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ABSTRACT

Current transformer-based skeletal action recognition models focus on a limited
set of joints and low-level motion patterns to predict action classes. This results in
significant performance degradation under small skeleton perturbations or chan-
ging the pose estimator between training and testing. In this work, we introduce
MaskCLR, a new Masked Contrastive Learning approach for Robust skeletal
action recognition. We propose a Targeted Masking (TM) strategy to occlude the
most important joints and encourage the model to explore a larger set of discrimin-
ative joints. Furthermore, we propose a Multi-Level Contrastive Learning (MLCL)
paradigm to enforce feature embeddings of standard and occluded skeletons to
be class-discriminative, i.e, more compact within each class and more dispersed
across different classes. Our approach helps the model capture the high-level action
semantics instead of low-level joint variations, and can be seamlessly incorporated
into transformer-based models. Without loss of generality, we apply our method
on Spatial-T emporal Multi-Head Self-Attention encoder (ST -MHSA), and we
perform extensive experiments on NTU60, NTU120, and Kinetics400 benchmarks.
MaskCLR consistently outperforms previous state-of-the-art methods on standard
and perturbed skeletons from different pose estimators, showing improved accuracy,
generalization, and robustness to skeleton perturbations. We make our implementa-
tion anonymously available at anonymous.4open.science/r/MaskCLR-A503.

1 INTRODUCTION

A skeleton is a representation of the human body structure that typically consists of a set of keypoints
or joints, each associated with a specific body part. Compared to RGB-based action recognition,
which focuses on extracting feature representations from RGB frames (Carreira & Zisserman, 2017;
Tran et al., 2015; Wang et al., 2016) and/or optical flow (Simonyan & Zisserman, 2014), skeleton-
based approaches (Weinzaepfel & Rogez, 2021; Yan et al., 2018) rely on skeleton data. Skeleton
sequences exclude contextual nuisances such as lighting conditions and background changes, and are
therefore more compact, easier to store, and more computationally efficient. The skeleton data can be
either in 2D or 3D and it can be extracted from RGB images using various pose estimators or directly
captured by sensor devices such as Kinect (Liu et al., 2019; Shahroudy et al., 2016).

With the introduction of transformers (Vaswani et al., 2017), Spatial and T emporal Multi-Head Self
Attention (ST -MHSA) blocks (Zhu et al., 2023) have been proposed to extract the spatiotemporal
skeleton information for action recognition. Generally, ST -MHSA blocks give higher weights to the
most important joints/input regions that characterize every action to distinguish between different
classes. For example, the hand joints in the action “throw” receive the highest weights while the rest
of joints remain relatively unactivated. Motivated by this observation, we ask: Is it possible to exploit
the information carried in the unactivated joints to aid in action classification?

To answer this question, in Figure 1 (top row), we visualize the activated joints of different samples
according to their attention weights. The attention scores are learned by State-Of-The-Art (SOTA)
transformer-based MotionBERT (Zhu et al., 2023). From the visualization, we observe that the
model focuses on a limited set of discriminative joints to recognize the actions. Because of this, we
argue that the model (1) misses action semantics (2) misclassifies the action if such joints are slightly
perturbed and (3) ignores other joints which might be informative in action classification (e.g, in
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Figure 1: Visualization of joint activations of MotionBERT (Zhu et al., 2023) and MaskCLR.
The activated joints are more reddish while the unactivated ones are more blueish. MaskCLR uses a
bigger set of discriminative joints to recognize actions.

“brush hair” and “drink water,” the unactivated joints carry useful information about head and hand
motion, which is significantly different (see Figure 1)).

Consequently, these methods fall short in the following aspects, summarized in table 1:

(1) Robustness against skeleton perturbations: the recognition accuracy of existing methods is
substantially affected by action-preserving levels of perturbations. For example, a small shift in joint
coordinates often leads to a completely different classification prediction.

(2) Generalization to pose source: Changing the pose estimator used to extract the skeletons between
training and testing results in a considerable drop in accuracy. This shows that such methods only
model the distribution of the predicted joints from the specific pose estimator used for training data
extraction, but fail to handle any distribution shift from using a different pose estimator at test time.

Table 1: Failure cases of current methods on different skeleton sequences.

Pose Estimator Raw Skeletons Perturbed Skeletons

Same in training & testing ✓ ✗

Changed between training & testing ✗ ✗

In this paper, we introduce MaskCLR, a novel masked contrastive learning framework that improves
the robustness, accuracy, and generalization of transformer-based methods. First, instead of using
only a few joints to recognize actions, we propose a Targeted Masking (TM) strategy to occlude the
most activated joints and re-feed the resulting skeletons to the model. This strategy aims at forcing the
model to explore a bigger set of informative joints out of the unactivated ones. Further, we propose a
Multi-Level Contrastive Learning (MLCL) approach, which consists of two flavours of contrastive
losses: sample- and class-level contrastive losses. At the sample level, we maximize the similarity
between the embeddings of standard and masked skeleton sequences in the feature space. At the
class level, we take advantage of the cross-sequence global context by contrasting the class-averaged
features of standard and masked skeleton sequences.

MaskCLR directly addresses the aforementioned limitations of existing methods. By utilizing the
previously unactivated, yet informative joints, our method helps the model learn the holistic motion
patterns of multiple joints (see Figure 1 (bottom row)). Instead of relying on the motion of a few
discriminative joints that is easily damaged by a small noise, using more informative joints mitigates
the effect of action-preserving levels of noise. Our technique, therefore, boosts the overall model
accuracy and robustness against common skeleton perturbations, such as joint occlusion and frame
masking. Moreover, our MLCL paradigm leverages the inherent class-wise semantic information
in forming a class-discriminative embedding space. Since raw and perturbed skeletons extracted
from different pose estimators reflect similar action semantics, our framework substantially improves
robustness against noisy skeletons and generalization to the type of pose estimator. To the best
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of our knowledge, MaskCLR is the first approach that improves robustness and generalization of
transformer-based skeletal action recognition. Notably, MaskCLR only requires a small extra amount
of training computation, but does not change the model size or inference time.

To summarize, our key contributions in MaskCLR are threefold:

• First, we propose a TM strategy aimed at finding and masking the most activated joints from
the skeleton sequence. We pass the resulting masked sequence through the model to learn
from the unactivated, but informative joints. Our objective is to recognize the combined
joint motion patterns instead of focusing on a small set of joints.

• Next, we introduce an MLCL paradigm to leverage the rich semantic information shared
in skeleton sequences of the same class. Our approach results in a better clustered feature
space which boosts the overall model performance.

• Finally, we demonstrate through extensive experimental results the superiority of our ap-
proach over existing methods on three popular action recognition benchmarks (NTU60
Shahroudy et al. (2016), NTU120 Liu et al. (2019), and Kinetics400 Kay et al. (2017)).
MaskCLR consistently outperforms previous methods under heavy skeleton perturbations
and pose estimator changes.

2 RELATED WORKS

2.1 SKELETON-BASED ACTION RECOGNITION

The main objective behind skeleton-based action recognition is to classify a sequence of human
keypoints into a set of action categories. Convolutional Neural Networks (CNNs) (Chéron et al.,
2015; Liu et al., 2017b) and Recurrent Neural Networks (RNNs) (Du et al., 2015; Liu et al., 2017a)
were among the earliest adopted deep-learning methods to model the spatiotemporal correlations in
the skeletons but the performance was suboptimal because the topological structure of the skeletons
was not well explored. Significant performance gains were obtained by employing Graph Neural
Networks (GCNs) as a feature extractor on heuristically designed fixed skeleton graphs, which
was first introduced in ST-GCN (Yan et al., 2018). Since then, numerous methods have emerged
to improve the accuracy and robustness of GCNs, including the usage of spatiotemporal graphs
(Liu et al., 2020), channel-decoupled graphs (Chen et al., 2021a; Cheng et al., 2020a), multi-scale
graph convolution (Chen et al., 2021b), and adaptive graphs (Chi et al., 2022; Shi et al., 2020).
More recently, PoseConv3D (Duan et al., 2022b) re-introduced 3D-CNNs for action recognition
by projecting skeletons into stacked 3D Heatmaps. Compared to GCNs, PoseConv3D obtained
significant improvements in robustness but marginal improvements in accuracy. Transformers have
also been adopted for action recognition, most recently in MotionBERT (Zhu et al., 2023) which
performs 2D-to-3D pose lifting to learn motion representations and Motion-Transformer (Cheng et al.,
2021) which employs self-supervised pre-training on human actions to learn temporal dependencies.

However, these methods (1) lack robustness against perturbed skeletons which are fairly common in
real world applications, and (2) cannot handle the distribution shift in poses from a different pose
estimator at test time. Additionally, transformer-based methods (3) give much higher weights to a
small set of joints without leveraging the information carried by the other joints, and (4) focus only on
learning local graph representations but neglect the rich semantic information shared between skeleton
sequences of the same classes. In contrast, we propose to take advantage of the cross-sequence
correlations in learning skeleton representations. At the same time, we suggest to rely on more joints
in differentiating action classes to encode the local context within each skeleton sequence. In this
way, we learn a more robust model that better handles skeleton perturbations and distribution shifts
from changing the pose estimator between training and testing.

2.2 CONTRASTIVE LEARNING

The core idea behind contrastive learning is to pull together representations of similar inputs (positive
pairs) while pushing apart that of dissimilar ones (negative pairs) in the feature space. It has been
shown to contribute for substantial performance gains, especially in self-supervised representation
learning (Wang et al., 2021; Chen et al., 2020; He et al., 2020). Positive pairs are conventionally
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Figure 2: Overview of MaskCLR. Our approach consists of two (base and masked) pathways that share
the same weights. The base pathway takes standard input skeletons while the masked pathway receives only
the unactivated joints from the base pathway. Both pathways consist of cascaded spatial and temporal MHSA
blocks to extract the spatial and temporal information respectively. Initially, the base pathway is trained alone
using cross-entropy loss. The masked pathway, subsequently, comes into play to encourage the model to explore
more discriminative joints. Using sample contrastive loss, we maximize the agreement of feature representations
from the two pathways for the same skeleton sequence and vice versa. Additionally, to exploit the high semantic
consistency between same-class skeleton sequences, we maximize the similarity between the class-wise average
representations from the two pathways using class contrastive loss. Ultimately, the two contrastive losses
contribute to the formation of a disentangled feature space, effectively improving the accuracy, robustness, and
generalization of the model.

obtained by augmenting the standard input into two different views, while negative ones are obtained
either through random sampling or hard mining techniques (Kalantidis et al., 2020; Robinson et al.,
2020; Khosla et al., 2020). In skeleton-based action recognition, the aforementioned frameworks
have been adopted in the pre-training stage. In CrossCLR (Li et al., 2021), the positive pairs are
sampled in the data space by cross-modal knowledge. AimCLR (Guo et al., 2022) uses extreme
augmentations to boost the effect of contrastive learning. More recently, ActCLR (Lin et al., 2023)
uses the average motion across all sequences in the dataset as a static anchor for contrastive learning.

Our method differs from these approaches as follows: (1) The previous methods sample positive pairs
by using fixed sample-wide augmentations that are invariant to the internal semantics of the action.
In contrast, we employ a new adaptive masking strategy for sampling the positive pairs by occluding
the most activated joints, which vary based on the input sample and action. (2) The previous methods
employ contrastive learning at the sample level only. Instead, we contrast the semantic-level class
representations, thus exploiting the context from the complementary individual and class aggregations.
(3) While the previous methods employ contrastive learning in the pre-training stage, MaskCLR is
incorporated in the fully-supervised setting, thus requiring no extra pre-training cost.

3 METHOD

In this section, we introduce MaskCLR, our novel approach to enhance the accuracy, robustness, and
generalization of transformer-based skeletal action recognition methods. MaskCLR consists of a
targeted masking strategy (Sec 3.1) combined with a multi-level contrastive learning approach (Sec
3.2 & Sec 3.3). As shown in Figure 2, our approach consists of two pathways: a base pathway, which
receives standard skeletons as input, and a masked one, which receives only the unactivated joints
from the base pathway.
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3.1 TARGETED MASKING STRATEGY

We leverage the Spatial T emporal Multi-Head Self-Attention (ST -MHSA) backbone of transformer-
based models (Zhu et al., 2023; Plizzari et al., 2021) to compute the joint-wise attention weights,
which reflect the joints’ importance over the spatiotemporal dimensions. First, an input 2D skeleton
sequence x of T frames and J joints is fed to a Fully Connected (FC) network to get the high-
dimensional feature F ∈ RT×J×Cf of Cf channels. We then apply the ST -MHSA encoder for N
times on F before passing the output to an FC network to get the sequence x embedding E(x) ∈
RT×J×Cr of Cr channels. Each MHSA block is composed of h heads defined as

headib = softmax

(
Qi

b(K
i
b)

T

√
dK

)
Vi

b, (1)

where i ∈ 1, ..., h denotes the attention head, and b ∈ S, T denotes spatial and temporal blocks
respectively. Self-attention is utilized to calculate the query Qb, key Kb, and value Vb from input
features Fb, where FS ∈ RJ×Cr , FT ∈ RT×Cr , and dK is the dimension of Kb. In our approach,
the attention scores are computed by averaging the attention maps A across the self-attention heads.

Ab =
1

h

h∑
i=1

softmax

(
Qi

b(K
i
b)

T

√
dK

)
. (2)

Only the last S and T blocks are used to compute the most activated/important joints for targeted
masking since they inherit the information learned from the previous layers. In the Appendix Sec
A.2, we study the effect of using the attention filters from other layers. The attention scores Ab

are averaged across the final two ST blocks A = 1/2 ∗ (AS +AT ). Next, a predefined threshold
δ ∈ [0, 1] is utilized to determine the joints activated by the base pathway P:

P = ε

(
A

max(A)
− δ

)
, (3)

where ε(.) is the element-wise Heaviside step function, and max(.) is the maximum function used
to normalize the attention scores. Hence, P ∈ RT×J is a binary map indicating the activated joints
across time. Visualization of the activated joints (before thresholding) is provided in Figure 1. We
expand the set of informative joints by masking the most activated joints from the base pathway and
feeding the unactivated ones to the masked pathway (see Figure 2), thus encouraging the model to
explore more discriminative joints (Figure 1 bottom). The calculation of masked skeletons xm from
the original skeletons xo is formalized as

xm = xo ⊗ (1−P). (4)

3.2 SAMPLE CONTRASTIVE LOSS

Having computed the more challenging masked skeletons xm, our target is to achieve a model
that can learn from the unactivated joints. We observe that such joints carry information about the
body pose which could inform the action prediction (see Figure 1). To that end, we adopt sample
contrastive loss to maximize the similarity between the embeddings of standard E(xi

o) and masked
E(xi

m) skeletons which correspond to the same skeleton sequence i. More specifically, for a batch of
size B, the positive pairs are E(xi

o) and E(xi
m) while the negative ones are the rest of B − 1 pairs,

E(xi
o) and E(xk

z), k ̸= i, z ∈ {o,m}. Since skeletons extracted from different videos, forming the
negative pairs, have different content, the similarity of their representations should be minimized in
the latent space. We achieve this objective by applying the sample contrastive loss Lsc.

Lsc(x
i
o,x

i
m) = − log

[
s(E(xi

o),E(xi
m))

s(E(xi
o),E(xi

m)) +
∑B

k=1
1k ̸=is(E(xi

o),E(xk
z))

]
, (5)
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where 1 is an indicator function that evaluates to 1 for skeletons corresponding to a different sample
k ̸= i, s is the exponential of the cosine similarity s(u, v) = exp

[
uT v

∥u∥2∥v∥2
/ τ

]
, and τ is the

temperature hyperparameter.

3.3 CLASS CONTRASTIVE LOSS

Used alone, the sample contrastive loss function encourages representations of different skeleton
sequences to be pushed apart even if they belong to the same action class. This, in turn, could
result in overlooking the high-level semantics that characterize every action. Therefore, we need
to maximize the similarity between skeleton sequences sharing the same class. At the same time,
skeleton sequences of different classes need to be pushed apart in the feature space, especially in the
case of semantically similar classes (e.g, reading and writing), which are often confused together in
existing models. We introduce class contrastive loss as a complementary loss function to achieve
both objectives simultaneously. Similar to sample contrastive loss, class contrastive loss encourages
distinct representations but at the class level. Class representation Cl

z is defined as the average
embeddings of all skeleton sequences sharing the same label l across every batch. Cl

z formalized as:

Cl
z =

∑B
i=1 1yi=lE(xi

z)

Gl
, (6)

where z ∈ {o,m}, yi ∈ Y is ground truth label of sample i, Y is the set of dataset classes, and 1 is
an indicator function which evaluates to 1 for skeleton sequences with label l. Gl is the number of
skeleton sequences sharing the label l across the batch.

All pairs (Cl
o,C

l
m) constitute the positive pairs, while (Cl

o,C
d
z) with d ∈ Y \ l constitute the

negative ones. The class contrastive objective is to capture the high-level action semantics in skeleton
sequences sharing the same class. Hence, the class contrastive loss Lcc is:

Lcc(C
l
o,C

l
m) = − log

[
s(Cl

o,C
l
m)

s(Cl
o,C

l
m) +

∑|Y |
k=1

1k ̸=ls(Cl
o,C

k
z)

]
. (7)

Overall loss. Finally, the overall loss function used to train our model is,

L = Lce + αLsc + βLcc , (8)

where Lce is the average cross entropy loss from the two pathways, and α and β are the weights
assigned to sample and class contrastive losses respectively.

4 EXPERIMENTS

4.1 DATASETS

We use the NTU RGB+D (Shahroudy et al., 2016; Liu et al., 2019) and Kinetics400 (Kay et al.,
2017) datasets in our experiments. To obtain 2D poses, we employ three pose estimators (pre-trained
on MS COCO (Lin et al., 2014)) of different AP scores: ViTPose (SOTA) (Xu et al., 2022) (High
Quality, HQ), HRNet (Sun et al., 2019) (Medium Quality, MQ), and OpenPifPaf (Kreiss et al.,
2021) (Low Quality, LQ). We apply the same post-processing across the three versions (outlier
removal, pose tracking, etc). Further details about the datasets and pose estimators are provided in
the Appendix Sec A.1. We report the Top-1 accuracy for all datasets.

4.2 IMPLEMENTATION DETAILS

We implement our approach with PyTorch (Paszke et al., 2019) on top of spatial and temporal
transformer encoder, borrowed from (Zhu et al., 2023). We set the depth N = 5, Cf = 512,
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Cr = 512, h = 8, and fix temporal sampling at T = 243. Different temporal lengths could be
handled at test time due to the flexibility of the transformer backbone. For contrastive losses, we set
α = 9, β = 1, δ = 0.2 and τ = 0.7. The classification head is an MLP with hidden dimension =
2048, drop out rate p = 0.5, BatchNorm, and ReLU activation. We train our model for 600 epochs,
where we first use only Lce to train the base pathway for 300 epochs. For the next 300 epochs, we
add the masked pathway and train the model with the combined loss (Eq. 8). We train with backbone
learning rate 0.0001, MLP learning rate 0.001, and batch size 16 using AdamW (Loshchilov &
Hutter, 2017) optimizer. We conduct our experiments with two NVIDIA RTX 3090 GPUs.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Accuracy on standard skeletons. In Table 2, we compare the accuracy of MaskCLR to existing
methods under the fully-supervised setting. MaskCLR outperforms previous SOTA methods on 3
out of 5 benchmarks, and outperforms baseline MotionBERT (Zhu et al., 2023) on all benchmarks.
For NTU120-XSet, MaskCLR is only 0.8 short of PoseConv3D, yet improves the accuracy of
MotionBERT by 2.4 percentage points. For Kinetics, MaskCLR surpasses MotionBERT by a margin
of 5.8 percentage points. This shows that MaskCLR improves the accuracy on standard skeletons at
no pre-training cost and without increasing the model size.

Table 2: MaskCLR outperforms or closely competes with previous SOTA. Numbers in green reflect
improvement over baseline MotionBERT.

Method NTU60-XSub NTU60-XView NTU120-XSub NTU120-XSet Kinetics400

ST-GCN (Yan et al., 2018) 81.5 88.3 70.7 73.2 30.7
AS-GCN (Li et al., 2019) 86.8 94.2 78.3 79.8 34.8
DGNN (Shi et al., 2019a) 89.9 96.1 - - 36.9
AGCN (Shi et al., 2019b) 88.5 95.1 - - 36.1
AAGCN (Shi et al., 2020) 89.7 97.1 80.2 86.3 -
Shift-GCN (Cheng et al., 2020b) 90.7 96.5 85.9 87.6 -
MS-G3D (Liu et al., 2020) 92.2 96.6 87.2 89.0 45.1
FGCN (Yang et al., 2021) 90.2 96.3 85.4 87.4 -
CTR-GCN (Chen et al., 2021a) 90.6 96.9 82.2 84.5 -
AimCLR (Guo et al., 2022) 89.2 83.0 76.1 77.2 -
ST-GCN++ (Duan et al., 2022a) 89.3 95.6 83.2 85.6 -
InfoGCN (Chi et al., 2022) 93.0 97.1 85.1 86.3 -
PoseConv3D (Duan et al., 2022b) 93.7 96.6 86.0 89.6 46.0
ActCLR (Lin et al., 2023) 91.2 85.8 80.9 79.4 -
FR-GCN (Zhou et al., 2023) 90.3 95.3 85.5 88.1 -

MotionBERT (Zhu et al., 2023) 92.8 97.1 84.8 86.4 38.8

MaskCLR (Ours) 93.9 (↑1.1) 97.3 (↑ 0.2) 87.4 (↑2.6) 88.8 (↑2.4) 44.7 (↑5.8)

Generalization to pose source. To demonstrate the generalization of our method to the type of pose
estimator, we evaluate our model on the skeletons extracted by different pose estimators of different
quality levels. For a fair comparison, we train all models on MQ skeletons and we evaluate on LQ
and HQ ones (see Table 3). MaskCLR consistently outperforms previous methods on all benchmarks
under HQ and LQ poses. Compared to MotionBERT, we improve generalization to skeleton source
by up to 26.6 percentage points for NTU120-XSub VitPose Skeletons.

Table 3: Top-1 accuracy when changing the pose estimator between training and testing. Numbers
in green reflect improvement over baseline MotionBERT. Right arrows indicate train → test.

Method NTU60 NTU120 NTU60 NTU120
XSub XView XSub XSet XSub XView XSub XSet

Pose Source HRNet (MQ) → OpenPifPaf (LQ) HRNet (MQ) → ViTPose (HQ)

ST-GCN++ 65.3 72.4 68.8 71.2 73.2 83.0 66.4 69.6
MS-G3D 51.7 57.3 54.9 55.8 82.5 91.0 72.1 74.5
AAGCN 51.4 60.1 51.5 62.7 79.6 90.2 66.6 72.0
CTR-GCN 50.4 58.2 57.6 58.2 77.7 84.4 65.5 67.7
PoseConv3D 83.2 87.3 80.2 82.9 73.7 79.8 65.2 70.1

MotionBERT 90.4 91.9 73.5 77.6 71.0 85.8 51.7 63.9

MaskCLR 93.4 (↑ 3.0) 97.2 (↑ 5.3) 87.1 (↑ 13.6) 86.5 (↑ 8.9) 91.5 (↑ 20.5) 96.3 (↑ 10.5) 78.3 (↑ 26.6) 79.8 (↑ 15.9)

Robustness against skeleton perturbations. We compare the robustness of our method to existing
methods under Gaussian noise, part occlusion, and joint occlusion. For noisy skeletons, we introduce
Gaussian noise X ∼ N (0, σ2) to all joints across the spatiotemporal and spatial only dimensions. In
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Appendix Figure 7, we provide visualizations of noisy skeletons. As shown in Figure 3, MaskCLR is
superior to existing methods under noisy skeletons. Additionally, MaskCLR surpasses MotionBERT-
R, which is trained with the same data augmentations and 15% random masking, by 14.9 points
at spatiotemporal noise σ = 0.01. In part occlusion, we separately zero out five body parts {head,
left_arm, right_arm, left_leg, right_leg}. In joint occlusion, we randomly mask 15%, 30%, 45%, and
60% of joints. As shown in Figure 4, MaskCLR substantially outperforms existing methods under
part and joint occlusion. We provide more experimental results in Appendix Sec A.4 and A.5.
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Figure 3: Accuracy under spatiotemporal noise (left) and spatial only noise (right)
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Figure 4: Top-1 accuracy under joint and part occlusion. Accuracy indicated for the top 3 methods.

Robustness against perturbed skeletons from different pose estimators. We perturb all LQ, MQ,
and HQ skeletons with 50% frame masking and spatiotemporal Gaussian noise at σ = 0.002. While
the performances of PoseConv3D (Duan et al., 2022b) and MotionBERT significantly degrades,
MaskCLR shows the smallest drop in accuracy (see Table 4). This shows the superiority of our
approach in generalization and robustness under perturbed skeletons from different pose estimators.

Table 4: Drop in top-1 accuracy under skeleton perturbations. Numbers in green and red reflect
improvement and decline compared to baseline MotionBERT, respectively.

Pose
Estimator Method NTU60 NTU120 NTU60 NTU120

XSub XView XSub XSet XSub XView XSub XSet

Perturbations Gaussian Noise (σ = 0.002) 50% Frame Masking

HRNet
PoseConv3D 12.0 16.6 12.9 13.8 1.9 3.1 6.2 8.4
MotionBERT 4.7 8.4 3.3 0.1 1.7 1.6 1.2 4.4
MaskCLR 0.1 (↑ 4.6) 0.2 (↑ 8.2) 0.2 (↑ 3.1) 1.1 (↓ 1.0) 1.6 (↑ 0.1) 1.0 (↑ 0.6) 0.8 (↑ 0.4) 4.3 (↑ 0.1)

OpenPifPaf
PoseConv3D 15.3 19.9 16.6 16.7 4.0 5.0 7.9 10.0
MotionBERT 8.3 6.4 2.4 7.0 2.0 2.6 1.2 4.7
MaskCLR 0.1 (↑ 8.2) 0.2 (↑ 6.2) 0.1 (↑ 2.3) 0.0 (↑ 7.0) 1.6 (↑ 0.4) 1.0 (↑ 1.6) 1.1 (↑ 1.1) 2.4 (↑ 2.3)

ViTPose
PoseConv3D 9.2 13.7 2.8 10.9 2.2 2.7 9.0 7.9
MotionBERT 2.9 9.4 1.9 5.0 0.9 10.2 3.1 2.6
MaskCLR 0.1 (↑ 2.8) 0.4 (↑ 9.0) 0.7 (↑ 0.2) 0.1 (↑ 4.9) 1.1 (↓ 0.2) 1.1 (↑ 9.1) 2.3 (↑ 0.8) 2.1 (↑ 0.5)
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Figure 5: Effect of hyperparameters on NTU60-XSub.

4.4 ABLATION STUDIES

Next, we perform ablation experiments on NTU60-XSub dataset to better understand the effect of
the different components and hyperparameters in our framework. Further ablations are provided in
Appendix Sec A.2.

Random Masking (RM) vs Targeted Masking (TM). We investigate the effectiveness of our
targeted masking strategy against random masking, which is commonly used in previous work (Zhu
et al., 2023; Lin et al., 2023). We randomly mask 15%, 30%, and 45% of joints as input to the masked
pathway. As in previous findings (Zhu et al., 2023), marginal differences are observed between
different masking ratios < 50% of the joints, with the highest accuracy being 89.7% at 15% RM
(see Table 5). In comparison, we experiment with our TM approach by varying δ between 0.1-0.5
(step size = 0.1), with lower values meaning masking more activated joints (see Figure 5 (Left)). We
observe that the highest accuracy of 91.5% is achieved at δ = 0.2, which is 1.8 percentage points
higher than the 15% RM.

Table 5: Ablation Experiments on NTU60-XSub.

Component Lce Lsc Lcc Accuracy

No Masking ✓ 88.7

15% RM ✓ 89.7
30% RM ✓ 89.6
45% RM ✓ 89.4

15% RM ✓ ✓ 91.1
15% RM ✓ ✓ 91.9
15% RM ✓ ✓ ✓ 92.0

TM (δ = 0.1) ✓ 89.9
TM (δ = 0.2) ✓ 91.5
TM (δ = 0.3) ✓ 91.4

TM (δ = 0.2) ✓ ✓ 93.2
TM (δ = 0.2) ✓ ✓ 93.8
TM (δ = 0.2) ✓ ✓ ✓ 93.9

Effect of Hyperparameters. We analyze the
effect of Lsc weight α (Figure 5 (middle)) and
Lcc weight β (Figure 5 (right)) on the overall
model performance. At δ = 0.2, we experiment
with adding Lsc and Lcc separately, achieving a
top accuracy of 93.2% and 93.8% at α = 9 and
β = 1 respectively.

Ablation on contrastive losses. We experiment
with separately and collectively applying Lsc

and Lcc with RM and TM (Table 5.) While each
loss individually contributes to a performance
gain, using the two losses together results in 2.3
and 2.4 improvement in percentage points with
RM and TM respectively. Figure 3 shows that
combining the two losses results in significant
improvement in robustness against noise.

5 CONCLUSION

In this paper, we introduce MaskCLR, a new training paradigm for robust skeleton-based action
recognition. Concretely, MaskCLR encodes more information from input skeleton joints through
the targeted masking of the most activated nodes. Further, a multi-level contrastive learning frame-
work is introduced to contrast skeleton representations at the sample and class levels, forming a
class-dissociated feature space that enhances the model accuracy, robustness to perturbations, and
generalization to pose estimators. We demonstrate the effectiveness of our method on three popular
benchmarks using different pose estimators, significantly outperforming existing works on standard
and perturbed skeleton sequences.
Limitation. We find the most activated joints by using the attention weights from the final ST blocks
only. Recent methods such as (Chefer et al., 2021) have shown that using the attention scores from
multiple layers is better in finding the activated input regions. We leave this for future work.
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A APPENDIX

A.1 DETAILS OF DATASETS

NTU RGB+D. NTU RGB+D (Shahroudy et al., 2016; Liu et al., 2019) is lab-collected, large-scale
action recognition dataset which has two versions: NTU-60 (60 classes) and NTU-120 (120 classes.)
NTU-60 contains 57K videos while NTU-120 is an extension of it that contains 114K videos. The
datasets are split in three ways: X-Sub (for both), X-View (for NTU-60), and X-Set (for NTU-120),
in which human subjects, camera views, and camera setups are different, respectively. While 3D
skeletons from sensors are provided in this dataset, we extract the 2D skeletons by applying the three
different pose estimators (see below) directly on the RGB videos.

Kinetics400. Kinetics400 (Kay et al., 2017) is a large scale video-based action recognition dataset
with 400 action classes and 300k videos. The videos are 10s long extracted from YouTube which
makes the dataset a challenging one due to the diversity in quality of videos, number of people, and
background noise in each video. Table 6 summarizes the datasets utilized in our experiments.

Table 6: Action recognition datasets.

Dataset Source #Classes #Train #Val. Total

NTU60-XSub (Shahroudy et al., 2016) Lab 60 40K 17K 57K
NTU60-XView (Shahroudy et al., 2016) Lab 60 38K 19K 57K

NTU120-XSub (Liu et al., 2019) Lab 120 63K 51K 114K
NTU120-XSet (Liu et al., 2019) Lab 120 54K 60K 114K

Kinetics400 (Kay et al., 2017) YouTube 400 250K 50K 300K

Pose Extraction. Pose estimation is a critical step that largely affects the final recognition accuracy,
yet the importance of which is mostly overlooked in previous literature. Poses retrieved from sensor
readings or existing pose estimators are used to train and test skeletal action recognition models
without strong justification behind the pose extraction method. To the best of our knowledge, there’s
no consensus among the research community on a fixed set of skeletons to test action recognition
performance. Furthermore, due to the large volume of research, it is not feasible to conduct a
comprehensive study on which models work best on which poses and for which datasets. We,
therefore, argue for the need for skeletal action recognition models that are generic to the type of
pose estimator. We highlight the importance of reporting the model performance on poses extracted
with multiple pose estimators instead of only one. To that end, we leverage three pose estimators of
different levels of performance: ViTPose (SOTA) (Xu et al., 2022) (High Quality, HQ), HRNet (Sun
et al., 2019) (Medium Quality, MQ), and OpenPifPaf (Kreiss et al., 2021) (Low Quality, LQ).

Table 7: Quality of utilized pose estimators based on the AP score on COCO test-dev set.

Pose Estimator Type AP Pose Quality

ViTPose (Xu et al., 2022) Top-Down 81.1 HQ
HRNet (Sun et al., 2019) Top-Down 77.0 MQ
OpenPifPaf (Kreiss et al., 2021) Bottom-Up 71.9 LQ

We leverage 2D poses instead of 3D ones because in general they are of higher quality (Duan
et al., 2022b). As shown in Table 7, the selected pose estimators have different types and pose
qualities, assigned according to their reported AP score on the COCO test-dev (Lin et al., 2014).
While Top-Down methods outperform Bottom-Up methods on standard benchmarks, we highlight
the importance of experimenting with both to demonstrate the generalization of skeletal action
recognition. Following previous literature (Duan et al., 2022b), we store the extracted keypoints in
the 17-joint coco format in coordinate triplets (x, y, c), where (x, y) is the joint coordinates and c is
the joint confidence score. In Table 8, we report some metrics reflecting the percentage of keypoints
and people that were undetected by each pose estimator. The percentage of missing keypoints is the
number of missed keypoints within the detected poses, divided by the actual number of joints in such
poses. The percentage of missing people indicate the number of undetected people divided by the
total number of people in each dataset.
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Table 8: Assessment of pose estimators in terms of undetected joints and people.

Pose Estimator NTU60 NTU120 NTU60 NTU120
XSub XView XSub XSet XSub XView XSub XSet

Metric Percentage of missing keypoints Percentage of missing people

ViTPose 0.0 0.0 0.0 0.0 1.2 0.01 0.01 0.04
HRNet 0.0 0.0 0.0 0.0 0.1 0.1 0.12 0.13
OpenPifPaf 7.7 6.9 6.5 7.5 0.53 0.29 5.4 5.8

A.2 ATTENTION FILTERS DIAGNOSTICS

We analyze the effect of finding the activated joints from different attention maps across three MHSA
depth layers in the transformer network. Our goal is to find the most important joints that lead to the
action classification. We follow the black-box insertion/deletion metric proposed in RISE (Petsiuk
et al., 2018) for empirically evaluating the different attention maps. For the deletion metric, we
incrementally delete the most important joints, as computed by the attention scores of a transformer
layer, and measure the effect on the accuracy by computing the Area Under the Curve (AUC). On the
other hand, the insertion metric is a complementary approach in which the most important joints are
gradually introduced. Our results are shown in Figure 6 for different attention maps on NTU60-XSub
(Shahroudy et al., 2016). The best attention map is determined by a lower deletion AUC and a higher
insertion AUC. We find that the attention map from the last MHSA block N = 5 best reflects the
most important joints. The last layer inherits information from all the preceding layers in learning
attention parameters, and is therefore used in our approach to determine the most activated joints.
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Figure 6: Deletion (top) and insertion (bottom) metrics for attention maps of three layers.

A.3 NOISE VISUALIZATION

In Figure 7, we compare visualizations of standard and noisy skeletons. At noise σ ≤ 0.005, we
note that the resulting noisy skeletons are virtually indistinguishable from the original skeletons.
Figure 8 shows the class-wise performance gained on noisy skeletons (σ = 0.002) from training
with our MaskCLR approach. Particularly in low-motion actions (e.g, drink water, pointing, etc),
MaskCLR obtains considerable performance gains, up to 28.4 percentage points for “pointing.”
MotionBERT only captures low-level joint motion patterns, which might be disrupted by noise.
Conversely, MaskCLR encodes the pose information, which is important in differentiating fine-
grained actions. Additionally, MaskCLR captures the high-level action semantics, which do not
change under action-preserving levels of noise.
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Standard

Noisy
𝜎 = 0.002

Noisy
𝜎 = 0.005

Time

Figure 7: Visualization of standard and noisy versions of action “throw” from NTU60-XSub.
Noise is sampled from a Gaussian Distribution X ∼ N (0, σ2) and introduced on all joints across
time. At σ = 0.002, the noisy skeletons are virtually indistinguishable from the standard ones. The
red circles reflect subtle differences in joint positions.
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Class-wise Classification Scores of Noisy Skeletons (𝜎=0.002)

MaskCLR MotionBERT
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Figure 8: Class-wise accuracy on NTU60-XSub under Gaussian noise (σ = 0.002). MaskCLR
improves the classification performance in most classes, especially in subtle actions such drink water,
reading, writing, etc. Our approach exploits the pose information from previously unactivated joints
to reduce the confusion between low-motion action classes (Best viewed in color.)

A.4 MORE EXPERIMENTS

Targeted masking. In Figure 9, we compare the deletion AUC, proposed in RISE (Petsiuk et al.,
2018), for baseline MotionBERT and MaskCLR based on the attention map of the last layer N = 5.
We note that targeted masking is more challenging than random masking since the occluded joints are
the ones that contribute most to the classification prediction. MaskCLR outperforms MotionBERT
by 2.7 in deletion AUC. Our targeted masking strategy helps the model explore a bigger set of
discriminative joints (as shown in Figure 1), thus alleviating the dependence on a few number of
joints to recognize actions.

Shifted Joints. To further evaluate the robustness of our approach, we randomly shift different
numbers of joints in the input skeleton sequence and report the effect on accuracy. More specifically,
we shift 1, 3, 5, and 10 joints (selected randomly) in the input skeleton sequence to a random position
within the skeleton bounding box. Shifted joints are commonly observed in the output of pose
estimators (Kreiss et al., 2021; Xu et al., 2022; Sun et al., 2019). As shown in Figure 10, shifted
joints cause rapid drop in the accuracy of SOTA methods. In contrast, MaskCLR exhibits the lowest
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Figure 9: Deletion score for baseline MotionBERT and MaskCLR.

drop in accuracy, notably surpassing baselines MotionBERT by 18 percentage points when the
number of shifted joints is 10.
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Figure 10: Top-1 accuracy vs the number of shifted joints.

A.5 QUALITATIVE RESULTS

Confusion Matrix. In Figure 11, we visualize the confusion matrices of MotionBERT and MaskCLR
on NTU60-XSub under spatiotemporal noise σ = 0.005. We observe that MotionBERT misclassifies
most actions into high-motion classes such as “wear a jacket” and “one foot jumping.” One possible
explanation is that the introduced noise causes artificial movements in skeleton joints. While such
fluctuations do not change the overall action semantics, it introduces motion to all joints, which
typically happens in high-motion actions. Hence, the model misclassifies the sequence into a
high-motion action. Focusing on low-level joint variations leads to the accuracy deterioration of
MotionBERT under noisy skeletons. Instead, MaskCLR aims at capturing the high-level action
semantics by utilizing a larger number of informative joints, the holistic motion of which do not
change under small amounts of noise. Additionally, the rich cross-sequence intrinsic information
shared between skeleton sequences of the same class is exploited through our multi-level contrastive
learning approach. Consequently, MaskCLR is better able to handle perturbed skeleton sequences, as
reflected in the confusion matrix (Figure 11.)

t-SNE visualization of feature space. Figure 12 shows the t-SNE visualizations of the feature space
of NTU60-XSub before the final classification layer of MotionBERT and MaskCLR. We observe
the feature space of our method is better disentangled across most classes, which we attribute to the
added sample- and class-level contrastive losses.
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MotionBERT MaskCLR (Ours)

Classification of noisy skeletons at 𝜎 = 0.005

Figure 11: Confusion matrices of noisy skeletons from NTU60-XSub. MaskCLR reduces the
ratio of false positives and false negatives by establishing clearer decision boundaries between
representations of different classes in the feature space.

MotionBERT MaskCLR (Ours)

Figure 12: t-SNE visualizations of feature space on NTU60-XSub. The feature representations
of our MaskCLR is better clustered and well-disentangled compared to that of MotionBERT. Our
multi-level contrastive learning approach minimizes the distance between similar input skeletons at
both the sample and class levels, boosting the robustness of the model against noisy or incomplete
skeletons and improving the overall classification accuracy. (Best viewed in color.)
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