17

.3
96

)
1.

87
7(

3.
65

0)
0.

65
8(

1.
30

8)
2.

59
7(

7.
89

4)
24

8.
22

2(
22

83
.4

44
)

R
W

*
N

A
N

A
N

A
N

A
N

A
SM

*
2.

86
3(

9.
55

9)
2.

97
4(

9.
07

8)
0.

84
5(

2.
91

6)
9.

61
1(

31
.5

83
)

14
38

.1
75

(1
12

78
.5

39
)

W
L

*
2.

57
2(

9.
41

8)
2.

76
4(

9.
11

8)
0.

47
7(

2.
35

7)
3.

78
2(

15
.6

43
)

70
2.

55
1(

68
53

.1
09

)
W

L
O

A
*

3.
62

3(
14

.1
37

)
2.

73
7(

9.
01

6)
0.

30
9(

2.
04

9)
3.

98
7(

17
.6

98
)

72
5.

04
8(

69
74

.2
28

)

28

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523

Under review as a conference paper at ICLR 2026

Figure 10: Bayesian optimization results on QM7 with N = 10 and different values of β1/2
t . Best

objective value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is
reported.

(a) QM7, N = 4 (b) QM7, N = 5 (c) QM7, N = 6

(d) QM7, N = 7 (e) QM9, N = 4 (f) QM9, N = 5

(g) QM9, N = 6 (h) QM9, N = 7 (i) QM9, N = 8

Figure 11: Performance of random sampling and Limeade over QM7 and QM9 datasets with different
graph size N . Simple regret is plotted at each iteration. Mean with 0.5 standard deviation over 10
replications is reported.

29

1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

Under review as a conference paper at ICLR 2026

(a) QM7, N = 15 (b) QM7, N = 25

(c) QM9, N = 15 (d) QM9, N = 25

Figure 12: Bayesian optimization results on QM7 and QM9 with N ∈ {15, 25}. Best objective value
is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.

30

	Introduction
	Preliminaries
	Bayesian optimization (BO)
	Global optimization of acquisition functions
	Shortest-path graph kernels

	Methodology
	Variants of the shortest-path graph kernels
	Global acquisition function optimization
	Encoding of the shortest paths as optimization constraints
	Encoding of graph kernels as optimization constraints

	Experiments
	Model performance
	Optimization of synthetic benchmarks
	Real-world case study

	Conclusion
	Encoding of graph kernels
	Notations
	Shortest path encoding for graphs with fixed size
	Shortest path encoding for graph with unknown size
	Proofs of theorems
	Encoding for kernel over binary features
	Simplify path encoding over undirected graphs

	Discussion
	Choice of graph kernels
	Choice of acquisition functions
	Effectiveness of encoding
	Complexity analysis
	Limitations
	Scalibility of BoGrape
	Choice of application
	Kernel selection

	Additional numerical results
	Kernel performance
	Ablation studies on the choice of t
	Details for case study

