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Abstract

Invariant learning methods aim to obtain robust
features that can be used in the same way in
multiple environments and can generalize out-
of-distribution. This paper introduces a novel
method to achieve this, called Invariant KNN.
We are guided by the idea that robust features
should elicit an invariant non-parametric predic-
tor across domains. For this, we create a K-
nearest neighbors predictor from each training
environment and constrain them to be the same.
We prove experimentally that this approach leads
to invariant predictors which learn to use the ro-
bust features in the data and generalize out-of-
distribution. We test our algorithm on a simple
but popular benchmark and demonstrate that it is
both competitive with other popular algorithms as
well as less sensitive to hyperparameter selection.

1. Intro
Current deep-learning methods continue to have progres-
sively better results with each new generation of models
in many domains (Jumper et al., 2021; Brown et al., 2020;
Alayrac et al., 2022). Nevertheless, all current methods still
take shortcuts (Geirhos et al., 2020) in learning by incorpo-
rating different biases and spurious correlations (Bolukbasi
et al., 2016) found in the data. With the near ubiquity of
these models, there is a high risk of propagating and ampli-
fying such biases (Bender et al., 2021).

The field of causal representation learning (Schölkopf et al.,
2021; Schölkopf, 2022) gives a formal treatment of such
cases and tries to offer solutions. One fundamental idea is
to learn to be invariant to some changes between domains.
This broad goal was successfully applied to computer vision
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problems, where the invariances were hand-designed, for ex-
ample, most self-supervised methods learn to be invariant to
some augmentations (Chen et al., 2020; Chen & He, 2020).
There are many works making this idea more formal and
giving proof of its utility in making causal decisions (Muan-
det et al., 2013; Peters et al., 2016; Arjovsky et al., 2019;
Krueger et al., 2021; Wang & Veitch, 2022).

Most related to our work are methods like Invariant Risk
Minimization (IRM) (Arjovsky et al., 2019). IRM method
constrains the optimal predictor from different environments
to be invariant across such domains, but this is challenging
in both their initial formulation as well as in their IRMv1
relaxation. We use a similar idea, where instead of an opti-
mal predictor, we create a non-parametric predictor in each
environment and we constrain them to be invariant. One pos-
sible advantage of this approach is that the non-parametric
predictor could be close to optimal and does not require
learning, so the optimization should be easier.

Guided by this principle of invariant non-parametric predic-
tors, we propose two regularizations. The first one is equiv-
alent to matching the global average of class conditional
embedding. This is related to methods like (Sun & Saenko,
2016; Long et al., 2015; Tachet des Combes et al., 2020).
The second constraint is based on the idea of matching local
averages between environments and is more flexible.

More specifically, our method works in a multi-environment
setting, by learning a robust feature extractor ϕ(x) shared
across domains. To compute the regularisation, we first
make predictions using a K-nearest neighbors approach,
using neighbors from a different environment. The in-
variance constraint is that the prediction should be the same
regardless of the domain of the neighbors. We show empiri-
cally that this method is able to learn invariant predictions.

Overall, this work has the following contributions:

1. We propose a method for invariance learning (iKNN)
based on the idea of domain invariance of non-
parametric methods.

2. We show that iKNN is able to recover the robust pre-
dictor in simple standard settings.

3. We show that this method is somewhat less sensitive
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to hyperparameters, this being a big advantage since
hyperparameter search and model selection are very
challenging in out-of-distribution settings.

2. Related Work
Invariance regularisers. Recent methods learn a predic-
tor that generalizes out-of-distribution by putting an invari-
ance constraint on the model predictions as an additional
loss during training (Arjovsky et al., 2019; Krueger et al.,
2021; Wald et al., 2021; Eastwood et al., 2022; Shi et al.,
2022). Arjovsky et al. (2019) optimize the features for an
optimal predictor across the domains. Because the optimal
IRM loss is hard to optimize as it requires a bilevel opti-
mization, the authors propose a relation IRMv1. Subsequent
work (Kamath et al., 2021) has shown that the practical
IRMv1 loss does not capture the desired invariances in all
cases. Krueger et al. (2021) propose the principle of risk ex-
trapolation (REx ) to achieve invariant prediction by enforc-
ing equal risks across training domains and is obtained by
constraining the variance of the risks (V-REx). Models with
perfect calibration across multiple domains are shown (Wald
et al., 2021) to generalize out-of-distribution. The work of
Eastwood et al. (2022) show that the domain generaliza-
tion problem is better viewed as solving the most probable
problem (quantile risk) instead of the average (mean risk)
or worst-case(maximum risk) problem. In order to match
the distributions of the features between domains, Shi et al.
(2022) proposes to compute the gradients of the losses with
respect to the parameters on different training domains and
constrain them to be orthogonal (small inner product). This
is a challenging second-oder optimization, thus the authors
solve it via a meta-learning approach denoted as Fish, which
requires computing an inner-loop.

Distributions matching. Some methods explicitly try to
match the distributions of the features between different
environments. Although many assume access to unlabeled
testing domain data, they can also be applied between train-
ing domains (Gulrajani & Lopez-Paz, 2021). Sun & Saenko
(2016) introduces a method (deep Coral) that regularises
the features of a deep network such that their covariance
is the same between training and testing domains. In prac-
tice, in popular benchmarks (Gulrajani & Lopez-Paz, 2021;
Koh et al., 2021) the implementation of this method opti-
mizes the difference between both the means (first moment)
and covariances (second moment) of different environments.
Maximum Mean Discrepancy (MMD) is used to minimize
the differences between environments in multiple methods.
MMD is defined (Gretton et al., 2006) as the maximum
mean difference of any scalar function of the samples. A
collection of fixed functions are used in practice, by defin-
ing a set of Gaussian kernels with different bandwidths (Li
et al., 2018; Long et al., 2015). Related to this, the idea of

kernel mean embeddings (Muandet et al., 2017) is also used
to match the distributions across training domains and learn
an appropriate re-weighting of the samples as in Gretton
et al. (2009); Zhang et al. (2013); Tachet des Combes et al.
(2020).

Invariant Features. Ye et al. (2021) prove that learning
features with small variations across the training environ-
ments is important for increasing out-of-distribution gener-
alization. Wang et al. (2022) propose a method to recover a
subspace of invariant features. Their ISR-Mean method is
based on the idea of creating a set of class-conditioned em-
beddings, one for each training environment and extracting
the invariant subspace by selecting the most stable eigen-
vectors given by PCA. This method is applied post-hoc to
already-learned features on realistic datasets. As said in sub-
section 4.3 the simplified setting of our method Lmean also
uses conditional mean embeddings to optimize the features,
but our method has the advantage that we obtain robust
features during training.

3. Invariant Non-parametric predictor
IRM (Arjovsky et al., 2019) aims to find a data representa-
tion such that the optimal predictor on top of that represen-
tation is the same across all environments. The main IRM
objective, containing a bilevel optimization problem, is hard
to use, therefore in practice it is often relaxed into IRMv1. In
this work, use a related objective, of optimizing the features
such that each environment defines the same non-parametric
predictor. Since there is no learning involved in creating the
non-parametric predictor, our objective is easy to optimize.

Key idea: We constrain the features to obtain the same
non-parametric predictor across multiple domains.

Another type of useful invariance for domain generalization
is the following Conditional Distribution Invariance (Wang
& Veitch, 2022) between environments EA and EB :

PEA
[ϕ(X)|Y ] = PEB

[ϕ(X)|Y ] ⇐⇒ ϕ(X) ⊥⊥ E|Y (1)

The simplest constraint in this direction is to use the ex-
pected value of the class-conditioned features across each
environment:

EEA
[ϕ(X)|Y ] = EEB

[ϕ(X)|Y ] (2)

We show (subsection 4.3) that a simplified version of our
constraint (Lmean) has this type of invariance.

To gain more flexibility and move towards matching the
entire distribution, we aim to obtain a data representation
that produces an invariant non-parametric predictor.

Definition (Invariant Non-parametric predictor): A data rep-
resentation ϕ : X → H elicits an invariant non-parametric
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predictor w∗ across environments E if the data from each
environment creates the same predictor:

w∗(x) = wA(x) = wB(x), ∀x ∈ E ,∀EA, EB (3)

where the non-parametric predictor wi is created using data
from environment Ei. In our case the non-parametric predic-
tor is a K-nearest neighbors classifier.

Optimizing for features satisfying this invariance has some
advantages: 1) ease of learning since we don’t have a bi-
level or second-order optimization 2) flexibility in matching
the distributions, as using different non-parametric classi-
fiers arrive at different forms of distributional matching.

4. Method
In this work, we introduce a method called Invariant KNN
(iKNN) based on the idea that different environments should
create the same non-parametric predictor.

We work in a setting where we have access to multiple
training environments (at least 2), each having some as-
pect of the world changed. We train our model on in-
distribution data DID = {(Xi, Yi)|∀Xi, Yi in-distribution}
and test it on out-of-distribution data DOOD =
{(Xe

i , Y
e
i )|∀Xi, Yi out-of-distribution}. Each of these

datasets can be split into multiple ID, and OOD environ-
ments, respectively.

We use input X ∈ RM (usually an image M = 3×H×W )
and use a function ϕ to generate some features ϕ(X) ∈ RD.
Then, we use a non-parametric method to make the predic-
tions using these features. h(ϕ(X)) ∈ RC . where C is the
number of classes. In our implementation, we use multi-
layer perceptions (MLPs) as ϕ and k-nearest-neighbours
classifiers as non-parametric method.

4.1. Non-Parametric prediction

We introduce the general way to predict using a non-
parametric method like K-nearest neighbors (KNN) and
then show how to use it in the proposed method.

For a given query sample Xq ∈ RD, we make a prediction
using samples from a support set S = {(Xi, Yi)|∀i ̸= q}
where we have access to one-hot labels Yi ∈ RC , where C
is the number of classes. First, we compute distances from
Xq to every sample in the support set S and use them to
compute similarities. The prediction will then be a weighted
average of the labels in the support set, where the weight is
given by these similarities.

If we use only the top-k most similar neighbors Nk(Xq) =
{Xj ∈ S|ϕ(Xj) ∈ top-k most similar to ϕ(Xq)} ⊆ S
from the support set, we arrive at KNN classifier:

p(Xq) =
1

k

∑
Xi∈Nk(Xq)

⟨Xq, Xi⟩Yi ∈ RC (4)

We can use cosine similarity as ⟨, ⟩, although in practice, sim-
ilar to other deep learning methods (Vaswani et al., 2017),
we use only use an inner product, without normalization.

4.2. Invariant KNN

We propose an invariance condition using KNNs in a multi-
ple training environment setting. The same feature extractor
ϕ creates embeddings for each sample in each domain. Nor-
mally, we predict queries from one domain A using a sup-
port set from the same domain, but here we also use a sup-
port set from a different domain B to create a different non-
parametric predictor. We enforce the constraint that regard-
less of the domain used, the predictions should be the same.

Practically, we only work at the mini-batch level, where a
mini-batch contains samples from multiple domains. We
present the method using 2 training domains, but it can be
generalized to an arbitrary number of domains where the
constraint is put on pairs of environments.

For a sample X from training environment A, we make
a prediction using two sets of neighbors. The first set,
NA

k (X), is formed from the top-k most similar samples
in the same environment A, while the second set NB

k (X)
contains the top-k neighbors from training environment B:

µA(X) =
1

k

∑
Xi∈NA

k (X)

⟨ϕ(X), ϕ(Xi)⟩Yi (5)

µB(X) =
1

k

∑
Xi∈NB

k (X)

⟨ϕ(X), ϕ(Xi)⟩Yi (6)

We propose to constrain these two predictions to be close:

LiKNN(X) = ||µA(X)− µB(X)|| (7)

The LiKNN loss is used to obtain invariant features, but we
also need another signal for learning useful features. This
is orthogonal to the invariant regularizer, and we can use
the basic ERM applied to the KNN predictions made using
queries and support sets from the same training domain.
Optionally, we can also predict using a trainable linear head
on top of the features, since they are constrained to be robust.

The final loss used to train the whole model is therefore:

L =
∑

(X,Y )∈Etrain

[LERM(X,Y ) + λLiKNN(X)] (8)

As other methods (Gulrajani & Lopez-Paz, 2021; Zhang
et al., 2022), we use just the ERM loss for a small number
of epochs, then we optimize both losses. In practice, to be
consistent with other methods, we use the linear head to
make the predictions.
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Figure 1. Our proposed LiKNN vs the simplified version Lmean.
Lmean puts a constraint on the mean embeddings of features across
the complete distributions, while LiKNN constraints local means
across all points in the two distributions. For the given distributions
Lmean is zero already, while LiKNN is not, thus it can constrain the
distributions further.

4.3. Conditional Feature Invariance

First, we show that a simplified version of our penalty im-
plies invariance between the expected value of features,
conditioned on the target.

When using the entire dataset as neighbors, our proposed
loss from Equation 7 becomes

LiKNN(X) =

∥∥∥∥ 1

|EA|
∑

(Xi,Yi)∈EA

⟨ϕ(X), ϕ(Xi)⟩Yi

− 1

|EB |
∑

(Xi,Yi)∈EB

⟨ϕ(X), ϕ(Xi)⟩Yi

∥∥∥∥ (9)

If we use the linear, un-normalized dot product used as the
similarity measure, this is equivalent to:

LiKNN(X) = ||
C∑

c=1

⟨ϕ(X), wc
A − wc

B⟩|| (10)

where wc
A and wc

A are class prototypes for environments A
and B, i.e. they are the average embeddings of the samples
with a certain class within each environment.

wc
A =

1

|Ec
A|

∑
Xi∈Ec

A

ϕ(Xi) wc
B =

1

|Ec
B |

∑
Xi∈∈Ec

B

ϕ(Xi)

with Ec
A = {Xi|(Xi, Yi) ∈ Ec

A, Yi = ec} all samples from
domain A with class c, ec element of the standard basis.

We can minimize Equation 10 by alternatively minimizing
the difference between the class prototypes from different
environments.

Lmean =
∑
c

||wc
A − wc

B || (11)

which has it’s minimum when

EEA
[ϕ(X)|Y ] = EEB

[ϕ(X)|Y ] (12)

This simplified formulation resembles the idea of kernel
means embeddings (Muandet et al., 2017). In fact, wc

A, wc
B

are the kernel mean embeddings where the kernel is explic-
itly defined by the inner product of the features. The idea
of matching kernel mean embeddings between training and
testing distributions is used by Gretton et al. (2009) and
Zhang et al. (2013) to reweight the training examples. In
our case, we use the simplified loss that matches the means
as a signal for learning invariant features. We note that
for certain types of kernels (characteristic kernels), match-
ing the means is equivalent to matching the entire distribu-
tions (Muandet et al., 2017).

This is also related to ISR-Mean (Wang et al., 2022)
that creates invariant features by applying PCA on class-
conditioned mean embeddings, although their method is
applied as a post-processing step. While methods like (Sun
& Saenko, 2016) use invariance between unconditional mo-
ments (mean and covariance) as an additional loss, we use
conditional first-moment matching in the simplified setting.

The LiKNN loss from Equation 7 puts a constraint such that
each point in domain A has a local neighborhood in domain
A and a local neighborhood in domain B that would match,
meaning the distributions of the features would be similar.
On the other hand, the simplified loss Lmean matches the
global mean of the entire distributions. This is broadly
represented in Figure 1. Using local neighborhoods gives
us more flexibility in matching the two distributions.

5. Experiments
We evaluate iKNN on OOD generalization tasks.

Colored MNIST. Arjovsky et al. (2019) constructs a bi-
nary classification problem of MNIST digits while using
color as a spurious feature. Each digit is colored either red
or green, with a strong positive correlation between color
and label at training time. The goal is to learn the robust
feature (digit shape) and ignore the spurious feature (color).
We train on two environments with a strong correlation be-
tween color and shape and evaluate on environments with
zero or strong negative correlation.

Main results. From our first experiment in Table 1, we
show the performance on different testing environments of
the ColorMNIST dataset. As expected, ERM performs bet-
ter than the rest for the in-distribution setting (ID), but fails
for the two increasingly more out-of-distribution (OOD) set-
tings. All invariant learning methods learn stable predictors
with small variations in performance across environments.
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Our algorithm, iKNN performs as well if not better than the
baselines in the out-of-distribution environments.

As model selection is challenging in OOD setting, we se-
lect the best hyperparameters using the performance on the
environment with zero color-label correlation.
Table 1. iKNN performs comparably against other invariant meth-
ods on ColoredMNIST. Results over 3 seeds.

Algorithm Test Spurious correlation

Strong (+) Zero Strong (-)
(ID) (OOD) (OOD)

ERM 88.4 ± 0.4 52.6± 0.2 17.5± 1.1
IRM 71.6± 2.3 70.0± 0.5 67.1± 2.1

V-REx 70.1± 1.3 70.3 ± 0.7 69.0± 0.7

iKNN 68.7± 0.2 70.1 ± 1.0 70.1 ± 1.2

Top-K Strong Positive Zero Strong Negative
(ID) (OOD) (OOD)

5 72.2 68.0 64.1
10 74.6 68.8 62.0
32 70.3 68.9 67.1
64 68.5 69.5 69.3
512 70.5 70.5 69.3

Table 2. Performance of iKNN using different neighborhoods. We
always consider the top-K closest neighbors in the mini-batch.
Generally, we see that increasing the number of neighbors helps.
We use a maximum mini-batch size of 512.

Global vs local distribution matching We ablate the
effect of hyperparameter k, while keeping λ = 1000 on the
Colored MNIST performance in Table 2. This parameter can
be also seen as the degree of locality used for matching the
distributions between environments. We see that k is rather
robust and generally performs well, although larger values of
k appear to perform better on the out-of-distribution settings.
Nevertheless, the performance even with reasonably small
k (greater than 32) is competitive with other methods.

Invariance Penalty Sensitivity. In Figure 2 we show the
performance of IRM, vREx and iKNN across environments
for various values of the invariance penalty weight λ. An
invariant method is robust to λ if it has uniform performance
across environments for a large range of λ values. To quan-
tify this, we compute the standard deviation of the accuracy
across the environments (across rows) and average them
across λ values (across columns). We obtain:

Model IRM V-REx iKNN

Avg std ↓ 4.7 2.7 1.8

where lower is better. This shows that iKNN is less sensitive
to choices of λ, and can work well under a larger range of λ
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Figure 2. Performance of algorithms on Color MNIST as the λ pa-
rameter increases on differing levels of OOD testing environments.
Environments go from 0 (color-label correlation 1.0 ) to 10 (color-
label correlation -1.0) and the models are trained on environments
1 and 2. A good invariant model has stable performance across all
environments. We see that iKNN is generally more stable as for a
larger range of λ values.

values, helping in hyperparameter selection. Since choosing
the right hyperparameters is extremely important in an out-
of-distribution setting (Gulrajani & Lopez-Paz, 2021), this
larger range is an important advantage.

6. Implementation details
Dataset. On ColorMNIST, we train two environments,
where color and label match in 0.1 and 0.2 times cases.
We evaluate on in-distribution (0.1) and out-of-distribution
(0.5, no correlation; 0.9, negative correlation) environments.
The shape of the digits always matches the labels with a
probability of 0.25. We downsample images to 2× 14× 14.
We create validation sets of all environments for model
selection and testing sets for reporting the final performance.

Hyperparameters. As feature extractor ϕ, we use an MLP
with 2 hidden layers of size 390. We train using Adam opti-
mizer with a learning rate of 0.0001. All invariant learning
methods, IRM, V-REx and iKNN use a hyperparameter λ to
control the weight of the invariance penalty. For all methods,
we search over λ ∈ [1.0, 10.0, 102, 5∗102, 7∗102, 103, 1.5∗
103, 2 ∗ 103, 4 ∗ 103, 5 ∗ 103, 104, 5 ∗ 104, 5 ∗ 105, 106]

Similar to other methods (Zhang et al., 2022) we select the
best hyperparameters using OOD validation data. Model
selection is an important aspect for out-of-distribution gener-
alization and it is challenging for all existing methods (Gul-
rajani & Lopez-Paz, 2021). The proposed iKNN method
has larger ranges of good hyperparameters λ (see Section 5),
having an advantage in this regard.

7. Conclusion
We introduce iKNN, a simple method aimed to learn robust
features based on an invariance constraint of non-parametric
(KNN) predictors. We demonstrate that it compares fa-
vorably with other, more well-known OOD-generalization
methods. While it remains to be determined how the pro-
posed method behaves in more realistic scenarios, the pos-
itive initial results suggest that this could be a promising
direction for future work.
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