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Abstract

The advent of large language models (LLMs)001
has spurred considerable interest in advancing002
autonomous agents, empowering them to003
tackle real-world tasks by perceiving distinct004
environments, formulating plans, and executing005
actions. An intriguing application of these006
agents is within smartphone graphical user007
interfaces (GUIs). Upon receiving a task008
goal, the agent generates step-by-step plans009
and engages in iterative interactions until010
task completion. However, it remains an011
open challenge how to generate effective012
plans to guide the action prediction. Current013
studies often confine themselves to static014
plans or lack specific plans entirely. Given015
that the environment evolves following action016
execution, the imperative is to adapt plans017
dynamically based on environmental feedback018
and action history. To address the challenge,019
we propose DP-Agent, a novel approach020
designed to cultivate dynamic planning in021
agents. DP-Agent involves the dynamic022
adjustment of planning based on feedback023
from the environment and interaction history.024
Experimental results reveal that DP-Agent025
exhibits superior performance, surpassing the026
widely adopted GPT-4V baseline by +8.81%027
(35.58% → 44.39%) on the AITW benchmark028
dataset. Our analysis highlights the efficacy029
of dynamic planning in not only enhancing030
action prediction accuracy but also in adapting031
to previously unfamiliar tasks.032

1 Introduction033

The pursuit of building autonomous agents that034

can help humans tackle real-world problems is a035

long-standing goal of artificial intelligence (Searle,036

1972; Wooldridge and Jennings, 1995; Maes,037

1994). Recently, large language models (LLMs),038

such as ChatGPT and GPT-4, have spurred039

heightened exploration in the realm of autonomous040

agent (Chowdhery et al., 2022; Wei et al., 2023;041

Achiam et al., 2023). These agents have shown042

promising opportunities to address real-world tasks 043

via perceiving distinct environments, formulating 044

plans, and executing actions. Meanwhile, they have 045

demonstrated remarkable capabilities in critical 046

thinking, reasoning, and ultimately, the execution 047

of actions across distinct environments (Huang and 048

Chang, 2023; Yao et al., 2023a; Wang et al., 2023b; 049

Chen et al., 2023). 050

The early stages of autonomous agent research 051

predominantly concentrated on processing tex- 052

tual information, encompassing environmental 053

descriptions and interaction processes under a 054

text-based framework (Searle, 1969; Wooldridge 055

and Jennings, 1995; Maes, 1998; Hendler, 1999). 056

However, recent advancements signal a paradigm 057

shift from solitary text-based frameworks to more 058

comprehensive multimodal approaches (Wu et al., 059

2023; Surís et al., 2023; Gupta and Kembhavi, 060

2022). Multimodal agents demonstrate proficiency 061

in assimilating inputs from various modalities, 062

significantly broadening their applicability across 063

a diverse spectrum of scenarios. 064

A prevalent scenario is smartphone graphical 065

user interface (GUI) automation, where agents 066

are tasked with controlling smartphones to 067

execute complex instructions through multi-turn 068

interactions (Rawles et al., 2023; Wen et al., 069

2023). Representative approaches include fine- 070

tuning multi-modal models (Zhang and Zhang, 071

2023; Hong et al., 2023), or prompting GPT-4V to 072

understand the GUI and execute actions (Yan et al., 073

2023; Zhang et al., 2023). Nonetheless, the existing 074

body of research concentrates on environment 075

perception, e.g., understanding visual modalities. 076

It remains an open challenge how to generate 077

effective plans to guide the action prediction. 078

Specifically, one key challenge is the dynamic 079

adjustment of plans based on feedback from 080

the environment and interaction history. The 081

significance of planning in influencing task 082

performance has been well-established (Zhao et al., 083
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2023; Wang et al., 2024a,b; Yang et al., 2024).084

However, current studies commonly determine085

actions with static plans (Zhang and Zhang, 2023)086

or even without specific plans (Yan et al., 2023;087

Zhang et al., 2023). For example, CogAgent (Hong088

et al., 2023) first generates the complete plan089

upon receiving the task instruction and initial090

environment and then executes the actions step-091

by-step accordingly. Given that the environment092

evolves following action execution, it becomes093

imperative to dynamically adapt plans based094

on environmental feedback and action history.095

This adaptive approach ensures that plans remain096

effective amid changing circumstances.097

To tackle the aforementioned challenge, this098

paper introduces the Dynamic Planning agent (DP-099

Agent). DP-Agent dynamically adjusts its plans by100

leveraging real-time environmental feedback and101

interaction history throughout the goal attainment102

process. This adaptability allows the DP-Agent103

to continuously refine its approach, ensuring104

persistent optimization until the desired objective is105

successfully achieved. Experimental results reveal106

that DP-Agent exhibits superior performance,107

surpassing the widely adopted GPT-4V baseline108

by +8.81% (35.58% → 44.39%) on the AITW109

benchmark dataset.110

In summary, our work contributes to the field in111

the following technical aspects:112

(i) This work introduces a novel Dynamic113

Planning agent dubbed DP-Agent. DP-Agent114

dynamically formulates plans and selects appro-115

priate steps from these plans for action execution.116

This process is based on environmental feedback117

and execution history, enhancing the agent’s118

performance and adaptability.119

(ii) DP-Agent demonstrates impressive perfor-120

mance on the AITW benchmark dataset (Rawles121

et al., 2023), notably achieving an +8.81% overall122

performance improvement compared to the widely123

adopted GPT-4V baseline. Our work highlights the124

efficacy of dynamic planning in not only enhancing125

action prediction accuracy but also in adapting to126

previously unfamiliar tasks.127

(iii) We conducted an extensive analysis to128

scrutinize the various factors influencing the129

planning process. Our findings are systematically130

categorized to elucidate the advantages and131

disadvantages associated with different factors.132

This comprehensive examination provides valuable133

insights into the intricacies of planning dynamics,134

contributing to a deeper understanding of the field.135

2 Related Work 136

Our work focuses on the use of LLMs, and this 137

section will first review the recent progress of the 138

work on building the mobile control agents and 139

then discuss the planning mechanism of the agents. 140

2.1 LLMs Agent 141

LLMs have spurred considerable interest in 142

the realm of language agents, which adeptly 143

adhere to language instructions and execute 144

actions in interactive environments. Notable 145

examples include AutoGPT (Yang et al., 2023a), 146

HuggingGPT (Shen et al., 2023), and MetaGPT (Xi 147

et al., 2023), all of which explored the integration 148

of LLMs as the core of agents aimed at addressing 149

real-life problems. 150

This work focuses on the development of LLM 151

agents as intelligent assistants for smartphones. 152

These assistants are crafted to assist people in 153

accomplishing their daily tasks and meeting life’s 154

requirements, especially enhancing accessibility 155

for individuals with disabilities. Notably, the 156

advent of multi-modal agents such as GPT- 157

4V, showcasing robust image understanding 158

capabilities (Yang et al., 2023b), has prompted 159

previous research to predominantly concentrate 160

on comprehending GUI interactions. For 161

instance, MM-Navigator delved into leveraging 162

optical character recognition (OCR) parsing to 163

enhance GPT-4V’s GUI comprehension (Yan 164

et al., 2023), while AppAgent reinforced the 165

understanding of Application GUI elements by 166

introducing the roles of distinct GUI (Zhang et al., 167

2023). In addition to these, CogAgent fine-tuned 168

the agent’s understanding of GUI to enhance 169

performance (Hong et al., 2023). 170

In contrast to the prior research that concentrates 171

on multimodal perception, our work focuses on 172

the planning mechanism to enhance the agent’s 173

proficiency in planning and effectively tackle multi- 174

step tasks on smartphones. Specifically, our 175

approach dynamically updates the plan based on 176

the current environment and execution history, 177

providing a unique perspective that distinguishes 178

our work from previous efforts in this field. 179

2.2 Planning Mechanisms in LLM Agents 180

LLMs have shown considerable potential in 181

constructing agents with strong capabilities in 182

following instructions and maintaining coherent 183

chains of thought (CoT) via solving complex 184
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Figure 1: Overview of DP-Agent. In turn, i, the DP-Agent makes a plan based on visual input and textual input,
predicts the action to be performed, and then updates the execution history, and then proceeds to the next turn i+ 1.

problems (Wei et al., 2023; Kojima et al., 2023;185

Zhang et al., 2022). Notably, the CoT prompting186

technique has enabled LLMs to engage in effective187

step-by-step problem-solving process (Huang and188

Chang, 2023; Yao et al., 2023a; Wang et al., 2023b;189

Chen et al., 2023). To address more complex190

problems, divide-and-conquer prompting strategies191

have been proposed, e.g., dividing problems into192

manageable steps (Zhou et al., 2023; Lee and Kim,193

2023) or sequential solutions (Wang et al., 2023a).194

The research above mainly focuses on enhancing195

reasoning abilities. However, the ReAct (Yao196

et al., 2023b) prompting has inspired researchers to197

explore more suitable ways for LLMs to complete198

tasks by leveraging their reasoning abilities. This199

approach involves LLMs first observing and200

reasoning before taking action, such as utilizing201

external tools to identify and rectify errors (Gou202

et al., 2023; Shinn et al., 2023), or planning before203

executing (Wang et al., 2023a; Hao et al., 2023).204

Inspired by ReAct (Yao et al., 2023b), we design205

a novel DP-Agent prompting framework called DP-206

Agent to achieve dynamic plan adjustment during207

the interaction. In contrast to ReAct, DP-Agent208

involves actions performed within a simulated en-209

vironment rather than directly interacting with the210

physical smartphone environment. Nevertheless,211

DP-Agent follows a similar logical approach as212

ReAct by first leveraging the reasoning capabilities213

of LLMs to plan before executing actions.214

3 Method215

This section describes our DP-Agent approach,216

which is grounded in dynamic planning based on217

environment feedback and execution history. 218

On a high level, DP-Agent comprises two 219

stages: (i) planning initialization: the agent initiates 220

the planning process by generating an overall 221

plan, considering the ultimate goal, current visual 222

input, and prior execution history. Once the 223

plan is formulated, the agent will select the most 224

plausible step for execution. (ii) dynamic planning 225

adjustment: the executed action is appended to 226

the execution history. This updated history then 227

shapes subsequent planning cycles. In doing so, 228

the agent is equipped with the latest contextual 229

information, thereby enhancing decision-making 230

efficacy in subsequent turns. The framework of 231

DP-Agent is shown in Figure 1. 232

3.1 Planning Initialization 233

In pursuit of the task goal g, the agent engages 234

in k turns of interactions until task completion. 235

Specifically, at each turn i (i = 1, . . . , k), the 236

agent f processes the visual input x(i)v (i.e., the 237

current screenshot) and the textual input x(i)t . It 238

then generates the plan pi and identifies the optimal 239

step si ∈ pi to execute: 240

(p(i), s(i)) = f(x(i)v , x
(i)
t ), (1) 241

where the textual input x(i)t consists of the task goal 242

g, screen caption x
(i)
c , and execution history x

(i)
h . 243

The textual input is further wrapped with 244

prompts (Appendix A.1) before feeding the agent 245

along with the visual input. Concretely, we 246

articulate our task goal at the text’s outset 247

by prompting “Your ultimate goal is: <g>”. 248
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Step: Click on 

'CLOSE' to dismiss the 

error message.

Action: {'action_type': 

'click', 'idx': 10}

Action Click

Step: Swipe up from 

the bottom of the 

screen to access the 

app drawer or home 

screen.

Action: {'action_type': 

'scroll', 'direction': 'up'}

Action Scroll

Step: Type 

'GameTrailers' into the 

search bar to find the 

channel.

Action: {'action_type': 

'type', 'text': 

'GameTrailers'}

Action Type

Step: Tap the back 

arrow icon to exit the 

Settings of Google 

Photos and return to 

the main screen of the 

app.

Action: {'action_type': 

'navigate_home'}

Action Navigate

Step: Mark the task as 

complete.

Action: {'action_type': 

'status_complete'}

Action Status

Step: Press the 'Enter' 

key to initiate the 

search for 'macbook'.

Action: {'action_type': 

'press_enter'}

Action Press

Figure 2: Examples of six types of available actions.

Subsequently, we append the screen caption results249

under the heading “The current on-screen input250

is: <x(i)c >”. Then, we include execution history,251

structured as “Here are previous actions: <x(i)h >”.252

After feeding the inputs, we request the agent253

to generate a plan p(i) = [p
(i)
1 , p

(i)
2 , . . .], which254

consists of a sequence of steps to achieve the255

ultimate goal. Within those steps, the agent is also256

required to identify the optimal step s(i) ∈ p(i).257

Action Type Action Description

Click Idx
Scroll Direction (up, down, left and right)
Type Text
Navigate Home / Back
Status Complete
Press Enter

Table 1: Six types of available actions.

In practice, s(i) is confined to a finite set of258

available actions in the GUI automation task and259

will be transformed into the JSON format for260

execution. Following Rawles et al. (2023), we261

utilize six distinct types of actions as presented in262

Table 1. Examples are provided in Figure 2.263

3.2 Dynamic Planning Adjustment264

After the execution of s(i), the agent becomes265

anchored in the subsequent interaction turn with an266

updated visual input x(i+1)
v (e.g., a new screenshot).267

Simultaneously, we refine the execution history268

x
(i+1)
h by concatenating x

(i)
h and s(i):269

x
(i+1)
h = CONCAT(x

(i)
h , s(i)), (2)270

where CONCAT denotes the concatenation opera-271

tion between strings.272

Consequently, the execution history is organized 273

with consecutive elements in the format of “step 274

<turn id>: <action>”. This updated execution 275

history x
(i+1)
h is subsequently employed according 276

to the planning initialization process outlined in 277

Section 3.1 for turn (i + 1) until the task reaches 278

completion. The task is considered complete when 279

i = k or the agent predicts the “Status” action type 280

with the “Complete” action description. 281

4 Experiments 282

In this section, we first describe the dataset, metrics, 283

and baseline settings for our experiments. Then, 284

we present our main results, followed by analysis. 285

4.1 Dataset 286

We employ the AITW (Rawles et al., 2023) 287

benchmark dataset for our evaluation on Android 288

devices. AITW is a comprehensive benchmark 289

dataset specifically designed for GUI control, 290

encompassing natural language instructions, corre- 291

sponding screenshots, and associated actions. The 292

dataset spans tasks across five distinct categories, 293

including Internet search, downloading, and online 294

shopping, and involves interactions with over 350 295

different applications and websites. In its entirety, 296

the dataset comprises 715,000 episodes, featuring 297

a diverse range of 30,000 unique instructions. 298

We leverage the provided screen caption results 299

as part of the textual input. Concretely, given a 300

screen, GUI icons were detected using the OCR 301

tool and IconNet (Sunkara et al., 2022). Each 302

GUI icon is associated with a bounding box and 303

OCR-detected text. To align predicted gestures 304

with specific GUI elements, we filter the valid data 305

by selecting instances whose gesture coordinates 306

could fall within the corresponding GUI box. 307

Numeric text tags are added to these GUI boxes for 308

analysis purposes. 309

Dataset Episodes Screens Instructions

General 9,476 85,413 545
Install 25,760 250,058 688
GoogleApps 625,542 4,903,601 306
Single 26,303 85,668 15,366
WebShopping 28,061 365,253 13,473

Table 2: Dataset statistics.

Table 2 presents the data statistics. Subsequently, 310

each filtered subset is partitioned episode-wise 311

into training, validation, and test sets following 312

an 80/10/10 split. Additionally, considering the 313
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Model Overall General GoogleApps Install Single WebShopping

Fine-tuned Llama 2 (Zhang and Zhang, 2023) 28.40 28.56 30.99 35.18 27.35 19.92

PaLM-2 ZS (Rawles et al., 2023) 30.9 - - - - -
ChatGPT 5-shot (Zhang and Zhang, 2023) 7.72 5.93 10.47 4.38 9.39 8.42

GPT-4V ZS 35.58 30.40 38.80 42.67 35.46 30.56
DP-Agent 44.39 39.08 50.63 41.09 55.99 35.15

Table 3: Main results (%). Segment 1: fine-tuned Llama 2 baseline; Segment 2: in-context learning LLM baselines,
“ZS” stands for “zero-shot” and “5-shot” stands for using 5-shot in-content learning (Section 4.3); Segment 3:
GPT-4V as agent model, “DP-Agent” represents our proposed method. The best result is reported in boldface.

constraints of GPT-4V, we limit our data selection314

to episodes with a length of less than 15. To315

get more convincing results, we sampled three316

completely different sets of data samples from317

the test set, each with 300 episodes sampled from318

different subsets for analysis and experimentation.319

4.2 Metrics320

In line with prior research (Zhang and Zhang,321

2023; Yan et al., 2023), our primary evaluation322

metric is the screen-wise action matching score,323

computed as the ratio of correct actions to the324

episode length. Specifically, for click actions,325

correctness is determined if the selected element326

is within a 14% screen distance from the gold327

gestures or falls within the same detected bounding328

box as the user’s gestures. Given that the agent329

responds with the numeric tag of the GUI, we select330

the top left, top right, bottom left, bottom right, and331

center of the box as sample points for calculating332

coordinate distances.333

Regarding scroll actions, correctness is assessed334

if the selected direction aligns with the scroll335

direction (up, down, left, or right) of the user’s336

gestures. For other actions, correctness is337

established only if the types of actions match.338

4.3 Baseline339

We compare our prompting framework with the340

following baselines (Rawles et al., 2023; Zhang341

and Zhang, 2023).342

• PaLM-2 ZS (Rawles et al., 2023): This setting343

evaluates the zero-shot performance of PaLM-2 by344

providing a textual description of the screen and345

prompting it to predict an action from the supported346

actions in AITW.347

• ChatGPT 5-shot (Zhang and Zhang, 2023):348

ChatGPT’s performance is assessed with a 5-shot349

prompt format similar to PaLM-2. The experiments350

are conducted using the ChatGPT API.351

• Fine-tuned LlaMa-2 (Zhang and Zhang, 2023): 352

The Llama-2 model is fine-tuned with LoRA, 353

utilizing user instructions and screen descriptions 354

in HTML syntax, which aligns with the format 355

used for in-context learning in LLMs. The model 356

is fine-tuned using 1% randomly sampled training 357

data to facilitate adaptation to the task. 358

• GPT-4V ZS: Zero-shot prompting with GPT- 359

4V. The model is presented with a screenshot image 360

and a textual description of the screen, tasked with 361

predicting an action from the available actions. 362

4.4 Implementation Details 363

We use the GPT-4V (Achiam et al., 2023) interface 364

provided by OpenAI as the backbone of our 365

agent. We set the “max_tokens” as 300 and the 366

“temperature” as 0. The model has a training epoch 367

of 3 and a maximum length of 2560. 368

We also fine-tune public large models, i.e., 369

Llama (Touvron et al., 2023) and LLaVa (Liu et al., 370

2023), to verify the general effectiveness of our 371

approach. For the finetuning experimental setup, 372

we use Llama2-7B and LLaVa-7B as our base 373

model, training epochs to be 3, without eval set 374

between epochs. The maximum length of the input 375

sequence is 2560, ensuring that the text can be fully 376

entered. Text input generally includes the goal, 377

screen descriptions in HTML syntax, and execution 378

history. For inputs with a “Plan” experimental 379

group, the step to be selected is spliced at the 380

end of the input, similar to the prompt of GPT-4V 381

requiring the action to be performed. 382

4.5 Main Results 383

Table 3 presents the main results.1 Based on the 384

results, we have the following key findings. 385

(i) DP-Agent achieves substantial perfor- 386

mance gains over the GPT-4V baseline. DP- 387

1We run experiments with three random seeds and report
the average scores. Details of the three runs are presented in
Appendix A.2.
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Category w/ GPT-4V w/ Human

Total Accuracy 23.57 52.23
Click Accuracy 17.83 27.39
Scroll Accuracy 0.00 1.27
Type Accuracy 2.55 9.55
Complete Accuracy 2.55 7.64

Table 4: Comparison of GPT-4V generated planning
and human-annotated planning in the Install dataset (%).
The best average result is reported in boldface.

Agent demonstrates overall improvement of388

+8.81% (35.58% → 44.39%) compared to the389

widely adopted GPT-4V baseline. The results show390

improving the planning mechanism is effective in391

boosting the GUI agent performance.392

(ii) Perception with the visual modality393

benefits the task performance. We observe394

that even the GPT-4V ZS Baseline exhibits395

improvements over plain text input LLMs, with396

an increase from 7.72%→35.58% compared397

to ChatGPT 5-shot and from 30.9%→35.58%398

compared to PaLM-2 ZS.399

(iii) Dynamic planning achieves substantially400

better performance than static planning. We401

notice that the impact of introducing planning402

varies across different tasks. In General,403

GoogleApps, Single, and Webshopping dataset404

tasks, the improvement caused by planning is stable405

and evident. In the Install dataset, there is little406

improvement in dynamic planning performance.407

Upon scrutinizing the outcomes produced by the408

agent, we conclude that planning the Install tasks409

for GPT-4V remains a formidable challenge. To410

validate this observation, we choose 20 episodes411

from the Install dataset and meticulously label412

them with corresponding plans. Even with a plan413

in place, the subsequent step involved selecting414

and executing actions. Examining the results415

presented in Table 4, we are pleased to note a416

notable improvement in the overall correctness rate,417

which rises from 23.57%→52.23%.418

4.5.1 Contribution of Dynamic Planning419

To investigate the role of dynamic planning in420

decision-making by GPT-4V, we analyze the421

correct rate of different actions and the proportion422

of predicted actions. We combine the results of five423

datasets in Figure 3. More details are provided in424

Appendix A.3. Our observations based on these425

statistics reveal two notable changes:426

(i) Increased Component of Predicted Actions.427

In comparison with the GPT-4V Baseline, DP-428

Figure 3: The proportion and correct rate of predicted
actions of GPT-4V and DP-Agent. We mainly collected
the proportions of “Click”, “Scroll”, “Type’, “Navigate
Home” and “Complete” actions. “BS” stands for
Baseline, “DP” stands for DP-Agent.

Agent exhibits a significant increase in the 429

proportion of predicted actions for all actions, 430

except for the “Click” action (we will provide a 431

detailed explanation in the subsequent paragraph). 432

Notably, the most prominent increase is observed 433

in the proportion of “Complete” actions. This is 434

encouraging as it indicates that the agent now has a 435

clearer understanding of task completion, which is 436

beneficial for practical applications. Additionally, 437

the rise in the occurrences of other actions, such as 438

“Scroll” and “Type”, enhances the agent’s ability to 439

tackle more complex tasks. 440

(ii) Reduction of Invalid Click Action. 441

While the accuracy of the click action shows 442

a slight decline, it is essential to note that the 443

total number of click actions has significantly 444

reduced. Consequently, the proportion of correct 445

click predictions within the overall prediction 446

results has increased. Existing work indicates 447

that GPT-4V is more likely to execute the “Click” 448

action (Yan et al., 2023). However, our method, 449

DP-Agent, minimizes invalid and erroneous click 450

actions, showcasing a better comprehension of the 451

implementation progress of the current plan. 452

4.6 Ablation Study 453

To study the influencing factors for the planning 454

mechanism in DP-Agent, we randomly sampled 20 455

episodes from 5 data subsets, with a total of 100 456
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Model Planning Updating History Overall General GoogleApps Install Single WebShopping

BS ✗ ✗ 32.45 28.03 40.32 33.79 26.98 33.13
OP ✓ ✗ 42.01 31.06 50.81 40.69 57.14 30.72
PU ✓ ✓ 44.50 45.45 52.42 37.93 52.38 34.34

Table 5: The ablation studies on factors on planning. Planning: Necessitates GPT-4V for the doing plan; Updating
History: Involves adding executed steps to the execution history. Each experiment’s execution or omission of a
particular process is denoted by ✓ (if performed) or ✗ (if not performed). The best average result is in boldface.

episodes as the dataset for the ablation experiment457

for reducing costs.458

We use the following Baseline:459

• Baseline (BS): denotes the Baseline, which460

abstains from adopting a plan.461

• Only Planning (OP): It represents the exclusive462

utilization of planning, excluding execution history463

updates.464

• Planning and Updating History (PU): it465

specifies the simultaneous execution of planning466

and updating the execution history.467

4.6.1 Impact of Varied Planning Mechanisms468

Table 5 presents the results of the ablation study.469

Based on the results of three experimental sets, we470

have the following key findings.471

(i) Significant Improvement Through Plan472

Integration. Leveraging the plan alone results473

in a noteworthy enhancement. A comparison474

between BS, OP, and PU reveals that the inclusion475

of planning brings about substantial improvements.476

(ii) Enhanced Execution through Step Selec-477

tion. The act of selecting steps from the plan478

contributes to improved execution. A comparison479

between OP and PU indicates that merely creating480

a plan for the agent is insufficient. The selection of481

a specific step for execution within the formulated482

plan leads to more pronounced improvements.483

(iii) Varied Impact of Historical Information484

Update. Intriguingly, when comparing OP with485

PU, we observe that PU outperforms some certain486

datasets, and OP excels in others. Despite this, the487

overall performance of PU remains superior. We488

speculate that the decline in performance observed489

in the Single datasets primarily stems from the490

inherently simpler nature of the tasks, which491

necessitates less reliance on planning abilities.492

However, for the Install dataset, we find that the493

tasks are rather difficult. As a result, the planning494

process of PU is more likely to be misled by the495

defective execution history.496

Model Click Scroll Type Navigate
Home Complete

BS 26.67 1.27 2.38 1.11 1.43
OP 25.08 1.11 2.54 2.06 8.57
PU 26.83 2.70 3.02 0.79 9.52

Table 6: Correct rate of predicted actions in three
ablation experiments (%). The best result is in boldface.

4.6.2 Exploring the Proportion and Correct 497

Rate of Predicted Actions 498

To conduct a more detailed analysis to scrutinize 499

the influencing factors in planning, we dive into 500

the correct rate and the proportion of predicted 501

actions. Given the abundance of datasets in a single 502

experiment, we opt to amalgamate five datasets for 503

an overarching analysis, more details of the correct 504

rate of predicted actions are in Appendix A.4. 505

Specifically, actions are categorized into state 506

actions and manipulation actions. State actions 507

encompass the “Navigate Home” and “Complete” 508

actions, while manipulation actions consist of the 509

“Click”, “Scroll”, and “Type” actions. 510

The rationale behind this classification is as 511

follows: when the agent executes the “Navigate 512

Home” action, it signals unfamiliarity with the 513

current page, suggesting that the current page is 514

deemed unhelpful for task completion. Typically 515

occurring in the initial steps of a task, a 516

high frequency may indicate the agent losing 517

control during task execution. On the other 518

hand, the “Complete” action signifies the agent’s 519

determination that the task has been accomplished. 520

All in all, a decrease in the frequency of “Navigate 521

Home” operations coupled with an increase in 522

“Complete” operations indicates an enhanced grasp 523

of the current task status. It’s important to 524

note that the discussions on these two actions 525

presume correct prediction results. Finally, all 526

actions, excluding state actions, are categorized 527

as manipulation actions. 528

Table 6 presents the overall correctness rate of 529

predicted actions for the three sets of ablation exper- 530
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Figure 4: The proportion of predicted actions about
planning in total datasets. We mainly collected the
correct rate of “Click”, “Scroll”, “Type’, “Navigate”
and “Complete” actions.

iments, while Figure 4 illustrates the distribution of531

these experiments in predicted actions. We could532

find that the proportion of “Complete” action in533

OP and PU is significantly higher than that in534

BS. This observation underscores that dynamic535

planning positively influences the agent’s ability536

to identify task completion.537

Regarding the “Navigate Home” action, OP,538

focusing solely on planning, exhibits a substantial539

increase. This issue can be effectively mitigated540

when a step is chosen for execution within the541

plan, as evident in both PU. This indicates542

that selecting a step in the plan enhances the543

agent’s understanding of the current screen state.544

The analysis of state actions highlights that545

incorporating planning and execution steps546

aid the agent in comprehending the execution547

process status of the ongoing task.548

4.7 Adaptation to Unfamiliar Tasks549

As new applications continually emerge, their550

interfaces often pose unfamiliarity to agents.551

Despite the diversity of GUI tasks, there exists552

a semblance of similarity in screen navigation553

logic. Even when the interface is unknown,554

certain screen transition patterns remain consistent.555

Consequently, employing dynamic planning could556

be beneficial for adaptation to unfamiliar tasks.557

To explore whether planning is conducive to558

agent adaptation to unfamiliar tasks, we fine-tune559

Llama2-7B and LLaVa-7B. To save computation560

costs, we randomly sample 180 episodes from561

GoogleApps as the training set and 180 episodes562

from other datasets as the test set.563

The results are shown in Table 7. Surprisingly,564

LLMs fine-tuned on the GoogleApps datasets with565

a plan demonstrated commendable performance566

across various datasets, sometimes even outper-567

forming models fine-tuned on the entire dataset568

Model General Install Single WebShopping

Llama2-7B
w/ all data 28.56 35.18 27.35 19.92

Llama2-7B
w/ Plan

by GPT-4V 24.67 23.46 39.48 19.48
by itself 17.81 17.58 15.87 12.46

w/o Plan 13.08 17.12 3.87 8.71
LLaVa-7B

w/ Plan
by GPT-4V 27.19 26.77 44.46 20.61
by itself 30.73 29.39 45.94 21.67

w/o Plan 17.81 17.98 1.66 10.91

Table 7: Finetuning results of Llama2-7B and LLaVa-
7B. Segment 1: “w/ all data” stands for the model is
fine-tuned with 1% randomly sampled training data to
help adapt to this task. Segments 2 & 3: The training
set is 180 episodes in the GoogleApps, and the test set
is 180 episodes in other datasets. “by GPT-4V” stands
for planning is made by GPT-4V. “itself” stands for
planning is made by finetuned model itself. The best
average result is in boldface.

(Llama2-7B on the Single dataset). Notably, 569

the fine-tuned model exhibited superior planning 570

performance for the LLaVa-7B when compared 571

to the GPT-4V. This finding underscores the 572

significant potential for enhancing the current 573

planning approach, especially given the constrained 574

scale of available fine-tuning data. It also 575

emphasizes the effectiveness of incorporating 576

planning into the model, particularly in its 577

adaptability to unfamiliar tasks. The consequential 578

impact of this advantage is notably significant in the 579

practical realm of smartphone control. Given the 580

perpetual evolution of GUI contents, the planning 581

ability equips the agent with enhanced capabilities 582

to navigate and respond to this dynamic challenge 583

effectively. 584

5 Conclusion 585

This study introduces a prompting approach called 586

DP-Agent, designed to facilitate interactions in a 587

multimodal environment. DP-Agent encourages 588

agents to dynamically update planning based on 589

feedback from the environment and execution 590

history. Through the application of DP-Agent, 591

we demonstrate that the DP-Agent surpasses the 592

widely adopted GPT-4V baseline on the AITW 593

benchmark dataset. Meanwhile, our findings 594

indicate that the DP-Agent excels in adapting to 595

unfamiliar tasks, and can choose different actions 596

more correctly. 597
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6 Limitation598

The main limitation of this work is that we have599

focused solely on analyzing the influencing factors600

in the planning phase. Future research will explore601

strategies for optimizing the utilization of these602

factors to enhance the precision of the planning603

process within an episode.604
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A Example Appendix 805

A.1 Dynamic planning prompting 806

We use the following prompt for Planning Initialization. 807
808

Imagine that you are a robot operating a mobile. Like how humans operate the mobile, you can click on 809
the screen, type some text, go home, go back to the last screen, scroll up, down, left and 810

right, or mark the status as complete. Given a goal and a mobiel screen, you need to make a plan 811
to achieve your goals based on the current screen, and choose the steps that should be achieved 812
on the current screen from the plan you have made. Since achieving this goal is a **continuous 813

process**, you will be given the **previous steps and actions** that have been performed, so 814
please pay attention to this information. There may be multiple ways to achieve your goals, but 815
what you need to do is create the plan that best suits your current situation based on the 816
current screen input. 817

818
**Your ultimate goal is: check out phone information.** 819
The current on-screen input is: 820
Screen: 821
<p id=0 class=‘‘text’’ alt=‘‘vvaiipaper,’’>vvaiipaper,</p> 822
<p id=1 class=‘‘text’’ alt=‘‘sieep,’’>sieep,</p> 823
<p id=2 class=‘‘text’’ alt=‘‘iolL’’>iolL</p> 824
<p id=3 class=‘‘text’’ alt=‘‘SIZE’’>SIZE</p> 825
<p id=4 class=‘‘text’’ alt=‘‘Sound’’>Sound</p> 826
<img id=5 class=ICON\_VOLUME\_STATE alt=‘‘’’></p>\n <p id=6 class=‘‘text’’ alt=‘‘Volume,’’>Volume,</p 827

> 828
<p id=7 class=‘‘text’’ alt=‘‘vibration,’’>vibration,</p> 829
<p id=8 class=‘‘text’’ alt=‘‘Do’’>Do</p> 830
<p id=9 class=‘‘text’’ alt=‘‘Not’’>Not</p> 831
<p id=10 class=‘‘text’’ alt=‘‘Disturb’’>Disturb</p>\newline <p id=11 class=‘‘text’’ alt=‘‘Storage’’> 832

Storage</p> 833
<p id=12 class=‘‘text’’ alt=‘‘used’’>used</p> 834
<p id=13 class=‘‘text’’ alt=‘‘GB free’’>GB free</p> 835
<p id=14 class=‘‘text’’ alt=‘‘49\%’’>49\%</p> 836
<p id=15 class=‘‘text’’ alt=‘‘-32.63’’>-32.63</p> 837
<p id=16 class=‘‘text’’ alt=‘‘Privacy’’>Privacy</p> 838
<p id=17 class=‘‘text’’ alt=‘‘Permissions,’’>Permissions,</p> 839
<p id=18 class=‘‘text’’ alt=‘‘account’’>account</p> 840
<p id=19 class=‘‘text’’ alt=‘‘personal’’>personal</p> 841
<p id=20 class=‘‘text’’ alt=‘‘data’’>data</p> 842
<p id=21 class=‘‘text’’ alt=‘‘activity,’’>activity,</p> 843
<p id=22 class=‘‘text’’ alt=‘‘Location’’>Location</p> 844
<img id=23 class=ICON\_LOCATION alt=‘‘’’></p> 845
<p id=24 class=‘‘text’’ alt=‘‘On’’>On</p> 846
<p id=25 class=‘‘text’’ alt=‘‘have access’’>have access</p> 847
<p id=26 class=‘‘text’’ alt=‘‘- 4 apps’’>- 4 apps</p> 848
<p id=27 class=‘‘text’’ alt=‘‘location’’>location</p> 849
<p id=28 class=‘‘text’’ alt=‘‘to’’>to</p> 850
<p id=29 class=‘‘text’’ alt=‘‘Security’’>Security</p> 851
<p id=30 class=‘‘text’’ alt=‘‘lock, fingerprint’’>lock, fingerprint</p> 852
<p id=31 class=‘‘text’’ alt=‘‘Screen’’>Screen</p> 853
Here are previous actions: (format: action \u2192 action description) 854
Previous Actions: 855
{’’step\_idx’’: 0, ’’action\_description’’: ’’scroll up’’} 856
{’’step\_idx’’: 1, ’’action\_description’’: ’’click []’’} 857
{’’step\_idx’’: 2, ’’action\_description’’: ’’scroll up’’} 858
And the previous steps: 859
Previous Steps: 860
Step 1. Swipe up from the bottom of the screen to access the app drawer. 861
Step 2. Tap on the ’Settings’ icon to open the settings menu. 862
Step 3. Scroll up to reveal more settings options. 863

864
Please formulate an operational guide for future operations for solving the goal. The guide includes: 865
1. Plan: A **multi-step future** plan **(start from current screen, DON’T include previous steps)**; 866

steps indexed by numbers. 867
2. Step: Based on the current screen and Previous Steps, provide the **immediate** step that needs to 868

be taken from the Plan. 869
"**Output Format:** A JSON dictionary strictly following the format: "{’plan’: ’...<Your Plan Here>’, 870

’step’: ’...<Your Step Here>’} "If the goal has already been implemented, no more planning is 871
required, Provide {’plan’: ’1. Mark the task as complete’, ’step’: ’Mark the task as complet’}. 872

**Please do not output any content other than the JSON format.** 873
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874

A.2 Three sets of experiments for GPT-4V as core of agent875

The detailed results of three distinct sets of experiments featuring GPT-4V as the core agent are presented876

in Table 8.

Model Overall General GoogleApps Install Single WebShopping

Test 1

GPT-4V ZS 34.66 29.69 35.75 43.50 32.95 31.42
DP-Agent 46.47 40.10 49.74 47.18 58.96 36.34

Test 2

GPT-4V ZS 36.72 32.34 41.95 43.87 37.84 27.58
DP-Agent 43.62 40.83 54.35 40.12 50.81 32.00

Test 3

GPT-4V ZS 35.36 29.18 38.70 40.65 35.59 32.67
DP-Agent 43.07 36.30 47.79 35.98 58.19 37.11

Table 8: Three sets of experiments for GPT-4V as core of agent(%). we sampled three completely different sets of
data samples from the test set, each with 300 episodes sampled from different subsets. The best average result is in
boldface.

877

A.3 The proportion and correct rate of predicted actions in all datasets878

The proportion of predicted actions is depicted in Table 9, while the correct rate of predicted actions is879

depicted in Table 10.880

Action General GoogleApps Install Single Webshopping

Click 77.6 / 70.57 72.02 / 55.44 83.3 / 73.53 82.08 / 56.07 82.96 / 84.19
Scroll 1.56 / 5.21 11.14 / 22.8 2.52 / 9.8 3.47 / 5.78 2.26 / 3.29
Type 2.6 / 2.6 0.26 / 0.26 3.88 / 3.92 2.31 / 4.05 3.29 / 3.29
Navigate Home 3.39 / 1.3 3.37 / 1.55 5.05 / 2.16 0.00 / 0.00 6.16 / 1.03
Complete 1.56 / 17.45 1.04 / 17.62 1.55 / 8.82 2.31 / 31.79 0.62 / 5.54

Table 9: The proportion of predicted actions of GPT-4V and DP-Agent in main results. We mainly collected the
proportions of “Click”, “Scroll”, “Type’, “Navigate Home” and “Complete” actions. Actions that are not collected
are represented by others. The number on the left of “/” is Baseline, and the number on the right of “/” is DP-Agent.
The best average result is in boldface.

Action General GoogleApps Install Single Webshopping

Click 24.74 / 24.48 31.09 / 29.27 35.92 / 33.53 29.48 / 28.90 27.93 / 29.77
Scroll 0.52 / 2.08 2.33 / 8.81 1.17 / 3.14 0.00 / 0.00 0.00 / 0.00
Type 1.04 / 2.34 0.26 / 0.26 2.72 / 3.33 1.73 / 3.47 1.64 / 2.05
Navigate Home 2.08 / 0.52 1.3 / 1.04 2.14 / 0.98 0.00 / 0.00 1.03 / 0.21
Complete 1.3 / 10.68 0.78 / 10.36 1.55 / 6.47 1.73 / 26.59 0.62 / 4.31

Table 10: The correct rate of predicted actions of GPT-4V and DP-Agent in main results. We mainly collected the
proportions of “Click”, “Scroll”, “Type’, “Navigate Home” and “Complete” actions. Actions that are not collected
are represented by others. The number on the left of “/” is Baseline, and the number on the right of “/” is DP-Agent.

A.4 The correct rate of predicted actions in ablation studies881

We provide the predicted action accuracy for all datasets of ablation experiments in Table 11.882
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Model Action General GoogleApps Install Single Webshopping

BS

Click 23.48 33.06 25.52 23.81 26.51
Scroll 0.67 2.42 2.07 0.00 0.60
Type 3.03 0.00 2.76 0.00 4.22
Navigate Home 0.00 1.61 2.07 0.00 1.20
Complete 0.76 3.23 1.38 1.59 0.60

OP

Click 16.67 36.29 24.14 30.16 22.29
Scroll 0.76 1.61 2.07 0.00 0.60
Type 2.27 0.81 4.14 1.59 3.01
Navigate Home 4.52 2.42 3.45 0.00 1.81
Complete 9.85 9.68 6.90 22.22 3.01

PU

Click 27.27 35.48 21.38 23.81 25.90
Scroll 3.03 3.23 5.52 0.00 0.60
Type 3.79 0.81 3.45 1.59 4.22
Navigate Home 0.00 1.61 1.38 0.00 0.60
Complete 11.36 11.29 6.21 26.98 3.01

Table 11: The correct rate of predicted actions of GPT-4V and DP-Agent in ablation studies. We mainly collected
the correct rate of “Click”, “Scroll”, “Type’, “Navigate” and “Complete” actions. The best average result is in
boldface.
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