
GFlowNet Assisted Biological Sequence Editing

Pouya M. Ghari∗
University of California Irvine

Alex M. Tseng
Genentech

Gökcen Eraslan
Genentech

Romain Lopez
Genentech, Stanford University

Tommaso Biancalani
Genentech

Gabriele Scalia
Genentech

Ehsan Hajiramezanali†
Genentech

Abstract

Editing biological sequences has extensive applications in synthetic biology and
medicine, such as designing regulatory elements for nucleic-acid therapeutics and
treating genetic disorders. The primary objective in biological-sequence editing
is to determine the optimal modifications to a sequence which augment certain
biological properties while adhering to a minimal number of alterations to ensure
predictability and potentially support safety. In this paper, we propose GFNSeqEd-
itor, a novel biological-sequence editing algorithm which builds on the recently
proposed area of generative flow networks (GFlowNets). Our proposed GFNSe-
qEditor identifies elements within a starting seed sequence that may compromise a
desired biological property. Then, using a learned stochastic policy, the algorithm
makes edits at these identified locations, offering diverse modifications for each
sequence to enhance the desired property. The number of edits can be regulated
through specific hyperparameters. We conducted extensive experiments on a range
of real-world datasets and biological applications, and our results underscore the su-
perior performance of our proposed algorithm compared to existing state-of-the-art
sequence editing methods.

1 Introduction

Editing biological sequences has a multitude of applications in biology, medicine, and biotechnology.
For instance, gene editing serves as a tool to elucidate the role of individual gene products in
diseases [28] and offers the potential to rectify genetic mutations in afflicted tissues and cells for
therapeutic interventions [9]. The primary objective in biological-sequence editing is to enhance
specific biological attributes of a starting seed sequence, while minimizing the number of edits. This
reduction in the number of alterations not only has the potential to improve safety but also facilitates
the predictability and precision of modification outcomes.

Existing methodologies that leverage generative modeling in the context of biological sequences have
predominantly concentrated on de novo generation of sequences with desired properties [52, 61, 3].
A common feature of these approaches is generating entirely new sequences from scratch. As a result,
there is an inherent risk of deviating significantly from naturally occurring sequences, compromising
safety (e.g., the risk of designing sequences that might trigger an immune response) and predictability
(e.g., obtaining misleading predictions from models that are trained on genomic sequences due to
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out-of-distribution effects). Despite the paramount importance of editing biological sequences, there
has been a noticeable scarcity of research leveraging generative modeling to address this aspect
specifically.

Generative flow networks (GFlowNets) [5, 6], a generative approach recognized for their ability to
sequentially generate new objects, have shown remarkable performance in generating novel biological
sequences from scratch [19, 30]. Drawing inspiration from the emerging field of GFlowNets, this
paper introduces a novel biological-sequence editing algorithm: GFNSeqEditor. GFNSeqEditor
assesses the potential for significant property enhancement within a given seed sequence by iteratively
identifying and subsequently editing specific positions in the input sequence. More precisely, using
the trained flow function, GFNSeqEditor first identifies positions in the seed sequence that require
editing. Then, it constructs a stochastic policy using the flow function to select a substitution from
the available options for the identified positions. Our stochastic approach empowers GFNSeqEditor
to generate a diverse set of edited sequences for each input sequence, which, due to the diverse nature
of biological targets, is an important consideration in biological sequence design [34, 19].

In summary, this paper makes the following contributions:

• We introduce GFNSeqEditor, a novel sequence-editing method which identifies and edits
positions within a given sequence. GFNSeqEditor generates diverse edits for each input
sequence based on a stochastic policy.

• We theoretically analyze the properties of the sequences edited through GFNSeqEditor,
deriving lower and upper bounds on the property of edited sequences. Additionally, we
demonstrate that the lower and upper bounds for the number of edits performed by GFNSe-
qEditor can be controlled through the adjustment of hyperparameters (Subsection 4.3).

• We conduct experiments across various DNA and protein sequence editing tasks, showcasing
GFNSeqEditor’s remarkable efficiency in enhancing properties with a reduced number of
edits when compared to existing state-of-the-art methods. (Subsection 5.1).

• We highlight the versatility of GFNSeqEditor, which can be employed not only for sequence
editing but also alongside biological-sequence generation models to produce novel sequences
with improved properties and increased diversity (Subsection 5.2).

• We demonstrate the usage of GFNSeqEditor for sequence length reduction, allowing the
creation of new, relatively shorter sequences by combining pairs of long and short sequences
(Subsection 5.3).

2 Related Works

De Novo Sequence Design. The generation of biological sequences has been tackled using a
diverse range of methods, including reinforcement learning [1], Bayesian optimization [51], deep
generative models for search and sampling [18], generative adversarial networks [61], diffusion
models [3], model-based optimization approaches [52, 7], adaptive evolutionary strategies [16, 49],
likelihood-free inference [55], and surrogate-based black-box optimization [10], and GFlowNet
[19]. It is important to note that all these sequence-generation methods generate sequences from
scratch. However, ab initio generation carries the risk of deviating too significantly from naturally
occurring sequences, which can compromise safety and predictability. In contrast, our proposed
method enhances a target property while maintaining the similarity to seed sequences (e.g., naturally
occurring sequences), thus improving predictability and potentially enhancing safety.

Sequence Editing. Traditional approaches commonly employed for biological sequence editing are
evolution-based methods, where—over many iterations—a starting “seed” sequence is randomly
mutated, retaining only the best sequences (i.e., highest desired property) for the next round [2, 46,
50, 41]. These approaches have several important limitations. First, they require the evaluation
of numerous candidate sequences at every iteration. This computational demand can become
prohibitively expensive, particularly for lengthy sequences. Additionally, evolution-based methods
heavily rely on evaluations provided by a proxy model capable of assessing the properties of unseen
sequences; the efficacy of these methods is thus limited by the reliability of the underlying proxy.
Moreover, these methods may require repeated rounds of interactions with the lab [41], which can be
costly and time-consuming.
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A T G T C C G C

DNA sequence x with property y

Sequence
Editor E A C G T C C A C

DNA sequence x̂ with property ŷ

Figure 1: An example of editing the DNA sequence ‘ATGTCCGC’. The goal is to make a limited
number of edits to maximize the property ŷ. Each token in the sequence in this example is called a
base and can be any of [‘A’, ‘C’, ‘T’, ‘G’]. The editor function E accepts the initial sequence as an
input and determines that the second and seventh bases require editing (highlighted in red). Then, E
modifies the bases at these identified locations to improve the property value.

Beyond evolution-based methods, a handful of optimization-based methods have been proposed
by [42, 48, 21]. By treating sequence editing as an optimization task, Ledidi [42] learns to perturb
specific positions within a given sequence. Utilizing Bayesian optimization, LaMBO [48] gener-
ates new sequences by optimizing a batch of starting seed sequences. Building upon the LaMBO
framework, MOGFN-AL [21] leverages GFlowNets to generate candidates in each round of Bayesian
optimization loop, improving computational efficiency compared to LaMBO. Akin to evolution-based
models, these optimization-based methods require the evaluation of unseen sequences. Consequently,
their effectiveness is contingent on the quality of the proxy model, which can compromise their
performance if the proxy model lacks sufficient generalizability for unseen sequences. Furthermore,
both evolution-based and optimization-based methods perform local searches given either a single
seed sequence or a batch of seed sequences. Thus, these methods face issues related to low sam-
ple efficiency. In contrast, GFNSeqEditor relies on a pre-trained flow function that amortizes the
search cost over the learning process, allocating probability mass across the entire space to facilitate
exploration and diversity. Furthermore, GFNSeqEditor can be employed for editing without neces-
sitating the evaluation of unseen sequence properties. Theoretical analysis presented in this paper
establishes that the bounds of edited sequence rewards, property improvement, and the number of
edits can be effectively regulated through GFNSeqEditor hyperparameters. Therefore, GFNSeqEditor
offers increased reliability and operational suitability in comparison to counterparts lacking a robust
theoretical analysis.

We provide an extensive overview of the related literature, with additional discussion available in the
Appendix F.

3 Preliminaries and Problem Statement

Let x be a biological sequence with property y. For example, x may be a DNA sequence, and y may
be the likelihood it binds to a particular protein of interest. The present paper considers the problem
of searching for edits in x to improve y. To this end, the goal is to learn an editor function E(·)
which accepts a sequence x and outputs the edited sequence E(x) = x̂ with property ŷ. The editor
function E(·) should maximize ŷ, while at the same time minimizing the number of edits between
x and x̂. To achieve this goal, we propose GFNSeqEditor. GFNSeqEditor first identifies positions
in a given biological sequence such that editing those positions leads to considerable improvement
in the property of the sequence. Then, the learned editor function E edits these identified locations
(Figure 1). GFNSeqEditor uses a trained GFlowNet [5, 6] to identify positions that require editing
and subsequently generate edits for those positions. The following Subsections present preliminaries
on GFlowNets.

3.1 Generative Flow Networks

Generative Flow Networks (GFlowNets) [5, 6] learn a stochastic policy π(·) to sequentially construct
a discrete object x. Let X be the space of discrete objects x. It is assumed that the space X is
compositional, meaning that an object x can be constructed using a sequence of actions taken from
an action set A. At each step t, given a partially constructed object st, GFlowNet samples an action
at+1 from the set A using the stochastic policy π(·|st). Then, GFlowNet appends at+1 to st to
obtain st+1. In this context, st can be viewed as the state at step t. The above procedure continues
until reaching a terminating state, which yields the fully constructed object x. To construct an object
x, the GFlowNet starts from an initial empty state s0, and applying actions sequentially, all fully
constructed objects must end in a special final state sf . Therefore, the trajectory of states to construct
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an object x can be written as τx = (s0 → s1 → · · · → x → sf ). Let T be the set of all possible
trajectories. Furthermore, let R(·) : X → R+ be a non-negative reward function defined on X . The
goal of GFlowNet is to learn a stochastic policy π(·) such that π(x) ∝ R(x). This means that the
GFlowNet learns a stochastic policy π(·) to generate an object x with a probability proportional to
its reward.

As described later, to obtain the policy π(·), the GFlowNet uses trajectory flow F : T → R+. The
trajectory flow F (τ) assigns a probability mass to the trajectory τ . Then, the edge flow from state
s to state s′ is defined as F (s → s′) =

∑
∀τ :s→s′∈τ F (τ). Moreover, the state flow is defined

as F (s) =
∑

∀τ :s∈τ F (τ). The trajectory flow F (·) induces a probability measure PF (·) over
completed trajectories that can be expressed as PF (τ) =

F (τ)
Z where Z =

∑
∀τ∈T F (τ) represents

the total flow. The probability of visiting state s can be written as PF (s) =
∑

∀τ∈T:s∈τ F (τ)

Z . Then, the

forward transition probability from state s to state s′ can be obtained as PF (s
′|s) = F (s→s′)

F (s) . The
trajectory flow F (·) is called a consistent flow if for any state s it satisfies

∑
∀s′:s′→s F (s′ → s) =∑

∀s′′:s→s′′ F (s → s′′), which constitutes that the in-flow and out-flow of state s are equal. [5] shows
that if F (·) is a consistent flow such that the terminal flow is set as reward (i.e. F (x → sf ) = R(x)),
the policy π(·) defined as π(s′|s) = PF (s

′|s) satisfies π(x) = R(x)
Z which means that the policy

π(·) samples an object x proportional to its reward.

3.2 Training GFlowNet Models

In order to learn the policy π(·), a GFlowNet model approximates trajectory flow with a flow function
Fθ(·) where θ includes learnable parameters of the flow function. To learn the flow function that can
provide consistency condition, [5] formulates flow-matching loss function as follows:

LFM(s;θ) =

(
log

∑
∀s′:s′→s Fθ(s

′ → s)∑
∀s′′:s→s′′ Fθ(s → s′′)

)2

. (1)

Moreover, as an alternative objective function, [31] introduces trajectory balance as:

LTB(s;θ) =

(
log

Zθ

∏
s→s′ PFθ

(s′|s)
R(x)

)2

(2)

where Zθ is a learnable parameter. The trajectory-balance objective function in (2) can accelerate
training GFlowNets and provide robustness to long trajectories. Given a training dataset, optimization
techniques such as stochastic gradient descent can be applied to objective functions in (1) and (2)
to train the GFlowNet model. We use trajectory balance in this paper due to its well-documented
performance. Furthermore, it is worth noting that generating sequences in an autoregressive fashion
using GFlowNet involves only one path to generate a particular sequence. In such cases, generating
biological sequences with GFlowNet can be viewed as a Soft-Q-Learning [15, 13, 33] and path
consistency learning (PCL) [35] problem.

4 Sequence Editing with GFlowNet

To edit a given sequence x, we propose identifying sub-optimal positions of x such that editing them
can lead to considerable improvement in the sequence property. Assume that the flow function Fθ(·)
is trained on available offline training data. GFNSeqEditor uses the trained GFlowNet’s flow function
Fθ(·) to identify sub-optimal positions of x, and subsequently replace the sub-optimal parts with
newly sampled edits based on the stochastic policy π(·).

4.1 Sub-Optimal-Position Identification

This Subsection provides intuition on how GFNSeqEditor uses a pre-trained flow function Fθ(·) to
identify sub-optimal positions in a sequence x to edit. Let xt and x:t denote the t-th element and the
first t elements in the sequence x, respectively. For example, in the DNA sequence x = ‘ATGTCCGC’,
we have x2 = ‘T’ and x:2 = ‘AT’. GFNSeqEditor constructs edited sequences token by token, and
for each position t+ 1, it examines whether xt+1 should be edited or not. Using the flow function
Fθ(·), given x:t, GFlowNet evaluates the average reward obtained by appending any possible token
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to x:t. In this context, each token can be viewed as an action. Let x:t + a denotes the expanded x:t

by appending token a. Let A represent the available action set. For each a ∈ A, using the state flow
Fθ(x:t + a), the value of action a given x:t can be evaluated. As discussed in Section 3, the state
flow Fθ(x:t + a) is proportional to the total reward of all possible sequences that have x:t + a as
their prefix. Therefore, Fθ(x:t + a1) > Fθ(x:t + a2) indicates that taking action a1 instead of action
a2 can lead to obtaining better candidates for the final sequence. We can leverage this property of
the flow function Fθ(·) to examine if xt+1 is sub-optimal or not. If the reward resulting from having
xt+1 in the seed sequence is evaluated by Fθ(·) to be relatively small compared to other possible
actions, then xt+1 is considered sub-optimal. In particular, xt+1 is identified as sub-optimal if:

Fθ(x:t + xt+1) < δmax
a∈A

Fθ(x:t + a), (3)

where 0 ≤ δ ≤ 1 is a hyperparameter. A larger δ increases the likelihood that the algorithm
identifies xt+1 as sub-optimal. From (3), it can be inferred that xt+1 is identified as sub-optimal if its
associated out-flow is considerably smaller than the out-flow associated with the best possible action
in A. This means that the flow function Fθ(·) suggests that replacing xt+1 with other actions can
lead to remarkable improvement in the sequence property.

4.2 Sequence Editing with GFNSeqEditor

Using the flow function Fθ(·), GFNSeqEditor iteratively identifies and edits positions in a seed
sequence. Subsection 4.1 presented a simple function for determining if a position xt+1 in a sequence
should be edited to improve the target property value ((3)). Based on this intuition, we now modify
(3) to formally define the sub-optimal-position identification function D(·) used by GFNSeqEditor.

Let x̂:t denote the first t elements of the edited sequence. Assume that xt ∈ A, ∀t, meaning that xt is
always in the available actions. At each step t of the algorithm, D(·) accepts x̂:t−1 and evaluates
whether appending xt (from the seed sequence) to the edited partial sequence x̂:t−1 is detrimental to
the performance. In particular, modifying (3), the sub-optimal identifier function D(·) checks the
following condition:

Fθ(x̂:t−1 + xt)∑
a′∈A Fθ(x̂:t−1 + a′)

< δmax
a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

+ ν, (4)

where ν ∼ N (0, σ2) is a Gaussian random variable with variance of σ2. The variance σ2 is a
hyperparameter. The relation between σ and the algorithm performance will be analyzed in Section
4.3. The inclusion of additive noise ν on the right-hand side of (4) introduces a degree of randomness
into the process of identifying sub-optimal positions. This, in turn, fosters exploration in the editing
process. The sub-optimal-position-identifier function D(·) determines if xt is sub-optimal as follows:

D(xt, x̂:t−1; δ, σ) =

{
1 If (4) is met
0 Otherwise

. (5)

If D(xt, x̂:t−1; δ, σ) = 0, at step t the algorithm appends xt from the original sequence x to x̂:t−1.
Otherwise, if D(xt, x̂:t−1; δ, σ) = 1, the algorithm samples an action a according to the following
policy:

π(a|x̂:t−1) = (1− λ)
Fθ(x̂:t−1 + a)∑
a′∈AFθ(x̂:t−1+a′)

+ λ1a=xt , (6)

where 0 ≤ λ < 1 is a regularization coefficient and 1a=xt
denotes the indicator function and is 1

if a = xt. The regularization parameter λ allows tuning the sampling process to favor the original
sequence (a larger λ leads to a smaller number of edits). The policy in (6) constitutes a trade-off
between increasing the target property and decreasing the distance between the edited sequence x̂
and the original sequence x. Let x̃t be the action sampled by the policy π in (6). In summary, the
t-th element in the edited sequence can be written as:

x̂t = D(xt, x̂:t−1; δ, σ)x̃t + (1−D(xt, x̂:t−1; δ, σ))xt. (7)

Therefore, at each step t, the edited sequence is updated as x̂:t = x̂:t−1 + x̂t. The process continues
until step T , where T = |x| denotes the length of the original sequence x. Note that x̂:0 is an empty
sequence. Algorithm 1 summarizes GFNSeqEditor.
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Algorithm 1 GFNSeqEditor: Sequence Editor using GFlowNet
1: Input: Sequence x with length T , flow function Fθ(·) and parameters δ, λ and σ.
2: Initialize x̂:0 as an empty sequence.
3: for t = 1, . . . , T do
4: Check if xt is sub-optimal by obtaining D(xt, x̂:t−1; δ, σ) according to (5).
5: if D(x̂:t−1; δ, σ) = 1 then
6: Sample x̂t according to policy π(·|x̂:t−1) in (6).
7: else
8: Assign x̂t = xt.
9: end if

10: end for
11: Output: Edited sequence x̂.

4.3 Analysis

This Subsection analyzes the reward and properties of the edited sequence as well as the number
of edits performed by GFNSeqEditor. Specifically, the bounds for the reward of edited sequences,
property improvement and the number of edits are determined by the algorithm’s hyperparameters σ,
δ, and λ. The following theorem specifies the lower bound for the reward of edited sequences.
Theorem 4.1. Let T be the length of the original sequence x. The expected reward of the sequence
edited by GFNSeqEditor x̂ given x is bounded from below as:

E[R(x̂)|x] ≥
(
1− Φ(

1− δ

σ
)

)
(1− λ)RF,T , (8)

where Φ(·) denotes the cumulative distribution function (CDF) for the normal distribution and RF,T

represents the expected reward of a sequence with length T generated using the flow function Fθ(·).

Proof of Theorem 4.1 is deferred to Appendix A. The following Theorem obtains the expected
property improvement upper bound of the proposed GFNSeqEditor. The property improvement of a
sequence x is defined as PI = ŷ − y where ŷ denotes the edited sequence property.
Theorem 4.2. Let S∗x be the set of all sequences with length T which have larger properties than that
of x (i.e., y). Assume that S∗x is a non-empty set. The expected property improvement by applying
GFNSeqEditor on x is bounded from above as

E[PI|x] ≤
∑
w∈S∗x

(
1− Φ(− δ

σ
)

)
(pw − y) (9)

where pw denote the property of the sequence w.

The proof of Theorem 4.2 can be found in Appendix B. Theorems 4.1 and 4.2 demonstrate that
an increase in δ results in an increase in both the lower bound of reward and the upper bound of
property improvement. While a higher value of σ corresponds to larger lower bounds for the reward,
an increase in σ diminishes the upper bound of the property improvement. The following theorem
obtains the upper bound on the number of edits performed by the proposed GFNSeqEditor.
Theorem 4.3. The expected distance between the edited sequence x̂ by GFNSeqEditor and the
original sequence x is bounded from above as:

E[lev(x, x̂)] ≤
[
(1− λ)

(
1− Φ(− δ

σ
)

)]
T, (10)

where lev(·, ·) is the Levenshtein distance between two sequences.

The proof for Theorem 4.3 is available in Appendix C. The following Theorem specifies the lower
bound for the number of edits.
Theorem 4.4. Let there exists ϵ > 0 such that the flow function Fθ(·) satisfies:

max
a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

≤ 1− ϵ, ∀t, (11)
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meaning that the probability of choosing of each action is always less than 1 − ϵ. The expected
distance between the edited sequence x̂ by GFNSeqEditor and the original sequence x is bounded
from below as:

E[lev(x, x̂)] ≥
[
ϵ(1− λ)

(
1− Φ(

1− δ

σ
)

)]
T. (12)

Proof of Theorem 4.4 can be found in Appendix D. Theorems 4.3 and 4.4 show that as δ increases,
both the lower and upper bounds of distance increase. In contrast, an increase in λ leads to a decrease
in both the lower and upper bounds of distance. Furthermore, Theorem 4.1 demonstrates that a
reduction in λ results in a larger lower bound for the reward. Therefore, Theorems 4.1 and 4.3 reveal
a trade-off between the expected number of edits and the lower bound for the expected reward. While
it is preferable to select hyperparameters δ and λ that reduce the expected number of edits, an increase
in the number of edits corresponds to a larger lower bound for the reward.

5 Experiments

We conducted extensive experiments to assess the performance of GFNSeqEditor in comparison
to several state-of-the-art baselines across diverse DNA- and protein-sequence editing tasks. We
evaluate on TFbinding, AMP, and CRE datasets. TFbinding and CRE datasets consist DNA sequences
with lengths of 8 and 200, respectively. The task in both datasets is to edit sequences to increase their
binding activities. The vocabulary for both TFbinding and CRE is the four DNA bases, {A, C, G, T}.
AMP dataset comprises positive samples, representing anti-microbial peptides (AMPs), and negative
samples, which are non-AMPs. The vocabulary consists of 20 amino acids. The primary objective is
to edit the non-AMP samples in such a way that the edited versions attain the characteristics exhibited
by AMP samples. Additional information about the datasets can be found in Appendix E.1.1.

To evaluate the performance of sequence editing methods, we compute the following metrics:

• Property Improvement (PI): The PI for a given sequence x with label y is calculated as
the average enhancement in property across edits, expressed as PI = 1

ne

∑ne

i=1 (ŷi − y),
where ne is the number of edited sequences associated with the original sequence x and ŷi
denote the property of the i-th edited sequence x̂i. To evaluate the performance of editing
methods, for each dataset we leverage an oracle to obtain ŷi given x̂i. More details about
oracles can be found in Appendix E.

• Edit Percentage (EP): The average Levenshtein distance between x and edited sequences
normalized by the length of x expressed as 1

neT

∑ne

i=1 lev(x, x̂i).

• Diversity: For each sequence x, the diversity among edited sequences can be obtained as
2

ne(ne−1)

∑ne−1
i=1

∑ne

j=i+1 lev(x̂i, x̂j).

• GMDPI: The geometric mean of diversity and PI is measured. This metric highlights
algorithms that exhibit strong performance in both aspects simultaneously.

We compared GFNSeqEditor to several baselines, including Directed Evolution (DE) [46], Ledidi
[42], LaMBO [48], MOGFN-AL [21], GFlowNet-AL [19], and Seq2Seq. To perform Directed
Evolution for sequence editing, we select a set of positions uniformly at random within a given
sequence and then apply the directed-evolution algorithm to edit these positions. The implementation
of the directed-evolution algorithm is the same as that of the AdaLead framework in [46]. Inspired
by graph-to-graph translation for molecular optimization in [23], we implemented another editing
baseline, which is called Seq2Seq. For the Seq2Seq baseline, we initially partition the dataset into two
subsets: i) sequences with lower target-property values, and ii) sequences with relatively higher target-
property values. Subsequently, we create pairs of data samples such that each low-property sequence
is paired with its closest counterpart from the high-property sequence set, based on Levenshtein
distance. A transformer is then trained to map each low-property sequence to its high-property pair.
Essentially, the Seq2Seq baseline maps an input sequence to a similar sequence with a higher property
value. Furthermore, we adapted GFlowNet-AL for sequence editing, and named it GFlowNet-E
in what follows. In this baseline, the initial segment of the sequence serves as the input, allowing
the model to generate the subsequent portion of the sequence. For TF-binding, AMP, and CRE
datasets, GFlowNet-E takes in the initial 70%, 65%, and 60% of elements, respectively, from the
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Table 1: Performance of GFNSeqEditor compared to the baselines in terms of property improvement
(PI), edit percentage (EP), diversity, and geometric mean of property improvement and diversity
(GMDPI) on TFbinding, AMP, and CRE datasets. EP is selected to be approximately the same for all
algorithms (if possible). Higher PI, diversity and GMDPI are preferable.

TFbinding AMP CRE
Methods PI EP(%) Diversity GMDPI PI EP(%) Diversity GMDPI PI EP(%) Diversity GMDPI
DE 0.12 25.00 3.01 0.60 0.11 33.82 13.67 1.23 0.63 22.93 62.07 6.25
Ledidi 0.06 27.80 1.25 0.27 0.18 34.79 11.65 1.45 1.36 22.13 50.49 8.29
LaMBO 0.05 25.00 3.14 0.40 0.12 34.33 15.61 1.36 0.79 23.35 62.95 7.05
MOGFN-AL 0.09 25.00 2.66 0.49 0.10 35.26 7.59 0.87 2.45 22.99 10.96 5.18
GFlowNet-E 0.11 28.35 2.10 0.48 0.28 35.68 3.42 0.98 4.24 22.73 37.06 12.53
Seq2Seq 0.03 41.98 - - 0.21 78.05 - - - - - -
GFNSeqEditor 0.14 24.27 3.84 0.73 0.33 34.49 14.34 2.17 9.90 21.90 40.41 20.00

input sequence x, and generates the remaining elements using the pre-trained flow function. More
details on the baselines can be found in Appendix E.1.

To train both the baselines and the proposed GFNSeqEditor, we divide each dataset into training,
validation, and test sets with proportions of 72%, 18% and 10%, respectively. The test set serves the
purpose of evaluating the performance of the methods in sequence editing tasks. The flow function
Fθ(·) utilized by GFNSeqEditor and the GFlowNet-E baseline is an MLP consisting of two hidden
layers, each with a dimension of 2048, and |A| outputs corresponding to actions. Throughout our
experiments, we employ the trajectory balance objective to train the flow function. Additional details
regarding the training of the flow function can be found in Appendix E.1.

5.1 Sequence Editing

Figure 2: Property improvement of AMP (left)
and CRE (right) with respect to edit percentage.

Table 1 presents the performance of GFNSeqEd-
itor and other baselines on TFbinding, AMP, and
CRE datasets3. We set GFNSeqEditor and all the
baselines except for Seq2Seq to create 10 edited
sequences for each input sequence. The Seq2Seq
implementation closely resembles a deterministic
machine translator and is limited to producing just
one edited sequence per input, resulting in a diversity score of zero. Additionally, Figure 2 shows the
property improvement achieved by GFNSeqEditor, DE, Ledidi, LaMBO, and MOGFN-AL across
a range of edit percentages. As evident from Table 1 and Figure 2, GFNSeqEditor outperforms
all baselines, achieving substantial property improvements with a controlled number of edits. This
superior performance is attributed to GFNSeqEditor’s utilization of a pre-trained flow function
from GFlowNet, enabling it to achieve significantly higher property improvements than DE, Ledidi,
LaMBO, and MOGFN-AL, which rely on local search techniques by optimizing either a given single
sequence or a batch of sequences. Specifically, the flow function Fθ(·) is trained to sample sequences
with probability proportional to their reward and, as a result, employing the policy in (6) for editing
enables GFNSeqEditor to leverage global information contained in Fθ(·) about the entire space of
sequences. Furthermore, GFNSeqEditor achieves larger property improvement than GFlowNet-E.
The GFNSeqEditor identifies and edits sub-optimal positions within a seed sequence using (4), while
GFlowNet-E only edits the tail of the input seed sequence. This indicates the effectiveness of the
sub-optimal position identifier function of GFNSeqEditor.

Ablation study. We further study the property improvement achieved by GFNSeqEditor along
with edit percentage across various choices of hyperparameters δ and λ. Figure 3 illustrates that an
increase in δ generally corresponds to an increase in both property improvement and edit percentage,
whereas, in most cases, an increase in λ results in a decrease in property improvement and edit
percentage. Furthermore, in Figure 7 in Appendix E.3, we illustrate the impact of changing σ on
property improvement and edit diversity for GFNSeqEditor. This figure highlights that increasing
σ results in decreased property improvement and enhanced diversity. These results corroborate the
theoretical analyses outlined in Theorems 4.1, 4.2 and 4.3 in Section 4.3.

3Seq2Seq relies on identifying pairs of similar sequences for training. However, we were unable to identify
similar pairs for CRE, possibly because of the limited number of training samples relative to the lengthy nature
of the sequences (i.e., sequences with a length of 200).
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Figure 3: Studying the effect of heyperparameters δ and λ on the performance of GFNSeqEditor over
AMP (left) and CRE (right) datasets. The marker values are edit percentages.

5.2 Assisting Sequence Generation

Table 2: Performance of DM, GFlowNet and
combination of DM with GFNSeqEditor for
generating novel sequences.

AMP CRE
Algorithms Property Diversity Property Diversity
DM 0.66 23.86 1.75 107.38
GFlowNet 0.74 17.86 28.20 83.88
DM+GFNSeqEditor 0.73 23.78 26.42 103.10

In addition to editing sequences, we investigate the
ability of GFNSeqEditor to be used alongside a se-
quence generative model to enhance the generation
of novel sequences. This highlights the versatility
of the proposed GFNSeqEditor. In this Subsection,
we utilize a pre-trained diffusion model (DM) for
sequence generation, with further details available
in Appendix E.2. The sequences generated by the
DM are passed to GFNSeqEditor to improve their target property. Given that GFNSeqEditor utilizes
a trained GFlowNet model, this combination of a DM and GFNSeqEditor can be regarded as an
ensemble approach, effectively leveraging both the DM and the GFlowNet for sequence genera-
tion. Table 2 presents the property and diversity metrics for sequences generated by the DM, the
GFlowNet, and the combined DM+GFNSeqEditor across AMP and CRE datasets, with each method
generating 1, 000 sequences. As observed from Table 2, GFlowNet excels at producing sequences
with higher property values compared to the DM, while the DM exhibits greater sequence diversity
than the GFlowNet. Sequences generated by DM+GFNSeqEditor maintain similar property levels
to the GFlowNet on its own, while their diversity is in line with that of the DM. This highlights the
effectiveness of DM+GFNSeqEditor in harnessing the benefits of both the GFlowNet and the DM.

Figure 4: CDF of generated sequence properties
for AMP (left) and CRE (right). A right-shifted
curve indicates that the model is generating more
sequences that are high in the target property.

Moreover, we show the CDF of the property for
sequences generated by the DM, the GFlowNet,
and DM+GFNSeqEditor in Figure 4. As shown,
the CDF of DM+GFNSeqEditor aligns with
both DM and GFlowNet. Specifically, for AMP
dataset, DM+GFNSeqEditor generates more se-
quences with higher properties than 0.78 com-
pared to GFlowNet, while reducing the number
of low-property generated sequences compared
to DM alone. In the case of CRE dataset, the
results in Figure 4 indicate that as δ increases, the CDF of DM+GFNSeqEditor becomes more akin to
that of GFlowNet. This is expected, as an increase in δ leads to a greater number of edits.

5.3 Sequence Combination

Figure 5: GFNSeqEditor effectively reduces the
length of AMP sequence inputs (right) while keep-
ing their properties intact (left).

GFNSeqEditor possesses the capability to com-
bine multiple sequences, yielding a novel se-
quence that closely resembles its parent se-
quences. This capability proves invaluable in
several applications. For example, when it
is important to shorten relatively lengthy se-
quences while retaining desired properties (see,
e.g., [54, 59]). GFNSeqEditor accomplishes this
by combining a longer sequence with a shorter one. The resultant sequence maintains high similar-
ity with the longer one to retain its desired properties, while also resembling a realistic, relatively
shorter sequence to ensure safety and predictability. Algorithm 2 in Appendix E.5 describes using
GFNSeqEditor to combine two sequences with the goal of shortening the longer one.

We evaluate GFNSeqEditor’s performance in combining pairs of long and short sequences using the
AMP dataset as a test case. In this context, a long sequence is defined as one with a length exceeding
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30, while a short sequence has a length shorter than 20. Each initial pair consists of a long AMP
sequence and its closest short sequence with an AMP property exceeding 0.7. Table 5 and Figure 5
in Appendix E.5 present the results of sequence combination for sequence length reduction. As
indicated in Table 5, GFNSeqEditor not only enhances the properties of the initial long sequences,
but also significantly shortens them by more than 63%. Additionally, the sequences generated by
GFNSeqEditor resemble both the initial long and short sequences, with an average Levenshtein
similarity of approximately 65% to long sequences and 55% to short sequences.

6 Conclusions

This paper introduces GFNSeqEditor, a generative model for sequence editing built upon GFlowNet.
Given an input seed sequence, GFNSeqEditor identifies and edits positions within the input sequence
to enhance its property. This paper also offers a theoretical analysis of the properties of edited
sequences and the amount of edits performed by GFNSeqEditor. Experimental evaluations using
real-world DNA and protein datasets demonstrate that GFNSeqEditor outperforms state-of-the-art
baselines in terms of property enhancement while maintaining a similar amount of edits. Nevertheless,
akin to many machine learning algorithms, GFNSeqEditor does have its limitations. It relies on a
well-trained GFlowNet model, necessitating the availability of a high-quality trained GFlowNet for
optimal performance.
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A Proof of Theorem 4.1

Let z denotes a sequence with length T generated from scratch using the policy πF (·) as

πF (a|z:t) =
Fθ(z:t + a)∑

a′∈A Fθ(z:t + a′)
. (13)

The expected reward of z can be obtained as

RF,T = E[z] =
∑

w∈TT

Pr[z = w]R(w) =
∑

w∈TT

T∏
t=1

πF (wt|w:t−1)R(w) (14)

where TT denotes the set of sequences with length T that can be generated by Fθ(·). The probability
that the GFNSeqEditor outputs an arbitrary sequence w ∈ TT given x can be expressed as

Pr[x̂ = w|x] =
T∏

t=1

Pr[x̂t = wt|x̂:t−1,x]. (15)

The probability Pr[x̂t = wt|x̂:t−1,x] can be obtained as
Pr[x̂t = wt|x̂:t−1,x] = Pr[D(x̂:t−1; δ, σ) = 1]π(wt|w:t−1) + Pr[D(x̂:t−1; δ, σ) = 0]1wt=xt

≥ Pr[D(x̂:t−1; δ, σ) = 1]π(wt|w:t−1) (16)
where π(·) defined in (6). According to (6), it can be written that

π(wt|w:t−1) ≥ (1− λ)
Fθ(w:t)∑

a′∈A Fθ(w:t−1 + a′)
= (1− λ)πF (wt|w:t−1). (17)

Furthermore, according to (4) and (5), we have D(x̂:t−1; δ, σ) = 1 if
Fθ(x̂:t−1 + xt)∑

a′∈A Fθ(x̂:t−1 + a′)
− δmax

a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

< ν. (18)

In addition, it can be inferred that
Fθ(x̂:t−1 + xt)∑

a′∈A Fθ(x̂:t−1 + a′)
− δmax

a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

≤ 1− δ. (19)

Therefore, it can be concluded that if ν > 1− δ, it is guaranteed that D(x̂:t−1; δ, σ) = 1. Since ν
follows a Gaussian distribution with a variance of σ2 we have ν > 1− δ with probability 1−Φ( 1−δ

σ ).
Hence, it can be written that

Pr[D(x̂:t−1; δ, σ) = 1] ≥ 1− Φ(
1− δ

σ
). (20)

Combining (20) and (17) with (16), we get

Pr[x̂t = wt|x̂:t−1,x] ≥ (1− λ)πF (wt|w:t−1)

(
1− Φ(

1− δ

σ
)

)
. (21)

Moreover, combining (21) with (15), we obtain

Pr[x̂ = w|x] ≥
T∏

t=1

(1− λ)πF (wt|w:t−1)

(
1− Φ(

1− δ

σ
)

)
. (22)

Using (22) for the expected reward of x̂ given x we can write

E[R(x̂)|x] =
∑

w∈TT

Pr[x̂ = w|x]R(w)

≥
∑

w∈TT

T∏
t=1

(1− λ)πF (wt|w:t−1)

(
1− Φ(

1− δ

σ
)

)
R(w). (23)

Combining (23) with (14), we get

E[R(x̂)|x] ≥ (1− λ)

(
1− Φ(

1− δ

σ
)

)
RF,T (24)

which proves (8). Moreover, the upper bound of property improvement by the proposed GFNSeqEdi-
tor is analyzed in Appendix B.
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B Proof of Theorem 4.2

The expected property improvement of GFNSeqEditor can be obtained as

E[PI|x] =
∑

w∈TT

Pr[x̂ = w|x](pw − y). (25)

Since TT can be split into two sets S∗x and TT \ S∗x, the expected property improvement of GFNSe-
qEditor can be obtained as

E[PI|x] =
∑
w∈S∗x

Pr[x̂ = w|x](pw − y) +
∑

w∈TT \S∗x

Pr[x̂ = w|x](pw − y). (26)

If w ∈ TT \ S∗x, then pw ≤ y. Therefore, the expected property improvement of GFNSeqEditor can
be bounded from above as

E[PI|x] ≤
∑
w∈S∗x

Pr[x̂ = w|x](pw − y). (27)

The probability that the GFNSeqEditor outputs w ∈ S∗x can be expressed as

Pr[x̂ = w|x] =
T∏

t=1

Pr[x̂t = wt|x̂:t−1,x]. (28)

The probability Pr[x̂t = wt|x̂:t−1,x] can be obtained as

Pr[x̂t = wt|x̂:t−1,x] =Pr[D(x̂:t−1; δ, σ) = 1]π(wt|w:t−1)

+ Pr[D(x̂:t−1; δ, σ) = 0]1xt=wt . (29)

If xt ̸= wt, according to (37) and considering the fact that π(wt|w:t−1) ≤ 1, the probability in (29)
can be bounded from above as

Pr[x̂t = wt|x̂:t−1,x] ≤ 1− Φ(− δ

σ
). (30)

Otherwise if xt = wt, it can be written that Pr[x̂t = wt|x̂:t−1,x] ≤ 1. Since any w ∈ S∗x should be
different from x in at least one position, combining (28) with (30) we can conclude that

Pr[x̂ = w|x] ≤ 1− Φ(− δ

σ
). (31)

Combining (27) with (31) proves the Theorem.

C Proof of Theorem 4.3

We obtain the upper bound for the expected distance between edited sequence x̂ and the original
sequence x. Since both x and x̂ have the same length T , the distance lev(x, x̂) can be interpreted as
the number of elements different in these two sequences. Therefore, in order to obtain lev(x, x̂), it
is sufficient to find the number of times that xt ̸= x̂t, ∀t : 1 ≤ t ≤ T . If D(x̂:t−1; δ, σ) = 0, then
x̂t = xt. Furthermore, if D(x̂:t−1; δ, σ) = 1, then according to (6), we have x̂t = xt with probability

(1− λ)
Fθ(x̂:t−1 + xt)∑

a′∈A Fθ(x̂:t−1 + a′)
+ λ. (32)

Therefore, the probability Pr[x̂t ̸= xt] can be obtained as

Pr[x̂t ̸= xt] = Pr[D(x̂:t−1; δ, σ) = 1](1− λ)

(
1− Fθ(x̂:t−1 + xt)∑

a′∈A Fθ(x̂:t−1 + a′)

)
. (33)

Since Fθ(x̂:t−1 + xt) ≥ 0, the probability Pr[x̂t ̸= xt] can be bounded as

Pr[x̂t ̸= xt] ≤ Pr[D(x̂:t−1; δ, σ) = 1](1− λ). (34)
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Moreover, if we have

ν ≤ Fθ(x̂:t−1 + xt)∑
a′∈A Fθ(x̂:t−1 + a′)

− δmax
a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

(35)

then D(x̂:t−1; δ, σ) = 0. Furthermore, the right hand side of (35) can be bounded from below as

Fθ(x̂:t−1 + xt)∑
a′∈A Fθ(x̂:t−1 + a′)

− δmax
a∈A

Fθ(x̂:t−1 + a)∑
a′∈A Fθ(x̂:t−1 + a′)

≥ −δ. (36)

Therefore, if ν ≤ −δ, it is ensured that D(x̂:t−1; δ, σ) = 0. The probability that ν ≤ −δ is Φ(− δ
σ ).

Hence, we can conclude that

Pr[D(x̂:t−1; δ, σ) = 1] = 1− Pr[D(x̂:t−1; δ, σ) = 0] ≤ 1− Φ(− δ

σ
). (37)

Combining (37) with (34), we arrive at

Pr[x̂t ̸= xt] ≤
(
1− Φ(− δ

σ
)

)
(1− λ). (38)

Moreover, since both x and x̂ have the same length T , the expected Levenshtein distance between x
and x̂ can be obtained as

E[lev(x, x̂)] =
T∑

t=1

Pr[x̂t ̸= xt]. (39)

Thus, combining (39) with (38), we can write that

E[lev(x, x̂)] ≤
(
1− Φ(− δ

σ
)

)
(1− λ)T (40)

which proves the Theorem.

D Proof of Theorem 4.4

According to (33) and the assumption in (11), it can be written that

Pr[x̂t ̸= xt] ≥ Pr[D(x̂:t−1; δ, σ) = 1](1− λ)ϵ. (41)

Combining (41) with (20), we get

Pr[x̂t ̸= xt] ≥ ϵ(1− λ)

(
1− Φ(

1− δ

σ
)

)
. (42)

Summing (42) over all elements in the sequence proves the theorem.

E Supplementary Experimental Results and Details

This appendix provides a comprehensive overview of the experimental setup in Section 5 and presents
additional supplementary experimental results.

E.1 Implementation Details

All training and inferences, including GFNSeqEditor, have been conducted using a single Nvidia
Quadro P6000.

E.1.1 Datasets

Detailed information about the datasets can be found below:
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• TFbinding: The dataset is taken from [4] and contains all possible DNA sequences with
length 8. The vocabulary is the four DNA bases, {A, C, G, T}. The goal is to edit a given
DNA sequence to increase its binding activity with certain DNA-binding proteins called
transcription factors. Higher binding activity is preferable. For train, test and validation
purposes 50% of the dataset is set aside. The task entails editing a test dataset consisting of
10% of samples while the remaining data is utilized for training and validation.

• AMP: The dataset, acquired from DBAASP [40], is curated following the approach outlined
by [19]. Peptides (i.e. short proteins) within a sequence-length range of 12 to 60 amino
acids are specifically chosen. The dataset comprises a total of 6, 438 positive samples,
representing anti-microbial peptides (AMPs), and 9,522 negative samples, which are non-
AMPs. The vocabulary consists of 20 amino acids. The primary objective is to edit the
non-AMP samples in such a way that the edited versions attain the characteristics exhibited
by AMP samples. The task primarily centers on editing a subset comprising 10% of the
non-AMP samples, designated for use as test samples, with the remaining samples allocated
for training and validation purposes.

• CRE: The dataset contains putative human cis-regulatory elements (CRE) which are reg-
ulatory DNA sequences modulating gene expression. CREs were profiled via massively
parallel reporter assays (MPRAs)[12] where the activity is measured as the expression of the
reporter gene. For our analysis, we randomly extract 10, 000 DNA sequences, each with a
length of 200 base pairs, utilizing a vocabulary of the four bases. The overarching objective
is to edit the DNA sequences to increase the reporter gene’s expression specifically within
the K562 cell line, which represents erythroid precursors in leukemia. The task involves
editing a subset of 1, 000 test samples, while the rest are allocated for training and validation
purposes.

E.1.2 Oracles

To evaluate the performance of each sequence editing method in terms of property improvement,
it is required to obtain the properties of edited sequences. To this end, we employ an oracle for
each dataset. The TFbinding dataset contains all possible 65, 792 DNA sequences with length of 8.
Therefore, by looking into the dataset the true label of each edited sequence can be found. Following
[1, 19], the AMP dataset is split into two parts: D1 and D2. The oracle for the AMP dataset is a
set of trained models on partition D2 as a simulation of wet-lab experiments. We employed oracles
trained by [19] for AMP dataset. It is worth noting that the performance of predictive models on
AMP datasets can be influenced by negative sampling in the dataset [44]. Furthermore, for CRE
dataset we leverage the Malinois model [12] which is a deep convolutional neural network (CNN) for
cell type-informed CRE activity prediction of any arbitrary sequence.

E.1.3 Baselines Implementation

DE and Ledidi. In order to implement DE and Ledidi baselines, there should be a proxy model
to enable baselines to evaluate their candidate edits at each iteration of these algorithms. For each
dataset, we train a proxy model on the training split of each dataset. For the TFBinding dataset,
we configure a three-layer MLP with hidden dimensions of 64. In the case of AMP, we opt for a
four-layer MLP, also with hidden dimensions of 64. Finally, for CRE, we utilize a four-layer MLP
with hidden dimensions set to 2048. Across all models, the learning rate is consistently set to 10−4,
ReLU serves as the activation function, and we set the number of epochs as 2, 000. To implement
the DE baseline, we randomly select edit locations based on the desired edit percentages. At each
selected location, we apply an edit by choosing the action that maximizes the proxy model’s property
prediction.

LaMBO. We utilize the official implementation of LaMBO4. Test sequences5 serve as the candidate
pool, and all candidate samples in the pool are weighted similarly to maintain consistency with other
sequence editing baselines. To ensure a fair comparison, we employ the same proxy as GFNSeqEditor
to calculate the property scores. Across all three datasets, we use mlm as the encoder objective, ei as
the acquisition function, and DKL SVGP regression as the surrogate. To generate 10 edits per sample,
we configure num-gens=10, and window-size is adjusted for each dataset to ensure the edited

4https://github.com/samuelstanton/lambo.
5For the AMP dataset, we have removed the samples with a length lower than window-size.
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percentages closely match the desired values. Hence, we set it to 2, 14, and 23 for TFBinding, AMP,
and CRE, respectively. Additionally, for all datasets, we set pref-cond=False, pref-alpha=1,
and beta-sched=1.

MOGFN-AL. We utilize the official implementation of MOGFN-AL6, where sequence tasks are
based on the LaMBO implementation. Similar to LaMBO, test sequences serve as the candidate
pool, weighted equally. The same proxy as GFNSeqEditor and LaMBO is employed to calculate
property scores. Like LaMBO, we utilize mlm as the encoder objective. Training and validation
batch sizes are set to 16 and 64, respectively, with hyperparameters for the conditional transformer
as follows: num-hid=128, num-layers=3, and num-head=8. For each dataset, we adjust the
max-len parameter to closely match the desired edited percentage. Thus, for TFBinding, AMP, and
CRE, we set them as 6, 30, and 50, respectively. The reward function is modified to match that of
GFNSeqEditor. To ensure fair comparisons and adapt LaMBO and MOGFN-AL for sequence editing,
we do not use active learning settings for either baseline.

Seq2Seq. In order to implement Seq2Seq baseline we use a standard transformer [53] as the translator
to map an input sequence to an output sequence with superior property. We paired samples in each
dataset such that each pair contains a sequence with lower property and a similar sequence with
higher property which is the most similar to the sequence with lower property in the dataset. The
transformer is trained to map the low property sequence to the high property sequence in each pair.
The transformer is trained using the standard configurations in Pytorch transformer module tutorial.
Both the embedding dimension of the transformer and the dimension of the 2 layer feedforward
network model in the transformer encoder are set to 200. The number of heads in multihead attention
layer is 2 and the drop-out rate is 0.2. We employ the CrossEntropyLoss function in conjunction with
the stochastic gradient descent optimizer. The initial learning rate is set at 5.0 and follows a StepLR
schedule.

E.1.4 GFlowNet Training

Both the baseline GFlowNet-E and the proposed GFNSeqEditor use the same trained GFlowNet
model. We trained an active learning based GFlowNet model following the setting in [19]. In active
learning setting, at each round of active learning t × K candidates generated by GFlowNet are
sampled and then top K samples based on scores given by a proxy are chosen to be added to the
offline dataset. Here offline dataset refers to an initial labeled dataset. To train the GFlowNet, we
employed the same proxy models as those used by other baseline methods. For all datasets, we set
the number of active learning rounds to 1, with t equal to 5 and K equal to 100. We parameterize the
flow using a MLP comprising two hidden layers, each with a dimension of 2048, and |A| outputs
corresponding to individual actions. Throughout our experiments, we employ the trajectory balance
objective for training. Adam optimizer with (β0, β1) = (0.9, 0.999) is utilized during the training
process. The learning rate for logZ in trajectory balance loss is set to 10−3 for all the experiments.
The number of training steps for TFbinding, AMP and CRE are 5000, 106 and 104, respectively. The
remaining hyperparameters were configured in accordance with the settings established in [19].

E.2 Diffusion Model Training

We trained our diffusion models on the full sequence datasets of AMP sequences or CRE sequences.
The sequences were one-hot encoded, yielding 20-vectors for protein sequences and 4-vectors for
DNA sequences.

We employed the “variance-preserving stochastic differential equation” (VP-SDE) [47]. We used
a variance schedule of β(t) = 0.9t + 0.1. We set our time horizon T = 1 (i.e. t ∈ [0, 1)). This
amounts to adding Gaussian noise over continuous time.

For our discrete-time diffusion model, we defined a discrete-time Gaussian noising process, following
[17]. We defined βt = (1 × 10−4) + (1 × 10−5)t. We set our time horizon T = 1000 (i.e.
t ∈ [0, 1000]).

Our denoising network was based on a transformer architecture. The time embedding was computed
as [sin(2π t

T z), cos(2π
t
T z)], where z is a 30-vector of Gaussian-distributed parameters that are not

trainable. The time embeddings were passed through two dense layers with a sigmoid in between,

6https://github.com/MJ10/mogfn-al.

18



0.2 0.4 0.6 0.8
Anti-microbial property

0

2

4

6

8

D
en

si
ty

GFNSeqEditor (output)
non-AMP (input)
AMP

Figure 6: GFNSeqEditor shifts the distribution of non-AMP inputs to the known AMPs.
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Figure 7: Studying the effect of hyperparameter σ on the diversity and performance of GFNSeqEditor
over AMP (left) and CRE (right) datasets.

mapping to a 256-vector of time representations. For any input in a batch, it was concatenated with
the time embedding and a sinusoidal positional embedding (defined in [53]) of dimension 64. This
concatenation was passed to a linear layer to map it to 128 dimensions. This was then passed to a
standard transformer encoder of 3 layers, 8 attention heads, and with a hidden dimension of 128 and
an MLP dimension of 64. The result was then passed to a linear layer which projected back to the
input dimension.

We trained our diffusion models with a learning rate of 0.001, for 100 epochs. We noted that the loss
had converged for all models at that point. We also employed empirical loss weighting, where the
loss of each input in a batch is divided by the L2 norm of the true Stein score.

We trained our diffusion models on a single Nvidia Quadro P6000.

When generating samples from a continuous-time diffusion model, we used the predictor-corrector
algorithm defined in [47], using 1000 time steps from T to 0. We then rounded all outputs to the
nearest integer to recover the one-hot encoded sample.

E.3 Supplementary Results for Sequence Editing

In Figure 6, we illustrate the distribution of input non-AMP sequences, the sequences edited by
GFNSeqEditor, and the AMP samples from the AMP dataset. It is evident from Figure 6 that
GFNSeqEditor shifts the property distribution of input non-AMP sequences towards that of AMP
sequences. Moreover, Figure 7 illustrates the impact of changing σ on property improvement and edit
diversity for GFNSeqEditor. As can be seen increasing σ results in decreased property improvement
and enhanced diversity.

It is worth noting that GFNSeqEditor is capable of performing edits even when certain portions
of the input sequence are masked and cannot be modified. Table 3 showcases the performance of
GFNSeqEditor compared to Ledidi on the CRE dataset, with the first 100 elements of the input
sequences masked. As depicted in Table 3, GFNSeqEditor achieves significantly greater property
improvement than Ledidi while utilizing a lower edit percentage.

E.4 Supplementary Results for Sequence Generation

This Subsection compares the performance of GFNSeqEditor in sequence generation task with that
of GFlowNet and diffusion model (DM) on CRE dataset. We relax the hyperparameters to allow a
higher amount of edits and we set δ = 0.4, λ = 0.1 and σ = 0.001 for GFNSeqEditor. The results
are presented in Table 4. GFlowNet and DM generate 1000 sequences. GFNSeqEditor also generates
1000 sequences by editing each of 1000 samples in the test dataset. As can be seen, GFNSeqEditor
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Table 3: Performance of GFNSeqEditor and Ledidi with 100 elements of each sequence masked for
editing for CRE dataset.

Algorithms PI EP(%) Diversity PI EP(%) Diversity
Ledidi 0.52 18.69 38.34 0.26 14.39 37.45
GFNSeqEditor 4.79 17.89 32.30 4.05 14.19 25.52

Table 4: Performance of GFNSeqEditor, GFlowNet and DM on generating new sequences for CRE
dataset.

Algorithms Property Diversity Distance(%)
DM 1.75 107.38 63.59
GFlowNet 28.20 83.88 54.41
GFNSeqEditor 29.25 87.32 47.34

achieves higher property than both GFlowNet and DM. It is useful to note that the experimental study
by [19] have shown that GFlowNet outperforms state-of-the-art sequence design methods. For each
sequence generated by GFlowNet and DM, the distance to the test set is measured as the distance
between the generated sequence and its closest counterpart in the test set. On average, the distance
between sequences generated by GFlowNet and the test set is 54.34%, while for DM, it is 63.59%.
GFNSeqEditor achieves superior performance by editing, on average, 47.34% of a sequence in the
test dataset. The distance between test set and generated sequences by GFlowNet and DM cannot be
controlled. As it is studied in Figures 3 and 7, the amounts of edits performed by GFNSeqEditor can
be controlled by hyperparameters δ, λ and σ.

E.5 Supplementary Discussion and Results for Sequence Combination

Algorithm 2 presents the GFNSeqEditor for combining two sequences in order to obtain a new
sequence whose length is the length of shorter sequence. In Figure 5, we depict the distributions of
input sequence lengths and properties, alongside the lengths and properties of the outputs generated
by GFNSeqEditor. This scenario pertains to the combination of a long AMP sequence with a
short AMP sequence, as detailed in Subsection 5.3. As depicted in Figure 5, the edited sequences
produced by GFNSeqEditor exhibit property distributions akin to those of the lengthy input AMP
sequences. Simultaneously, these edited sequences are considerably shorter than the original long
input sequences. This highlights GFNSeqEditor’s effectiveness in shortening lengthy AMP sequences
while preserving their inherent properties.

Furthermore, Table 6 provides results for combining pairs of AMP sequences as well as pairs con-
sisting of an AMP sequence and a non-AMP sequence. In both cases, GFNSeqEditor generates a
sequence with a length matching that of the longer sequence. When combining two AMP sequences,
GFNSeqEditor produces new sequences with higher properties than their parent sequences, maintain-
ing an average resemblance of over 60% to each parent. Additionally, GFNSeqEditor can be applied
to combine a non-AMP sequence with an AMP sequence, offering the advantage of rendering the
edited non-AMP sequence more akin to a genuine AMP sequence. The results in Table 6 demonstrate
that GFNSeqEditor substantially enhances the properties of non-AMP sequences, surpassing the
properties of their AMP parents. Furthermore, on average, 35% of the edited sequences bear a
resemblance to their AMP parents.

F Supplementary Related Works

GFlowNets, initially proposed by [5], were introduced as a reinforcement-learning (RL) algorithm
designed to expand upon maximum-entropy RL, effectively handling scenarios with multiple paths
leading to a common state. However, recent studies have redefined and generalized its scope,
describing it as a general framework for amortized inference with neural networks [32, 20, 60, 56].

There has been a recent surge of interest in employing GFlowNets across various domains. Noteworthy
examples include its utilization in molecule discovery [5], Bayesian structure learning [11, 36], and
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Algorithm 2 GFNSeqEditor for combining two sequences to shorten the length of longer sequence.
1: Input: x1 and x2 with lengths T1 and T2, flow function Fθ(·) and parameters δ, λ and σ.
2: Initialize x̂:0 as an empty sequence and Tmin = min{T1, T2}.
3: for t = 1, . . . , Tmin do
4: Assign xt = argmax{x1,t,x2,t}{Fθ(x̂:t−1 + x1,t), Fθ(x̂:t−1 + x2,t)}.
5: Check if xt is sub-optimal by obtaining D(xt, x̂:t−1; δ, σ) according to (5).
6: if D(xt, x̂:t−1; δ, σ) = 1 then
7: Sample x̂t according to policy π(·|x̂:t−1) as follows:
8: if T1 > T2 then
9: π(a|x̂:t−1) = (1− λ) Fθ(x̂:t−1+a)∑

a′∈A Fθ(x̂:t−1+a′) + λ1a=x1,t
.

10: else
11: π(a|x̂:t−1) = (1− λ) Fθ(x̂:t−1+a)∑

a′∈A Fθ(x̂:t−1+a′) + λ1a=x2,t
.

12: end if
13: else
14: Assign x̂t = xt.
15: end if
16: end for
17: Output: Edited sequence x̂.

Table 5: Performance of GFNSeqEditor for sequence reduction on AMP dataset in terms of variation
in property, edit percentage of long sequences (EPLS), edit percentage of short sequences (EPSS),
and percentage of length reduction in the long sequences.

Input Property Output Property EPLS(%) EPSS(%) Sequence Reduction(%)
0.65 0.67 35.96 44.65 63.23

graph explainability [29]. Recognizing its significance, several studies have emerged to enhance the
learning efficiency of GFlowNets [6, 32, 30, 43] since the introduction of the flow matching learning
objective by [5]. Moreover, GFlowNets have demonstrated adaptability in being jointly trained with
energy and reward functions [57]. [38] introduce intrinsic exploration rewards into GFlowNets,
addressing exploration challenges within sparse reward tasks. A couple of recent studies try to extend
GFlowNets to stochastic environments, accommodating stochasticity in transition dynamics [39]
and rewards [58]. Several novel GFlowNet training methodologies have been recently proposed in
[22, 26, 37, 14]. The application of GFlowNets when a predefined reward function is not accessible
is explored in [8]. Distributed training of GFlowNets is discussed in [45]. Accelerating GFlowNet
training is investigated in [25]. Moreover, [27] employs GFlowNets for designing DNA-encoded
libraries. To reduce the need for expensive reward evaluations, [24] proposes a new GFlowNet-based
method for molecular optimization.

The aforementioned works have primarily focused on theoretical developments of GFlowNet and
its application in molecular generation, without directly addressing the challenges associated with
sequence design or editing. In a departure from this trend, and inspired by Bayesian Optimization,
[19] proposed a new active learning algorithm based on GFlowNets, i.e. GFlowNet-AL to design
novel biological sequences. GFlowNet-AL [19] utilizes the epistemic uncertainty of the surrogate
model within its reward function, guiding the GFlowNet towards the optimization of promising yet
less-explored regions within the state space. This approach fosters the generation of a diverse set of
de novo sequences from scratch and token-by-token. Unlike GFNSeqEditor, it lacks the capability to
edit input seed sequences and combine multiple sequences. This distinction underscores the unique
contribution of GFNSeqEditor in addressing the sequence editing problem, positioning it as a valuable
addition to the existing literature on GFLowNet.

G Societal Impact

Biological sequence optimization and design hold transformative potential for biotechnology and
health, offering enhanced therapeutic solutions and a vast range of applications. Techniques that
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Table 6: Performance of GFNSeqEditor for sequence combination over AMP dataset in terms of
property improvements of first (PI-S1) and second (PI-S2) sequences, edit percentages of first (EP-S1)
and second (EP-S2) sequences, and diversity.

Seq1 Seq2 PI-S1 PI-S2 EP-S1(%) EP-S2(%) Diversity
AMP AMP 0.05 0.06 36.10 39.47 7.29
non-AMP AMP 0.41 0.04 41.41 65.39 12.77

enable refining sequences can lead to advancements like elucidating the role of individual gene
products, rectifying genetic mutations in afflicted tissues, and optimizing properties of peptides,
antibodies, and nucleic-acid therapeutics. However, the dual-edged nature of such breakthroughs
must be acknowledged, as the same research might be misappropriated for unintended purposes.
Our method can be instrumental in refining diagnostic procedures and uncovering the genetic basis
of diseases, which promises a deeper grasp of genetic factors in diseases. Yet, we must approach
with caution, as these advancements may unintentionally amplify health disparities for marginalized
communities. As researchers, we emphasize the significance of weighing the potential societal
benefits against unintended consequences while remaining optimistic about our work’s predominant
inclination towards beneficial outcomes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explain that the paper study biological sequence
editing using GFlowNet. The abstract and introduction summarize contributions and main
results of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In conclusion Section 6 and Appendix G, the paper discusses its limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper provides the full set of assumptions and complete, correct proofs for
all theoretical results. Each theorem is proven, with the proofs detailed in the appendices.
The main text appropriately references these sections, ensuring that readers can easily locate
and verify the proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 5 and Appendix E.1, we provide details about implementation and
training of baselines and the proposed algorithm.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data is already public, as we stated in the experiments. We will release the
code as well upon company approval.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides detailed information about all the training and test details
in Section 5 and Appendix E.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper presents Figures 4, 5, and 6, which show the distribution of re-
sults generated by the proposed algorithm, illustrating the statistical significance of the
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix E.1, we specify that all training and inferences, including GFNSe-
qEditor, have been conducted using a single Nvidia Quadro P6000.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We believe that the research conducted in this paper conform, in every respect,
with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impact discussion is provided in Appendix G.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe that the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In Section 5 and Appendix E.1, we properly cited the original papers that
produced the code packages or datasets we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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