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Abstract

The advent of large language models (LLMs)
has spurred considerable interest in advancing
autonomous agents, empowering them to
tackle real-world tasks by perceiving distinct
environments, formulating plans, and executing
actions. An intriguing application of these
agents is within smartphone graphical user
interfaces (GUIs). Upon receiving a task
goal, the agent generates step-by-step plans
and engages in iterative interactions until
task completion. However, it remains an
open challenge how to generate effective
plans to guide the action prediction. Current
studies often confine themselves to static
plans or lack specific plans entirely. Given
that the environment evolves following action
execution, the imperative is to adapt plans
dynamically based on environmental feedback
and action history. To address the challenge,
we propose DP-Agent, a novel approach
designed to cultivate dynamic planning in
agents. DP-Agent involves the dynamic
adjustment of planning based on feedback
from the environment and interaction history.
Experimental results reveal that DP-Agent
exhibits superior performance, surpassing the
widely adopted GPT-4V baseline by +8.81%
(35.58% — 44.39%) on the AITW benchmark
dataset. Our analysis highlights the efficacy
of dynamic planning in not only enhancing
action prediction accuracy but also in adapting
to previously unfamiliar tasks.

1 Introduction

The pursuit of building autonomous agents that
can help humans tackle real-world problems is a
long-standing goal of artificial intelligence (Searle,
1972; Wooldridge and Jennings, 1995; Maes,
1994). Recently, large language models (LLMs),
such as ChatGPT and GPT-4, have spurred
heightened exploration in the realm of autonomous
agent (Chowdhery et al., 2022; Wei et al., 2023;
Achiam et al., 2023). These agents have shown

promising opportunities to address real-world tasks
via perceiving distinct environments, formulating
plans, and executing actions. Meanwhile, they have
demonstrated remarkable capabilities in critical
thinking, reasoning, and ultimately, the execution
of actions across distinct environments (Huang and
Chang, 2023; Yao et al., 2023a; Wang et al., 2023b;
Chen et al., 2023).

The early stages of autonomous agent research
predominantly concentrated on processing tex-
tual information, encompassing environmental
descriptions and interaction processes under a
text-based framework (Searle, 1969; Wooldridge
and Jennings, 1995; Maes, 1998; Hendler, 1999).
However, recent advancements signal a paradigm
shift from solitary text-based frameworks to more
comprehensive multimodal approaches (Wu et al.,
2023; Surfs et al., 2023; Gupta and Kembhavi,
2022). Multimodal agents demonstrate proficiency
in assimilating inputs from various modalities,
significantly broadening their applicability across
a diverse spectrum of scenarios.

A prevalent scenario is smartphone graphical
user interface (GUI) automation, where agents
are tasked with controlling smartphones to
execute complex instructions through multi-turn
interactions (Rawles et al., 2023; Wen et al.,
2023). Representative approaches include fine-
tuning multi-modal models (Zhang and Zhang,
2023; Hong et al., 2023), or prompting GPT-4V to
understand the GUI and execute actions (Yan et al.,
2023; Zhang et al., 2023). Nonetheless, the existing
body of research concentrates on environment
perception, e.g., understanding visual modalities.
It remains an open challenge how to generate
effective plans to guide the action prediction.

Specifically, one key challenge is the dynamic
adjustment of plans based on feedback from
the environment and interaction history. The
significance of planning in influencing task
performance has been well-established (Zhao et al.,



2023; Wang et al., 2024a,b; Yang et al., 2024).
However, current studies commonly determine
actions with static plans (Zhang and Zhang, 2023)
or even without specific plans (Yan et al., 2023;
Zhang et al., 2023). For example, CogAgent (Hong
et al., 2023) first generates the complete plan
upon receiving the task instruction and initial
environment and then executes the actions step-
by-step accordingly. Given that the environment
evolves following action execution, it becomes
imperative to dynamically adapt plans based
on environmental feedback and action history.
This adaptive approach ensures that plans remain
effective amid changing circumstances.

To tackle the aforementioned challenge, this
paper introduces the Dynamic Planning agent (DP-
Agent). DP-Agent dynamically adjusts its plans by
leveraging real-time environmental feedback and
interaction history throughout the goal attainment
process. This adaptability allows the DP-Agent
to continuously refine its approach, ensuring
persistent optimization until the desired objective is
successfully achieved. Experimental results reveal
that DP-Agent exhibits superior performance,
surpassing the widely adopted GPT-4V baseline
by +8.81% (35.58% — 44.39%) on the AITW
benchmark dataset.

In summary, our work contributes to the field in
the following technical aspects:

(i) This work introduces a novel Dynamic
Planning agent dubbed DP-Agent. DP-Agent
dynamically formulates plans and selects appro-
priate steps from these plans for action execution.
This process is based on environmental feedback
and execution history, enhancing the agent’s
performance and adaptability.

(ii)) DP-Agent demonstrates impressive perfor-
mance on the AITW benchmark dataset (Rawles
et al., 2023), notably achieving an +8.81% overall
performance improvement compared to the widely
adopted GPT-4V baseline. Our work highlights the
efficacy of dynamic planning in not only enhancing
action prediction accuracy but also in adapting to
previously unfamiliar tasks.

(iii) We conducted an extensive analysis to
scrutinize the various factors influencing the
planning process. Our findings are systematically
categorized to elucidate the advantages and
disadvantages associated with different factors.
This comprehensive examination provides valuable
insights into the intricacies of planning dynamics,
contributing to a deeper understanding of the field.

2 Related Work

Our work focuses on the use of LLMs, and this
section will first review the recent progress of the
work on building the mobile control agents and
then discuss the planning mechanism of the agents.

2.1 LLMs Agent

LLMs have spurred considerable interest in
the realm of language agents, which adeptly
adhere to language instructions and execute
actions in interactive environments. Notable
examples include AutoGPT (Yang et al., 2023a),
HuggingGPT (Shen et al., 2023), and MetaGPT (Xi
et al., 2023), all of which explored the integration
of LLMs as the core of agents aimed at addressing
real-life problems.

This work focuses on the development of LLM
agents as intelligent assistants for smartphones.
These assistants are crafted to assist people in
accomplishing their daily tasks and meeting life’s
requirements, especially enhancing accessibility
for individuals with disabilities. Notably, the
advent of multi-modal agents such as GPT-
4V, showcasing robust image understanding
capabilities (Yang et al., 2023b), has prompted
previous research to predominantly concentrate
on comprehending GUI interactions. For
instance, MM-Navigator delved into leveraging
optical character recognition (OCR) parsing to
enhance GPT-4V’s GUI comprehension (Yan
et al., 2023), while AppAgent reinforced the
understanding of Application GUI elements by
introducing the roles of distinct GUI (Zhang et al.,
2023). In addition to these, CogAgent fine-tuned
the agent’s understanding of GUI to enhance
performance (Hong et al., 2023).

In contrast to the prior research that concentrates
on multimodal perception, our work focuses on
the planning mechanism to enhance the agent’s
proficiency in planning and effectively tackle multi-
step tasks on smartphones. Specifically, our
approach dynamically updates the plan based on
the current environment and execution history,
providing a unique perspective that distinguishes
our work from previous efforts in this field.

2.2 Planning Mechanisms in LLM Agents

LLMs have shown considerable potential in
constructing agents with strong capabilities in
following instructions and maintaining coherent
chains of thought (CoT) via solving complex
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Figure 1: Overview of DP-Agent. In turn, ¢, the DP-Agent makes a plan based on visual input and textual input,
predicts the action to be performed, and then updates the execution history, and then proceeds to the next turn ¢ + 1.

problems (Wei et al., 2023; Kojima et al., 2023;
Zhang et al., 2022). Notably, the CoT prompting
technique has enabled LLMs to engage in effective
step-by-step problem-solving process (Huang and
Chang, 2023; Yao et al., 2023a; Wang et al., 2023b;
Chen et al., 2023). To address more complex
problems, divide-and-conquer prompting strategies
have been proposed, e.g., dividing problems into
manageable steps (Zhou et al., 2023; Lee and Kim,
2023) or sequential solutions (Wang et al., 2023a).

The research above mainly focuses on enhancing
reasoning abilities. However, the ReAct (Yao
et al., 2023b) prompting has inspired researchers to
explore more suitable ways for LLMs to complete
tasks by leveraging their reasoning abilities. This
approach involves LLMs first observing and
reasoning before taking action, such as utilizing
external tools to identify and rectify errors (Gou
et al., 2023; Shinn et al., 2023), or planning before
executing (Wang et al., 2023a; Hao et al., 2023).

Inspired by ReAct (Yao et al., 2023b), we design
a novel DP-Agent prompting framework called DP-
Agent to achieve dynamic plan adjustment during
the interaction. In contrast to ReAct, DP-Agent
involves actions performed within a simulated en-
vironment rather than directly interacting with the
physical smartphone environment. Nevertheless,
DP-Agent follows a similar logical approach as
ReAct by first leveraging the reasoning capabilities
of LLMs to plan before executing actions.

3 Method

This section describes our DP-Agent approach,
which is grounded in dynamic planning based on

environment feedback and execution history.

On a high level, DP-Agent comprises two
stages: (i) planning initialization: the agent initiates
the planning process by generating an overall
plan, considering the ultimate goal, current visual
input, and prior execution history. Once the
plan is formulated, the agent will select the most
plausible step for execution. (ii) dynamic planning
adjustment: the executed action is appended to
the execution history. This updated history then
shapes subsequent planning cycles. In doing so,
the agent is equipped with the latest contextual
information, thereby enhancing decision-making
efficacy in subsequent turns. The framework of
DP-Agent is shown in Figure 1.

3.1 Planning Initialization

In pursuit of the task goal g, the agent engages
in k turns of interactions until task completion.
Specifically, at each turn ¢ (¢+ = 1,...,k), the
agent f processes the visual input mq(f) (i.e., the
current screenshot) and the textual input xgz). It
then generates the plan p; and identifies the optimal
step s* € p' to execute:

(p?, 50y = fa®, 2y, (1)

where the textual input a;gi) consists of the task goal

g, screen caption x((f), and execution history xg).

The textual input is further wrapped with
prompts (Appendix A.1) before feeding the agent
along with the visual input. Concretely, we
articulate our task goal at the text’s outset

by prompting “Your ultimate goal is: <g>.
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Subsequently, we append the screen caption results
under the heading “The current on-screen input
(4)

is: <z¢’>". Then, we include execution history,

structured as “Here are previous actions: <x§:) >,

After feeding the inputs, we request the agent
to generate a plan p(9 = [pgi),pgi), ...], which
consists of a sequence of steps to achieve the
ultimate goal. Within those steps, the agent is also

required to identify the optimal step s e p(®).

Action Type Action Description

Click Idx

Scroll Direction (up, down, left and right)
Type Text

Navigate Home / Back

Status Complete

Press Enter

Table 1: Six types of available actions.

In practice, s is confined to a finite set of
available actions in the GUI automation task and
will be transformed into the JSON format for
execution. Following Rawles et al. (2023), we
utilize six distinct types of actions as presented in
Table 1. Examples are provided in Figure 2.

3.2 Dynamic Planning Adjustment

After the execution of s(*), the agent becomes
anchored in the subsequent interaction turn with an

updated visual input 335,“1) (e.g., anew screenshot).

Simultaneously, we refine the execution history

acgf“) by concatenating mﬁf) and s(:

2" = conear(zl?, s, )

where CONCAT denotes the concatenation opera-
tion between strings.

Consequently, the execution history is organized
with consecutive elements in the format of “step
<turn id>: <action>". This updated execution
history xEZH) is subsequently employed according
to the planning initialization process outlined in
Section 3.1 for turn (7 4 1) until the task reaches
completion. The task is considered complete when
1 = k or the agent predicts the “Status” action type

with the “Complete” action description.

4 Experiments

In this section, we first describe the dataset, metrics,
and baseline settings for our experiments. Then,
we present our main results, followed by analysis.

4.1 Dataset

We employ the AITW (Rawles et al., 2023)
benchmark dataset for our evaluation on Android
devices. AITW is a comprehensive benchmark
dataset specifically designed for GUI control,
encompassing natural language instructions, corre-
sponding screenshots, and associated actions. The
dataset spans tasks across five distinct categories,
including Internet search, downloading, and online
shopping, and involves interactions with over 350
different applications and websites. In its entirety,
the dataset comprises 715,000 episodes, featuring
a diverse range of 30,000 unique instructions.

We leverage the provided screen caption results
as part of the textual input. Concretely, given a
screen, GUI icons were detected using the OCR
tool and IconNet (Sunkara et al., 2022). Each
GUI icon is associated with a bounding box and
OCR-detected text. To align predicted gestures
with specific GUI elements, we filter the valid data
by selecting instances whose gesture coordinates
could fall within the corresponding GUI box.
Numeric text tags are added to these GUI boxes for
analysis purposes.

Dataset Episodes  Screens Instructions
General 9,476 85,413 545
Install 25,760 250,058 688
GoogleApps 625,542 4,903,601 306
Single 26,303 85,668 15,366
‘WebShopping 28,061 365,253 13,473

Table 2: Dataset statistics.

Table 2 presents the data statistics. Subsequently,
each filtered subset is partitioned episode-wise
into training, validation, and test sets following
an 80/10/10 split. Additionally, considering the



Model \ Overall \ General GoogleApps Install Single WebShopping
Fine-tuned Llama 2 (Zhang and Zhang, 2023) ‘ 28.40 ‘ 28.56 30.99 35.18  27.35 19.92
PalLM-2 ZS (Rawles et al., 2023) 309 - - - - -
ChatGPT 5-shot (Zhang and Zhang, 2023) 7.72 5.93 10.47 4.38 9.39 8.42
GPT-4V ZS 35.58 30.40 38.80 42.67 35.46 30.56
DP-Agent 44.39 39.08 50.63 41.09  55.99 35.15

Table 3: Main results (%). Segment 1: fine-tuned Llama 2 baseline; Segment 2: in-context learning LLM baselines,
“ZS” stands for “zero-shot” and “5-shot” stands for using 5-shot in-content learning (Section 4.3); Segment 3:
GPT-4V as agent model, “DP-Agent” represents our proposed method. The best result is reported in boldface.

constraints of GPT-4V, we limit our data selection
to episodes with a length of less than 15. To
get more convincing results, we sampled three
completely different sets of data samples from
the test set, each with 300 episodes sampled from
different subsets for analysis and experimentation.

4.2 Metrics

In line with prior research (Zhang and Zhang,
2023; Yan et al., 2023), our primary evaluation
metric is the screen-wise action matching score,
computed as the ratio of correct actions to the
episode length. Specifically, for click actions,
correctness is determined if the selected element
is within a 14% screen distance from the gold
gestures or falls within the same detected bounding
box as the user’s gestures. Given that the agent
responds with the numeric tag of the GUI, we select
the top left, top right, bottom left, bottom right, and
center of the box as sample points for calculating
coordinate distances.

Regarding scroll actions, correctness is assessed
if the selected direction aligns with the scroll
direction (up, down, left, or right) of the user’s
gestures.  For other actions, correctness is
established only if the types of actions match.

4.3 Baseline

We compare our prompting framework with the
following baselines (Rawles et al., 2023; Zhang
and Zhang, 2023).

e Pal. M-2 ZS (Rawles et al., 2023): This setting
evaluates the zero-shot performance of PaLM-2 by
providing a textual description of the screen and
prompting it to predict an action from the supported
actions in AITW.

o ChatGPT 5-shot (Zhang and Zhang, 2023):
ChatGPT’s performance is assessed with a 5-shot
prompt format similar to PaALM-2. The experiments
are conducted using the ChatGPT APL

e Fine-tuned LlaMa-2 (Zhang and Zhang, 2023):
The Llama-2 model is fine-tuned with LoRA,
utilizing user instructions and screen descriptions
in HTML syntax, which aligns with the format
used for in-context learning in LLMs. The model
is fine-tuned using 1% randomly sampled training
data to facilitate adaptation to the task.

o GPT-4V ZS: Zero-shot prompting with GPT-
4V. The model is presented with a screenshot image
and a textual description of the screen, tasked with
predicting an action from the available actions.

4.4 Implementation Details

We use the GPT-4V (Achiam et al., 2023) interface
provided by OpenAl as the backbone of our
agent. We set the “max_tokens” as 300 and the
“temperature” as 0. The model has a training epoch
of 3 and a maximum length of 2560.

We also fine-tune public large models, i.e.,
Llama (Touvron et al., 2023) and LLaVa (Liu et al.,
2023), to verify the general effectiveness of our
approach. For the finetuning experimental setup,
we use Llama2-7B and LLaVa-7B as our base
model, training epochs to be 3, without eval set
between epochs. The maximum length of the input
sequence is 2560, ensuring that the text can be fully
entered. Text input generally includes the goal,
screen descriptions in HTML syntax, and execution
history. For inputs with a “Plan” experimental
group, the step to be selected is spliced at the
end of the input, similar to the prompt of GPT-4V
requiring the action to be performed.

4.5 Main Results

Table 3 presents the main results.! Based on the
results, we have the following key findings.
(i) DP-Agent achieves substantial perfor-
mance gains over the GPT-4V baseline. DP-
'We run experiments with three random seeds and report

the average scores. Details of the three runs are presented in
Appendix A.2.



Category w/ GPT-4V w/ Human
Total Accuracy 23.57 52.23
Click Accuracy 17.83 27.39
Scroll Accuracy 0.00 1.27
Type Accuracy 2.55 9.55
Complete Accuracy 2.55 7.64

Table 4: Comparison of GPT-4V generated planning

and human-annotated planning in the Install dataset (%).

The best average result is reported in boldface.

Agent demonstrates overall improvement of
+8.81% (35.58% — 44.39%) compared to the
widely adopted GPT-4V baseline. The results show
improving the planning mechanism is effective in
boosting the GUI agent performance.

(ii) Perception with the visual modality
benefits the task performance. We observe
that even the GPT-4V ZS Baseline exhibits
improvements over plain text input LLMs, with
an increase from 7.72%—35.58% compared
to ChatGPT 5-shot and from 30.9%—35.58%
compared to PaLM-2 ZS.

(iii)) Dynamic planning achieves substantially
better performance than static planning. We
notice that the impact of introducing planning
varies across different tasks. In General,
GoogleApps, Single, and Webshopping dataset
tasks, the improvement caused by planning is stable
and evident. In the Install dataset, there is little
improvement in dynamic planning performance.
Upon scrutinizing the outcomes produced by the
agent, we conclude that planning the Install tasks
for GPT-4V remains a formidable challenge. To
validate this observation, we choose 20 episodes
from the Install dataset and meticulously label
them with corresponding plans. Even with a plan
in place, the subsequent step involved selecting
and executing actions. Examining the results
presented in Table 4, we are pleased to note a
notable improvement in the overall correctness rate,
which rises from 23.57%—52.23%.

4.5.1 Contribution of Dynamic Planning

To investigate the role of dynamic planning in
decision-making by GPT-4V, we analyze the
correct rate of different actions and the proportion
of predicted actions. We combine the results of five
datasets in Figure 3. More details are provided in
Appendix A.3. Our observations based on these
statistics reveal two notable changes:

(i) Increased Component of Predicted Actions.
In comparison with the GPT-4V Baseline, DP-
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Figure 3: The proportion and correct rate of predicted
actions of GPT-4V and DP-Agent. We mainly collected
the proportions of “Click”, “Scroll”, “Type’, “Navigate
Home” and “Complete” actions. “BS” stands for
Baseline, “DP” stands for DP-Agent.

Agent exhibits a significant increase in the
proportion of predicted actions for all actions,
except for the “Click” action (we will provide a
detailed explanation in the subsequent paragraph).
Notably, the most prominent increase is observed
in the proportion of “Complete” actions. This is
encouraging as it indicates that the agent now has a
clearer understanding of task completion, which is
beneficial for practical applications. Additionally,
the rise in the occurrences of other actions, such as
“Scroll” and “Type”, enhances the agent’s ability to
tackle more complex tasks.

(ii)) Reduction of Invalid Click Action.
While the accuracy of the click action shows
a slight decline, it is essential to note that the
total number of click actions has significantly
reduced. Consequently, the proportion of correct
click predictions within the overall prediction
results has increased. Existing work indicates
that GPT-4V is more likely to execute the “Click”
action (Yan et al., 2023). However, our method,
DP-Agent, minimizes invalid and erroneous click
actions, showcasing a better comprehension of the
implementation progress of the current plan.

4.6 Ablation Study

To study the influencing factors for the planning
mechanism in DP-Agent, we randomly sampled 20
episodes from 5 data subsets, with a total of 100



Model \ Planning  Updating History \ Overall \ General GoogleApps Install Single WebShopping
BS X X 3245 28.03 40.32 33.79 26.98 33.13
OP v X 42.01 31.06 50.81 40.69 57.14 30.72
PU v v 44.50 45.45 52.42 37.93 52.38 34.34

Table 5: The ablation studies on factors on planning. Planning: Necessitates GPT-4V for the doing plan; Updating
History: Involves adding executed steps to the execution history. Each experiment’s execution or omission of a
particular process is denoted by v~ (if performed) or X (if not performed). The best average result is in boldface.

episodes as the dataset for the ablation experiment
for reducing costs.

We use the following Baseline:

e Baseline (BS): denotes the Baseline, which
abstains from adopting a plan.

e Only Planning (OP): It represents the exclusive
utilization of planning, excluding execution history
updates.

e Planning and Updating History (PU): it
specifies the simultaneous execution of planning
and updating the execution history.

4.6.1 Impact of Varied Planning Mechanisms

Table 5 presents the results of the ablation study.
Based on the results of three experimental sets, we
have the following key findings.

(i) Significant Improvement Through Plan
Integration. Leveraging the plan alone results
in a noteworthy enhancement. A comparison
between BS, OP, and PU reveals that the inclusion
of planning brings about substantial improvements.

(i) Enhanced Execution through Step Selec-
tion. The act of selecting steps from the plan
contributes to improved execution. A comparison
between OP and PU indicates that merely creating
a plan for the agent is insufficient. The selection of
a specific step for execution within the formulated
plan leads to more pronounced improvements.

(iii) Varied Impact of Historical Information
Update. Intriguingly, when comparing OP with
PU, we observe that PU outperforms some certain
datasets, and OP excels in others. Despite this, the
overall performance of PU remains superior. We
speculate that the decline in performance observed
in the Single datasets primarily stems from the
inherently simpler nature of the tasks, which
necessitates less reliance on planning abilities.
However, for the Install dataset, we find that the
tasks are rather difficult. As a result, the planning
process of PU is more likely to be misled by the
defective execution history.

. Navigate
Model | Click Scroll Type Home Complete
BS 26.67 1.27 2.38 1.11 1.43
OP 25.08 1.11 254 2.06 8.57
PU 2683 2.70 3.02 0.79 9.52

Table 6: Correct rate of predicted actions in three
ablation experiments (%). The best result is in boldface.

4.6.2 Exploring the Proportion and Correct
Rate of Predicted Actions

To conduct a more detailed analysis to scrutinize
the influencing factors in planning, we dive into
the correct rate and the proportion of predicted
actions. Given the abundance of datasets in a single
experiment, we opt to amalgamate five datasets for
an overarching analysis, more details of the correct
rate of predicted actions are in Appendix A.4.

Specifically, actions are categorized into state
actions and manipulation actions. State actions
encompass the “Navigate Home” and “Complete”
actions, while manipulation actions consist of the
“Click”, “Scroll”, and “Type” actions.

The rationale behind this classification is as
follows: when the agent executes the “Navigate
Home” action, it signals unfamiliarity with the
current page, suggesting that the current page is
deemed unhelpful for task completion. Typically
occurring in the initial steps of a task, a
high frequency may indicate the agent losing
control during task execution. On the other
hand, the “Complete” action signifies the agent’s
determination that the task has been accomplished.
All in all, a decrease in the frequency of “Navigate
Home” operations coupled with an increase in
“Complete” operations indicates an enhanced grasp
of the current task status. It’s important to
note that the discussions on these two actions
presume correct prediction results. Finally, all
actions, excluding state actions, are categorized
as manipulation actions.

Table 6 presents the overall correctness rate of
predicted actions for the three sets of ablation exper-
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planning in total datasets. We mainly collected the
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iments, while Figure 4 illustrates the distribution of
these experiments in predicted actions. We could
find that the proportion of “Complete” action in
OP and PU is significantly higher than that in
BS. This observation underscores that dynamic
planning positively influences the agent’s ability
to identify task completion.

Regarding the ‘“Navigate Home” action, OP,
focusing solely on planning, exhibits a substantial
increase. This issue can be effectively mitigated
when a step is chosen for execution within the
plan, as evident in both PU. This indicates
that selecting a step in the plan enhances the
agent’s understanding of the current screen state.
The analysis of state actions highlights that
incorporating planning and execution steps
aid the agent in comprehending the execution
process status of the ongoing task.

4.7 Adaptation to Unfamiliar Tasks

As new applications continually emerge, their
interfaces often pose unfamiliarity to agents.
Despite the diversity of GUI tasks, there exists
a semblance of similarity in screen navigation
logic. Even when the interface is unknown,
certain screen transition patterns remain consistent.
Consequently, employing dynamic planning could
be beneficial for adaptation to unfamiliar tasks.
To explore whether planning is conducive to
agent adaptation to unfamiliar tasks, we fine-tune
Llama2-7B and LLaVa-7B. To save computation
costs, we randomly sample 180 episodes from
GoogleApps as the training set and 180 episodes
from other datasets as the test set.

The results are shown in Table 7. Surprisingly,
LLMs fine-tuned on the Google Apps datasets with
a plan demonstrated commendable performance
across various datasets, sometimes even outper-
forming models fine-tuned on the entire dataset

Model General Install Single WebShopping
Llama2-7B
w/ all data 28.56  35.18 27.35 19.92
Llama2-7B
w/ Plan
by GPT-4V  24.67 23.46 39.48 19.48
by itself 17.81 17.58 15.87 12.46
w/o Plan 13.08 17.12 3.87 8.71
LLaVa-7B
w/ Plan
by GPT-4V  27.19 26.77 44.46 20.61
by itself 30.73  29.39 4594 21.67
w/o Plan 17.81 17.98 1.66 10.91

Table 7: Finetuning results of Llama2-7B and LLaVa-
7B. Segment 1: “w/ all data” stands for the model is
fine-tuned with 1% randomly sampled training data to
help adapt to this task. Segments 2 & 3: The training
set is 180 episodes in the GoogleApps, and the test set
is 180 episodes in other datasets. “by GPT-4V” stands
for planning is made by GPT-4V. “itself” stands for
planning is made by finetuned model itself. The best
average result is in boldface.

(Llama2-7B on the Single dataset). Notably,
the fine-tuned model exhibited superior planning
performance for the LLaVa-7B when compared
to the GPT-4V. This finding underscores the
significant potential for enhancing the current
planning approach, especially given the constrained
scale of available fine-tuning data. It also
emphasizes the effectiveness of incorporating
planning into the model, particularly in its
adaptability to unfamiliar tasks. The consequential
impact of this advantage is notably significant in the
practical realm of smartphone control. Given the
perpetual evolution of GUI contents, the planning
ability equips the agent with enhanced capabilities
to navigate and respond to this dynamic challenge
effectively.

5 Conclusion

This study introduces a prompting approach called
DP-Agent, designed to facilitate interactions in a
multimodal environment. DP-Agent encourages
agents to dynamically update planning based on
feedback from the environment and execution
history. Through the application of DP-Agent,
we demonstrate that the DP-Agent surpasses the
widely adopted GPT-4V baseline on the AITW
benchmark dataset. Meanwhile, our findings
indicate that the DP-Agent excels in adapting to
unfamiliar tasks, and can choose different actions
more correctly.



6 Limitation

The main limitation of this work is that we have
focused solely on analyzing the influencing factors
in the planning phase. Future research will explore
strategies for optimizing the utilization of these
factors to enhance the precision of the planning
process within an episode.
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A Example Appendix
A.1 Dynamic planning prompting

We use the following prompt for Planning Initialization.

Imagine that you are a robot operating a mobile. Like how humans operate the mobile, you can click on

the screen, type some text, go home, go back to the last screen, scroll up, down, left and
right, or mark the status as complete. Given a goal and a mobiel screen, you need to make a plan
to achieve your goals based on the current screen, and choose the steps that should be achieved
on the current screen from the plan you have made. Since achieving this goal is a **continuous
process**, you will be given the *xprevious steps and actions*x that have been performed, so
please pay attention to this information. There may be multiple ways to achieve your goals, but
what you need to do is create the plan that best suits your current situation based on the
current screen input.

*xYour ultimate goal is: check out phone information.*x

The current on-screen input is:

Screen:

<p id=0 class=‘‘text’’ alt=‘‘vvaiipaper,’’>vvaiipaper,</p>

<p id=1 class=‘‘text’’ alt=‘‘sieep,’’>sieep,</p>

<p id=2 class=‘‘text’’ alt=‘‘iollL’’>iollL</p>

<p id=3 class=‘‘text’’ alt=‘‘SIZE’’>SIZE</p>

<p id=4 class=‘‘text’’ alt=‘‘Sound’’>Sound</p>

<img id=5 class=ICON\_VOLUME\_STATE alt=‘‘’’></p>\n <p id=6 class=‘‘text’’ alt=‘‘Volume,’’>Volume,</p
>

<p id=7 class=‘‘text’’ alt=‘‘vibration,’’>vibration,</p>

<p id=8 class=‘‘text’’ alt=‘‘Do’’>Do</p>

<p id=9 class=‘‘text’’ alt=‘‘Not’’>Not</p>

<p id=10 class=‘‘text’’ alt=‘‘Disturb’’>Disturb</p>\newline <p id=11 class=‘‘text’’ alt=‘‘Storage’’>
Storage</p>

<p id=12 class=‘‘text’’ alt=‘‘used’’>used</p>

<p id=13 class=‘‘text’’ alt=‘‘GB free’’>GB free</p>

<p id=14 class=‘‘text’’ alt=‘‘“49\%’ ’>49\%</p>

<p id=15 class=‘‘text’’ alt=‘‘-32.63’’>-32.63</p>

<p id=16 class=‘‘text’’ alt=‘‘Privacy’’>Privacy</p>

<p id=17 class=‘‘text’’ alt=‘‘Permissions,’’>Permissions,</p>

<p id=18 class=‘‘text’’ alt=‘‘account’’>account</p>

<p id=19 class=‘‘text’’ alt=‘‘personal’’>personal</p>

<p id=20 class=‘‘text’’ alt=‘‘data’’>data</p>

<p id=21 class=‘‘text’’ alt=‘‘activity,’’>activity,</p>

<p id=22 class=‘‘text’’ alt=‘‘Location’’>Location</p>

<img id=23 class=ICON\_LOCATION alt=‘¢’’></p>

<p id=24 class=‘‘text’’ alt=‘‘On’’>0On</p>

<p id=25 class=‘‘text’’ alt=‘‘have access’’>have access</p>

<p id=26 class=‘‘text’’ alt=‘‘- 4 apps’’>- 4 apps</p>

<p id=27 class=‘‘text’’ alt=‘‘location’’>location</p>

<p id=28 class=‘‘text’’ alt=‘‘to’’>to</p>

<p id=29 class=‘‘text’’ alt=‘‘Security’’>Security</p>

<p id=30 class=‘‘text’’ alt=‘‘lock, fingerprint’’>lock, fingerprint</p>

<p id=31 class=‘‘text’’ alt=‘‘Screen’’>Screen</p>

Here are previous actions: (format: action \u2192 action description)

Previous Actions:

{’’step\_idx’’: @, ’’action\_description’’: ’’scroll up’’}
{’’step\_idx’’: 1, ’’action\_description’’: ’’click []’’}
{’’step\_idx’’: 2, ’’action\_description’’: ’’scroll up’’}

And the previous steps:

Previous Steps:

Step 1. Swipe up from the bottom of the screen to access the app drawer.
Step 2. Tap on the ’Settings’ icon to open the settings menu.

Step 3. Scroll up to reveal more settings options.

Please formulate an operational guide for future operations for solving the goal. The guide includes:

1. Plan: A *xmulti-step futurex* plan **(start from current screen, DON’T include previous steps)#*x;
steps indexed by numbers.

2. Step: Based on the current screen and Previous Steps, provide the **immediatex* step that needs to
be taken from the Plan.

"xxQutput Format:** A JSON dictionary strictly following the format: "{’plan’: ’...<Your Plan Here>’,
’step’: ’...<Your Step Here>’} "If the goal has already been implemented, no more planning is
required, Provide {’plan’: ’1. Mark the task as complete’, ’step’: ’Mark the task as complet’}.

*xPlease do not output any content other than the JSON format.x*
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A.2 Three sets of experiments for GPT-4V as core of agent

The detailed results of three distinct sets of experiments featuring GPT-4V as the core agent are presented
in Table 8.

Model Overall General GoogleApps Install Single WebShopping
Test 1
GPT-4V ZS 34.66 29.69 35.75 43.50 32.95 31.42
DP-Agent 46.47 40.10 49.74 47.18 58.96 36.34
Test 2
GPT-4V ZS 36.72 32.34 41.95 43.87 37.84 27.58
DP-Agent 43.62 40.83 54.35 40.12 50.81 32.00
Test 3
GPT-4V ZS 35.36 29.18 38.70 40.65 35.59 32.67
DP-Agent 43.07 36.30 47.79 35.98 58.19 37.11

Table 8: Three sets of experiments for GPT-4V as core of agent(%). we sampled three completely different sets of
data samples from the test set, each with 300 episodes sampled from different subsets. The best average result is in
boldface.

A.3 The proportion and correct rate of predicted actions in all datasets

The proportion of predicted actions is depicted in Table 9, while the correct rate of predicted actions is
depicted in Table 10.

Action General GoogleApps Install Single Webshopping
Click 77.6 /70.57 72.02/55.44 83.3/73.53 82.08 / 56.07 82.96/84.19
Scroll 1.56/5.21 11.14/22.8 2.52/9.8 3.47/5.78 2.26/3.29
Type 26/2.6 0.26/0.26 3.88/3.92 2.31/4.05 3.29/3.29
Navigate Home 3.39/13 3.37/1.55 5.05/2.16 0.00/0.00 6.16/1.03
Complete 1.56/17.45 1.04/17.62 1.55/8.82 2.31/31.79 0.62/5.54

Table 9: The proportion of predicted actions of GPT-4V and DP-Agent in main results. We mainly collected the
proportions of “Click”, “Scroll”, “Type’, “Navigate Home” and “Complete” actions. Actions that are not collected
are represented by others. The number on the left of *“/” is Baseline, and the number on the right of “/”” is DP-Agent.
The best average result is in boldface.

Action General GoogleApps Install Single Webshopping
Click 24.74 /24.48 31.09/29.27 35.92/33.53 29.48 /28.90 27.931729.77
Scroll 0.52/2.08 2.33/8.81 1.17/3.14 0.00/0.00 0.00/0.00
Type 1.04/2.34 0.26/0.26 2.72/3.33 1.73/3.47 1.64/2.05
Navigate Home 2.08/0.52 1.3/1.04 2.14/0.98 0.00/0.00 1.03/0.21
Complete 1.3/10.68 0.78/10.36 1.55/6.47 1.73/26.59 0.62/4.31

Table 10: The correct rate of predicted actions of GPT-4V and DP-Agent in main results. We mainly collected the
proportions of “Click”, “Scroll”, “Type’, “Navigate Home” and “Complete” actions. Actions that are not collected
are represented by others. The number on the left of *“/” is Baseline, and the number on the right of “/” is DP-Agent.

A.4 The correct rate of predicted actions in ablation studies

We provide the predicted action accuracy for all datasets of ablation experiments in Table 11.
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Model Action | General GoogleApps Install Single ‘Webshopping

Click 23.48 33.06 25.52 23.81 26.51
Scroll 0.67 2.42 2.07 0.00 0.60
BS Type 3.03 0.00 2.76 0.00 4.22
Navigate Home 0.00 1.61 2.07 0.00 1.20
Complete 0.76 3.23 1.38 1.59 0.60
Click 16.67 36.29 24.14 30.16 22.29
Scroll 0.76 1.61 2.07 0.00 0.60
OP Type 2.27 0.81 4.14 1.59 3.01
Navigate Home 4.52 2.42 345 0.00 1.81
Complete 9.85 9.68 6.90 2222 3.01
Click 27.27 35.48 21.38 23.81 25.90
Scroll 3.03 3.23 5.52 0.00 0.60
PU Type 3.79 0.81 3.45 1.59 4.22
Navigate Home 0.00 1.61 1.38 0.00 0.60
Complete 11.36 11.29 6.21 26.98 3.01

Table 11: The correct rate of predicted actions of GPT-4V and DP-Agent in ablation studies. We mainly collected
the correct rate of “Click”, “Scroll”, “Type’, “Navigate” and “Complete” actions. The best average result is in
boldface.
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