Under review as a conference paper at ICLR 2026

BOGRAPE: BAYESIAN OPTIMIZATION OVER GRAPHS
WITH SHORTEST-PATH ENCODED

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph-structured data are central to many scientific and industrial applications
where the goal is to optimize expensive black-box objectives defined over graph
structures or node configurations—as seen in molecular design, supply chains, and
sensor placement. Bayesian optimization offers a principled approach for such
settings, but existing methods largely focus on functions defined over nodes of a
fixed graph. Moreover, graph optimization is often approached heuristically, and
it remains unclear how to systematically incorporate structural constraints into
BO. To address these gaps, we build on shortest-path graph kernels to develop a
principled framework for acquisition optimization over unseen graph structures and
associated node attributes. Through a novel formulation based on mixed-integer
programming, we enable global exploration of the combinatorial graph domain
and explicit embedding of problem-specific constraints. We demonstrate that
our method, BoGrape, is competitive both on general synthetic benchmarks and
representative molecular design case studies with application-specific constraints.

1 INTRODUCTION

Graph-structured data are playing an emerging role across scientific and industrial fields, giving rise
to a series of decision-making problems over graph domains, such as graph-based molecular design
(Korovina et al.,[2020; Mercado et al.|[2021} Yang et al.|[2024) and neural architecture search (Elsken
et al., [2019; White et al., [2023)). Broadly speaking, there are two classes of graph optimization
problems (Wan et al., 2023)): (i) optimizing over nodes, with a given (unknown) graph as the search
space and a function over nodes as the objective, and (ii) optimizing over graphs, with the entire
(constrained) graph domain as the search space and a function over graphs as the objective. The
latter case, which this work studies, is usually more challenging since the graph structure itself is
optimized, resulting in a complicated combinatorial optimization task.

For both aforementioned scenarios, the objective function can be a black-box, and, when expensive
to evaluate, discourages gradient- and population-based methods. These characteristics motivate
several works to extend Bayesian optimization (BO) (Frazier, |2018}; |Garnett, 2023) to graph domains
(Cui & Yang, 2018 |Oh et al.,|2019; Wan et al., 2023} |Liang et al., [2024) given its potential sample
efficiency. BO relies on two main components: a surrogate model, e.g., Gaussian processes (GPs),
trained on available data to approximate the underlying function, and an acquisition function used
to suggest the next sample. To translate BO to graph domains, one needs a surrogate model over
graph inputs with suitable uncertainty quantification, leading existing approaches to adapt GPs with
various graph kernels (Ramachandram et al., 2017} Borovitskiy et al.| 2021} Ru et al.| [2021; |Zhi et al.}
2023). However, a general graph BO framework is missing, since existing works either (i) limit the
searchable graph set to a given fixed graph (Oh et al., 2019; |Wan et al.| 2023} [Liang et al.l |2024),
directed labeled graphs (Ru et al.|[2021; |Wan et al., 2021} [White et al.| [2021)), unlabeled graphs (Cui
& Yangl 2018)), etc. or (ii) rely on task-specific similarity metrics (Kandasamy et al., 2018)).

When optimizing over graphs, the search space includes both continuous and discrete variables,
thus limiting the choice of optimization techniques. For example, acquisition function optimization
in graph BO is mostly performed using evolutionary algorithms (Kandasamy et al., 2018; |[Wan
et al.,[2021)) or sampling (Ru et al., 2021} Wan et al., |2023)), which are incapable of (i) effectively
exploring the search domain, (ii) embedding problem-specific constraints, and (iii) guaranteeing
optimality in terms of acquisition function, which is essential for optimization convergence. To



Under review as a conference paper at ICLR 2026

Graph Kernel Graph Gaussian Process  Acquisition Optimization
X' = (61, FY) X% = (G2, F?) f(X) N(u(X), o%(X)) min LCB ( )
& g
q?. s e x- (G f &
§3 — -1
\/ LC ,u( )—KxxKny

PNeL L ¢
k(X" X?) = a kg(6",62) + B kp(F', F?) : ‘*’ H o? ( ) S Kyp — Kox Kxy Ky

B
s kesp ’jo‘“’o’o‘ Q?. .& MIP encodi {K“( qb' ¢)
encoding

Option 2 [
> Kkgsp — Q?'O v.S. (]
- 8% Next query point Kax ( ,%)

Figure 1: Key components of BoGrape. The graph kernel comprises kg and kr on the graph and
feature levels, resp. The graph GP is subsequently trained using the chosen kernel, and its posterior is
used to build the acquisition function, e.g., LCB. Note that graph GP includes discrete graph domains;
the continuous domain is only for illustration purposes. Acquisition optimization is formulated and
solved as a MIP using the encoding of shortest paths and graph kernels, giving the next query point.

mitigate these issues, this paper explores mixed-integer programming (MIP) as an alternative to
represent an analytic expression of the graph function. The challenges this paper addresses are to
manage both the black-box setting and MIP encodings of surrogates for graph BO.

Recent advances on applying MIP to optimize trained machine learning (ML) models (Ceccon et al.|
2022;|Schweidtmann et al.,2022; [Thebelt et al.,|2022b) suggest pathways to address these challenges.
By equivalently encoding surrogates, e.g., GPs (Schweidtmann et al., 2021), trees (Misicl [2020;
Mistry et al., [2021; |Ammari et al., 2023)), neural networks (NNs) (Fischetti & Jol 2018; /Anderson
et al.,|2020; [Tsay et al.,2021; Wang et al.| 2023)), as constraints in larger decision-making problems,
several MIP-based BO methods are proposed, allowing global optimization over mixed-feature
domains (Thebelt et al., 2021} 2022aj Papalexopoulos et al., 2022} Xie et al.|[2024). Moreover, some
works develop MIP-based techniques to handle optimization problems constrained by graph neural
networks (GNNs), with applications to molecular design (Zhang et al.,[2023; |McDonald et al., [2024;
Zhang et al.l[2024) and robustness certification (Hojny et al.,[2024; |Gaines et al.,|2025). However,
given the data requirements of GNNSs, the computational cost of solving the large resulting MIPs, and
the lack of uncertainty quantification, GNNs are impractical surrogates for graph BO.

This paper proposes BoGrape, a MIP-based graph BO method to optimize functions over connected
graphs with attributes. GP surrogates are formulated and optimized using global acquisition function
optimization techniques introduced in Xie et al.[(2024). We develop four variants of the classic
shortest-path graph kernel (Borgwardt & Kriegel, [2005)), as well as MIP encodings of graph search
space, for use in BoGrape. By introducing a representation of the shortest paths as decision variables,
the acquisition function optimization is formulated as a MIP with a mixed-feature search space, graph
kernel, and relevant problem-specific constraints. Figure T]illustrates the BoGrape pipeline. Our main
contributions include:

* We propose graph representations with their corresponding shortest paths, and theoretically
prove that the feasible domain of our formulation is equivalent to the graph space consisting
of all connected graphs.

* We formulate shortest-path graph kernels, node attribute kernels, and GP posterior in-
formation based on our graph encoding as MIP constraints, enabling global acquisition
optimization.

* We provide a principled BO framework over graph spaces from a discrete optimization
viewpoint. BoGrape is compatible with problem-specific constraints over graph structures,
node attributes, and their interactions.



Under review as a conference paper at ICLR 2026

2 PRELIMINARIES

2.1 BAYESIAN OPTIMIZATION (BO)

BO (Frazier, 2018) is a derivative-free optimization framework to iteratively approach the optimum
of an expensive-to-evaluate, black-box function. At each iteration, a surrogate model, usually a
GP (Schulz et al., 2018), is trained on the current observed dataset. With the surrogate constructed
and trained, an acquisition function is then formulated based on the posterior information, e.g.,
probability of improvement (PI) (Kushner,|1964), expected improvement (EI) (Jones et al.,|1998)),
lower confidence bound (LCB) (Srinivas et al.,2010)), predictive Entropy search (PES) (Hernandez{
Lobato et al.| |2014), etc.. Optimizing the acquisition function returns the next query, whose function
value is evaluated to form the next data point. This process repeats until meeting a stopping criterion.

2.2  GLOBAL OPTIMIZATION OF ACQUISITION FUNCTIONS

Most theoretical results for regret bounds in BO rely on the global optimization over acquisitions
(Srinivas et al.| 2012, i.e., they assume the global minimizer/maximizer of the acquisition function is
found at each step, which may not be satisfied using gradient- and sample-based optimizers. Xie et al.
(2024)) introduce PK-MIQP, a global acquisition optimization framework based on mixed-integer
quadratic programming (MIQP). The core of PK-MIQP is the piecewise linearization of a stationary
or dot-product kernel, e.g., RBF, Matérn, etc., based on which the acquisition optimization is then
formulated as an MIQP. PK-MIQP is useful because of its (i) compatibility with various kernels (note
the piecewise linearization is unnecessary if the kernel can be expressed linearly), and (ii) theoretical
guarantee on regret bounds. We present its formulation for the LCB acquisition function here:

min g — ﬁtl 12 < LCB acquisition (1a)
stop=K,xKxky < GP posterior mean (1b)
02 < Ky — KIXK;Cﬁ(KXm < GP posterior variance (1¢)
Kyxi = k(z, X"), V1 <i<t < kernel function (1d)
reX < search space (le)

2.3  SHORTEST-PATH GRAPH KERNELS

Graph kernels extend the concept of kernels to graph domains and are used to measure the similarity
between two graphs. Mathematically, a graph kernel k(-,-) : G x G — R is given by k(G,G’) =
(@(G), p(G")) %, where ¢ : G — H is a feature map from graph domain G to a reproducing kernel
Hilbert space  with inner product (-, -)# (Kriege et al.l[2020). Past research develops graph kernels
using a variety of graph patterns, e.g., neighborhoods, subgraphs, walks, paths. We refer the reader
to (Vishwanathan et al.,|2010; Borgwardt et al., 2020; |Kriege et al.,|2020; Nikolentzos et al.| [2021)
for more details on graph kernels. Several works also use graph kernels to optimize over nodes (Oh
et al.,|2019; Borovitskiy et al., 2021; Wan et al., 2023} [Liang et al.| [2024)), but the involved kernels
measure the similarity of two nodes on one given graph and do not support optimizing over graphs
(see Section [I]for this distinction). We focus on the shortest-path (SP) kernel (Borgwardt & Kriegell,
2005)) in this paper, owing to its ability to (i) handle both directed and undirected graphs, (ii) consider
node labels, and (iii) capture the relationship between non-adjacent graph nodes, making it more
general than kernels based on subgraph patterns (Shervashidze et al., [2009; |Costa & Grave, 2010).
We further discuss the choice of kernels in Appendix For graph G, denote [,, as the label of
node u, e, , as the shortest path from u to v (which may not be unique), and d,, ,, as the shortest
distance from node u to v (which is unique). The SP kernel between graphs G' = (V! E') and
G? = (V2, E?) is defined as:

kSP(le G2) = Z Ko (luys Luz) - Ke(duy oy s Qus,vz) = Ko (Lo s o). )

u1,01 €V ug,va€V?2

where k, is a kernel comparing node labels and k. is a kernel comparing path lengths.



Under review as a conference paper at ICLR 2026

3 METHODOLOGY

3.1 VARIANTS OF THE SHORTEST-PATH GRAPH KERNELS

We build on Eq. (2) and develop variants of the shortest-path kernel. Both &, and k. in Eq. (2)) are
usually chosen as Dirac kernels, giving the explicit representation of the SP kernel as:

1
ksp(G',G?) = —— > Ly = lugy duy oy = dugogs oy =ls), (SP)

nin3
u1,v1 €V ug,va€V?2

=N

where n?n3 is a normalizing coefficient with n1, no as the node numbers of G, G2, resp.

Each node may additionally have problem-specific features beyond a single label. From here on, we
use X = (G, F) to denote an attributed graph with G as the underlying labeled graph and F' as node
features. Intuitively, we can compare the features of two nodes instead of labels in k,,. However, this
could unnecessarily reduce the number of matching paths between two graphs, as requiring identical
node features is restrictive and may introduce additional subgraph information into path comparison.
Another option is to use a more complicated kernel k,, that measures similarity between features of
two nodes, which may significantly increase the computational cost of optimization (similarity is
computed for all node pairings). Therefore, we borrow from (Cui & Yang| 2018) the idea to separate
the implicit and explicit information of graphs, i.e., the kernel value between two attributed graphs
X', X2 becomes:

E(XY, X% =a-ka(GHG?) + B kp(F', F?), 3)
where k¢ is any graph kernel, e.g., (SP), kr is any kernel over features, and «, 8 are learnable
parameters controlling the trade-off between graph similarity and feature similarity.

Since node label is usually included as a node feature and considered in kr term, and comparing
labels in Eq. increases the complexity of our upcoming optimization formulations, we further
propose a simplified shortest-path (SSP) kernel corresponding to an unlabeled SP kernel:

1
kSSP(G1> GQ) = n2n2 Z 1(du1,v1 = duzﬂ&)' (SSP)
u1,v1 EV I uz,v2€V?2
Lemma 3.1. SP and SSP kernels are positive definite (PD).

Proof. Borgwardt & Kriegel (2005) prove the SP kernel is PD. The SSP kernel is a special case of
the SP kernel where all nodes have the same label, hence is also PD. O

=N

Observe that both the SP and SSP kernels are linear kernels if we pre-compute all shortest paths in
each graph and count the number of occurrence for each shortest path length. Such linearity simplifies
the optimization step (which still requires the non-trivial representation of shortest paths), but reduces
the representation ability of the kernels and limits the maximal rank of the Gram matrix. Motivated
by the practically strong performance of exponential kernels such as RBF, Matérn, graph diffusion
kernel (Oh et al.,|2019)), etc., we propose two nonlinear graph kernels based on SP and SSP kernels:

kesp(G*,G?) = exp(ksp(G*, G?)) /0%, (ESP)
kessp(G',G?) = exp(kssp (G, G?)) /%, (ESSP)
where variance o7 is added to control the magnitude of kernel value.
Lemma 3.2. ESP and ESSP kernels are PD.

Proof. SP and SSP kernels can be rewritten into linear forms, so ESP and ESSP are exponential
kernels, which are known to be PD (Fukumizu, 2010). ]

Remark 3.3. The nonlinear kernels introduce additional difficulties for optimization, as discussed
later in Section [3.4] but may demonstrate better empirical performance compared to their linear
counterparts, owing to increased representation ability.

3.2 GLOBAL ACQUISITION FUNCTION OPTIMIZATION

To extend the prior formulation in Eq. (T) to optimize LCB acquisition in graph space (see Appendix
[B.2Jfor the applicability to other acquisition functions), we replace Eq. by our graph kernels in



Under review as a conference paper at ICLR 2026

Table 1: List of variables introduced to represent the shortest path, where 7 is the number of nodes.

variables type description
Ay €{0,1}, u,v € [n]  binary the existence of edge from node u to v
dyw € [n], u,v € [n] integer the length of shortest path from node u to v

ov €40,1}, u,v,w € [n] binary the presence of node w on the shortest path from u to v

Sectionand define a combinatorial graph search space for Eq. asr=(G,F)eX=Gx F.
To maintain consistency with the general BO setting, we denote 2z = (G, F') as the next sample and
X = {(G", F%),y"}!_] as the previous samples at the ¢-th iteration. The difference is that now we
need to optimize over both the graph domain G € G and the feature domain F' € F. W.l.o.g., assume

that each node has M features F? € R(G)xM , and the first L features denote the one-hot encoding
of its label, i.e., > ;¢ 1 F} =1, where [n] denotes set {0, 1,...,n — 1}. This modified formulation
allows: (i) discrete variables, which is a key challenge of graph optimization, (ii) problem-specific
constraints over graph domain, and (iii) theoretical guarantees on regret bounds.

A binary adjacency matrix is sufficient to represent the graph domain; however, encoding correspond-
ing shortest-path information (for an unknown graph) is not straightforward and comprises a main
technical contribution of this work. We first introduce the formulation of shortest paths in Section [3.3]
and then explicitly derive Eq. in Section [3.4]for the graph kernels in Section

3.3 ENCODING OF THE SHORTEST PATHS AS OPTIMIZATION CONSTRAINTS

For the sake of exposition, we first consider all connected graphs GG with fixed size, i.e., node number
n is given (Appendix discusses formulations for graphs of unknown size). Table[I| summarizes
the optimization variables. Since our formulations involve constant graph information and their
variable counterparts, for each variable Var, we use Var(G) to denote its value on a given graph G.
For example, d,, ,,(G) is the shortest distance from node u to node v in graph G.

If graph G is given, all variables in Table[I]can be computed using classic shortest-path algorithms,
such as the Floyd—Warshall algorithm (Floyd, 1962). In graph optimization tasks, however, we need
to encode the relationships between these variables as constraints. Motivated by the Floyd—Warshall
algorithm, we first present the constraints in Eq. (3) of Appendix [A.2]and then prove there exists a
bijective between the feasible domain given by these constraints and all connected graphs with size n.
Here we directly give the final encoding of the shortest paths in the following linear MIP (details in

Appendix [A.2):

Avw=1,dyy =0, 6y, =1(w=v) Vv,we[n]
dyw <14+n-(1—Auy), Yu,v € [n], u # v
du, >2— Au v VU,U S [n}, u 7'é v
duw < dy w""dwv_(l_&;ﬂ’v), VU,U,’LUE[]
duyw > dyw + dwy —2n- (1 =46, ), Yu,v,w € [n] (MIP-SP)
651} 6311: VU,UE[TLL’UJ#’U
Zwe Oy <2+ (n—2)- (1 - Auy), Yu,v € [n], u # v
Zwe e =24+ (1= Aup), Yu,v € [n], u # v

Lemma 34. (A, (G), duw(G), 0y, (G)) is a feasible solution of Eq. with size n = n(Q)

given any connected graph G.

Proof. Trivial to verify by definition. O

Theorem 3.5. Given any n € Z, for any feasible solution (A, ., dy ., i ») of Eq. (MIP-SP) with
size n, there exists a unique graph G such that:

(Au,v(G) dy (G), 531;((;)) = (Au,vv du,vv 5171”,1))7
i.e., there is a bijection between the feaszble domain of Eq. with size n and the set consisting
of all connected graphs with n nodes.



Under review as a conference paper at ICLR 2026

The formulation becomes more complicated when the graph size is unknown (but bounded). Denote
ng and n as the minimal and maximal node numbers, resp., and use A, , to represent the existence
of node v. Variables d,, , and 6,7, need to be properly assigned when either  or v does not exist.

Moreover we extend the domain of d,, ,, from [n] to [n + 1] and use n to denote infinity. Eq. (MIP]

in Appendix [A.3]presents the encodlng and Theorem [3.6]extends Theorem [3.5]to unknown
size.

Theorem 3.6. There is a bijection between the feasible domain of Eq. (MIP-SP-plus) with size [ng, n]
and all connected graphs with number of nodes in [ng, n).

See Appendix [A.4] for proofs of Theorems [3.5] and [3.6] which guarantee the equivalence of our
encoding for directed and strong connected graphs. Appendix [A.6shows how to further simplify our
encoding for undirected graphs. Appendix discusses the effectiveness of our encoding.

3.4 ENCODING OF GRAPH KERNELS AS OPTIMIZATION CONSTRAINTS

We now rewrite Eq. (Id) using Eq. (3) as:
Kin = k(l‘,XL) =Q- kG(G7GZ) +/8 ' kF(Fa FZ)

Given that £ is independent of the choice of graph kernel k¢, and that kernels on continuous features
are studied in Xie et al.| (2024), here we focus on formulating k¢. See Appendix [A.5]for respective
kernel encoding with binary features.

Formulating k¢ (G, Gi) is straightforward for SP and SSP kernels:

kssp(G,G") Z Z du??v:2(G) nzlnz Z Dy(G") - d.,.

u17v16[ Juz,v2€[n(G?)] v u,v,s€[n]

where n; := n(G?) is the node number of G¢, d3

u,v

Z Ay = Z s dy,, = duy, Yu,v € [n],

s€[n+1] se[n+1]

= 1(dy,» = s) are indicator variables:

and D, (G?) is the number of shortest paths with length s in G*:

Dy(G") = [{(u,v) | u,v € [ni], duy(G') = s}|-
Remark 3.1. dy; ,, is not used in evaluating the kernel, since it means the shortest path does not exist.
Similarly, introducing indicator variables pg’s "2 as:
P = WPy, =1, duw = 5, Fogy = 1), Vu,v,5 € [n], Iy, 12 € [L],
and counting the numbers of each type of paths in G
Pey 12(G) = {(w,0) | u,v € [ni], 1u(GY) = b, duw(GY) = 5, 1,(G") = b},
the SP kernel is formulated as:
% 1 i s,01,1
kSP(G,G):W Z P57117l2(G) pqu,z
v u,v,s€[n),ly,l2€[L]

There are several ways to handle the exponential kernels: (i) directly use (local) nonlinear solvers,
losing optimality guarantees, (ii) piecewise linearize the exponential function following Xie et al.
(2024), or (iii) utilize nonlinear MIP functionalities in established solvers such as Gurobi (Gurobi
Optimization, LL.C| [2024) or SCIP (Vigerske & Gleixner, 2018)). In our experiments, we choose to
use Gurobi, which by default employs a dynamic piecewise-linear approximation of the exponential
function given an error tolerance.

It is noteworthy that K, in Eq. is not constant with a non-stationary kernel, making it the most
complicated term in the whole formulation. By definition, kssp (G, G) has a quadratic form:

kssp(G,G) = 4ZD



Under review as a conference paper at ICLR 2026

Algorithm 1 BoGrape at ¢-th iteration.

. Input: dataset X = {(G?, F?),y'}.=1, hyperparameter (3, graph kernel

1

2: Model training: kernel parameters «, 3, o7 > graph GP fit to X
3. Acquisition formulation:

4:  represent K, x: and K, in Egs. - > Section
5:  search space X in Eq. (le > problem-specific
6: Optimization: initialize and solve MIP Eq. > global optimization
7: Output: proposed sample (G?, ')

where Dy =37, @50, Vs € [n]. Reusing the indicator trick and introducing DS = 1(D; = ¢),
the quadratic form is equivalently linearized as:

1
Kssp(G,G) = vy E - Dg,
s€[n],c€[n?2+1]

where indicator variables D¢, Vs € [n],c € [n? 4 1] should satisfy:

Y Di=1, ) c¢-D{=D,, Vsen]

c€[n2+1] c€[n?+41]
Repeating the procedure for the SP kernel, we have:

1
Koo -4 Y e
s€[n],l1,lo€[L],cE[n2+1]

where indicator variables P¢ =1(Psy, 1, =), Ys € [n], l1,l2 € [L], ¢ € [n? + 1] satisfy:

s,l1,l2

S P, =1 Y ¢ Py, =P, Ys € 0], Il € [L].
c€[n2+1] cen?+1]

With the above graph GP model and optimization encodings, we have presented all the pieces needed
to implement an end-to-end graph BO procedure. Algorithm[T]outlines BoGrape.

4 EXPERIMENTS

All experiments are performed on a 4.2 GHz Intel Core 17-7700K CPU with 16 GB memory. We use
GPflow (Matthews et al.,|2017) to implement GP models, GraKel (Siglidis et al.,|2020) to implement
the classic graph kernels, PyG (Fey & Lenssen, [2019) to implement GNNs, and Gurobi (Gurobi
Optimization, LLC| 2024)) to solve MIPs.

There are few synthetic benchmark functions f : G x F — R for general graph domains since most
graph BO works focus on specific types of graphs. W,0.1.g., we consider GNNs as graph functions
that maps general labeled connected graph to real values. We conduct experiments considering two
settings: (i) randomly initialized GNNs which serves as random synthetic functions, and (ii) GNNs
trained on molecular datasets as graph property predictor in real-world case studies. It is noteworthy
that the architectures of GNNGs, the training mechanism, and the choice of datasets are not major
components of our work, since they merely serve as benchmarks of black-box graph functions.

4.1 MODEL PERFORMANCE

Before conducting the optimization tasks, we first compare the performance of graph GPs with
various graph kernels on randomly sampled molecules from the QM7 dataset (Blum & Reymond,
2009; Rupp et al.,[2012). Figure [2]shows that four shortest-path kernels have comparable prediction
accuracy, while the two exponential kernels quantify uncertainty more accurately (also supported by
Table[). For larger graph sizes, Table[3|shows that the more complicated kernels, i.e., SP and ESP,
are generally better at predicting graph properties, since they impose stronger criteria on comparing
shortest-paths between two graphs.

Remark 4.1. See Appendix [C.I|for similar illustrations of other graph kernels and more evaluations,
and Appendix [B.4]for complexity analysis of different graph kernels.



Under review as a conference paper at ICLR 2026

SSP kernel SP kernel ESSP kernel ESP kernel
Ideal Fit Ideal Fit Ideal Fit Ideal Fit :
¢ Test Data ; ¢ Test Data ¢ Test Data ¢ Test Data }‘
5 # 4 ]
o Qm‘h ?ﬁ M‘
W { § bt i t%
1 ! i

Figure 2: Compare predictive performance of GP with different kernels. 100 samples are randomly
chosen from the QM7 dataset with various graph sizes, 30 of which are used for training. The
predictive mean with one standard deviation (predicted y) of the remaining 70 graphs are plotted
against their real values (true y). Notice that the error bars for SSP kernel are too small to be observed
in this visualization due to its weak uncertainty quantification.

4.2 OPTIMIZATION OF SYNTHETIC BENCHMARKS

We first evaluate the performance of BoGrape over synthetic benchmarks, i.e., arbitrary functions over
graphs. Specifically, given their ability as universal approximators, we cover the range of black-box
graph functions using randomly initialized GNNs including GAT (Velickovic et al., 2017), GCN (Kipf
& Welling| |2017)), and GraphSAGE (Hamilton et al.||2017). Each GNN consists of two convolutional
layers to learn graph embeddings, and two linear layers. Each hidden layer has 64 features. The
search space is the set of all connected, undirected graphs with /V nodes, and each node has one-hot
features with length L = 5 as its label. We propose these functions as benchmark problems, given:
(i) there are no existing synthetic benchmarks in graph BO literature, (ii) these benchmarks impose
neither problem-specific constraints nor assumptions over the graph space (except for connectivity),
making them suitable for comparison of a wide class of methods. These benchmark functions for
graph BO are available at: [link to be added after peer review].

BoGrape is compared against the following baselines: (i) Random: random sampling, i.e., randomly
sample one connected graph at each iteration, (ii) RW-rand: use graph GP with random walk (RW)
kernel as surrogate, and sampling-based acquisition optimization, i.e., choosing the sample with
the best LCB value among 20 random graphs, (iii) WL-rand: use Weisfeiler-Lehma (WL) kernel in
RW-rand, (iv) WL-evol: use evolutionary algorithm for acquisition optimization in WL-rand.

Remark 4.2. WL-rand and WL-evol are adapted from [Ru et al.| (2021)), which is specifically designed
for neural architecture search (NAS). WL-evol could be regarded as the state-of-the-art method in
graph BO.

For each benchmark with size N = 10, 20, we conduct BO with 10 initial samples and 50 iterations.
When solving Eq. (I)), we observed good solutions to be found early (since more time is spent on
proving optimality) and set 600s as the MIP time limit. As shown in Figure 3] BoGrape with all
kernel variants outperforms baselines in most cases. When the graph size is small, SP and ESP
perform better, since they are more expressive. For larger sizes, using simpler kernels reduces model
complexity and produces better solutions within the given time limit. The trade-off is between
the expressiveness of kernel and the complexity of the resulting optimization problem. We further
discuss this computational limitation in Appendix[B.5] possible solutions in Appendix[B.€] and kernel

selection in Appendix

4.3 REAL-WORLD CASE STUDY

We next consider optimal molecular design (McDonald et al.| |2024; Zhang et al., 2024)) as a real-
world case study. Following |Zhang et al.| (2023)), we train two GNNs on dataset QM7 (Blum &
Reymond, [2009; Rupp et al.| 2012) and QM9 (Ruddigkeit et al.| 2012; |Ramakrishnan et al.| 2014)
as oracle predictors, i.e., the functions that we seek to optimize. The additional challenge of this
task compared to Section .2] is that molecules are not arbitrary labeled graphs: the molecular
graph should be compatible with atom features. We found these structural constraints to effectively
prevent the sampling- and evolutionary-based methods used in Section from producing feasible



Under review as a conference paper at ICLR 2026

~——— Random RW-rand —— WL-rand WL-evol — SSP

0.465 04620
04615
0464
0.4610

> 0463
0.4605

S
besty

&8
ose2 04600

o451 0.595

04590

0460

E)
iter

(a) GAT, N = 10

> 04610
>
7
8 oaees

0.4600

0.4595

0460 - 0.4590

E)
iter

(d) GAT, N = 20

iter

(b) GCN, N =10

iter

() GCN, N =20

— SP  —— ESSP —— ESP

067
0.5
065
064

>
o 0as3
@

1]
8 0462
0451

0.450

0459

E)
iter

(c) GraphSAGE, N = 10

0467

0486

0465

0464

besty

0463

0.462

0451

E)
iter

(f) GraphSAGE, N = 20

Figure 3: Bayesian optimization results on synthetic benchmarks with N € {10, 20}. Best objective
value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.

—— Limeade RW-lime —— WL-lime — SSP —_—

besty
. .

iter

(a) QM7, N = 10

besty
.

(d)QM9, N =10

(e) QM9, N =20

besty
) .

iter

(©)QM7, N =30

() QM9, N =30

Figure 4: Bayesian optimization results on QM7 and QM9 with N € {10, 20, 30}. Best objective
value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.

solutions. Therefore, we modify Random to only consider randomly generated feasible molecules
from Limeade (Zhang et all, [2025)), and we remove WL-evol from comparison. We also adapt
molecular feasibility constraints from Limeade and add them to our MIP formulation to ensure only
valid molecules are considered during the optimization. Further related details are given in Appendix
[C3] The computational results in Figure [ show that BoGrape again generally outperforms baselines
regardless of which kernel is used. We discuss this application further in Appendix [B.7}




Under review as a conference paper at ICLR 2026

5 CONCLUSION

This work proposes BoGrape to optimize black-box functions over graphs. Four shortest-path graph
kernels are presented and tested on both prediction and Bayesian optimization tasks. The underlying
mixed-integer formulation provides a flexible and general platform including mixed-feature search
spaces, graph kernels, acquisition functions, and problem-specific constraints. Our results show
promising performance and suggest trade-offs between query-efficiency and computational time
when choosing a suitable kernel. Future work may further simplify the formulations of BoGrape and
relax the requirement on graph connectivity.

REPRODUCIBILITY STATEMENT

We take the following measures to facilitate the reproducibility of our work. Theoretical contributions
are detailed and explained in both Section 3]in the main paper and Appendix[A] Theoretical claims are
supported by formal proofs provided in Appendix[A.4] To support the replication of empirical findings,
we provide code implementations including our method, synthetic graph functions mentioned in
Section 4.2 and models used in experiments in the supplementary materials.

REFERENCES

Bashar L. Ammari, Emma S. Johnson, Georgia Stinchfield, Tachun Kim, Michael Bynum, William E.
Hart, Joshua Pulsipher, and Carl D. Laird. Linear model decision trees as surrogates in optimization
of engineering applications. Computers & Chemical Engineering, 178, 2023.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical Programming,
183(1):3-39, 2020.

Lorenz C. Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening
in the chemical universe database GDB-13. Journal of the American Chemical Society, 131(25):
8732-8733, 2009.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-L6pez, Leslie O’Bray, Bastian Rieck, et al.
Graph kernels: State-of-the-art and future challenges. Foundations and Trends® in Machine
Learning, 13(5-6):531-712, 2020.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In International
Conference on Data Mining, 2005.

Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc Peter
Deisenroth, and Nicolas Durrande. Matern Gaussian processes on graphs. In International
Conference on Artificial Intelligence and Statistics, 2021.

Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D. Laird,
and Ruth Misener. OMLT: Optimization & machine learning toolkit. Journal of Machine Learning
Research, 23(1):15829-15836, 2022.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In ICML,
2010.

Jiaxu Cui and Bo Yang. Graph Bayesian optimization: Algorithms, evaluations and applications.
arXiv preprint arXiv:1805.01157, 2018.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: a survey. Journal
of Machine Learning Research, 2019.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. Con-
straints, 23(3):296-309, 2018.

10



Under review as a conference paper at ICLR 2026

Robert W Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345-345, 1962.
Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Kenji Fukumizu. Kernel method: Data analysis with positive definite kernels. Graduate University
of Advanced Studies, 2010.

Blake B Gaines, Chunjiang Zhu, and Jinbo Bi. Explaining graph neural networks with mixed-integer
programming. Neurocomputing, pp. 130214, 2025.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Thomas Girtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In Learning Theory and Kernel Machines, 2003.

Gurobi Optimization, LL.C. Gurobi optimizer reference manual, 2024. URL https://www)
gurobi.com.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NIPS, 2017.

José Miguel Herndndez-Lobato, Matthew W Hoffman, and Zoubin Ghahramani. Predictive entropy
search for efficient global optimization of black-box functions. NeurIPS, 2014.

Christopher Hojny, Shigiang Zhang, Juan S Campos, and Ruth Misener. Verifying message-passing
neural networks via topology-based bounds tightening. In ICML, 2024.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455-492, 1998.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with Bayesian optimisation and optimal transport. NeurIPS, 31, 2018.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff
Schneider, and Eric Xing. Chembo: Bayesian optimization of small organic molecules with
synthesizable recommendations. In AISTATS, 2020.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In ICML, 2012.

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels and
applications to graph classification. NeurIPS, 2016.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5:1-42, 2020.

Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of Basic Engineering, 86(1):97-106, 1964.

Huidong Liang, Xingchen Wan, and Xiaowen Dong. Bayesian optimization of functions over node
subsets in graphs. NeurIPS, 2024.

Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii, Alexis Boukouvalas,
Pablo Leo6n-Villagrd, Zoubin Ghahramani, and James Hensman. GPflow: A Gaussian process
library using TensorFlow. Journal of Machine Learning Research, 18(40):1-6, 2017.

Tom McDonald, Calvin Tsay, Artur M. Schweidtmann, and Neil Yorke-Smith. Mixed-integer
optimisation of graph neural networks for computer-aided molecular design. Computers &
Chemical Engineering, 185:108660, 2024.

Rocio Mercado, Tobias Rastemo, Edvard Lindelof, Giinter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2021.

11


https://www.gurobi.com
https://www.gurobi.com

Under review as a conference paper at ICLR 2026

Velibor V. MiSié. Optimization of tree ensembles. Operations Research, 68(5):1605-1624, 2020.

Miten Mistry, Dimitrios Letsios, Gerhard Krennrich, Robert M. Lee, and Ruth Misener. Mixed-
integer convex nonlinear optimization with gradient-boosted trees embedded. INFORMS Journal
on Computing, 33(3):1103-1119, 2021.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. Journal
of Artificial Intelligence Research, 72:943-1027, 2021.

Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial Bayesian
optimization using the graph cartesian product. NeurIPS, 2019.

Theodore P Papalexopoulos, Christian Tjandraatmadja, Ross Anderson, Juan Pablo Vielma, and
David Belanger. Constrained discrete black-box optimization using mixed-integer programming.
In International Conference on Machine Learning, pp. 17295-17322. PMLR, 2022.

Joel A Paulson and Calvin Tsay. Bayesian optimization as a flexible and efficient design framework
for sustainable process systems. Current Opinion in Green and Sustainable Chemistry, pp. 100983,
2024.

Dhanesh Ramachandram, Michal Lisicki, Timothy J Shields, Mohamed R Amer, and Graham W
Taylor. Structure optimization for deep multimodal fusion networks using graph-induced kernels.
arXiv preprint arXiv:1707.00750, 2017.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):1-7, 2014.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via Bayesian optimisation with Weisfeiler-Lehman kernels. In /CLR, 2021.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration of
166 billion organic small molecules in the chemical universe database gdb-17. Journal of Chemical
Information and Modeling, 52(11):2864-2875, 2012.

Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Miiller, and O. Anatole Von Lilienfeld. Fast
and accurate modeling of molecular atomization energies with machine learning. Physical Review
Letters, 108(5):058301, 2012.

Eric Schulz, Maarten Speekenbrink, and Andreas Krause. A tutorial on Gaussian process regression:
Modelling, exploring, and exploiting functions. Journal of mathematical psychology, 85, 2018.

Artur M Schweidtmann, Dominik Bongartz, Daniel Grothe, Tim Kerkenhoff, Xiaopeng Lin, Jaromit
Najman, and Alexander Mitsos. Deterministic global optimization with Gaussian processes
embedded. Mathematical Programming Computation, 13(3):553-581, 2021.

Artur M Schweidtmann, Dominik Bongartz, and Alexander Mitsos. Optimization with trained
machine learning models embedded. In Encyclopedia of Optimization, pp. 1-8. Springer, 2022.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, and
Michalis Vazirgiannis. GraKel: A graph kernel library in Python. Journal of Machine Learning
Research, 21(54):1-5, 2020.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimiza-
tion in the bandit setting: No regret and experimental design. In /CML, 2010.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Information-theoretic
regret bounds for Gaussian process optimization in the bandit setting. IEEE Transactions on
Information Theory, 58:3250-3265, 2012.

12



Under review as a conference paper at ICLR 2026

Alexander Thebelt, Jan Kronqvist, Miten Mistry, Robert M. Lee, Nathan Sudermann-Merx, and
Ruth Misener. Entmoot: A framework for optimization over ensemble tree models. Computers &
Chemical Engineering, 151:107343, 2021.

Alexander Thebelt, Calvin Tsay, Robert M. Lee, Nathan Sudermann-Merx, David Walz, Tom Tranter,
and Ruth Misener. Multi-objective constrained optimization for energy applications via tree
ensembles. Applied Energy, 306:118061, 2022a.

Alexander Thebelt, Johannes Wiebe, Jan Kronqvist, Calvin Tsay, and Ruth Misener. Maximizing
information from chemical engineering data sets: Applications to machine learning. Chemical
Engineering Science, 252:117469, 2022b.

Calvin Tsay, Jan Kronqvist, Alexander Thebelt, and Ruth Misener. Partition-based formulations for
mixed-integer optimization of trained ReLU neural networks. In NeurIPS, 2021.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In /CLR, 2017.

Stefan Vigerske and Ambros Gleixner. SCIP: Global optimization of mixed-integer nonlinear
programs in a branch-and-cut framework. Optimization Methods and Software, 33(3):563-593,
2018.

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201-1242, 2010.

Xingchen Wan, Henry Kenlay, Binxin Ru, Arno Blaas, Michael Osborne, and Xiaowen Dong.
Adpversarial attacks on graph classifiers via Bayesian optimisation. In NeurlPS, 2021.

Xingchen Wan, Binxin Ru, Pedro M Esperanca, and Zhenguo Li. On redundancy and diversity in
cell-based neural architecture search. In /CLR, 2022.

Xingchen Wan, Pierre Osselin, Henry Kenlay, Binxin Ru, Michael A Osborne, and Xiaowen Dong.
Bayesian optimisation of functions on graphs. NeurlIPS, 2023.

Keliang Wang, Leonardo Lozano, Carlos Cardonha, and David Bergman. Optimizing over an
ensemble of trained neural networks. INFORMS Journal on Computing, 2023.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. In AAAI, 2021.

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, Debadeepta
Dey, and Frank Hutter. Neural architecture search: insights from 1000 papers. arXiv preprint
arXiv:2301.08727, 2023.

Yilin Xie, Shigiang Zhang, Joel Paulson, and Calvin Tsay. Global optimization of Gaussian
process acquisition functions using a piecewise-linear kernel approximation. arXiv preprint
arXiv:2410.16893, 2024.

Nianzu Yang, Huaijin Wu, Kaipeng Zeng, Yang Li, Siyuan Bao, and Junchi Yan. Molecule generation
for drug design: a graph learning perspective. Fundamental Research, 2024.

Shigiang Zhang, Juan S. Campos, Christian Feldmann, David Walz, Frederik Sandfort, Miriam
Mathea, Calvin Tsay, and Ruth Misener. Optimizing over trained GNNs via symmetry breaking.
In NeurIPS, 2023.

Shiqiang Zhang, Juan S Campos, Christian Feldmann, Frederik Sandfort, Miriam Mathea, and
Ruth Misener. Augmenting optimization-based molecular design with graph neural networks.
Computers & Chemical Engineering, 186:108684, 2024.

Shiqiang Zhang, Christian W Feldmann, Frederik Sandfort, Miriam Mathea, Juan S Campos, and
Ruth Misener. Limeade: Let integer molecular encoding aid. Computers & Chemical Engineering,
pp. 109115, 2025.

Yin-Cong Zhi, Yin Cheng Ng, and Xiaowen Dong. Gaussian processes on graphs via spectral kernel
learning. IEEE Transactions on Signal and Information Processing over Networks, 2023.

13



Under review as a conference paper at ICLR 2026

A ENCODING OF GRAPH KERNELS

A.1 NOTATIONS
We provide details for all variables introduced in this paper in Table 2] Recall that the search domain

considered here consists of all connected graphs with node number ranging from ng to n, each node
has M binary features with the first L node features as the one-hot encoding of node label.

Table 2: All variables introduced in the optimization formulation for graph kernels.

Variables Domain Description
Aupw, u,v € [n] {0,1} the existence of edge from u to v
du,v, u,v € [n] [n+1] the length of shortest path from w to v
0wy U, 0, W € 1] {0,1} if w appears at the shortest path from u to v
dy v, u,v € [n],s € [n+1] {0,1} indicator: 1(duy,, = s)
Ds, s € [n] [n? 4 1] # shortest paths with length s
DS, s € [n],c€[n®+1] {0,1} indicator: 1(D, = ¢)
e, w,v,s € [, by € (L] (0.1} indicator: 1(Fup, = Lduw = s, Foty = 1)
Psiyay, s € [n], 1,12 € [L] [n? +1]  #shortest paths with length s and labels [y, I
Py 1y, s€ M)l €[L],cen*+1]  {0,1} indicator: 1(P;,;; 1, = ¢)
N™, m € [M] [N +1] sum of m-th feature over all nodes
Ny, m e [M],ce[M+1] {0,1} indicator: 1(N,, = ¢)

A.2 SHORTEST PATH ENCODING FOR GRAPHS WITH FIXED SIZE

We first present necessary conditions that Ay, 4, dy v, 9, ,, should satisfy in Eq. @:

Av,v = ]-7 Yv € [’I’L] (Sa)
dyy =0, Yo € [n] (5b)
=1, Ago=1
du,v {> 1, Auﬂ) -0 5 \V/'U/,'U S [n], u 7é v (SC)
= du,w + dw,va 51121; =1
duv {< Qg + diyyy 6%, =0 Vu,v € [n], u# v (5d)
w _ 1L, w=wv
51},1} - {07 w 75 v’ Yv € [’I’L] (56)
O = Ouw =1, Yu,v € [n], u# v (50
w = 27 Au,'u =
>y 4 e wvelluge G

weE[n]

Eq. @) restricts Ay v, du,v; dy; , in the following rules:

* Eq. (5a) initializes the diagonal elements.
* Eq. (5b) initializes the shortest distance from v to itself.

* Eq. forces the shortest distance from node v and v be 1 if edge v — v exists, and larger
than 1 otherwise.

Rewrite Eq. as:

du,vgl“rn'(l—Au,y), VU,UE’R],U#’U
du,vZQ_Au,'m VU,UE[TL], u;év

where n is a big-M coefficient using d,, , <n — 1.

14



Under review as a conference paper at ICLR 2026

* Eq. (5d) is the triangle inequality for distance matrix d.

Rewrite Eq. (3d) as:

du,v S du,w + dw,v -
du,v > du,w + dw,v —2n- (1 - 611/1,),1))7

where 2n is a big-M coefficient since dy, . + dy,» < 27

(1=07),

* Eq. (5¢) initializes d;/,, by definition.
* Eq. (51) initializes J;; , and d,, ,, by definition.

* Eq. (5g) ensures that there is at least one node at the shortest path from node u to v if there
is no edge from node u to v. Otherwise, no node except for v and v could appear at the

shortest path from u to v.
Rewrite Eq. (5g) as:

Yu, v, w € [n]

Yu,v,w € [n]

Z 537US2+(H72)'(1*AU,U), VU,UG[’H], u#v

weE[n]

Z 65),71 Z 2+ (1 - Au,v)7

weE[n]

where . — 2 is a big-M coefficient since 3, (.,

(;w

u,v

Yu,v € [n], u# v

Replacing disjunctive constraints accordingly in Eq. (5) gives the final formulation Eq. (MIP-SP).

A.3 SHORTEST PATH ENCODING FOR GRAPH WITH UNKNOWN SIZE

We extend constraints in Eq. (3] to handle changeable graph size. Full constraints are as follows:

Av,v > Av+l,v+1a

Z Av,v Z o,

vE[n]

ZAu,v < Au,u + Av,vv

dv,v = 07
=1, A,,=1
du,v > 1’ Au)v =0’
< Au,u = Au,v =1

min{Ay, ., Ayp} =0’

:Av,vzla

d = du,w + dw,va 65),1; =1
o < du,w + dw,vv 55),71 =
w={y v,
’ 0, w#w
65,1} = 5;),11 = 17
=2, A,,=1

D6, 8>2 Ay =0, Ay,
weln] =2, min{Amu, AU7U} =0

Eq. @ restricts Ay, d

5’UJ

u,vs Yy, v

in the following rules:

* Eq. (6a) forces nodes with smaller indexes exist.

Vo € [n—1]

Yu,v € [n], u# v
Yo € [n]

Yu,v € [n], u # v
Yu,v € [n], u # v
Yu,v € [n], u # v

Yo € [n]

Yu,v € [n], u # v

Yu,v € [n], u # v

* Eq. (6b) gives the lower bound of the number of existed nodes.

* Eq. (6¢) means that there is no edge from node u to v if any of them does not exist.

* Eq. (]6_3]) initializes the shortest distance from one node to itself, even it does not exist.

15

(6a)
(6b)

(6¢)
(6d)

(6e)

(6f)

(6g)

(6h)

(61)

(6))



Under review as a conference paper at ICLR 2026

* Eq. forces the shortest distance from node u and v be 1 if there is one edge from u to v,
and larger that 1 otherwise.

Rewrite Eq. as:

dyo <1l4+n-(1—-A4,,), Yu,ve€n], u#v
dyw >2— Ay, Yu,v € [n], u £ v

where n is a big-M coefficient using the fact that d,, , < n.
* Eq. @ sets the shortest distance from node u to v as n, i.e., 0o, if any of them does not
exist. Otherwise, the shortest distance is less than n.

Rewrite Eq. (61) as:

dyw>n-(1—Auq), Yu,v€n], utv

s

dyw>n-(1=Ayy), Yu,v€n], u#v

— 3

* Eq. (6g) is the triangle inequality for the distance matrix d.
Rewrite Eq. (6g) as:

duw < dypo + du oy — (1= 0,,), Yu, v, w € [n]
duw 2 dyw +dwy —2n-(1-6,,), Yu,v,w € [n]

where 2n is a big-M coefficient since dy, ., + dy,v < 2n.
* Eq. (6h) initializes J;), by definition, even node v does not exist.

* Eq. @) initializes d,; , and d,, , by definition, even node u or v does not exist.

* Eq. (6]) makes sure that there is at least on node at the shortest path from node w to v if there
is no edge from node u and v and these two nodes both exist. Otherwise, only d;; , and 4, ,,
equal to 1.

Rewrite Eq. (§]) as:

u,v

Zé“’ <24+ (n—-2)-(1-A4,,), Yu,v€n], u#v

we[n]

Zéqu'u§2+(n_2)“4u,u> VU,UE[n],’U/#’U

we[n]

Zéw <24+ (n—2)- Ay, Yu,v € [n], u # v

we[n]
> 68U, > A+ Apy + (1= Auy), Va0 €[], u#v
we[n]

where n — 2 is a big-M coefficient since } -, (,,; 0u,

To conclude, the formulation for shortest paths of all connected graphs with at least ny nodes and at
most n nodes is:

16



Under review as a conference paper at ICLR 2026

Avw = Avg1,o41, Vv € [n—1]
Z Ay v > no,
veln]
2400 S Ay + Ay, Yu,v € [n], u#v
dyw =0, Yo € [n]
dyo <1l4+n-(1—A,,), Yu,v € [n], u#v
dup 22— Ay, Vu,v € [n], u#wv
dupw >n-(1—Ayu), Yu,v € [n], u #v
dyv>n-(1—Ays), Vu,v € [n], u#v
duw < dupw + dwo — (1= 0,,), Yu, v, w € [n]
duw > dypw +dwy —2n-(1-6,), Yu,v,w € [n]
(MIP-SP-plus)
oo { v e
b 0, w#v’
0w = Oup =1, Yu,v € [n], u#v
> oY, <24 (n—2)-(1— Auy), Yu,v € [n], u#v
weln)
ZéZUSZ—&—(n—Q)-Au,u, Yu,v € [n], u#v
weln]
Y ow, <24+ (n—2)- Ay, Yu,v € [n], u# v
we(n]
Z Oy = Ay + Ao + (1 = Auy), Yu,v € [n], u # v
weln)

A.4 PROOFS OF THEOREMS

Proof of Theorem[3.3] 1f such G exists, it is unique since A, ,, gives the existence of every edge.
Thus it suffices to show that (dy, ., (G), 0y, (G)) = (du v, ;) for G defined with A, .

u,v

We are going to prove it by induction on the shortest distance sd from node u to v in graph G.
Specifically, we want to show that for any 0 < sd < n, and for any pair of (u,v) such that
min(dy (G, du,w) = sd, we have d, ,,(G) = dy, and 6, ,,(G) = 6,7, YVw € [n].

For sd = 0, min(d,,(G), dy ») = 0if and only if u = v. For any v € [n], it is obvious to have:

dyo(G) = 0=d,,
by (G) =1=107,
¥ ,(G)=0=4"

v,V

Yw # v

For sd = 1, consider every pair (u, v) such that d,, ,,(G) = 1, we have A, , = A, (G) = 1, then it
is easy to obtain:

duv(G) =1=1dy,
61’ZU(G) =1=4,, Ywe {u,v}
0 o(G) =0=10,,, YVw & {u,v}

where 0, = 0, Yw ¢ {u, v} since:
Z 55),11 = Z 65},1) - 611:,1) - 62,1) =0.
wE{u,v} we[n]

On the contrary, d,,,, = 1 gives A, , = 1, thus A, ,(G) = Land 6,/ ,(G) = 6,/

U,V

Yw by definition.

17



Under review as a conference paper at ICLR 2026

Now assume that for any pair of (u,v) such that min(dy ,(G), dy,») < sd, we have dy, ,(G) = dy, v
and 6, ,(G) = &, ,, Yw. Since &;; ,(G) = 0,/,,, Yw € {u, v} always holds by definition, we only

u,v? u,v?

consider w & {u, v}.

Part 1: We first consider every pair of (u,v) such that d, ,(G) = sd + 1. Since sd + 1 > 2, we
know that A, , = A, ,(G) = 0 and there exists w ¢ {u, v} on the shortest path from node v to v in
graph G.

Case 1.1: For every w ¢ {u, v} such that §;  (G) = 1, since dy,(G) < sd and dy, ,(G) < sd, we
have:

du,v < du,w + dw,v = du,w(G) + dw,v(G) = du,v
The equality has to hold, otherwise, d,, ,, < sd gives dy, (G) = du v
Gy = 1=0,,(G).

Case 1.2: Forevery w ¢ {u,v} such that 5;“77)((}’) =0,if &y, = 1, then dy o +duwv = dy,p = sd+1,
which means that d,, ,, < sd and d,,,, < sd. By assumption, we have dy, .,(G) = dy w, dw o (G) =

dw,» and then:

(G) =sd+ 1.
< sd by assumption. Therefore,

du,w(G) + dw,v(G) - du,w + dw,v - du,v - du,U(G)
which contradicts to ;' ,(G) = 0. Thus 6,/ = 0

Part 2: Then we consider every pair of (u,v) such that d, , = sd + 1. Similarly, we have
Ayp =Aun(G) =0.

Case 2.1: For every w ¢ {u,v} such that 53)@ = 1, since dy, ., < sd and d,,, < sd, we have
dyw(G) = dy v and dy, o (G) = dy v, then:
du,v(G) < du,w(G) + dw,v(G) = du,w + dw,v = du,v =sd+ 1.

This equality also has to hold, otherwise, d,, ,(G) < sd, by assumption d,, , = d,, ,(G) < sd, which
is a contradiction.

Case 2.2: For every w ¢ {u,v} such that 67, = 0, if &/ ,(G) = 1, then dy, ,(G) = du »(G) =

dy,»(G) = sd + 1, which means that d,, ,,(G) < sd and d,, ,,(G) < sd. Therefore,
duﬂu + dw,v = duw(G) + dw,v(G) = du ’U(G) = du,va

s

which contradicts to §,,, = 0. O]

Proof of Theorem[3.6] Fix the node number as n; with ng < ny < n, Eqs. (6a) — (6b) force:

1, ven]
A”’”‘{o, v € [n]\[ra]

substituting which to other constraints give us:

Ay =A,.,=0, Yu € [n1], v € [n]\[n1], u # v
dv;u = Oa Yo € [n]\[nl]
du,v = dv,u =n, Vu € [n1]7 v E [n]\[nlL u # v

1, we{u,v}
671/ — 571/ — ) k)
u,v v, u {O, w ¢ {U,’U} I

One can easily check that all constraints associated with non-existed nodes are satisfied. Removing

those constraints turns Eq. (MIP-SP-plus) into Eq. with size nq. O

Yu € [n1], v € [n]\[n1]

A.5 ENCODING FOR KERNEL OVER BINARY FEATURES

Assume that each graph G has a binary feature matrix F € {0, 1}*(©)*M we need to formulate
kp(F,F%) and kp(F, F) properly. kr could be defined in multiple ways, here we propose a
permutational-invariant kernel considering the pair-wise similarity among node features. Given
two feature matrices F'', F'? corresponding to graphs G, G resp., define kr as:

1 1
kp(F', F?) = > FLF= 3 Na(FY) - N, (F2),
nlngM 1 EV LoV nlngM meM]

18



Under review as a conference paper at ICLR 2026

where N,,(F) = > F!

vE[n,]

Vm € [M], and nyn2 M is the normalized coefficient.

,m?

Similar to Section[3.4] we have:
1

i i
kF(F,F)_an > Nup(F') - Ny,
me([M]
where N, = > Fym, Vm € [M], and:
vE[n]
k(FF):LZJ\ﬂ: ! > - N¢
A n2M moon2M m
me[M] me[M],ce[M+1]

where indicators NS, = 1(N,,, = ¢), Vm € [M], ¢ € [n + 1] satisfy:

Z NS =1, Z ¢+ Nf, = Ny, Ym € [M].
c€[n+1] c€[n+1]

A.6 SIMPLIFY PATH ENCODING OVER UNDIRECTED GRAPHS

For undirected graphs, we first add the following constraints to guarantee symmetry:

Apw=Apu, Yu,v€n], u<wv
dyv=dyu, Yu,v€ln],u<v
O = Opus  Yu,v,w € [n], u<wv

Since the inverse of any shortest path from node u to v is also a shortest path from node v to u, for
SSP and ESSP kernels, D, Vs € [n] are even and we can fix odd indicators as zero:

¢ J1, ciseven ,
DS_{()» cis odd , Vs € [n], cen” +1].

Similarly, for SP and ESP kernels, we have:
Py 1y = Psiy,, Vs € [n], f1, f2 € [L].

B DISCUSSION

B.1 CHOICE OF GRAPH KERNELS

Various graph kernels are proposed to better fit graph data. However, none of them could be
incorporated as optimization constraints (nor are they designed for this purpose). Thus, current graph
BO works mostly use evolutionary algorithms that generate candidates and then evaluate them, where
graph kernels are used as graph functions to calculate the posterior mean and variance. The major
difference here is that computing k(G*, G?) given both G and G? is quite easy, but representing
k(G', G?) only given G! is super challenging since G2 could be any arbitrary graph. BoGrape is
built upon our theoretical contributions on encoding shortest paths into decision variables for arbitrary
connected graphs. Therefore, it is not that we chose shortest-path kernel first for specific reasons then
developed necessary formulations, but that the fundamental advances in graph optimization led us to
shortest-path kernels.

B.2 CHOICE OF ACQUISITION FUNCTIONS

BoGrape formulates acquisition optimization as a MIP, and LCB is chosen as a representative
acquisition function given its popularity in BO and relatively simple form. BoGrape could be easily
applied to other acquisitions functions in linear forms w.r.t. posterior mean and variance. For
nonlinear acquisition functions, one could either use nonlinear solvers to optimize the resulting
MINLP or linearize the acquisition functions. Since the acquisition only appears in objective, all
graph-relevant constraints still work as before.

19



Under review as a conference paper at ICLR 2026

B.3 EFFECTIVENESS OF ENCODING

Different shortest-path algorithms might affect the time complexity when computing the graph
kernels, but they should be asymptotically similar since cost is dominated by computation of the
shortest distance between any pair of nodes. For example, if we use Dijkstra’s algorithm, which
is a single-source shortest path algorithm, then we need to repeat it n times and the complexity is
O(n(e + nlogn)) with e as the number of edges. Most importantly, the choice of shortest path
algorithm is irrelevant to our shortest path encoding. Although our encoding is motivated by Floyd’s
algorithm, all constraints in our encoding are the necessary conditions that the shortest paths should
satisfy no matter what algorithm is used. For the optimality of the encoding, our encoding builds
a bijection between all connected graphs and all feasible solutions of Eq. as shown in
Theorem [3.5] meaning it is optimal in terms of representations.

B.4 COMPLEXITY ANALYSIS

The time complexity of computing all shortest paths for a graph with n nodes is O(n?®). When
computing the covariance between two graphs (assume they both have n nodes for simplicity), a naive
implementation of shortest path kernel is O(n?), but our implementation is O(nL?) with L being
the number of node labels after storing Ps , 4, (+) as defined in Section @ For other graph kernels,
Random Walk (RW) (Girtner et al., 2003) is O(n?), Subgraph Matching (Kriege & Mutzel, [2012) is
O(kn**1) with k as the size of subgraphs considered, and Weisfeiler-Lehman (WL) (Shervashidze
et al.,[2011) is O(hm) with h as the number of iterations and m as the number of edges [7]. There
are graph kernels with lower complexity than shortest-path kernels, but the complexity of calculating
kernels in graph BO is less important than encoding the graph kernel as optimization constraints.

B.5 LIMITATIONS

The major limitation of BoGrape (and most MIP-based methods) is the computational complexity.
The BoGrape complexity stems from solving the MIP rather than computing kernel values. The
tradeoff is: (i) BoGrape represents the whole, unavoidably large, search space precisely, and (ii)
solving MIP to global optimality is time-consuming since proving optimality of a solution usually
takes much more time than finding this solution. To better demonstrate this tradeoff, we perform
an ablation study by varying the MIP time limit among {60, 600, 1200} seconds on the molecular
design case study on QM7 dataset with graph size N = 10. As Figure [§illustrates, extending the
computational time does not improve BO performance significantly. Nevertheless, Figure [6] shows
that increasing time limits results in a smaller MIPgap, i.e. gives the the solver to more time prove
a solution’s optimality. In other words, finding good feasible solutions is easier (and important for
practical BO performance), while closing the MIPgap (important for theoretical BO convergence)
requires more computational effort.

B.6 SCALIBILITY OF BOGRAPE

Scalability issues always exist for combinatorial optimization, since the search space grows quickly.
For BoGrape, there are several ways to improve scalability: (i) reduce the search space, e.g., only
consider graphs that are similar to previous graphs in a trust-region fashion (similar in spirit to muta-
tion over existing samples in evolutionary algorithms (Ru et al.,|2021)), or adversarial perturbations
with limited budgets (Wan et al., [2021)), (ii) limit the solving time as we did in experiments, letting
the MIP solver return the current best solution, (iii) develop computational heuristics for specific
problems to identify promising candidates earlier, (iv) decompose large graphs into functional groups
and optimize the graph structure over groups instead of nodes. Note that (iv) is frequently applied in
graph tasks, e.g., cell-based neural architecture search (Wan et al.| 2022), fragment-based molecular
design (Zhang et al.| 2024), etc..

B.7 CHOICE OF APPLICATION
We choose the optimal molecular design task since (i) molecules can be represented as attributed,

connected graphs, (ii) molecular properties, either measured or predicted, are suitable functions over
graphs, and (iii) the MIP-based framework for molecular design is well-established. The baselines

20



Under review as a conference paper at ICLR 2026

-0.251

-0.31

best y

-0.45+

-0.51

-0.41

60 s
—— 600s
—— 1200s
L
o
v
()]
o
10 20 30 40 50
iter
(a) SSP kernel
60 s
— 600s
—— 1200s
10 20 30 40 50

iter

(c) ESSP kernel

0.25
60 s
— 6005

-0.31 — 1200s
0.35

0.4
0.45

_0.5,

10 20 30 40 50
iter
(b) SP kernel
0.25
T 60s
— 600s

0.3 — 1200s
0.35 1

0.4

0.45

-0.5+ E‘

0 10 20 30 40 50

iter

(d) ESP kernel

Figure 5: Performance of varying the time limit for BoGrape over QM7 datasets with graph size
N = 10. Best objective is plotted at each iteration. Mean with 0.5 standard deviation over 10

replications is reported.

Average MIPgap

N

[«)]

=y

60

time limit (s)

1200

SSP
SP
ESSP
ESP

Figure 6: Comparison of the average MIPgap over all iterations when varying the time limit. Experi-
ment conducted on QM7 dataset with graph size N = 10.

21



Under review as a conference paper at ICLR 2026

used in our experiments are less tailored to molecular design, and there are definitely more advanced
methods. But the purpose of this case study is not showing BoGrape is a state-of-the-art method in
molecular design, but investigating this problem from a constrained discrete optimization perspective.
Meanwhile, although molecular design is a promising and important application area for BO (Paulson
& Tsay, [2024)), our proposed BoGrape procedure is general for any setting with functions defined
over connected graphs.

B.8 KERNEL SELECTION

Kernel selection is an interesting question explored in BoGrape. As discussed in Section 4.2} there is
a trade-off between the kernel’s expressiveness and the complexity of resulting optimization problems.
With sufficient computational resources, more expressive kernels like ESP is preferred. But simpler
kernels like SSP yield optimization problems that are easier to solve. As the graph size increases,
linear kernels usually achieve better performance due to the overhead associated with formulating
exponential kernels.

C ADDITIONAL NUMERICAL RESULTS

C.1 KERNEL PERFORMANCE

Besides four shortest-path graph kernels, we also test the performance of several classic graph
kernels, including Random Walk (RW) (Gdértner et al.l [2003)), Subgraph Matching (SM) (Kriege
& Mutzel, 2012)), Weisfeiler-Lehman (WL) (Shervashidze et al., [2011), and Weisfeiler-Lehman
Optimal Assignment (WLOA) (Kriege et al.,[2016) kernels. To justify the effectiveness of the feature
component in Eq. (3), we also test the combination of these four kernels with the same feature kernel
used in shortest-path kernels. All GPs are trained by maximizing the log marginal likelihood. During
GP training, we set bounds for kernel parameters, i.e., «, 3, U,%, to [0.01, 100] with 1 as their initial

values, and set noise variance o2 as 107°. ,Btl /? defined in Eq. ll is setas 1.

Datasets QM7 (Blum & Reymond, 2009; Rupp et al., 2012) and QM9 (Ruddigkeit et al., 2012}
Ramakrishnan et al.,[2014) are used to test the kernel performance and train GNNs as graph functions.
Each dataset consists of molecules with quantum mechanic properties. Following the setting in|Zhang
et al.| (2024), we represent each molecule as a graph with M = 15 node features with L = 4 labels
included, use the same structural constraints, and train a GNN as a predictor for each dataset. The
trained GNN on QM7 has train and test errors of 0.0356 and 0.0337 respectively. Both the train and
test errors of the GNN on QM9 are 0.0082. We provide an example of the node feature and label in
such molecular graph to better distinguish the difference in their definitions:

Example. In the molecular design example on QM7 dataset, we followed the same setting as in|Zhang
et al.[(2024). Each node (atom) has one label from {C, N, O, S} and a feature vector with length
M =15,e.g. (1,0,0,0,0,1,0,0,0,0,1,0,0,1,0) where the first four elements indicate the atom
has label C, the 5" — 8 elements indicate the atom has two neighbors, the 9" — 13" elements
indicate the atom is connected to 2 hydrogen atoms, the 14" element indicates the atom is included
in a double bond and the 15" element indicates it is not included in a triple bond. More detailed
definitions can be found in the Table 2 & 3 of|Zhang et al.| (2024)).

Based on the molecular size N, we consider two settings (a) if the dataset includes molecules of size
N, we randomly choose molecules from the dataset and use their real properties, and (b) for larger /V,
we use Limeade to generate molecules and use the trained GNN to predict their properties. To show
the performance of different kernels on representing similarity between graphs, we apply setting (a)
and perform a property prediction task using GPs equipped with the various kernels, shown in Figure
[] For larger graph sizes, we apply setting (b). The root mean square errors (RMSE) is reported in
Figure9)and Table 3] the mean negative log likelihood (MNLL) is reported in Table 4]

Two observations from these results are: (i) adding feature component largely improves the per-
formance of all kernels in terms of predictive accuracy and uncertainty quantification, and (ii) our
shortest-path kernels achieve comparable performance comparing to other graph kennels, which
further justifies our choice of these kernels for global acquisition optimization.

22



Under review as a conference paper at ICLR 2026

C.2 ABLATION STUDIES ON THE CHOICE OF [3;

BoGrape leverages the classical LCB acquisition function, where exploration and exploitation are
balanced through its coefficient 5; (Srinivas et al.[2010). We set 5, = 1 in our experiments for
simplicity, as using constant values for 3; is a standard approach in BO literature, e.g.,[Thebelt et al.
(2021)). Although changing 3; does not affect the complexity of the acquisition optimization, we
provide an ablation study on varying the value of (3; as an investigation on the convergence behavior
of BoGrape regarding different exploration-and-exploitation factor. We consider the same setup of
the real-world case study on the QM7 dataset using SSP kernel with graph size /N = 10 as in Section
We include three common choices of Btl /2 in BO literature: (1) 1 as in this work; (2) 1.96,
e.g. Thebelt et al. (2021)); (3) a time-dependent schedule of 3 - 1/0.5log(2(¢t + 1)) as suggested by
recent graph BO literature (Ru et al.| 2021)). We present the average minimal objective value (with
0.5 standard deviation in brackets) found over 50 iterations with 10 replications in Figure This
study confirms that, though there may indeed be value in tuning 3; for a particular setting, BoGrape
variants with different choices for f3; largely exhibit similar convergence behavior. This observation
justifies the choice on 3; and further proves the robustness of BoGrape over key hyperparameters.

C.3 DETAILS FOR CASE STUDY

Random sampling is a common baseline, but is excluded in Section [4.3]since it rarely produces
even feasible solutions. Randomly sample feasible graphs is untrivial in molecular generation task
because the graph structure and features should be reasonable and compatible with each other, e.g.,
satisfying structural feasibility, dataset-specific constraints, etc.. Here we consider random sampling
over QM7 and QM0, to guarantee the feasibility of samples and compare it with Limeade (Zhang
et al.} 2025). Limeade is proposed as a feasible molecule generator, which is further enhanced by
incorporating the composition constraints and symmetry-breaking constraints (Zhang et al., [ 2023)).
Figure [TT] plots the regret curve over 50 iterations for both sample methods. In all cases, Limeade
outperforms random sampling, showing the limitations of random sampling. Therefore, we choose
Limeade as our sampling baseline.

For evolutionary algorithm, we apply the same random sampling and mutation procedure as in/Ru
et al.|(2021). First, none of 10 random samples is feasible, which is expected since the sample
domain is 2NWV-D/2LN (~ 1020 for N = 10, ~ 1092 for N = 20), while the feasible domain is
relatively much smaller. Then we give evolutionary algorithms 10* feasible molecules generated
by Limeade as an initial population and mutate each one 100 times, but only 0.35% mutations are
feasible for N = 10, and 3 out of 10 are feasible for N = 20. Although a tailored evolutionary
algorithm could be designed with better performance, it is neither the main focus of this work nor
compatible with general settings. Therefore, we exclude WL-evol from baselines.

Given the trained GNNs used in Section [C.I| as unknown graph functions, we conduct BoGrape
to optimize them. In our experiments, 10 random molecules sampled by Limeade are used as the
initial dataset, and 50 BO iterations are performed. We set PoolSearchMode=2 in Gurobi to generate
feasible solutions using Limeade. For each BO run, we show the mean with 0.5 standard deviation
of the best objective value over 10 replications. For the two baselines where we use Limeade as a
sampling-based solver for the acquisition functions, we conduct an ablation study by increasing the
number of candidates from 20 to 100. Figure[7]shows the results. While multiplying the number of
candidates evaluated by five in each acquisition optimization step indeed improves the performance
of the sampling-based baselines, BoGrape (which only proposes one sample per iteration) still
outperforms Limeade. This ablation study emphasizes the importance of global acquisition function
optimization.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

- SSP = SP ~—— ESSP —— ESP

-2.6

-2.84

-3.01

best y

3.4/

-3.6 1

0.0

-0.2 4

besty

-0.64

-0.81

-1.0

-3.24

0 10 20 30 40 50
iter

(a) QM7, N = 30

-0.44

0 10 20 30 40 50
iter

(©)QM9, N =30

RW-lime

best y

besty

-2.64

-2.81

-3.01

-3.2

3.41

-3.61

0.0

-0.24

-0.44

-0.6 1

-0.81

-1.0-

RW-lime* —— WL-lime —— WLlime*

0 10 20 30 40 50
iter

(b) QM7, N = 30

0 10 20 30 40 50
iter

(d) QM9, N = 30

Figure 7: Performance of varying the number of samples used in acquisition optimization for baselines
over QM7 and QM9 datasets with graph size N = 30. * indicates 100 candidates used in each
iterations. Best objective is plotted at each iteration. Mean with 0.5 standard deviation over 10
replications is reported.

24



Under review as a conference paper at ICLR 2026

RW SM WL WLOA

Ideal Fit Ideal Fit Ideal Fit Ideal Fit
§ TestData § TestData i TestData Test Data

. ! } I
dE M ‘ Hi
il

ssp sp ESSP ESP
;e ;e Y= ;e
s { ; ¢
. jo A f
< & )
& Mt?;‘h ?4‘*' W
i Pl (i 8#‘

.
g
o
—ee
ot
ot
Foeare
e T
e
B
-
e
———
-~

RW* SM* WL WLOA*

Ideal Fit Ideal Fit Ideal Fit Ideal Fit
Test Data Test Data Test Data Test Data

Figure 8: Compare predictive performance of GP with different kernels. * indicates linear combination
of given kernel and feature kernel. 100 samples are randomly chosen from the QM7 dataset with
various graph sizes, 30 of which are used for training. The predictive mean with one standard
deviation (predicted y) of the remaining 70 graphs are plotted against their real values (true y).

25



Under review as a conference paper at ICLR 2026

Violin plot of RMSE (N=10) Violin plot of RMSE (N=15) Violin plot of RMSE (N=20)
2.00
14
10
175
12
150 08
10
E L1 k]
@ 08 w @ 06
2 2 2
z Z 100 z
0.6
075 0.4
04
050
02
02 025
RW SM WL WLOA SSP SP ESSP ESP RW: SM* WL*WLOAF RW SM WL WLOA SSP SP ESSP ESP RW: SM* WL*WLOA® RW SM WL WLOA SSP SP ESSP ESP RWY SM* WL*WLOA®
Graph kernels Graph kernels Graph kernels
Violin plot of RMSE (N=25) Violin plot of RMSE (N=30)
14 175
12 150
10 125
i 8
2 2
208 £ 100
& &
2 2
z z
06 0.75
050
04
0.25
0.2
RW SM WL WLOA SSP SP ESSP ESP RW' SM* WL*WLOA® RW SM WL WLOA SSP SP ESSP ESP RW' SM* WL'WLOA®
Graph kernels Graph kernels

Figure 9: Violin plots to demonstrate GP regression performance on different graph kernels and graph
sizes IN. * indicates linear combination of given kernel and feature kernel. Each violin plots 25%
percentile, median and 75% percentile of the RMSEs over the 100 replications.

26



Under review as a conference paper at ICLR 2026

879 06¥0'T  (20L' 18090  (€62°0)68C0 (TO0'1)998°0 (OIL'OSHSO  «VOTIM
99209001 (929'DT9S°0 (98T 0)8LT0  (I€LOETLO  (9€9°0)86%°0  +IM
(SPLOSLTT (L8P 1E6S O (10£0)06T0 (6690)S9L0  (0L90)6IS0  «INS
(659S66'0  (€2L €S0 (€19°000250 (02604860 (TTEH0)9TS0  «MY
OISPPLST (086 DLSLO  HFOSOTPE0  (1690)06L°0 (829'06£S0 dsd
(LO6')298°T  (ST9199L0 (0SS 090 (TEL'DIST6'0  (TLL'D)6T90  dSSH
(S60°9)€L0 T (209 DOPSO  (BIEOWSE0  (0v9°0)S8L°0  (0ST 1)60L0 ds
(680°9)7ZT'T  (TI0L°DSEY0  (£89°0)289°0  (6182)0IST  (089°0)0OTL 0 dss
OsLz6r' 1 (SL0DTO0 T (805002890  (+80°DTI9T  (0€6'0)9STT  VOIM
(8SLD68ET  (S80DPE6'0  (10S0T89°0 (LSO DSLY'T  (#68°0)SST'T M
(£99'9)918C  (I70°€)8L9 T  (H#8TH)86ET (ITTDE6I'T  (SH6°0)T0E’T NS
(T16'9S18' T (676 TSSTT  (T6L'D6IS0  (FLO'DISH'T  (S96°0)IST'T M
0€=N ST=N 02=N SI=N 01=N [oUIY

‘suoneorider 00|

1940 pauodar st 10119 2A1d1pald Jo (SIAR) 10419 arenbs ueaw J001 ‘A[oAndadsal ‘Fursa) pue Surures) J0J S9[NII[OW ()()| PUB ()g 21BIOUS WOPUERI 0} 9PBAWI] SN M
¢ N 9z1s ydeis yoes Jo,{ "[oUIoY AINJedJ PUB [OUIY USAIS JO UOTBUIQUIOD JBUI[ SABIIPUL 4, "S[OUIY ydeis juazoyrp yiim paddmbe sgo jo souewiogrod [9poJN :€ 9[qeL

27



Under review as a conference paper at ICLR 2026

(8TTYL69)8Y0 STL (869°L1)L86'E (6¥00)60€°0 (910°6)LELT (LETYDETYE *VOIM
(601°€$89)1SS°T0OL (E¥9°SDT8L'E (LSEDLLY O (BIT°6)¥9L'T (81¥'6)TLS'T T
(6€S'SLTIDISLI'SEY] (€8S TE)T19°6 (916V)SH8°0 (8LO'6)VL6'T (65SS°6)£98°C NS
VN VN VN VN VN * MY
(v €8TTTTT 8K (68°L)L6S'T (80€°1)859°0 (0S9°OLLST (96€°L1)T96Y dsd
(896'9€€0)€6E°LTE (06€7120)618°8€ (E0L'TTDLLOOF (170" 12rE)68T 0€S (601 ¥S1)€60°ES dssd
(66€TE6¥8)997°C98C1  (LI8'0LIVIOLE 0601 (€99°LS€)89€°9¢S (986€8)91€7C (£0°086)SYL9LT ds
(69€°C1678)€80°SEBET  (PETSELYIISY LiPT  (LLI'ESHEITIS'LELT  (881°ST0TITITOITL  (691'998ST06T 0T6ST dssS
(LTO'€€€69)8TSV6L61  (€68°TLE6IOIT V6T (S89'LECIISTHOE (69L€PTDSYT1TS  (T9E€°STPOLIESH889ST  VOIM
(TT8'€€€69)8L1°€6L6T  (01STLEOYST V6T (0SL'LEEDIVT HOE (9TL'€YTTI890° 1S  (8FE'STHOLIB6S 889ST M
(T60°S180T1)168°9TH9¢€  (96'66001)S06°18€E  (T9¥'L6LI)ISL 8EY (9LT'L8TE6EL'E6L  (91E STYOLILIE 069ST NS
VN VN VN VN VN M
0e=N ¢C=N 0C=N SI=N 01=N [PUIa3]

‘suoneordar

001 I9A0 payodar st (TININ) POOYISYI] S0 2ane3au ueaw ‘A[9Andadsar ‘3unsa) pue urures) 10J S9[NIA[OW (J)| PUE (g 2IBISUAZ WOPULRI 0} IPBIWIT SN M ‘ \J
9z1s ydei3 yoea 10, "[OUISY 2INJEIJ PUB [QUIDY UJAIS JO UOIIBUIqUIOD JEQUI] $9JBIIPUI . “S[ouIdy ydeis juarogip yiim paddinbe sgo jo souewrojrad [9poIN 4 9[qeL

28



Under review as a conference paper at ICLR 2026

0.0
—— dynamic g
— pi?=1.986
_0.1 4
— B
_0.2 4
>
=
%
2
70.3 4
_0.4 4
— 1
—0.5 1 ge— |
T . . T T T
0 10 20 30 40 50

iters

Figure 10: Bayesian optimization results on QM7 with N = 10 and different values of ﬂtl /2 Best
objective value is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is
reported.

Limeade 030
030 Random 035

020

simple regret
simple regret
simple regret

005

0.00

iter iter iter

(@) QM7, N =4 (b)QM7, N =5 (c)QM7, N =6

0.40 025

simple regret
simple regret

simple regret

iter iter iter

dQM7,N =7 (e)QMI, N =4 ®QMI, N =5

simple regret
simple regret
simple regret

(g9QM9, N =6 (h)QM9, N =7 1) QM9, N =38
Figure 11: Performance of random sampling and Limeade over QM7 and QM09 datasets with different

graph size N. Simple regret is plotted at each iteration. Mean with 0.5 standard deviation over 10
replications is reported.

29



Under review as a conference paper at ICLR 2026

1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537 ——— Limeade RW-lime = WL-lime - SSP - SP — ESSP — ESP
1538
1539
1540
1541 4
1542 > 9
1543 8 -0y
1544 -114
1545 -12
1546 13
1547 i i i i i i i i i i i i
0 10 20 30 40 50 0 10 20 30 40 50
1548 iter iter
1549
1550 (a) QM7, N =15 (b) QM7, N = 25
1551 021
1552
1553
1554 00
1555
1556
1557 ~0.2
1558
1559

014

1560 o 0 20 0 40 50 0 10 20 30 £ 50

1561 iter iter

1562 (©)QM9, N = 15 (d) QM9, N = 25
1563

1564 Figure 12: Bayesian optimization results on QM7 and QM9 with N € {15, 25}. Best objective value
1565  is plotted at each iteration. Mean with 0.5 standard deviation over 10 replications is reported.
1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

30



	Introduction
	Preliminaries
	Bayesian optimization (BO)
	Global optimization of acquisition functions
	Shortest-path graph kernels

	Methodology
	Variants of the shortest-path graph kernels
	Global acquisition function optimization
	Encoding of the shortest paths as optimization constraints
	Encoding of graph kernels as optimization constraints

	Experiments
	Model performance
	Optimization of synthetic benchmarks
	Real-world case study

	Conclusion
	Encoding of graph kernels
	Notations
	Shortest path encoding for graphs with fixed size
	Shortest path encoding for graph with unknown size
	Proofs of theorems
	Encoding for kernel over binary features
	Simplify path encoding over undirected graphs

	Discussion
	Choice of graph kernels
	Choice of acquisition functions
	Effectiveness of encoding
	Complexity analysis
	Limitations
	Scalibility of BoGrape
	Choice of application
	Kernel selection

	Additional numerical results
	Kernel performance
	Ablation studies on the choice of t
	Details for case study


