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Abstract

The use of machine learning (ML) in critical domains such as medicine poses
risks and requires regulation. One requirement is that decisions of ML systems in
high-risk applications should be human-understandable. The field of “explainable
artificial intelligence” (XAI) seemingly addresses this need. However, in its current
form, XAI is unfit to provide quality control for ML; it itself needs scrutiny. Pop-
ular XAI methods cannot reliably answer important questions about ML models,
their training data, or a given test input. We recapitulate results demonstrating that
popular feature attribution and counterfactual estimation methods systematically
attribute importance to input features that are independent of the prediction target,
and that popular faithfulness metrics incentivize attribution to such features. This
limits their utility for purposes such as model and data (in)validation, model im-
provement, and scientific discovery. We argue that the fundamental reason for this
limitation is that current XAI methods do not address well-defined problems and
are not evaluated against objective criteria of explanation correctness. Researchers
should formally define the problems they intend to solve first and then design
methods accordingly. This will lead to notions of explanation correctness that can
be theoretically verified and objective metrics of explanation performance that can
be assessed using ground-truth data.

1 Introduction

The use of machine learning (ML) holds great promise in many fields including high-risk domains
such as medicine. Regulations like the European AI Act demand that “high-risk AI systems shall
be designed and developed [...] to enable deployers to interpret the system’s output and use it
appropriately.” (European Commission, 2021). This need for “human-understandable” descriptions
of the functions implemented by individual ML models is seemingly addressed by the field of
“explainable artificial intelligence” (XAI). However, the formal basis of XAI is underdeveloped.
Consequently, the possibility of using XAI for ML quality assurance is currently strongly limited.
While serious conceptual and technical shortcoming of existing XAI methods and paradigms have
been voiced by numerous authors (see Discussion section), we here focus on the fitness of feature
attribution and counterfactual estimation methods for various specific purposes purported in the
literature. Using two minimal counter-examples involving so-called suppressor variables, we show
that popular methods cannot systematically answer questions relevant to serving these purposes.
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2 Purported purposes of XAI

The popularity of XAI tools rests on their promise to provide insight into the properties of ML models,
their training data, a given test input submitted to the model, and/or the interplay between these. A
particularly popular class of XAI methods are those that attribute an “importance” score to each
feature of a given test input. It has been argued that such feature attribution methods can be used for:

Model (in)validation: It is often of interest to know which features of a dataset or single sample an
AI system “bases” its decision on. This would then be used to “validate” a model. In mammographic
data analysis, a radiologist would likely trust a cancer diagnosis made by an AI if told that the decision
was based on a patch of tissue they themselves identify as cancerous. Conversely, if the XAI method
assigns high “importance” to features that are known not to be associated with cancer, this might lead
to the dismissal of the model as being wrong (Saporta et al., 2022). Ribeiro et al. (2016) state “A
model predicts that a patient has the flu, and LIME highlights the symptoms in the patient’s history
that led to the prediction. Sneeze and headache are portrayed as contributing to the ‘flu’ prediction,
while ‘no fatigue’ is evidence against it. With these, a doctor can make an informed decision about
whether to trust the model’s prediction.”.

Data (in)validation: Similarly, one may be interested in whether a model bases its decisions on
confounding variables. Confounders induce correlations between training in- and outputs that can be
used by the model for prediction. However, the same correlations may not be present in a testing
context, leading the model to perform poorly. Lapuschkin et al. (2019) use XAI methods in the
process of identifying a watermark in images that acts as a confounder. The intended purpose of XAI,
in this case, is, thus, to perform quality control not only for models but also data.

Beyond diagnostic purposes, XAI has also been suggested to enable actionable consequences such as:

Scientific discovery: Various authors (Samek and Müller, 2019; Jiménez-Luna et al., 2020; Tide-
man et al., 2021; Watson, 2022; Wong et al., 2024) argue that XAI methods could be used to discover
novel associations between variables, generating new hypotheses that could be tested in future ex-
periments. For example, a disease might be related to a complex interaction of multiple previously
unknown genetic factors. Such an interaction might be implicitly used by an ML model. The promise
of XAI methods is then to identify the features contributing to the interaction.

Identification of intervention targets: It is frequently assumed that XAI could be used to identify
features, the manipulation of which would change a model’s output, a task also known as algorithmic
recourse (Ustun et al., 2019). For example (see Ustun et al., 2019), a bank might use an ML model
to predict the return probability of a loan. For a known model and a given input, XAI would then
be able to recommend changes of input variables (e.g., ‘increase salary’) to turn a negative outcome
into a positive one. Similarly, it is assumed that XAI can help to verify that protected attributes (e.g.,
gender, race) do not influence model decisions. In an intensive care unit, an ML model might be used
to predict mortality or other severe outcomes. Using XAI to identify possible intervention targets,
such as medications, in this context (e.g., Ates et al., 2021) goes beyond algorithmic recourse as the
underlying assumptions is that interventions have real-world consequences on the target variable
beyond just changing the model output.

3 Existing feature attribution methods do not serve important purposes

It is indisputable that the purposes of XAI presented in Section 2 are of high relevance. For these, it
is assumed, explicitly or implicitly, that XAI methods have the following capabilities.

A1: Global feature attribution methods (characterizing a model independent of a specific input)
identify data features that are statistically associated with or even causally related to the model output
or target variable (see, e.g., Ribeiro’s example cited above, Ribeiro et al., 2016).

A2: Local feature attribution methods (characterizing a model’s application to a specific input)
identify features the manipulation of which is, a), feasible and would influence, b), the model output
or, c), even the prediction target in the real world.

Research has shown, though, that the assertions listed above do not hold in general for several of the
most popular XAI methods. Thus, these methods fail to reliably serve the purposes mentioned in
Section 2. We will demonstrate this next using two minimal examples.
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3.1 Two minimal examples of classification problems

In the following, non-scalar values are highlighted in bold and we denote random variables by
upper-case symbols, e.g. Z, whereas lower-case analogs, e.g. z, represent their respective realizations.

Example A: In Haufe et al. (2014), the two-dimensional classification problem X = aZ+H, Y =
Z is introduced, with a = (1, 0)⊤, Z ∼ Rademacher(1/2), and H ∼ N(0,Σ) with covariance
Σ =

( s21 cs1s2
cs1s2 s22 ,

)
, where s1 and s2 are non-negative standard deviations, and c ∈ [−1, 1] is a

correlation. In this example, only feature X1 is correlated with the classification target Y = Z
through a1 = 1. In contrast, X2 is independent of Y since a2 = 0. Both features are correlated
through the superposition of additive noise H with covariance Σ. A depiction of data generated under
the model is provided in Figure 1 (a/b) in Appendix A. For c ̸= 0, the Bayes-optimal bivariate linear
classification model fw,b(x) = w⊤x+b can reduce the contribution of H from X1 using information
contained in X2, and thereby estimate y as ŷ = fw,b(x) more precisely as what would be possible
using X1 alone (Haufe et al., 2014). To this end, it needs to put non-zero weight w2 = −αcs1/s2
on X2, where α = (1 + (cs1/s2)

2)−
1
2 and ||w||2 = 1. This shows that linear models can assign

arbitrarily high weights on features, like X2, that have no statistical association with Y .

Example B: An even simpler example is given by the generative model X1 = Y −X2, where the
suppressor X2 and the target Y are independent (Haufe et al., 2014). Here the Bayes-optimal linear
model with weights w1 = w2 = 1 completely removes the nuisance term X2 from X1 to recover Y ,
yielding a model output that is statistically independent of X2. Such examples challenge the concept
of a model “using a feature” or “basing its decision on a feature”.

3.2 Suppressor variables

Features like X2 in Examples A and B, which improve predictions without being predictive them-
selves, are called suppressor variables in causal terminology (Conger, 1974). Causal diagrams of the
generative models in both examples are provided in Figure 1 (c) in Appendix A. Broadly speaking,
any variable that is not informative (statistically associated with the target) itself but statistically
related with an informative variable (e.g. modulating it through an independent mechanism) is a
suppressor. Suppressors occur widely in real-world datasets and hamper model interpretations. As
one example, the prevalence of a disease may be related to a person’s blood pressure but not their
age. However, as blood pressure has an age-dependent baseline, the model might need to adjust its
prediction with respect to that baseline in order to remove irrelevant variance introduced by age. Age,
thereby, become a suppressor variable. In image classification, non-discriminative features such as
lighting or weather conditions, or non-discriminative objects occluding class-specific objects, could
be suppressors. It is, thus, possible for suppressors to act in highly non-linear ways and it is also
possible to find examples of suppressors at higher semantic (concept) levels.

3.3 Existing feature attribution methods attribute importance to variables unrelated to target

Recent theoretical and empirical research has shown that various popular feature attribution methods
consistently assign importance to suppressor variables (Haufe et al., 2014; Kindermans et al., 2018;
Wilming et al., 2022, 2023; Clark et al., 2024). We call these methods suppressor attributors.
Kindermans et al. (2018) showed analytically that the importance scores returned by gradient-based
techniques (Baehrens et al., 2010), LRP (Bach et al., 2015), and DTD (Montavon et al., 2017) reduce
to the weight vector w in case of linear models. Thus, these methods are suppressor attributors.
In Wilming et al. (2023), the latter was shown also for Shapley values (Shapley, 1953) and their
approximations such as SHAP (Lundberg and Lee, 2017; Aas et al., 2021), as well as for LIME
(Ribeiro et al., 2016), integrated gradients (Sundararajan et al., 2017), and counterfactual explanations
(Wachter et al., 2017). A list of suppressor attributing methods is provided in Table 1 in Appendix A.

3.4 Existing feature attribution methods violate common assertions

Since suppressor variables have no statistical or causal association with the target variable, suppressor
attributors violate assertion 3, which has implications regarding their expected utility for the purposes
introduced in Section 2. Suppressor features may often not coincide with prior expectations of an
expert. Therefore, suppressor attributors cannot be used in a straightforward way to validate models
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or models’ decisions using expert knowledge as insinuated by Ribeiro et al. (2016). Moreover, since
it cannot be concluded that the highlighted features are part of previously unknown interactions
or are causally related to the output, these methods cannot be reliably used to facilitate scientific
discoveries or to invalidate models. For example, high importance on a protected attribute does
not necessarily mean that the method “uses” this attribute for prediction. The model may also just
remove variance related to that attribute from other, informative, variables. Finally, a prerequisite
for identifying confounding variables causally influencing both in- and outputs of a model is to be
able to recognize features with a statistical association to the target in the first place. The inability
of suppressor attributors to distinguish such features from suppressor variables, as discussed here,
prevents XAI methods from answering causal questions of confounding.

Another critical observation from Example B is that X2 cannot be independently manipulated but
only jointly with X1, due to its causal influence on X1. Similarly, X1 and X2 are coupled through
the common noise H in Example A. Depending on the nature of X2, it then might not be possible to
intervene at X2 alone by setting its value independent of H . In both examples, any causally feasible
intervention (through X2 or H) would have no effect on Y in the real world. In Example B, it would
not even affect the model output, as the model is invariant to changes in X2 by construction. In
Example B, possible interventions on X2 could affect the model output; however, not in ways that
would correlate with changes in Y . Such interventions would create out-of-distribution data that do
not follow the data generating process (similar to pertubations based faithfulness metrics discussed
below). A discussion of the effect of such pertubations on the model output, therefore, does not
appear to be useful with respect to understanding the model.

Both examples also illustrate that suppressor attributors also violate assertion 3 with the consequence
that they cannot reliably suggest feasible intervention targets. The insufficiency of counterfactual
explanations to enable algorithmic recourse has been laid out in detail in Karimi et al. (2021).

4 Structural limitations of current XAI research

The results presented above have been established through joint theoretical analyses of data-generating
processes, ML models, and feature attribution methods as well as through simulations using syn-
thetic data with known ground-truth explanations. These techniques are not currently part of the
standard toolkit for assessing the quality of explanations and XAI methods, pointing to the following
fundamental structural limitations of the field.

Lack of formal problem definitions The current XAI terminology uses the term “explanation”
indiscriminately in different contexts. This lack of differentiation gives rise to equivocality of
evaluation framework and is reflective of a deeper absence of well-defined problems for XAI to solve.
Even though XAI methods are frequently proposed to serve purposes such as those listed in Section 2,
it is rarely stated what concrete types of conclusions can be drawn from the explanations provided
by any particular method, and under which assumptions each conclusion is valid. Instead, various
popular XAI methods are purely algorithmically defined without reference to a formal problem or
a cost function to be minimized, leading to a logical loop where the method defines the problem
it solves. In their work, Ribeiro et al. (2016) do not define what the correct features for LIME to
highlight would be – the algorithm itself is considered to be the definition of feature importance.

Existing theory spares out notions of explanation correctness Existing theoretical work has pos-
tulated axioms that are desirable for XAI methods to fulfill. For example, according to Sundararajan
et al. (2017), a method satisfies sensitivity, if a) for every input and baseline that differ in one feature
but have different predictions, the differing feature is given non-zero importance, and if also b) the
importance of a variable is always zero if the function implemented by the deep network does not
depend (mathematically) on it. Axioms like this encode meaningful sanity checks but do not provide
a notion of correctness or utility-for-purpose of an explanation.

XAI methods are mostly ignorant of the data distribution and causal structure With few
exceptions, XAI methods are applied post-hoc to model weights or outputs only. However, a model’s
behavior cannot be meaningfully interpreted without access to the correlation or causal structure of
its training data (Haufe et al., 2014; Weichwald et al., 2015; Karimi et al., 2021; Wilming et al., 2023).
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The same model weights that cancel out a suppressor in Examples A and B (see Section 3.1) would
have a completely different function, and hence interpretation, when applied to independent features.

Most XAI methods explicit or implicit assume independent features. This reflects the common
conception that the sole mechanism by which multivariate models achieve their predictive power
is to combine (independent) information in order to leverage non-linear interactions in the data.
This perspective overlooks that an equally important task of multivariate models is to denoise
interrelated features, which is achieved by removing task-irrelevant signals. Incorrectly assuming
feature independence can lead to violations of assertion 3 and assertion 3, and, thereby, to all of
the described misinterpretations. On the other hand, the same interpretations can often be shown
to be valid if features are indeed independent. Karimi et al. (2021), for example, show that correct
algorithmic recourse is possible under feature independence. Various methods do take the dependency
structure of the training data into account but typically make further limiting assumptions such as
Gaussianity or linearity. Pattern (Haufe et al., 2014) and PatternNet/PatternAttribution (Kindermans
et al., 2018) can be shown to correctly reject suppressor variables in the studied Examples A and B,
in which these assumptions hold. But these methods are currently either inapplicable to non-linear
models or show sub-par performance in benchmarks involving non-linear data (Clark et al., 2024).

“Interpretable” models share limitations of XAI Various authors (e.g., Rudin, 2019) make a
distinction between “explainable AI”, which would include post-hoc feature attribution methods, and
“interpretable AI”, which would include model architectures that are “understandable” to humans
due to their simplicity. These are also referred to as “glassbox” models (Rai, 2020), and examples
include linear models, models with sparse coefficients, and decision trees. However, what exact
interpretations such models presumably afford is rarely stated. In the above examples A and B,
Bayes-optimal linear models are uniquely defined and assign non-zero weights to suppressor variables,
prohibiting certain desired interpretations and precluding certain actionable consequences that would
be valid if the features were statistically independent. Thus, simple models can share unrealistic
assumptions such as the assumption on independent features with many feature attribution methods.

Given these challenges of correctly interpreting even simple models, an often assumed “tradeoff”
between predictiveness and “interpretability” of models (Shmueli, 2010; Del Giudice, 2024) appears
questionable. Rather, even simple models cannot be unambiguously interpreted without knowledge
of their underlying training data distribution. This is not to say, though, that simple models cannot
easen certain interpretations. For example, sparse models can significantly reduce the number of
features the behavior of which needs to be investigated. Notwithstanding, sparsity alone does not
guarantee that a feature or neuron with non-zero weight is not a suppressor (Haufe et al., 2014).

Empirical evaluation frameworks also spare out explanation correctness Existing frameworks
for empirical XAI evaluation (e.g., Hedström et al., 2023) often focus on secondary desiderata such
as robustness of explanations. Among these, “faithfulness” metrics are often used as surrogates for
explanation correctness. Definitions of faithfulness differ and are often not formulated in mathemat-
ically stringent form (see, Guidotti et al., 2019; Jacovi and Goldberg, 2020). Practically, the most
common operationalization of faithfulness is that the ablation (e.g., omission or obfuscation) of an
important feature will lead to a drop in a model’s prediction performance. The presence of such
a drop is then used to assess “correctness”. Popular perturbation approaches include permutation
feature importance (Breiman, 2001), stability selection (Meinshausen and Bühlmann, 2010), pixel
flipping (Samek et al., 2017), RemOve And Retrain (ROAR, Hooker et al., 2019), and Remove and
Debias (ROAD, Rong et al., 2022), and prediction difference analysis (e.g., Blücher et al., 2022). A
variation is the model parameter randomisation test (MPRT, Adebayo et al., 2018).

Despite the simplicity and intuitive appeal of faithfulness metrics, Wilming et al. (2023) show that
removal or manipulation of X2 in Examples A and B leads to an inevitable decrease in classification
performance, which would lead XAI methods attributing high importance to X2 to appear as faithful.
This is because faithfulness metrics do not take the data-generating process and the resulting depen-
dency structure in the data fully into account. In that respect, XAI methods and the metrics used to
assess their performance share identical limitations.

Insufficiency of real data and human judgment to validate XAI Real datasets are often used
for empirical evaluations of XAI methods. In such studies, no ground-truth for the inherently
unsupervised XAI problem is available. Several studies (e.g., Holzinger et al., 2019; Biessmann

5



and Refiano, 2021) consider human judgments on real data as a surrogate ground-truth for XAI
validation, where human experts either annotate inputs ex ante to provide ground-truth explanations
or are asked to judge the quality of explanations ex post. While important, such approaches are
insufficient as (sole) validations due to the possibility of both Type-I and Type-II errors in human
judgments. For example, there may be complex statistical patterns in the data that are leveraged by
ML models but (currently) unknown to humans. Similarly, human experts may hold wrong beliefs
based on weak prior evidence. Human-computer interaction studies are considered an objective way
to quantify the added value of AI explanations (e.g., Jesus et al., 2021). Such studies compare the
joint performance of a human user with access to an XAI with the performance of the user knowing
only the outcome of the AI’s prediction, the performance of the user alone, and the performance
of the AI alone. However, even a practical advantage of XAI does not automatically predict XAI
correctness, as there is a possibility of circular reinforcement of wrong beliefs, whereby the human
may adapts their judgment to previously provided incorrect explanations. In very specific cases, this
could be avoided by providing explanations that can be verified by the user (Fok and Weld, 2023).

Algorithm-driven development A common paradigm of XAI development is to start with the
design of an algorithm and then to try to prove its utility for various purposes by applying it to
selected datasets and models. Unfortunately, this approach opens the door to biases due to implicit
subjectivity in the choice of the experiments performed and reported. Thereby it becomes possible
that properties inferred by XAI methods are spurious or trivial. For example, the finding that an
image feature highlighted by XAI is also a confounder could be an anecdotal coincidence rather than
reflecting a systematic capability of the XAI method to identify confounders.

5 Towards XAI for quality assurance

Apart from the points raised here, XAI methods have been criticized in many further ways (e.g.,
Ghassemi et al., 2021; Sokol and Flach, 2020; Weber et al., 2024). For example, the low robustness
of XAI explanations has been noted (Babic et al., 2021). Explanations provided by different XAI
methods are often found to be inconsistent. This can be used by an adversary (e.g., the provider of an
ML algorithm in need to explain a decision to a user) to provide arbitrary explanations (Bordt et al.,
2022). Similarly, developers of XAI methods could present their own method as being particularly
faithful by optimizing the choice of faithfulness metric (Blücher et al., 2024). It has also been pointed
out that XAI methods can be manipulated to yield arbitrary explanations (Dombrowski et al., 2019;
Xin et al., 2024). In image prediction tasks, XAI explanations are frequently observed to resemble
results of simple edge detection filters (e.g., Adebayo et al., 2018; Kauffmann et al., 2022; Clark
et al., 2024). Many XAI methods come in multiple variants, and the criteria for choosing methods
and their hyperparameters are often not well justified or documented. Here we argue that a more
fundamental limitation of the field – the lack of formal specifications of XAI problems – renders
efforts to make explanations more faithful, more robust, more consistent, or more aligned with
subjective human judgment, premature. Such efforts will become relevant again once methods that
are proven to solve well-posed “explainability problems” in the first place are available. To enable
the development of such new methods, the current paradigm of algorithm-driven development needs
to be revised. We propose that a new scientific process of XAI development should proceed in six
steps: 1. Assessing the use-case-specific information needs of users and stakeholders. 2. Defining
the formal requirements and the XAI problems that address these information needs. 3. Designing
suitable methods to solve the concrete XAI problems. 4. Performing theoretical analyses w.r.t.
the adherence to the formal requirements. 5. Performing empirical validation using appropriate
ground-truth benchmarks. 6. Improving the methods with respect to further desiderata.

Formalizing XAI It is unreasonable to call a mapping from input features to real numbers an “ex-
planation” without endowing these numbers with a well-defined formal interpretation (e.g. Murdoch
et al., 2019). Without a formal problem statement, the ability of an XAI method to answer relevant
questions cannot be objectively assessed, and it is not possible to use the method for systematic
quality control. Relevant information needs of users may relate to properties of a given ML model,
its training data, a given test input, or combinations of these, and may differ between use cases.
Additionally, different stakeholders, such as ML developers, users (e.g., physicians or patients),
and regulators, have different information needs. Formalizing use-case and stakeholder-specific
questions will lead to distinct XAI problems to be addressed by tailored XAI methodologies. Such
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a formal framework will also provide corresponding provable and testable notions of explanation
correctness and quantifiable notions of explanation performance. Previous work (Wilming et al.,
2022; Borgonovo et al., 2023) has formulated the presence of a statistical association between feature
and target as a minimal requirement for important features. Using this or similar criteria to falsify
XAI methods can prevent potentially harmful or costly misinterpretations.

Theoretical analysis of XAI correctness Recent insightful theoretical analyses have shown sys-
tematic failure modes of XAI methods within respective mathematical frameworks (Sixt et al., 2020;
Bilodeau et al., 2024). Once formal notions of explanation correctness become part of such frame-
works, XAI methods can be formally analyzed with respect to these. Kindermans et al. (2018) and
Wilming et al. (2023) have analyzed popular feature attribution methods and found that many do not
fulfill the statistical association property property in the presence of correlated noise. Such research
can identify theoretical shortcomings and guide the development of improved methods.

XAI benchmarking using ground-truth data Based on formal criteria, it is possible to design
ground-truth benchmark datasets that are realistic yet generated from a known and controlled para-
metric distribution. Various authors have proposed datasets in which the features sharing actual
information with the prediction target are known by construction (Ismail et al., 2019; Hooker et al.,
2019; Yalcin et al., 2021; Wilming et al., 2022; Arras et al., 2022; Zhou et al., 2022; Clark et al.,
2024; Budding et al., 2021; Oliveira et al., 2024; Oramas et al., 2019). This can be used to quantify
specific definitions of explanation performance. In Oramas et al. (2019), synthetic image datasets are
introduced, where color manipulations of predefined object parts serve as class-related features used
as ground-truth explanations. In Wilming et al. (2022) and Clark et al. (2024), a range of popular
XAI methods in combination with distinct neural network architectures were benchmarked on linear
and non-linear classification problems. In Oliveira et al. (2024), structural magnetic resonance
imaging (MRI) data were superimposed with synthetic brain lesions and the effect of pre-training on
explanation performance in lesions classification tasks was studied. Wilming et al. (2024) introduced
a gender-balanced text dataset and associated gender classification tasks, which allows for quantifying
explanation performance and biases in explanations. These datasets are publicly available.

6 Conclusions and Outlook

Theoretical and empirical analyses of simple data-generating models have shown that popular feature
attribution methods can systematically fail to answer important questions about data and ML models.
The main technical limitation of existing methods, causing false interpretations in the considered
examples, is the inherent assumption of feature independence. More generally, the field of XAI
is impeded by the current paradigm of algorithm- instead of problem-driven development and
the lack of formal notions of explanation correctness. These limitations are shared by other XAI
paradigms such as concept- or example based explanations. Just as ML in general, though, the
field of XAI is fast-developing with novel methodological developments being introduced each year.
Recent advancements in algorithmic recourse (Karimi et al., 2020), confounder detection (Janzing and
Schölkopf, 2018), and generative modeling (Hvilshøj et al., 2021; Sobieski and Biecek, 2024) promise
to address some of the limitations presented here. A systematic formalization and scrutinization of
the field of XAI would make it possible to objectively assess the ability of individual approaches to
solve specific XAI problems. Researchers should formally define the specific problems that XAI
should solve and design methods accordingly. Synthetic data with ground-truth explanations can play
an important role in (in)validating XAI methods. This may eventually lead to XAI-based workflows
that can indeed be used to systematically provide quality assurance for ML.

Acknowledgements

This work was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (Grant agreement No. 758985), by Project
22HLT05 MAIBAI, which has received funding from the European Partnership on Metrology, co-
financed from the European Union’s Horizon Europe Research and Innovation Programme and
by the Participating States, and by the Metrology for Artificial Intelligence in Medicine (M4AIM)
programme funded by the German Federal Ministry for Economy and Climate Action (BMWK) in
the frame of the QI-Digital Initiative.

7



References
Aas, K., Jullum, M., Løland, A., 2021. Explaining individual predictions when features are dependent:

More accurate approximations to shapley values. Artificial Intelligence 298, 103502.

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B., 2018. Sanity checks
for saliency maps, in: Proceedings of the 32nd International Conference on Neural Information
Processing Systems, Curran Associates Inc.. pp. 9525–9536.

Arras, L., Osman, A., Samek, W., 2022. CLEVR-XAI: A benchmark dataset for the ground truth
evaluation of neural network explanations. Information Fusion 81, 14–40.

Ates, E., Aksar, B., Leung, V.J., Coskun, A.K., 2021. Counterfactual explanations for multivariate
time series, in: 2021 International Conference on Applied Artificial Intelligence (ICAPAI), pp.
1–8.

Babic, B., Gerke, S., Evgeniou, T., Cohen, I.G., 2021. Beware explanations from ai in health care.
Science 373, 284–286.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W., 2015. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE
10, 1–46.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R., 2010. How
to explain individual classification decisions. Journal of Machine Learning Research (JMLR) 11,
1803–1831.

Biessmann, F., Refiano, D., 2021. Quality metrics for transparent machine learning with and without
humans in the loop are not correlated, in: ICML Workshop on Theoretic Foundation, Criticism,
and Application Trend of Explainable AI. arXiv:2107.02033.

Bilodeau, B., Jaques, N., Koh, P.W., Kim, B., 2024. Impossibility theorems for feature attribution.
Proceedings of the National Academy of Sciences 121.

Blücher, S., Vielhaben, J., Strodthoff, N., 2022. Preddiff: Explanations and interactions from
conditional expectations. Artificial Intelligence 312, 103774.

Blücher, S., Vielhaben, J., Strodthoff, N., 2024. Decoupling pixel flipping and occlusion strategy for
consistent XAI benchmarks. Transactions on Machine Learning Research .

Bordt, S., Finck, M., Raidl, E., von Luxburg, U., 2022. Post-hoc explanations fail to achieve
their purpose in adversarial contexts, in: Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency, pp. 891–905.

Borgonovo, E., Ghidini, V., Hahn, R., Plischke, E., 2023. Explaining classifiers with measures of
statistical association. Computational Statistics & Data Analysis 182, 107701.

Breiman, L., 2001. Random forests. Machine learning 45, 5–32.

Budding, C., Eitel, F., Ritter, K., Haufe, S., 2021. Evaluating saliency methods on artificial data with
different background types, in: Medical Imaging meets NeurIPS. An official NeurIPS Workshop.
arXiv:2112.04882.

Clark, B., Wilming, R., Haufe, S., 2024. XAI-TRIS: non-linear image benchmarks to quantify false
positive post-hoc attribution of feature importance. Machine Learning , 1–40.

Conger, A.J., 1974. A Revised Definition for Suppressor Variables: A Guide To Their Identification
and Interpretation. Educational and Psychological Measurement 34, 35–46.

Del Giudice, M., 2024. The prediction-explanation fallacy: A pervasive problem in scientific
applications of machine learning. Methodology 20, 22–46.

Dombrowski, A.K., Alber, M., Anders, C., Ackermann, M., Müller, K.R., Kessel, P., 2019. Explana-
tions can be manipulated and geometry is to blame. Advances in neural information processing
systems 32.

8

http://arxiv.org/abs/2107.02033
http://arxiv.org/abs/2112.04882


European Commission, 2021. Proposal for a regulation of the european parliament and of the council
laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending
certain union legislative acts .

Fok, R., Weld, D.S., 2023. In search of verifiability: Explanations rarely enable complementary
performance in ai-advised decision making. AI Magazine .

Ghassemi, M., Oakden-Rayner, L., Beam, A.L., 2021. The false hope of current approaches to
explainable artificial intelligence in health care. The Lancet Digital Health 3, e745–e750.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D., 2019. A Survey of
Methods for Explaining Black Box Models. ACM Computing Surveys 51, 1–42.

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.D., Blankertz, B., Bießmann, F., 2014. On
the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87,
96–110.

Hedström, A., Weber, L., Krakowczyk, D., Bareeva, D., Motzkus, F., Samek, W., Lapuschkin, S.,
Höhne, M.M.C., 2023. Quantus: An explainable ai toolkit for responsible evaluation of neural
network explanations and beyond. Journal of Machine Learning Research 24, 1–11.

Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H., 2019. Causability and explainability of
artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 9, e1312.

Hooker, S., Erhan, D., Kindermans, P.J., Kim, B., 2019. A benchmark for interpretability methods in
deep neural networks, in: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
Garnett, R. (Eds.), Advances in Neural Information Processing Systems 32, Curran Associates,
Inc.. pp. 9737–9748.

Hvilshøj, F., Iosifidis, A., Assent, I., 2021. Ecinn: efficient counterfactuals from invertible neural
networks. arXiv preprint arXiv:2103.13701 .

Ismail, A.A., Gunady, M., Pessoa, L., Corrada Bravo, H., Feizi, S., 2019. Input-Cell Attention
Reduces Vanishing Saliency of Recurrent Neural Networks, in: Advances in Neural Information
Processing Systems, Curran Associates, Inc.

Jacovi, A., Goldberg, Y., 2020. Towards faithfully interpretable NLP systems: How should we define
and evaluate faithfulness?, in: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Association for Computational Linguistics, Online. pp. 4198–4205.

Janzing, D., Schölkopf, B., 2018. Detecting non-causal artifacts in multivariate linear regression
models, in: International Conference on Machine Learning, PMLR. pp. 2245–2253.

Jesus, S., Belém, C., Balayan, V., Bento, J., Saleiro, P., Bizarro, P., Gama, J., 2021. How can i choose
an explainer? an application-grounded evaluation of post-hoc explanations, in: Proceedings of the
2021 ACM conference on fairness, accountability, and transparency, pp. 805–815.

Jiménez-Luna, J., Grisoni, F., Schneider, G., 2020. Drug discovery with explainable artificial
intelligence. Nature Machine Intelligence 2, 573–584.

Karimi, A.H., Schölkopf, B., Valera, I., 2021. Algorithmic recourse: from counterfactual explanations
to interventions, in: Proceedings of the 2021 ACM conference on fairness, accountability, and
transparency, pp. 353–362.

Karimi, A.H., Von Kügelgen, J., Schölkopf, B., Valera, I., 2020. Algorithmic recourse under imperfect
causal knowledge: a probabilistic approach. Advances in neural information processing systems
33, 265–277.

Kauffmann, J., Esders, M., Ruff, L., Montavon, G., Samek, W., Müller, K.R., 2022. From clustering
to cluster explanations via neural networks. IEEE Transactions on Neural Networks and Learning
Systems 35, 1926–1940.

9



Kindermans, P.J., Schütt, K.T., Alber, M., Müller, K.R., Erhan, D., Kim, B., Dähne, S., 2018.
Learning how to explain neural networks: Patternnet and patternattribution, in: International
Conference on Learning Representations.

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R., 2019. Unmasking
Clever Hans predictors and assessing what machines really learn. Nature Communications 10,
1096.

Lundberg, S.M., Lee, S.I., 2017. A Unified Approach to Interpreting Model Predictions, in: Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances
in Neural Information Processing Systems 30. Curran Associates, Inc.. volume 30, pp. 4765–4774.

Meinshausen, N., Bühlmann, P., 2010. Stability selection. Journal of the Royal Statistical Society
Series B: Statistical Methodology 72, 417–473.

Molnar, C., 2020. Interpretable Machine Learning. Independently published.

Montavon, G., Bach, S., Binder, A., Samek, W., Müller, K.R., 2017. Explaining NonLinear Classifi-
cation Decisions with Deep Taylor Decomposition. Pattern Recognition 65, 211–222.

Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B., 2019. Definitions, methods, and
applications in interpretable machine learning. Proceedings of the National Academy of Sciences
116, 22071–22080.

Oliveira, M., Wilming, R., Clark, B., Budding, C., Eitel, F., Ritter, K., Haufe, S., 2024. Benchmarking
the influence of pre-training on explanation performance in mr image classification. Frontiers in
Artificial Intelligence 7, 1330919.

Oramas, J., Wang, K., Tuytelaars, T., 2019. Visual explanation by interpretation: Improving
visual feedback capabilities of deep neural networks, in: International Conference on Learning
Representations.

Rai, A., 2020. Explainable ai: From black box to glass box. Journal of the Academy of Marketing
Science 48, 137–141.

Ribeiro, M.T., Singh, S., Guestrin, C., 2016. " Why should I trust you?" Explaining the predictions of
any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1135–1144.

Rong, Y., Leemann, T., Borisov, V., Kasneci, G., Kasneci, E., 2022. A consistent and efficient
evaluation strategy for attribution methods. arXiv:2202.00449.

Rudin, C., 2019. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence 1, 206–215.

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K., 2017. Evaluating the visualization
of what a deep neural network has learned. IEEE Transactions on Neural Networks and Learning
Systems 28, 2660–2673.

Samek, W., Müller, K.R., 2019. Towards explainable artificial intelligence. Explainable AI: interpret-
ing, explaining and visualizing deep learning , 5–22.

Saporta, A., Gui, X., Agrawal, A., Pareek, A., Truong, S.Q.H., Nguyen, C.D.T., Ngo, V.D., Seekins,
J., Blankenberg, F.G., Ng, A.Y., Lungren, M.P., Rajpurkar, P., 2022. Benchmarking saliency
methods for chest X-ray interpretation. Nature Machine Intelligence 4, 867–878.

Shapley, L.S., 1953. A value for n-person games. Contributions to the Theory of Games 2, 307–317.

Shmueli, G., 2010. To Explain or to Predict? Statistical Science 25.

Sixt, L., Granz, M., Landgraf, T., 2020. When Explanations Lie: Why Many Modified BP Attributions
Fail, in: Proceedings of the 37th International Conference on Machine Learning, PMLR. pp. 9046–
9057.

Sobieski, B., Biecek, P., 2024. Global counterfactual directions. arXiv preprint arXiv:2404.12488 .

10

http://arxiv.org/abs/2202.00449


Sokol, K., Flach, P., 2020. One explanation does not fit all: The promise of interactive explanations
for machine learning transparency. KI-Künstliche Intelligenz 34, 235–250.

Sundararajan, M., Taly, A., Yan, Q., 2017. Axiomatic Attribution for Deep Networks, in: Precup, D.,
Teh, Y.W. (Eds.), ICML, PMLR. PMLR. pp. 3319–3328.

Tideman, L.E., Migas, L.G., Djambazova, K.V., Patterson, N.H., Caprioli, R.M., Spraggins, J.M., Van
de Plas, R., 2021. Automated biomarker candidate discovery in imaging mass spectrometry data
through spatially localized shapley additive explanations. Analytica Chimica Acta 1177, 338522.

Ustun, B., Spangher, A., Liu, Y., 2019. Actionable recourse in linear classification, in: Proceedings
of the Conference on Fairness, Accountability, and Transparency, ACM, Atlanta GA USA. pp.
10–19.

Wachter, S., Mittelstadt, B., Russell, C., 2017. Counterfactual explanations without opening the black
box: Automated decisions and the GDPR. Harv. JL & Tech. 31, 841.

Watson, D.S., 2022. Interpretable machine learning for genomics. Human Genetics 141, 1499–1513.

Weber, R.O., Johs, A.J., Goel, P., Silva, J.M., 2024. XAI is in trouble. AI Magazine , aaai.12184.

Weichwald, S., Meyer, T., Özdenizci, O., Schölkopf, B., Ball, T., Grosse-Wentrup, M., 2015. Causal
interpretation rules for encoding and decoding models in neuroimaging. Neuroimage 110, 48–59.

Wilming, R., Budding, C., Müller, K.R., Haufe, S., 2022. Scrutinizing XAI using linear ground-truth
data with suppressor variables. Machine Learning, Special Issue of the ECML PKDD 2022 Journal
Track , 1–21.

Wilming, R., Dox, A., Schulz, H., Oliveira, M., Clark, B., Haufe, S., 2024. GECOBench: A gender-
controlled text dataset and benchmark for quantifying biases in explanations. arXiv:2406.11547.

Wilming, R., Kieslich, L., Clark, B., Haufe, S., 2023. Theoretical behavior of XAI methods in the
presence of suppressor variables, in: Proceedings of the 40th International Conference on Machine
Learning (ICML), PMLR, pp. 37091–37107.

Wong, F., Zheng, E.J., Valeri, J.A., Donghia, N.M., Anahtar, M.N., Omori, S., Li, A., Cubillos-Ruiz,
A., Krishnan, A., Jin, W., Manson, A.L., Friedrichs, J., Helbig, R., Hajian, B., Fiejtek, D.K.,
Wagner, F.F., Soutter, H.H., Earl, A.M., Stokes, J.M., Renner, L.D., Collins, J.J., 2024. Discovery
of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185.

Xin, X., Huang, F., Hooker, G., 2024. Why you should not trust interpretations in machine learning:
Adversarial attacks on partial dependence plots. arXiv preprint arXiv:2404.18702 .

Yalcin, O., Fan, X., Liu, S., 2021. Evaluating the correctness of explainable ai algorithms for
classification. arXiv preprint arXiv:2105.09740 .

Zhou, Y., Booth, S., Ribeiro, M.T., Shah, J., 2022. Do feature attribution methods correctly attribute
features?, in: Proceedings of the AAAI conference on artificial intelligence. Number: 9.

A Systematic importance attribution to suppressor variables

11

http://arxiv.org/abs/2406.11547


(a) c = 0.8 (b) c = 0

(c) Suppressor (X2) and Collider (X1)

Figure 1: a/b) Data sampled from the generative model (Example A) introduced in Section 3.1
(Wilming et al., 2023) for two different correlations c and constant variances s21 = 0.8 and s22 = 0.5.
Boundaries of Bayes-optimal decisions are shown as well. The marginal sample distributions
illustrate that feature X2 does not carry any class-related information. c) Causal structure of the
data in Examples A (left) and B (right). X2 is a so-called suppressor variable that has no statistical
association with the target Y , although both influence feature X1, which is called a collider. Figure
partially adopted from Wilming et al. (2023).

Table 1: Summary of the results of Kindermans et al. (2018) and Wilming et al. (2023). Various
popular feature attribution methods systematically attribute non-zero importance to suppressor
variables that have no statistical association to the prediction target. For Shapley values, this property
may depend on the chosen value function.

XAI methods attributing nonzero importance to suppressors

Permutation Feature Importance (Breiman, 2001)
Shapley Value (Shapley, 1953)
Gradient (Baehrens et al., 2010)
LIME (Ribeiro et al., 2016)
Faithfulness (Pixel Flipping, Samek et al., 2017)
SHAP (Marginal Expectation, Lundberg and Lee, 2017)
Counterfactuals (Wachter et al., 2017)
Integrated Gradient (Sundararajan et al., 2017)
LRP/DTD (Bach et al., 2015; Montavon et al., 2017)
Partial Dependency Plot (e.g., Molnar, 2020)
SHAP (Conditional Expectation, Aas et al., 2021)
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