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ABSTRACT

Graph-structured data are central to many scientific and industrial applications
where the goal is to optimize expensive black-box objectives defined over graph
structures or node configurations—as seen in molecular design, supply chains, and
sensor placement. Bayesian optimization offers a principled approach for such
settings, but existing methods largely focus on functions defined over nodes of a
fixed graph. Moreover, graph optimization is often approached heuristically, and
it remains unclear how to systematically incorporate structural constraints into
BO. To address these gaps, we build on shortest-path graph kernels to develop a
principled framework for acquisition optimization over unseen graph structures and
associated node attributes. Through a novel formulation based on mixed-integer
programming, we enable global exploration of the combinatorial graph domain
and explicit embedding of problem-specific constraints. We demonstrate that
our method, BoGrape, is competitive both on general synthetic benchmarks and
representative molecular design case studies with application-specific constraints.

1 INTRODUCTION

Graph-structured data are playing an emerging role across scientific and industrial fields, giving rise
to a series of decision-making problems over graph domains, such as graph-based molecular design
(Korovina et al.,[2020; Mercado et al.|[2021} Yang et al.|[2024) and neural architecture search (Elsken
et al., [2019; White et al., [2023)). Broadly speaking, there are two classes of graph optimization
problems (Wan et al., 2023)): (i) optimizing over nodes, with a given (unknown) graph as the search
space and a function over nodes as the objective, and (ii) optimizing over graphs, with the entire
(constrained) graph domain as the search space and a function over graphs as the objective. The
latter case, which this work studies, is usually more challenging since the graph structure itself is
optimized, resulting in a complicated combinatorial optimization task.

For both aforementioned scenarios, the objective function can be a black-box, and, when expensive
to evaluate, discourages gradient- and population-based methods. These characteristics motivate
several works to extend Bayesian optimization (BO) (Frazier, |2018}; |Garnett, 2023) to graph domains
(Cui & Yang, 2018 |Oh et al.,|2019; Wan et al., 2023} |Liang et al., [2024) given its potential sample
efficiency. BO relies on two main components: a surrogate model, e.g., Gaussian processes (GPs),
trained on available data to approximate the underlying function, and an acquisition function used
to suggest the next sample. To translate BO to graph domains, one needs a surrogate model over
graph inputs with suitable uncertainty quantification, leading existing approaches to adapt GPs with
various graph kernels (Ramachandram et al., 2017} Borovitskiy et al.| 2021} Ru et al.| [2021; |Zhi et al.}
2023). However, a general graph BO framework is missing, since existing works either (i) limit the
searchable graph set to a given fixed graph (Oh et al., 2019; |Wan et al.| 2023} [Liang et al.l |2024),
directed labeled graphs (Ru et al.|[2021; |Wan et al., 2021} [White et al.| [2021)), unlabeled graphs (Cui
& Yangl 2018)), etc. or (ii) rely on task-specific similarity metrics (Kandasamy et al., 2018)).

When optimizing over graphs, the search space includes both continuous and discrete variables,
thus limiting the choice of optimization techniques. For example, acquisition function optimization
in graph BO is mostly performed using evolutionary algorithms (Kandasamy et al., 2018; |[Wan
et al.,[2021)) or sampling (Ru et al., 2021} Wan et al., |2023)), which are incapable of (i) effectively
exploring the search domain, (ii) embedding problem-specific constraints, and (iii) guaranteeing
optimality in terms of acquisition function, which is essential for optimization convergence. To
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Figure 1: Key components of BoGrape. The graph kernel comprises kg and kr on the graph and
feature levels, resp. The graph GP is subsequently trained using the chosen kernel, and its posterior is
used to build the acquisition function, e.g., LCB. Note that graph GP includes discrete graph domains;
the continuous domain is only for illustration purposes. Acquisition optimization is formulated and
solved as a MIP using the encoding of shortest paths and graph kernels, giving the next query point.

mitigate these issues, this paper explores mixed-integer programming (MIP) as an alternative to
represent an analytic expression of the graph function. The challenges this paper addresses are to
manage both the black-box setting and MIP encodings of surrogates for graph BO.

Recent advances on applying MIP to optimize trained machine learning (ML) models (Ceccon et al.|
2022;|Schweidtmann et al.,2022; [Thebelt et al.,|2022b) suggest pathways to address these challenges.
By equivalently encoding surrogates, e.g., GPs (Schweidtmann et al., 2021), trees (Misicl [2020;
Mistry et al., [2021; |Ammari et al., 2023)), neural networks (NNs) (Fischetti & Jol 2018; /Anderson
et al.,|2020; [Tsay et al.,2021; Wang et al.| 2023)), as constraints in larger decision-making problems,
several MIP-based BO methods are proposed, allowing global optimization over mixed-feature
domains (Thebelt et al., 2021} 2022aj Papalexopoulos et al., 2022} Xie et al.|[2024). Moreover, some
works develop MIP-based techniques to handle optimization problems constrained by graph neural
networks (GNNs), with applications to molecular design (Zhang et al.,[2023; |McDonald et al., [2024;
Zhang et al.l[2024) and robustness certification (Hojny et al.,[2024; |Gaines et al.,|2025). However,
given the data requirements of GNNSs, the computational cost of solving the large resulting MIPs, and
the lack of uncertainty quantification, GNNs are impractical surrogates for graph BO.

This paper proposes BoGrape, a MIP-based graph BO method to optimize functions over connected
graphs with attributes. GP surrogates are formulated and optimized using global acquisition function
optimization techniques introduced in Xie et al.[(2024). We develop four variants of the classic
shortest-path graph kernel (Borgwardt & Kriegel, [2005)), as well as MIP encodings of graph search
space, for use in BoGrape. By introducing a representation of the shortest paths as decision variables,
the acquisition function optimization is formulated as a MIP with a mixed-feature search space, graph
kernel, and relevant problem-specific constraints. Figure T]illustrates the BoGrape pipeline. Our main
contributions include:

* We propose graph representations with their corresponding shortest paths, and theoretically
prove that the feasible domain of our formulation is equivalent to the graph space consisting
of all connected graphs.

* We formulate shortest-path graph kernels, node attribute kernels, and GP posterior in-
formation based on our graph encoding as MIP constraints, enabling global acquisition
optimization.

* We provide a principled BO framework over graph spaces from a discrete optimization
viewpoint. BoGrape is compatible with problem-specific constraints over graph structures,
node attributes, and their interactions.
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2 PRELIMINARIES

2.1 BAYESIAN OPTIMIZATION (BO)

BO (Frazier, 2018) is a derivative-free optimization framework to iteratively approach the optimum
of an expensive-to-evaluate, black-box function. At each iteration, a surrogate model, usually a
GP (Schulz et al., 2018), is trained on the current observed dataset. With the surrogate constructed
and trained, an acquisition function is then formulated based on the posterior information, e.g.,
probability of improvement (PI) (Kushner,|1964), expected improvement (EI) (Jones et al.,|1998)),
lower confidence bound (LCB) (Srinivas et al.,2010)), predictive Entropy search (PES) (Hernandez{
Lobato et al.| |2014), etc.. Optimizing the acquisition function returns the next query, whose function
value is evaluated to form the next data point. This process repeats until meeting a stopping criterion.

2.2  GLOBAL OPTIMIZATION OF ACQUISITION FUNCTIONS

Most theoretical results for regret bounds in BO rely on the global optimization over acquisitions
(Srinivas et al.| 2012, i.e., they assume the global minimizer/maximizer of the acquisition function is
found at each step, which may not be satisfied using gradient- and sample-based optimizers. Xie et al.
(2024)) introduce PK-MIQP, a global acquisition optimization framework based on mixed-integer
quadratic programming (MIQP). The core of PK-MIQP is the piecewise linearization of a stationary
or dot-product kernel, e.g., RBF, Matérn, etc., based on which the acquisition optimization is then
formulated as an MIQP. PK-MIQP is useful because of its (i) compatibility with various kernels (note
the piecewise linearization is unnecessary if the kernel can be expressed linearly), and (ii) theoretical
guarantee on regret bounds. We present its formulation for the LCB acquisition function here:

min g — ﬁtl 12 < LCB acquisition (1a)
stop=K,xKxky < GP posterior mean (1b)
02 < Ky — KIXK;Cﬁ(KXm < GP posterior variance (1¢)
Kyxi = k(z, X"), V1 <i<t < kernel function (1d)
reX < search space (le)

2.3  SHORTEST-PATH GRAPH KERNELS

Graph kernels extend the concept of kernels to graph domains and are used to measure the similarity
between two graphs. Mathematically, a graph kernel k(-,-) : G x G — R is given by k(G,G’) =
(@(G), p(G")) %, where ¢ : G — H is a feature map from graph domain G to a reproducing kernel
Hilbert space  with inner product (-, -)# (Kriege et al.l[2020). Past research develops graph kernels
using a variety of graph patterns, e.g., neighborhoods, subgraphs, walks, paths. We refer the reader
to (Vishwanathan et al.,|2010; Borgwardt et al., 2020; |Kriege et al.,|2020; Nikolentzos et al.| [2021)
for more details on graph kernels. Several works also use graph kernels to optimize over nodes (Oh
et al.,|2019; Borovitskiy et al., 2021; Wan et al., 2023} [Liang et al.| [2024)), but the involved kernels
measure the similarity of two nodes on one given graph and do not support optimizing over graphs
(see Section [I]for this distinction). We focus on the shortest-path (SP) kernel (Borgwardt & Kriegell,
2005)) in this paper, owing to its ability to (i) handle both directed and undirected graphs, (ii) consider
node labels, and (iii) capture the relationship between non-adjacent graph nodes, making it more
general than kernels based on subgraph patterns (Shervashidze et al., [2009; |Costa & Grave, 2010).
We further discuss the choice of kernels in Appendix For graph G, denote [,, as the label of
node u, e, , as the shortest path from u to v (which may not be unique), and d,, ,, as the shortest
distance from node u to v (which is unique). The SP kernel between graphs G' = (V! E') and
G? = (V2, E?) is defined as:

kSP(le G2) = Z Ko (luys Luz) - Ke(duy oy s Qus,vz) = Ko (Lo s o). )

u1,01 €V ug,va€V?2

where k, is a kernel comparing node labels and k. is a kernel comparing path lengths.
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3 METHODOLOGY

3.1 VARIANTS OF THE SHORTEST-PATH GRAPH KERNELS

We build on Eq. (2) and develop variants of the shortest-path kernel. Both &, and k. in Eq. (2)) are
usually chosen as Dirac kernels, giving the explicit representation of the SP kernel as:

1
ksp(G',G?) = —— > Ly = lugy duy oy = dugogs oy =ls), (SP)

nin3
u1,v1 €V ug,va€V?2

=N

where n?n3 is a normalizing coefficient with n1, no as the node numbers of G, G2, resp.

Each node may additionally have problem-specific features beyond a single label. From here on, we
use X = (G, F) to denote an attributed graph with G as the underlying labeled graph and F' as node
features. Intuitively, we can compare the features of two nodes instead of labels in k,,. However, this
could unnecessarily reduce the number of matching paths between two graphs, as requiring identical
node features is restrictive and may introduce additional subgraph information into path comparison.
Another option is to use a more complicated kernel k,, that measures similarity between features of
two nodes, which may significantly increase the computational cost of optimization (similarity is
computed for all node pairings). Therefore, we borrow from (Cui & Yang| 2018) the idea to separate
the implicit and explicit information of graphs, i.e., the kernel value between two attributed graphs
X', X2 becomes:

E(XY, X% =a-ka(GHG?) + B kp(F', F?), 3)
where k¢ is any graph kernel, e.g., (SP), kr is any kernel over features, and «, 8 are learnable
parameters controlling the trade-off between graph similarity and feature similarity.

Since node label is usually included as a node feature and considered in kr term, and comparing
labels in Eq. increases the complexity of our upcoming optimization formulations, we further
propose a simplified shortest-path (SSP) kernel corresponding to an unlabeled SP kernel:

1
kSSP(G1> GQ) = n2n2 Z 1(du1,v1 = duzﬂ&)' (SSP)
u1,v1 EV I uz,v2€V?2
Lemma 3.1. SP and SSP kernels are positive definite (PD).

Proof. Borgwardt & Kriegel (2005) prove the SP kernel is PD. The SSP kernel is a special case of
the SP kernel where all nodes have the same label, hence is also PD. O

=N

Observe that both the SP and SSP kernels are linear kernels if we pre-compute all shortest paths in
each graph and count the number of occurrence for each shortest path length. Such linearity simplifies
the optimization step (which still requires the non-trivial representation of shortest paths), but reduces
the representation ability of the kernels and limits the maximal rank of the Gram matrix. Motivated
by the practically strong performance of exponential kernels such as RBF, Matérn, graph diffusion
kernel (Oh et al.,|2019)), etc., we propose two nonlinear graph kernels based on SP and SSP kernels:

kesp(G*,G?) = exp(ksp(G*, G?)) /0%, (ESP)
kessp(G',G?) = exp(kssp (G, G?)) /%, (ESSP)
where variance o7 is added to control the magnitude of kernel value.
Lemma 3.2. ESP and ESSP kernels are PD.

Proof. SP and SSP kernels can be rewritten into linear forms, so ESP and ESSP are exponential
kernels, which are known to be PD (Fukumizu, 2010). ]

Remark 3.3. The nonlinear kernels introduce additional difficulties for optimization, as discussed
later in Section [3.4] but may demonstrate better empirical performance compared to their linear
counterparts, owing to increased representation ability.

3.2 GLOBAL ACQUISITION FUNCTION OPTIMIZATION

To extend the prior formulation in Eq. (T) to optimize LCB acquisition in graph space (see Appendix
[B.2Jfor the applicability to other acquisition functions), we replace Eq. by our graph kernels in
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Table 1: List of variables introduced to represent the shortest path, where 7 is the number of nodes.

variables type description
Ay €{0,1}, u,v € [n]  binary the existence of edge from node u to v
dyw € [n], u,v € [n] integer the length of shortest path from node u to v

ov €40,1}, u,v,w € [n] binary the presence of node w on the shortest path from u to v

Sectionand define a combinatorial graph search space for Eq. asr=(G,F)eX=Gx F.
To maintain consistency with the general BO setting, we denote 2z = (G, F') as the next sample and
X = {(G", F%),y"}!_] as the previous samples at the ¢-th iteration. The difference is that now we
need to optimize over both the graph domain G € G and the feature domain F' € F. W.l.o.g., assume

that each node has M features F? € R(G)xM , and the first L features denote the one-hot encoding
of its label, i.e., > ;¢ 1 F} =1, where [n] denotes set {0, 1,...,n — 1}. This modified formulation
allows: (i) discrete variables, which is a key challenge of graph optimization, (ii) problem-specific
constraints over graph domain, and (iii) theoretical guarantees on regret bounds.

A binary adjacency matrix is sufficient to represent the graph domain; however, encoding correspond-
ing shortest-path information (for an unknown graph) is not straightforward and comprises a main
technical contribution of this work. We first introduce the formulation of shortest paths in Section [3.3]
and then explicitly derive Eq. in Section [3.4]for the graph kernels in Section

3.3 ENCODING OF THE SHORTEST PATHS AS OPTIMIZATION CONSTRAINTS

For the sake of exposition, we first consider all connected graphs GG with fixed size, i.e., node number
n is given (Appendix discusses formulations for graphs of unknown size). Table[I| summarizes
the optimization variables. Since our formulations involve constant graph information and their
variable counterparts, for each variable Var, we use Var(G) to denote its value on a given graph G.
For example, d,, ,,(G) is the shortest distance from node u to node v in graph G.

If graph G is given, all variables in Table[I]can be computed using classic shortest-path algorithms,
such as the Floyd—Warshall algorithm (Floyd, 1962). In graph optimization tasks, however, we need
to encode the relationships between these variables as constraints. Motivated by the Floyd—Warshall
algorithm, we first present the constraints in Eq. (3) of Appendix [A.2]and then prove there exists a
bijective between the feasible domain given by these constraints and all connected graphs with size n.
Here we directly give the final encoding of the shortest paths in the following linear MIP (details in

Appendix [A.2):

Avw=1,dyy =0, 6y, =1(w=v) Vv,we[n]
dyw <14+n-(1—Auy), Yu,v € [n], u # v
du, >2— Au v VU,U S [n}, u 7'é v
duw < dy w""dwv_(l_&;ﬂ’v), VU,U,’LUE[]
duyw > dyw + dwy —2n- (1 =46, ), Yu,v,w € [n] (MIP-SP)
651} 6311: VU,UE[TLL’UJ#’U
Zwe Oy <2+ (n—2)- (1 - Auy), Yu,v € [n], u # v
Zwe e =24+ (1= Aup), Yu,v € [n], u # v

Lemma 34. (A, (G), duw(G), 0y, (G)) is a feasible solution of Eq. with size n = n(Q)

given any connected graph G.

Proof. Trivial to verify by definition. O

Theorem 3.5. Given any n € Z, for any feasible solution (A, ., dy ., i ») of Eq. (MIP-SP) with
size n, there exists a unique graph G such that:

(Au,v(G) dy (G), 531;((;)) = (Au,vv du,vv 5171”,1))7
i.e., there is a bijection between the feaszble domain of Eq. with size n and the set consisting
of all connected graphs with n nodes.
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The formulation becomes more complicated when the graph size is unknown (but bounded). Denote
ng and n as the minimal and maximal node numbers, resp., and use A, , to represent the existence
of node v. Variables d,, , and 6,7, need to be properly assigned when either  or v does not exist.

Moreover we extend the domain of d,, ,, from [n] to [n + 1] and use n to denote infinity. Eq. (MIP]

in Appendix [A.3]presents the encodlng and Theorem [3.6]extends Theorem [3.5]to unknown
size.

Theorem 3.6. There is a bijection between the feasible domain of Eq. (MIP-SP-plus) with size [ng, n]
and all connected graphs with number of nodes in [ng, n).

See Appendix [A.4] for proofs of Theorems [3.5] and [3.6] which guarantee the equivalence of our
encoding for directed and strong connected graphs. Appendix [A.6shows how to further simplify our
encoding for undirected graphs. Appendix discusses the effectiveness of our encoding.

3.4 ENCODING OF GRAPH KERNELS AS OPTIMIZATION CONSTRAINTS

We now rewrite Eq. (Id) using Eq. (3) as:
Kin = k(l‘,XL) =Q- kG(G7GZ) +/8 ' kF(Fa FZ)

Given that £ is independent of the choice of graph kernel k¢, and that kernels on continuous features
are studied in Xie et al.| (2024), here we focus on formulating k¢. See Appendix [A.5]for respective
kernel encoding with binary features.

Formulating k¢ (G, Gi) is straightforward for SP and SSP kernels:

kssp(G,G") Z Z du??v:2(G) nzlnz Z Dy(G") - d.,.

u17v16[ Juz,v2€[n(G?)] v u,v,s€[n]

where n; := n(G?) is the node number of G¢, d3

u,v

Z Ay = Z s dy,, = duy, Yu,v € [n],

s€[n+1] se[n+1]

= 1(dy,» = s) are indicator variables:

and D, (G?) is the number of shortest paths with length s in G*:

Dy(G") = [{(u,v) | u,v € [ni], duy(G') = s}|-
Remark 3.1. dy; ,, is not used in evaluating the kernel, since it means the shortest path does not exist.
Similarly, introducing indicator variables pg’s "2 as:
P = WPy, =1, duw = 5, Fogy = 1), Vu,v,5 € [n], Iy, 12 € [L],
and counting the numbers of each type of paths in G
Pey 12(G) = {(w,0) | u,v € [ni], 1u(GY) = b, duw(GY) = 5, 1,(G") = b},
the SP kernel is formulated as:
% 1 i s,01,1
kSP(G,G):W Z P57117l2(G) pqu,z
v u,v,s€[n),ly,l2€[L]

There are several ways to handle the exponential kernels: (i) directly use (local) nonlinear solvers,
losing optimality guarantees, (ii) piecewise linearize the exponential function following Xie et al.
(2024), or (iii) utilize nonlinear MIP functionalities in established solvers such as Gurobi (Gurobi
Optimization, LL.C| [2024) or SCIP (Vigerske & Gleixner, 2018)). In our experiments, we choose to
use Gurobi, which by default employs a dynamic piecewise-linear approximation of the exponential
function given an error tolerance.

It is noteworthy that K, in Eq. is not constant with a non-stationary kernel, making it the most
complicated term in the whole formulation. By definition, kssp (G, G) has a quadratic form:

kssp(G,G) = 4ZD
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Algorithm 1 BoGrape at ¢-th iteration.

. Input: dataset X = {(G?, F?),y'}.=1, hyperparameter (3, graph kernel

1

2: Model training: kernel parameters «, 3, o7 > graph GP fit to X
3. Acquisition formulation:

4:  represent K, x: and K, in Egs. - > Section
5:  search space X in Eq. (le > problem-specific
6: Optimization: initialize and solve MIP Eq. > global optimization
7: Output: proposed sample (G?, ')

where Dy =37, @50, Vs € [n]. Reusing the indicator trick and introducing DS = 1(D; = ¢),
the quadratic form is equivalently linearized as:

1
Kssp(G,G) = vy E - Dg,
s€[n],c€[n?2+1]

where indicator variables D¢, Vs € [n],c € [n? 4 1] should satisfy:

Y Di=1, ) c¢-D{=D,, Vsen]

c€[n2+1] c€[n?+41]
Repeating the procedure for the SP kernel, we have:

1
Koo -4 Y e
s€[n],l1,lo€[L],cE[n2+1]

where indicator variables P¢ =1(Psy, 1, =), Ys € [n], l1,l2 € [L], ¢ € [n? + 1] satisfy:

s,l1,l2

S P, =1 Y ¢ Py, =P, Ys € 0], Il € [L].
c€[n2+1] cen?+1]

With the above graph GP model and optimization encodings, we have presented all the pieces needed
to implement an end-to-end graph BO procedure. Algorithm[T]outlines BoGrape.

4 EXPERIMENTS

All experiments are performed on a 4.2 GHz Intel Core 17-7700K CPU with 16 GB memory. We use
GPflow (Matthews et al.,|2017) to implement GP models, GraKel (Siglidis et al.,|2020) to implement
the classic graph kernels, PyG (Fey & Lenssen, [2019) to implement GNNs, and Gurobi (Gurobi
Optimization, LLC| 2024)) to solve MIPs.

There are few synthetic benchmark functions f : G x F — R for general graph domains since most
graph BO works focus on specific types of graphs. W,0.1.g., we consider GNNs as graph functions
that maps general labeled connected graph to real values. We conduct experiments considering two
settings: (i) randomly initialized GNNs which serves as random synthetic functions, and (ii) GNNs
trained on molecular datasets as graph property predictor in real-world case studies. It is noteworthy
that the architectures of GNNGs, the training mechanism, and the choice of datasets are not major
components of our work, since they merely serve as benchmarks of black-box graph functions.

4.1 MODEL PERFORMANCE

Before conducting the optimization tasks, we first compare the performance of graph GPs with
various graph kernels on randomly sampled molecules from the QM7 dataset (Blum & Reymond,
2009; Rupp et al.,[2012). Figure [2]shows that four shortest-path kernels have comparable prediction
accuracy, while the two exponential kernels quantify uncertainty more accurately (also supported by
Table[). For larger graph sizes, Table[3|shows that the more complicated kernels, i.e., SP and ESP,
are generally better at predicting graph properties, since they impose stronger criteria on comparing
shortest-paths between two graphs.

Remark 4.1. See Appendix [C.I|for similar illustrations of other graph kernels and more evaluations,
and Appendix [B.4]for complexity analysis of different graph kernels.
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Figure 2: Compare predictive performance of GP with different kernels. 100 samples are randomly
chosen from the QM7 dataset with various graph sizes, 30 of which are used for training. The
predictive mean with one standard deviation (predicted y) of the remaining 70 graphs are plotted
against their real values (true y). Notice that the error bars for SSP kernel are too small to be observed
in this visualization due to its weak uncertainty quantification.

4.2 OPTIMIZATION OF SYNTHETIC BENCHMARKS

We first evaluate the performance of BoGrape over synthetic benchmarks, i.e., arbitrary functions over
graphs. Specifically, given their ability as universal approximators, we cover the range of black-box
graph functions using randomly initialized GNNs including GAT (Velickovic et al., 2017), GCN (Kipf
& Welling| |2017)), and GraphSAGE (Hamilton et al.||2017). Each GNN consists of two convolutional
layers to learn graph embeddings, and two linear layers. Each hidden layer has 64 features. The
search space is the set of all connected, undirected graphs with /V nodes, and each node has one-hot
features with length L = 5 as its label. We propose these functions as benchmark problems, given:
(i) there are no existing synthetic benchmarks in graph BO literature, (ii) these benchmarks impose
neither problem-specific constraints nor assumptions over the graph space (except for connectivity),
making them suitable for comparison of a wide class of methods. These benchmark functions for
graph BO are available at: [link to be added after peer review].

BoGrape is compared against the following baselines: (i) Random: random sampling, i.e., randomly
sample one connected graph at each iteration, (ii) RW-rand: use graph GP with random walk (RW)
kernel as surrogate, and sampling-based acquisition optimization, i.e., choosing the sample with
the best LCB value among 20 random graphs, (iii) WL-rand: use Weisfeiler-Lehma (WL) kernel in
RW-rand, (iv) WL-evol: use evolutionary algorithm for acquisition optimization in WL-rand.

Remark 4.2. WL-rand and WL-evol are adapted from [Ru et al.| (2021)), which is specifically designed
for neural architecture search (NAS). WL-evol could be regarded as the state-of-the-art method in
graph BO.

For each benchmark with size N = 10, 20, we conduct BO with 10 initial samples and 50 iterations.
When solving Eq. (I)), we observed good solutions to be found early (since more time is spent on
proving optimality) and set 600s as the MIP time limit. As shown in Figure 3] BoGrape with all
kernel variants outperforms baselines in most cases. When the graph size is small, SP and ESP
perform better, since they are more expressive. For larger sizes, using simpler kernels reduces model
complexity and produces better solutions within the given time limit. The trade-off is between
the expressiveness of kernel and the complexity of the resulting optimization problem. We further
discuss this computational limitation in Appendix[B.5] possible solutions in Appendix[B.€] and kernel

selection in Appendix

4.3 REAL-WORLD CASE STUDY

We next consider optimal molecular design (McDonald et al.| |2024; Zhang et al., 2024)) as a real-
world case study. Following |Zhang et al.| (2023)), we train two GNNs on dataset QM7 (Blum &
Reymond, [2009; Rupp et al.| 2012) and QM9 (Ruddigkeit et al.| 2012; |Ramakrishnan et al.| 2014)
as oracle predictors, i.e., the functions that we seek to optimize. The additional challenge of this
task compared to Section .2] is that molecules are not arbitrary labeled graphs: the molecular
graph should be compatible with atom features. We found these structural constraints to effectively
prevent the sampling- and evolutionary-based methods used in Section from producing feasible
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Figure 3: Bayesian optimization results on synthetic benchmarks with N € {10, 20}. Best objective
value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.
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Figure 4: Bayesian optimization results on QM7 and QM9 with N € {10, 20, 30}. Best objective
value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.

solutions. Therefore, we modify Random to only consider randomly generated feasible molecules
from Limeade (Zhang et all, [2025)), and we remove WL-evol from comparison. We also adapt
molecular feasibility constraints from Limeade and add them to our MIP formulation to ensure only
valid molecules are considered during the optimization. Further related details are given in Appendix
[C3] The computational results in Figure [ show that BoGrape again generally outperforms baselines
regardless of which kernel is used. We discuss this application further in Appendix [B.7}
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5 CONCLUSION

This work proposes BoGrape to optimize black-box functions over graphs. Four shortest-path graph
kernels are presented and tested on both prediction and Bayesian optimization tasks. The underlying
mixed-integer formulation provides a flexible and general platform including mixed-feature search
spaces, graph kernels, acquisition functions, and problem-specific constraints. Our results show
promising performance and suggest trade-offs between query-efficiency and computational time
when choosing a suitable kernel. Future work may further simplify the formulations of BoGrape and
relax the requirement on graph connectivity.

REPRODUCIBILITY STATEMENT

We take the following measures to facilitate the reproducibility of our work. Theoretical contributions
are detailed and explained in both Section 3]in the main paper and Appendix[A] Theoretical claims are
supported by formal proofs provided in Appendix[A.4] To support the replication of empirical findings,
we provide code implementations including our method, synthetic graph functions mentioned in
Section 4.2 and models used in experiments in the supplementary materials.
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A ENCODING OF GRAPH KERNELS

A.1 NOTATIONS
We provide details for all variables introduced in this paper in Table 2] Recall that the search domain

considered here consists of all connected graphs with node number ranging from ng to n, each node
has M binary features with the first L node features as the one-hot encoding of node label.

Table 2: All variables introduced in the optimization formulation for graph kernels.

Variables Domain Description
Aupw, u,v € [n] {0,1} the existence of edge from u to v
du,v, u,v € [n] [n+1] the length of shortest path from w to v
0wy U, 0, W € 1] {0,1} if w appears at the shortest path from u to v
dy v, u,v € [n],s € [n+1] {0,1} indicator: 1(duy,, = s)
Ds, s € [n] [n? 4 1] # shortest paths with length s
DS, s € [n],c€[n®+1] {0,1} indicator: 1(D, = ¢)
e, w,v,s € [, by € (L] (0.1} indicator: 1(Fup, = Lduw = s, Foty = 1)
Psiyay, s € [n], 1,12 € [L] [n? +1]  #shortest paths with length s and labels [y, I
Py 1y, s€ M)l €[L],cen*+1]  {0,1} indicator: 1(P;,;; 1, = ¢)
N™, m € [M] [N +1] sum of m-th feature over all nodes
Ny, m e [M],ce[M+1] {0,1} indicator: 1(N,, = ¢)

A.2 SHORTEST PATH ENCODING FOR GRAPHS WITH FIXED SIZE

We first present necessary conditions that Ay, 4, dy v, 9, ,, should satisfy in Eq. @:

Av,v = ]-7 Yv € [’I’L] (Sa)
dyy =0, Yo € [n] (5b)
=1, Ago=1
du,v {> 1, Auﬂ) -0 5 \V/'U/,'U S [n], u 7é v (SC)
= du,w + dw,va 51121; =1
duv {< Qg + diyyy 6%, =0 Vu,v € [n], u# v (5d)
w _ 1L, w=wv
51},1} - {07 w 75 v’ Yv € [’I’L] (56)
O = Ouw =1, Yu,v € [n], u# v (50
w = 27 Au,'u =
>y 4 e wvelluge G

weE[n]

Eq. @) restricts Ay v, du,v; dy; , in the following rules:

* Eq. (5a) initializes the diagonal elements.
* Eq. (5b) initializes the shortest distance from v to itself.

* Eq. forces the shortest distance from node v and v be 1 if edge v — v exists, and larger
than 1 otherwise.

Rewrite Eq. as:

du,vgl“rn'(l—Au,y), VU,UE’R],U#’U
du,vZQ_Au,'m VU,UE[TL], u;év

where n is a big-M coefficient using d,, , <n — 1.
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* Eq. (5d) is the triangle inequality for distance matrix d.

Rewrite Eq. (3d) as:

du,v S du,w + dw,v -
du,v > du,w + dw,v —2n- (1 - 611/1,),1))7

where 2n is a big-M coefficient since dy, . + dy,» < 27

(1=07),

* Eq. (5¢) initializes d;/,, by definition.
* Eq. (51) initializes J;; , and d,, ,, by definition.

* Eq. (5g) ensures that there is at least one node at the shortest path from node u to v if there
is no edge from node u to v. Otherwise, no node except for v and v could appear at the

shortest path from u to v.
Rewrite Eq. (5g) as:

Yu, v, w € [n]

Yu,v,w € [n]

Z 537US2+(H72)'(1*AU,U), VU,UG[’H], u#v

weE[n]

Z 65),71 Z 2+ (1 - Au,v)7

weE[n]

where . — 2 is a big-M coefficient since 3, (.,

(;w

u,v

Yu,v € [n], u# v

Replacing disjunctive constraints accordingly in Eq. (5) gives the final formulation Eq. (MIP-SP).

A.3 SHORTEST PATH ENCODING FOR GRAPH WITH UNKNOWN SIZE

We extend constraints in Eq. (3] to handle changeable graph size. Full constraints are as follows:

Av,v > Av+l,v+1a

Z Av,v Z o,

vE[n]

ZAu,v < Au,u + Av,vv

dv,v = 07
=1, A,,=1
du,v > 1’ Au)v =0’
< Au,u = Au,v =1

min{Ay, ., Ayp} =0’

:Av,vzla

d = du,w + dw,va 65),1; =1
o < du,w + dw,vv 55),71 =
w={y v,
’ 0, w#w
65,1} = 5;),11 = 17
=2, A,,=1

D6, 8>2 Ay =0, Ay,
weln] =2, min{Amu, AU7U} =0

Eq. @ restricts Ay, d

5’UJ

u,vs Yy, v

in the following rules:

* Eq. (6a) forces nodes with smaller indexes exist.

Vo € [n—1]

Yu,v € [n], u# v
Yo € [n]

Yu,v € [n], u # v
Yu,v € [n], u # v
Yu,v € [n], u # v

Yo € [n]

Yu,v € [n], u # v

Yu,v € [n], u # v

* Eq. (6b) gives the lower bound of the number of existed nodes.

* Eq. (6¢) means that there is no edge from node u to v if any of them does not exist.

* Eq. (]6_3]) initializes the shortest distance from one node to itself, even it does not exist.
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* Eq. forces the shortest distance from node u and v be 1 if there is one edge from u to v,
and larger that 1 otherwise.

Rewrite Eq. as:

dyo <1l4+n-(1—-A4,,), Yu,ve€n], u#v
dyw >2— Ay, Yu,v € [n], u £ v

where n is a big-M coefficient using the fact that d,, , < n.
* Eq. @ sets the shortest distance from node u to v as n, i.e., 0o, if any of them does not
exist. Otherwise, the shortest distance is less than n.

Rewrite Eq. (61) as:

dyw>n-(1—Auq), Yu,v€n], utv

s

dyw>n-(1=Ayy), Yu,v€n], u#v

— 3

* Eq. (6g) is the triangle inequality for the distance matrix d.
Rewrite Eq. (6g) as:

duw < dypo + du oy — (1= 0,,), Yu, v, w € [n]
duw 2 dyw +dwy —2n-(1-6,,), Yu,v,w € [n]

where 2n is a big-M coefficient since dy, ., + dy,v < 2n.
* Eq. (6h) initializes J;), by definition, even node v does not exist.

* Eq. @) initializes d,; , and d,, , by definition, even node u or v does not exist.

* Eq. (6]) makes sure that there is at least on node at the shortest path from node w to v if there
is no edge from node u and v and these two nodes both exist. Otherwise, only d;; , and 4, ,,
equal to 1.

Rewrite Eq. (§]) as:

u,v

Zé“’ <24+ (n—-2)-(1-A4,,), Yu,v€n], u#v

we[n]

Zéqu'u§2+(n_2)“4u,u> VU,UE[n],’U/#’U

we[n]

Zéw <24+ (n—2)- Ay, Yu,v € [n], u # v

we[n]
> 68U, > A+ Apy + (1= Auy), Va0 €[], u#v
we[n]

where n — 2 is a big-M coefficient since } -, (,,; 0u,

To conclude, the formulation for shortest paths of all connected graphs with at least ny nodes and at
most n nodes is:
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Avw = Avg1,o41, Vv € [n—1]
Z Ay v > no,
veln]
2400 S Ay + Ay, Yu,v € [n], u#v
dyw =0, Yo € [n]
dyo <1l4+n-(1—A,,), Yu,v € [n], u#v
dup 22— Ay, Vu,v € [n], u#wv
dupw >n-(1—Ayu), Yu,v € [n], u #v
dyv>n-(1—Ays), Vu,v € [n], u#v
duw < dupw + dwo — (1= 0,,), Yu, v, w € [n]
duw > dypw +dwy —2n-(1-6,), Yu,v,w € [n]
(MIP-SP-plus)
oo { v e
b 0, w#v’
0w = Oup =1, Yu,v € [n], u#v
> oY, <24 (n—2)-(1— Auy), Yu,v € [n], u#v
weln)
ZéZUSZ—&—(n—Q)-Au,u, Yu,v € [n], u#v
weln]
Y ow, <24+ (n—2)- Ay, Yu,v € [n], u# v
we(n]
Z Oy = Ay + Ao + (1 = Auy), Yu,v € [n], u # v
weln)

A.4 PROOFS OF THEOREMS

Proof of Theorem[3.3] 1f such G exists, it is unique since A, ,, gives the existence of every edge.
Thus it suffices to show that (dy, ., (G), 0y, (G)) = (du v, ;) for G defined with A, .

u,v

We are going to prove it by induction on the shortest distance sd from node u to v in graph G.
Specifically, we want to show that for any 0 < sd < n, and for any pair of (u,v) such that
min(dy (G, du,w) = sd, we have d, ,,(G) = dy, and 6, ,,(G) = 6,7, YVw € [n].

For sd = 0, min(d,,(G), dy ») = 0if and only if u = v. For any v € [n], it is obvious to have:

dyo(G) = 0=d,,
by (G) =1=107,
¥ ,(G)=0=4"

v,V

Yw # v

For sd = 1, consider every pair (u, v) such that d,, ,,(G) = 1, we have A, , = A, (G) = 1, then it
is easy to obtain:

duv(G) =1=1dy,
61’ZU(G) =1=4,, Ywe {u,v}
0 o(G) =0=10,,, YVw & {u,v}

where 0, = 0, Yw ¢ {u, v} since:
Z 55),11 = Z 65},1) - 611:,1) - 62,1) =0.
wE{u,v} we[n]

On the contrary, d,,,, = 1 gives A, , = 1, thus A, ,(G) = Land 6,/ ,(G) = 6,/

U,V

Yw by definition.
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Now assume that for any pair of (u,v) such that min(dy ,(G), dy,») < sd, we have dy, ,(G) = dy, v
and 6, ,(G) = &, ,, Yw. Since &;; ,(G) = 0,/,,, Yw € {u, v} always holds by definition, we only

u,v? u,v?

consider w & {u, v}.

Part 1: We first consider every pair of (u,v) such that d, ,(G) = sd + 1. Since sd + 1 > 2, we
know that A, , = A, ,(G) = 0 and there exists w ¢ {u, v} on the shortest path from node v to v in
graph G.

Case 1.1: For every w ¢ {u, v} such that §;  (G) = 1, since dy,(G) < sd and dy, ,(G) < sd, we
have:

du,v < du,w + dw,v = du,w(G) + dw,v(G) = du,v
The equality has to hold, otherwise, d,, ,, < sd gives dy, (G) = du v
Gy = 1=0,,(G).

Case 1.2: Forevery w ¢ {u,v} such that 5;“77)((}’) =0,if &y, = 1, then dy o +duwv = dy,p = sd+1,
which means that d,, ,, < sd and d,,,, < sd. By assumption, we have dy, .,(G) = dy w, dw o (G) =

dw,» and then:

(G) =sd+ 1.
< sd by assumption. Therefore,

du,w(G) + dw,v(G) - du,w + dw,v - du,v - du,U(G)
which contradicts to ;' ,(G) = 0. Thus 6,/ = 0

Part 2: Then we consider every pair of (u,v) such that d, , = sd + 1. Similarly, we have
Ayp =Aun(G) =0.

Case 2.1: For every w ¢ {u,v} such that 53)@ = 1, since dy, ., < sd and d,,, < sd, we have
dyw(G) = dy v and dy, o (G) = dy v, then:
du,v(G) < du,w(G) + dw,v(G) = du,w + dw,v = du,v =sd+ 1.

This equality also has to hold, otherwise, d,, ,(G) < sd, by assumption d,, , = d,, ,(G) < sd, which
is a contradiction.

Case 2.2: For every w ¢ {u,v} such that 67, = 0, if &/ ,(G) = 1, then dy, ,(G) = du »(G) =

dy,»(G) = sd + 1, which means that d,, ,,(G) < sd and d,, ,,(G) < sd. Therefore,
duﬂu + dw,v = duw(G) + dw,v(G) = du ’U(G) = du,va

s

which contradicts to §,,, = 0. O]

Proof of Theorem[3.6] Fix the node number as n; with ng < ny < n, Eqs. (6a) — (6b) force:

1, ven]
A”’”‘{o, v € [n]\[ra]

substituting which to other constraints give us:

Ay =A,.,=0, Yu € [n1], v € [n]\[n1], u # v
dv;u = Oa Yo € [n]\[nl]
du,v = dv,u =n, Vu € [n1]7 v E [n]\[nlL u # v

1, we{u,v}
671/ — 571/ — ) k)
u,v v, u {O, w ¢ {U,’U} I

One can easily check that all constraints associated with non-existed nodes are satisfied. Removing

those constraints turns Eq. (MIP-SP-plus) into Eq. with size nq. O

Yu € [n1], v € [n]\[n1]

A.5 ENCODING FOR KERNEL OVER BINARY FEATURES

Assume that each graph G has a binary feature matrix F € {0, 1}*(©)*M we need to formulate
kp(F,F%) and kp(F, F) properly. kr could be defined in multiple ways, here we propose a
permutational-invariant kernel considering the pair-wise similarity among node features. Given
two feature matrices F'', F'? corresponding to graphs G, G resp., define kr as:

1 1
kp(F', F?) = > FLF= 3 Na(FY) - N, (F2),
nlngM 1 EV LoV nlngM meM]
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where N,,(F) = > F!

vE[n,]

Vm € [M], and nyn2 M is the normalized coefficient.

,m?

Similar to Section[3.4] we have:
1

i i
kF(F,F)_an > Nup(F') - Ny,
me([M]
where N, = > Fym, Vm € [M], and:
vE[n]
k(FF):LZJ\ﬂ: ! > - N¢
A n2M moon2M m
me[M] me[M],ce[M+1]

where indicators NS, = 1(N,,, = ¢), Vm € [M], ¢ € [n + 1] satisfy:

Z NS =1, Z ¢+ Nf, = Ny, Ym € [M].
c€[n+1] c€[n+1]

A.6 SIMPLIFY PATH ENCODING OVER UNDIRECTED GRAPHS

For undirected graphs, we first add the following constraints to guarantee symmetry:

Apw=Apu, Yu,v€n], u<wv
dyv=dyu, Yu,v€ln],u<v
O = Opus  Yu,v,w € [n], u<wv

Since the inverse of any shortest path from node u to v is also a shortest path from node v to u, for
SSP and ESSP kernels, D, Vs € [n] are even and we can fix odd indicators as zero:

¢ J1, ciseven ,
DS_{()» cis odd , Vs € [n], cen” +1].

Similarly, for SP and ESP kernels, we have:
Py 1y = Psiy,, Vs € [n], f1, f2 € [L].

B DISCUSSION

B.1 CHOICE OF GRAPH KERNELS

Various graph kernels are proposed to better fit graph data. However, none of them could be
incorporated as optimization constraints (nor are they designed for this purpose). Thus, current graph
BO works mostly use evolutionary algorithms that generate candidates and then evaluate them, where
graph kernels are used as graph functions to calculate the posterior mean and variance. The major
difference here is that computing k(G*, G?) given both G and G? is quite easy, but representing
k(G', G?) only given G! is super challenging since G2 could be any arbitrary graph. BoGrape is
built upon our theoretical contributions on encoding shortest paths into decision variables for arbitrary
connected graphs. Therefore, it is not that we chose shortest-path kernel first for specific reasons then
developed necessary formulations, but that the fundamental advances in graph optimization led us to
shortest-path kernels.

B.2 CHOICE OF ACQUISITION FUNCTIONS

BoGrape formulates acquisition optimization as a MIP, and LCB is chosen as a representative
acquisition function given its popularity in BO and relatively simple form. BoGrape could be easily
applied to other acquisitions functions in linear forms w.r.t. posterior mean and variance. For
nonlinear acquisition functions, one could either use nonlinear solvers to optimize the resulting
MINLP or linearize the acquisition functions. Since the acquisition only appears in objective, all
graph-relevant constraints still work as before.
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B.3 EFFECTIVENESS OF ENCODING

Different shortest-path algorithms might affect the time complexity when computing the graph
kernels, but they should be asymptotically similar since cost is dominated by computation of the
shortest distance between any pair of nodes. For example, if we use Dijkstra’s algorithm, which
is a single-source shortest path algorithm, then we need to repeat it n times and the complexity is
O(n(e + nlogn)) with e as the number of edges. Most importantly, the choice of shortest path
algorithm is irrelevant to our shortest path encoding. Although our encoding is motivated by Floyd’s
algorithm, all constraints in our encoding are the necessary conditions that the shortest paths should
satisfy no matter what algorithm is used. For the optimality of the encoding, our encoding builds
a bijection between all connected graphs and all feasible solutions of Eq. as shown in
Theorem [3.5] meaning it is optimal in terms of representations.

B.4 COMPLEXITY ANALYSIS

The time complexity of computing all shortest paths for a graph with n nodes is O(n?®). When
computing the covariance between two graphs (assume they both have n nodes for simplicity), a naive
implementation of shortest path kernel is O(n?), but our implementation is O(nL?) with L being
the number of node labels after storing Ps , 4, (+) as defined in Section @ For other graph kernels,
Random Walk (RW) (Girtner et al., 2003) is O(n?), Subgraph Matching (Kriege & Mutzel, [2012) is
O(kn**1) with k as the size of subgraphs considered, and Weisfeiler-Lehman (WL) (Shervashidze
et al.,[2011) is O(hm) with h as the number of iterations and m as the number of edges [7]. There
are graph kernels with lower complexity than shortest-path kernels, but the complexity of calculating
kernels in graph BO is less important than encoding the graph kernel as optimization constraints.

B.5 LIMITATIONS

The major limitation of BoGrape (and most MIP-based methods) is the computational complexity.
The BoGrape complexity stems from solving the MIP rather than computing kernel values. The
tradeoff is: (i) BoGrape represents the whole, unavoidably large, search space precisely, and (ii)
solving MIP to global optimality is time-consuming since proving optimality of a solution usually
takes much more time than finding this solution. To better demonstrate this tradeoff, we perform
an ablation study by varying the MIP time limit among {60, 600, 1200} seconds on the molecular
design case study on QM7 dataset with graph size N = 10. As Figure [§illustrates, extending the
computational time does not improve BO performance significantly. Nevertheless, Figure [6] shows
that increasing time limits results in a smaller MIPgap, i.e. gives the the solver to more time prove
a solution’s optimality. In other words, finding good feasible solutions is easier (and important for
practical BO performance), while closing the MIPgap (important for theoretical BO convergence)
requires more computational effort.

B.6 SCALIBILITY OF BOGRAPE

Scalability issues always exist for combinatorial optimization, since the search space grows quickly.
For BoGrape, there are several ways to improve scalability: (i) reduce the search space, e.g., only
consider graphs that are similar to previous graphs in a trust-region fashion (similar in spirit to muta-
tion over existing samples in evolutionary algorithms (Ru et al.,|2021)), or adversarial perturbations
with limited budgets (Wan et al., [2021)), (ii) limit the solving time as we did in experiments, letting
the MIP solver return the current best solution, (iii) develop computational heuristics for specific
problems to identify promising candidates earlier, (iv) decompose large graphs into functional groups
and optimize the graph structure over groups instead of nodes. Note that (iv) is frequently applied in
graph tasks, e.g., cell-based neural architecture search (Wan et al.| 2022), fragment-based molecular
design (Zhang et al.| 2024), etc..

B.7 CHOICE OF APPLICATION
We choose the optimal molecular design task since (i) molecules can be represented as attributed,

connected graphs, (ii) molecular properties, either measured or predicted, are suitable functions over
graphs, and (iii) the MIP-based framework for molecular design is well-established. The baselines
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Figure 5: Performance of varying the time limit for BoGrape over QM7 datasets with graph size
N = 10. Best objective is plotted at each iteration. Mean with 0.5 standard deviation over 10

replications is reported.
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Figure 6: Comparison of the average MIPgap over all iterations when varying the time limit. Experi-
ment conducted on QM7 dataset with graph size N = 10.
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used in our experiments are less tailored to molecular design, and there are definitely more advanced
methods. But the purpose of this case study is not showing BoGrape is a state-of-the-art method in
molecular design, but investigating this problem from a constrained discrete optimization perspective.
Meanwhile, although molecular design is a promising and important application area for BO (Paulson
& Tsay, [2024)), our proposed BoGrape procedure is general for any setting with functions defined
over connected graphs.

B.8 KERNEL SELECTION

Kernel selection is an interesting question explored in BoGrape. As discussed in Section 4.2} there is
a trade-off between the kernel’s expressiveness and the complexity of resulting optimization problems.
With sufficient computational resources, more expressive kernels like ESP is preferred. But simpler
kernels like SSP yield optimization problems that are easier to solve. As the graph size increases,
linear kernels usually achieve better performance due to the overhead associated with formulating
exponential kernels.

C ADDITIONAL NUMERICAL RESULTS

C.1 KERNEL PERFORMANCE

Besides four shortest-path graph kernels, we also test the performance of several classic graph
kernels, including Random Walk (RW) (Gdértner et al.l [2003)), Subgraph Matching (SM) (Kriege
& Mutzel, 2012)), Weisfeiler-Lehman (WL) (Shervashidze et al., [2011), and Weisfeiler-Lehman
Optimal Assignment (WLOA) (Kriege et al.,[2016) kernels. To justify the effectiveness of the feature
component in Eq. (3), we also test the combination of these four kernels with the same feature kernel
used in shortest-path kernels. All GPs are trained by maximizing the log marginal likelihood. During
GP training, we set bounds for kernel parameters, i.e., «, 3, U,%, to [0.01, 100] with 1 as their initial

values, and set noise variance o2 as 107°. ,Btl /? defined in Eq. ll is setas 1.

Datasets QM7 (Blum & Reymond, 2009; Rupp et al., 2012) and QM9 (Ruddigkeit et al., 2012}
Ramakrishnan et al.,[2014) are used to test the kernel performance and train GNNs as graph functions.
Each dataset consists of molecules with quantum mechanic properties. Following the setting in|Zhang
et al.| (2024), we represent each molecule as a graph with M = 15 node features with L = 4 labels
included, use the same structural constraints, and train a GNN as a predictor for each dataset. The
trained GNN on QM7 has train and test errors of 0.0356 and 0.0337 respectively. Both the train and
test errors of the GNN on QM9 are 0.0082. We provide an example of the node feature and label in
such molecular graph to better distinguish the difference in their definitions:

Example. In the molecular design example on QM7 dataset, we followed the same setting as in|Zhang
et al.[(2024). Each node (atom) has one label from {C, N, O, S} and a feature vector with length
M =15,e.g. (1,0,0,0,0,1,0,0,0,0,1,0,0,1,0) where the first four elements indicate the atom
has label C, the 5" — 8 elements indicate the atom has two neighbors, the 9" — 13" elements
indicate the atom is connected to 2 hydrogen atoms, the 14" element indicates the atom is included
in a double bond and the 15" element indicates it is not included in a triple bond. More detailed
definitions can be found in the Table 2 & 3 of|Zhang et al.| (2024)).

Based on the molecular size N, we consider two settings (a) if the dataset includes molecules of size
N, we randomly choose molecules from the dataset and use their real properties, and (b) for larger /V,
we use Limeade to generate molecules and use the trained GNN to predict their properties. To show
the performance of different kernels on representing similarity between graphs, we apply setting (a)
and perform a property prediction task using GPs equipped with the various kernels, shown in Figure
[] For larger graph sizes, we apply setting (b). The root mean square errors (RMSE) is reported in
Figure9)and Table 3] the mean negative log likelihood (MNLL) is reported in Table 4]

Two observations from these results are: (i) adding feature component largely improves the per-
formance of all kernels in terms of predictive accuracy and uncertainty quantification, and (ii) our
shortest-path kernels achieve comparable performance comparing to other graph kennels, which
further justifies our choice of these kernels for global acquisition optimization.
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C.2 ABLATION STUDIES ON THE CHOICE OF [3;

BoGrape leverages the classical LCB acquisition function, where exploration and exploitation are
balanced through its coefficient 5; (Srinivas et al.[2010). We set 5, = 1 in our experiments for
simplicity, as using constant values for 3; is a standard approach in BO literature, e.g.,[Thebelt et al.
(2021)). Although changing 3; does not affect the complexity of the acquisition optimization, we
provide an ablation study on varying the value of (3; as an investigation on the convergence behavior
of BoGrape regarding different exploration-and-exploitation factor. We consider the same setup of
the real-world case study on the QM7 dataset using SSP kernel with graph size /N = 10 as in Section
We include three common choices of Btl /2 in BO literature: (1) 1 as in this work; (2) 1.96,
e.g. Thebelt et al. (2021)); (3) a time-dependent schedule of 3 - 1/0.5log(2(¢t + 1)) as suggested by
recent graph BO literature (Ru et al.| 2021)). We present the average minimal objective value (with
0.5 standard deviation in brackets) found over 50 iterations with 10 replications in Figure This
study confirms that, though there may indeed be value in tuning 3; for a particular setting, BoGrape
variants with different choices for f3; largely exhibit similar convergence behavior. This observation
justifies the choice on 3; and further proves the robustness of BoGrape over key hyperparameters.

C.3 DETAILS FOR CASE STUDY

Random sampling is a common baseline, but is excluded in Section [4.3]since it rarely produces
even feasible solutions. Randomly sample feasible graphs is untrivial in molecular generation task
because the graph structure and features should be reasonable and compatible with each other, e.g.,
satisfying structural feasibility, dataset-specific constraints, etc.. Here we consider random sampling
over QM7 and QM0, to guarantee the feasibility of samples and compare it with Limeade (Zhang
et al.} 2025). Limeade is proposed as a feasible molecule generator, which is further enhanced by
incorporating the composition constraints and symmetry-breaking constraints (Zhang et al., [ 2023)).
Figure [TT] plots the regret curve over 50 iterations for both sample methods. In all cases, Limeade
outperforms random sampling, showing the limitations of random sampling. Therefore, we choose
Limeade as our sampling baseline.

For evolutionary algorithm, we apply the same random sampling and mutation procedure as in/Ru
et al.|(2021). First, none of 10 random samples is feasible, which is expected since the sample
domain is 2NWV-D/2LN (~ 1020 for N = 10, ~ 1092 for N = 20), while the feasible domain is
relatively much smaller. Then we give evolutionary algorithms 10* feasible molecules generated
by Limeade as an initial population and mutate each one 100 times, but only 0.35% mutations are
feasible for N = 10, and 3 out of 10 are feasible for N = 20. Although a tailored evolutionary
algorithm could be designed with better performance, it is neither the main focus of this work nor
compatible with general settings. Therefore, we exclude WL-evol from baselines.

Given the trained GNNs used in Section [C.I| as unknown graph functions, we conduct BoGrape
to optimize them. In our experiments, 10 random molecules sampled by Limeade are used as the
initial dataset, and 50 BO iterations are performed. We set PoolSearchMode=2 in Gurobi to generate
feasible solutions using Limeade. For each BO run, we show the mean with 0.5 standard deviation
of the best objective value over 10 replications. For the two baselines where we use Limeade as a
sampling-based solver for the acquisition functions, we conduct an ablation study by increasing the
number of candidates from 20 to 100. Figure[7]shows the results. While multiplying the number of
candidates evaluated by five in each acquisition optimization step indeed improves the performance
of the sampling-based baselines, BoGrape (which only proposes one sample per iteration) still
outperforms Limeade. This ablation study emphasizes the importance of global acquisition function
optimization.
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Figure 7: Performance of varying the number of samples used in acquisition optimization for baselines
over QM7 and QM9 datasets with graph size N = 30. * indicates 100 candidates used in each
iterations. Best objective is plotted at each iteration. Mean with 0.5 standard deviation over 10
replications is reported.
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Figure 10: Bayesian optimization results on QM7 with N = 10 and different values of ﬂtl /2 Best
objective value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is
reported.
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Figure 11: Performance of random sampling and Limeade over QM7 and QM09 datasets with different

graph size N. Simple regret is plotted at each iteration. Mean with 0.5 standard deviation over 10
replications is reported.
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1564 Figure 12: Bayesian optimization results on QM7 and QM9 with N € {15, 25}. Best objective value
1565  is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.
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