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Abstract

Long-context understanding is crucial for large001
language models (LLMs) and has become a fun-002
damental capability for most LLMs. However,003
beyond the focus on “input-long”, the ability004
to “output-long” is equally significant, yet it005
remains underexplored. To address this limita-006
tion, we propose a simple, efficient, and plug-007
in approach, Position ID Compression (PIC),008
to unlock the long-form text generation poten-009
tial of LLMs. The idea is straightforward: by010
compressing the position ids of the context, we011
provoke and guide LLMs to generate coherent012
and longer output. Specifically, we find that di-013
rectly reducing the position ids by a fixed ratio014
significantly impacts the generation quality. To015
mitigate this, we propose two variants of PIC:016
NTK-aware PIC and Dynamic PIC. Without017
additional training, both methods enable LLMs018
to extend their generation length by approxi-019
mately 1.5 times without compromising genera-020
tion quality. Furthermore, by integrating super-021
vised fine-tuning (SFT) with PIC, we propose022
PIC-SFT, which further improves LLMs’ long-023
form text generation capabilities, achieving top024
performance on HelloBench and LongBench-025
Write. Extensive experiments demonstrate the026
effectiveness of our approach.027

1 Introduction028

Modeling long context is essential for Large Lan-029

guage Models (LLMs) as it meets the user’s need030

for long-range interactions (Ding et al., 2024; Lin031

et al., 2024) while enhancing the capabilities of032

LLM-based systems (e.g., Retrieval-Augmented033

Generation(Gao et al., 2023), Multi-Agent Sys-034

tem(Li et al., 2024), etc.). Recently, a variety035

of methods for context window extension(Chen036

et al., 2023; Peng et al., 2023) and efficient infer-037

ence (e.g., sparse attention(Beltagy et al., 2020;038

Xiao et al., 2023), KV cache compression(Dao,039

2023; Kwon et al., 2023)) have been proposed.040

As a result, long-context modeling has become041

a fundamental capability of current LLMs(Dubey 042

et al., 2024; Yang et al., 2024), with some mod- 043

els even capable of handling inputs with millions 044

of tokens(Team et al., 2023; Zeng et al., 2022). 045

Beyond long-context understanding, long-context 046

modeling is also related to long-form text genera- 047

tion. With an extended context window, a model 048

should theoretically be capable of both “input-long” 049

and “output-long”. However, this is often not the 050

case in practice: while models can process mil- 051

lions of tokens as input, they struggle to generate 052

even 4000 tokens(Que et al., 2024). This motivates 053

us: Can we efficiently unlock the long-form text 054

generation capabilities of LLMs based on existing 055

long-context modeling paradigms? 056

In this work, we propose Position ID Compres- 057

sion (PIC), a simple, efficient, and plug-in method 058

to unlock the long-form text generation potential 059

of LLMs. As illustrated in Figure 1, the core idea 060

of PIC is to directly or indirectly compress the po- 061

sition ids, so that the relative positions perceived 062

by the model are smaller than the actual relative 063

positions, thereby extending the model’s genera- 064

tion length. To verify this idea, we first attempt 065

to reduce the position ids by a fixed ratio, but we 066

find that this method performs poorly. To address 067

this, we propose two variants of PIC: NTK-aware 068

PIC and Dynamic PIC. NTK-aware PIC indirectly 069

reduces position ids by scaling down the rotation 070

angle of Rotary Position Embedding (RoPE), while 071

Dynamic PIC dynamically compresses position ids 072

in the middle part of the context. Experimental 073

results show that NTK-aware PIC and Dynamic 074

PIC are effective and efficient. They can extend the 075

model’s generation length by approximately 1.5 076

times without additional training and demonstrate 077

generalization capabilities. 078

Furthermore, we combine supervised fine-tuning 079

(SFT) with PIC and propose PIC-SFT, signifi- 080

cantly extending the generation length to 5 times 081

the original without losing the generation quality. 082
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Figure 1: Illustration of Position ID Compression (PIC). (Top): The diagrams sequentially show the mechanisms
of Naive PIC, NTK-aware PIC, and Dynamic PIC. The red areas represent the compressed areas, while the
blue areas represent the uncompressed areas. The number on the block indicates the position id. (Bottom): The
corresponding experimental results for the three PIC methods, where the blue lines represent the generated length
and the red lines represent the generated quality.

Experimental results show that compared to tradi-083

tional SFT, PIC-SFT achieves better performance084

on HelloBench (Que et al., 2024) and LongBench-085

Write (Bai et al., 2024). Moreover, through Naive086

Inference, PIC-SFT better preserves the short-form087

text generation capabilities of LLMs.088

Our main contributions are as follows:089

1. PIC: We introduce PIC, a method to extend090

the long-form text generation capabilities of091

LLMs by compressing position ids, allow-092

ing for longer generation length without addi-093

tional training.094

2. NTK-aware PIC and Dynamic PIC: We pro-095

pose two variants, NTK-aware PIC and Dy-096

namic PIC, to improve the efficiency and ef-097

fectiveness of PIC.098

3. PIC-SFT: We combine PIC with SFT, result-099

ing in PIC-SFT, which extends the generation100

length up to 5 times the original while preserv-101

ing short generation capabilities.102

2 Background and Related Work103

2.1 RoPE104

RoPE was first introduced in RoFormer (Su105

et al., 2024) and has been widely used in current106

LLMs (Touvron et al., 2023; Bai et al., 2023a). 107

For a sequence of vectors (x1, x2, . . . , xi, . . . , xn) 108

where xi ∈ Rd represents the word embedding of 109

the i-th token in the sequence. RoPE aims to in- 110

corporate relative positional information into the 111

computation of attention scores. Specifically, it 112

ensures that the inner product of the query qm and 113

key kn encodes position information in the relative 114

form: 115

⟨fq(xm,m), fk(xn, n)⟩ = g(xm, xn,m−n). (1) 116

m and n represent the position of the query and 117

the key. To solve the functions fq, fk, and g, RoPE 118

applies a rotary matrix to qm and kn: 119



cosmθ1 − sinmθ1 0 0 · · · 0 0
sinmθ1 cosmθ1 0 0 · · · 0 0

0 0 cosmθ2 − sinmθ2 · · · 0 0
0 0 sinmθ2 cosmθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cosmθd/2 − sinmθd/2
0 0 0 0 · · · sinmθd/2 cosmθd/2


, 120

where θj = b−2(j−1)/d, j ∈ {1, 2, ..., d/2} and 121

b is a fixed value called RoPE Base. 122

2.2 Position Interpolation 123

RoPE encodes a word embedding xm by: 124
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{qm, km} = f{q,k}(xm, g(m), h(θj)) (2)125

g(m) = m, h(θj) = b−2(j−1)/d. (3)126

Based on RoPE, to further extend the con-127

text window of LLMs, Position Interpolation128

(PI) (Chen et al., 2023) alters g(m):129

g(m) =
m

s
, where s =

Lt

Lc
, (4)130

where s is the scaling factor, Lt is the size of131

the extended context window and Lc is the current132

context window size. Compared to Position Ex-133

trapolation, PI is more stable and requires only a134

small amount of training data to extend the context135

window.136

2.3 NTK-aware Interpolation137

Besides scaling all dimensions equally, there is138

a class of interpolation methods based on Neu-139

ral Tangent Kernel (NTK) theory (Jacot et al.,140

2018). We focus on two widely used meth-141

ods: NTK-aware (bloc97, 2023b) and NTK-by-142

parts (bloc97, 2023a). NTK-aware modifies h(θ)143

of the RoPE as follows:144

h(θj) =
(
b · s

d
d−2

)−2(j−1)/d
. (5)145

The core idea of NTK-by-parts is to interpo-146

late for lower frequency dimensions while keeping147

higher frequency dimensions unchanged:148

h(θj) = (1− γ(r))
θj
s

+ γ(r)θj , (6)149

where γ is a step function that depends on r and150

r represents the frequency of the dimension.151

2.4 Related Work152

Long-Context Understanding Long-context un-153

derstanding focuses on enabling LLMs to handle,154

process, and retrieve information from very long155

inputs (Hsieh et al., 2024; Bai et al., 2023b). To156

achieve input lengths of even 100M tokens (Team157

et al., 2024), various methodologies have been158

proposed (Shen et al., 2021; Ainslie et al., 2023).159

Among them, speed and length are the key factors160

in long-context modeling. Context window exten-161

sion (Cobbe et al., 2021; Zhu et al., 2023; Jin et al.,162

2024) focuses on expanding the context window163

of LLMs to support a larger number of input to-164

kens. KV cache compression (Liu et al., 2024b; Ge165

et al., 2023) aims to compress the KV cache, en-166

abling faster inference and eliminating redundant167

information.168

Long-Form Text Generation Long-form text 169

generation is a crucial capability for LLMs, closely 170

tied to their practical applications in real-world sce- 171

narios (Guan et al., 2022; Hosseini et al., 2024; Wei 172

et al., 2024). To explore the long-form text gen- 173

eration capabilities of LLMs, many benchmarks 174

and methods have been proposed (Ye et al., 2025; 175

Tan et al., 2024; Liu et al., 2024a). Bai et al. pro- 176

pose LongBench-Write (Bai et al., 2024), a com- 177

prehensive benchmark for evaluating ultra-long 178

generation capabilities. Que et al. propose Hel- 179

loBench (Que et al., 2024), a comprehensive, in- 180

the-wild, and open-ended benchmark to evaluate 181

LLMs’ performance in generating long text. Self- 182

Lengthen (Quan et al., 2024) leverages the intrinsic 183

knowledge and skills of LLMs to enable the model 184

to generate longer content. Suri (Pham et al., 2024) 185

and LongWriter construct high-quality datasets to 186

train the model. These methods require extensive 187

training. PIC is the first approach to enhance long- 188

form text generation capabilities from the perspec- 189

tive of position id and can be plugged into many 190

LLMs without training. 191

3 Method 192

3.1 PIC 193

The core idea of PIC is straightforward: RoPE en- 194

codes relative positional information for tokens at 195

different positions, if we compress the position ids 196

of tokens so that the relative positions perceived 197

by the models are smaller than the actual rela- 198

tive positions, the models may be able to gener- 199

ate longer content. In Section 4.2, experimental 200

results demonstrate that this simple starting point 201

achieves highly effective results. Based on this 202

idea, we propose three variants of PIC: Naive PIC, 203

NTK-aware PIC, and Dynamic PIC. 204

Naive PIC As shown in Figure 1(a), Naive PIC 205

is defined as compressing the position ids of all 206

positions equally by a fixed ratio. This is equivalent 207

to modifying g(m) in Equation (2) to: 208

g(m) =
m

scr
, (7) 209

where m represents the actual position id of the 210

current token and scr represents the compression 211

ratio. The form of Naive PIC is identical to that 212

of PI (Chen et al., 2023). However, the focus of PI 213

is more on extending the context window, whereas 214

the focus of Naive PIC is on enabling the model, 215
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In the movies, time
travelers typically step
inside a machine and—
poof—disappear. They

then reappear (output 1)
instantaneously among

cowboys, knights or
dinosaurs. (output 2)

What these films show is
basically time

teleportation. (output 3)

Input Output

Input Output

Figure 2: Illustration of Dynamic PIC-SFT. A complete text is split into segments, where the input for each
subsequent segment is formed by concatenating the input and output of the previous segment.

which already has a sufficient context window, to216

generate more content.217

NTK-aware PIC NTK-aware PIC indirectly218

compresses the position ids by modifying the RoPE219

Base b, thus altering h(θj) in Equation (2):220

h(θj) = (b · srr)−2(j−1)/d, (8)221

where b is the original RoPE base, srr is the222

RoPE base scaling ratio, j denotes the positional223

index of the token vector, and d represents the total224

dimension size of the token vector. As shown in225

Figure 1(b), the position ids are not directly com-226

pressed. Instead, the RoPE base is doubled, which227

affects the values in different dimensions of the228

token vector.229

Dynamic PIC As shown in Figure 1(c), an230

input context C consists of three parts: C =231

{Initial Context, Middle Context, Recent Context}.232

The core idea of Dynamic PIC is to compress233

the position ids of the middle context only while234

keeping the position ids of the recent context235

and the initial context unchanged. Assuming the236

current total context length is lc, we have:237

g(m) =

{
m if m ≤ lic or m ≥ lc − lrc,
m
scr

otherwise.
(9)238

Here, scr represents the compression ratio, lic239

represents the length of the initial context, and lrc240

represents the length of the recent context.241

In the practical implementation of Dynamic PIC,242

we need to modify the forward function of the243

Algorithm 1 Dynamic PIC

Require: Query Q, Key K, Value V , KV Cache
C

Original Implementation
Q,K ← apply_rope(Q,K)
if C is not null then

K,V ← C.update(K,V )
end if

Dynamic PIC Implementation
if C is not null then

K,V ← C.update(K,V )
end if
Q,K ← apply_rope(Q,K)

model. Originally, the KV cache stores the K and 244

V after applying RoPE. In Dynamic PIC, we only 245

compress the position ids of the middle context, 246

and for each next token prediction, we need to up- 247

date the position ids of all preceding tokens. There- 248

fore, in the Dynamic PIC implementation, we need 249

to store the K and V before applying RoPE. As a 250

result, the steps for applying RoPE and updating 251

the KV cache need to be swapped, as shown in 252

Algorithm 1. 253

3.2 PIC-SFT 254

To further enhance the long-form text generation 255

capabilities of LLMs, we integrate PIC with SFT 256

and propose PIC-SFT. Naive PIC-SFT is defined 257

as compressing position ids to 1/scr of their origi- 258

nal value during SFT, while NTK-aware PIC-SFT 259
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is defined as expanding the RoPE base to srr times260

its original value during SFT. In the cases of Naive261

PIC-SFT and NTK-aware PIC-SFT, all tokens are262

processed in the same way, allowing direct combi-263

nation with SFT. However, for Dynamic PIC, the264

position ids of the context need to be dynamically265

updated for each new token prediction. If directly266

combined with SFT, this would significantly in-267

crease storage and computation overhead during268

training, making parallel computation infeasible.269

To address these challenges, we propose Dynamic270

PIC-SFT, an SFT approach tailored to Dynamic271

PIC.272

As shown in Figure 2, we split a complete piece273

of text into segments of equal length, starting from274

the end of the text and moving backward. These275

segments serve as the output, while all preceding276

content is treated as the input. Since we only com-277

pute the loss for the output, this approach effec-278

tively computes the prediction loss for the entire279

text. This approach ensures that the position ids280

for each segment remain fixed, allowing each seg-281

ment to be treated as an independent sample for282

parallel computation, significantly reducing com-283

putational overhead during training. Furthermore,284

since the splits are fine-grained, the fixed position285

ids for each segment closely align with the behav-286

ior of Dynamic PIC during inference, ensuring that287

the training stage closely approximates the actual288

inference stage.289

4 Experiments290

4.1 Experimental Setup291

Models & Benchmarks In this work, we mainly292

evaluate 3 LLMs: LLaMA-3.1-8B-Instruct (Dubey293

et al., 2024), Qwen-2.5-7B-Instruct (Yang et al.,294

2024), and GLM-4-9B-Chat (Zeng et al., 2022).295

To evaluate the performance of PIC in long-form296

text generation, we select HelloBench (Que et al.,297

2024) and LongBench-Write (Bai et al., 2024)298

as the evaluation benchmarks. As the training299

dataset, we have chosen the high-quality bilin-300

gual SFT dataset LongWriter-6k1 which contains301

6000 long-form instructional samples. We only302

selected samples from LongBench-Write with gen-303

eration length requirements greater than 2000 as304

the test set. To ensure consistency with LongBench-305

Write, we focus on the “Heuristic Text Generation”306

subset of HelloBench for evaluation. Therefore,307

1https://huggingface.co/datasets/THUDM/
LongWriter-6k

for PIC-SFT, HelloBench can be considered as 308

out-of-distribution data, while LongBench-Write 309

can be seen as in-distribution data, enabling a 310

more comprehensive evaluation. To evaluate the 311

model’s performance on short-form text genera- 312

tion, we select MMLU (Hendrycks et al., 2020) 313

and GSM8K (Cobbe et al., 2021). The number 314

of test samples for HelloBench, LongBench-Write, 315

MMLU, and GSM8K are 123, 47, 14042, and 1319, 316

respectively. 317

Inference & Training To ensure reproducibility, 318

all inference is conducted using greedy decoding. 319

For training, we use LLaMA-Factory (Zheng et al., 320

2024) with a learning rate of 5e-5, warmup of 0.1, 321

and 3 epochs. All experiments are conducted on 64 322

NVIDIA H100 80GB GPUs. 323

PIC In Section 4.3, for Dynamic PIC-SFT, the 324

length of the initial context is 10, and the length of 325

the recent context is 600. For NTK-aware PIC-SFT, 326

srr is set to 16. 327

Metrics We focus on two aspects: generation 328

length and generation quality. We adopt the met- 329

rics for length and quality as defined in HelloBench 330

and LongBench-Write. Specifically, Sl represents 331

the length score, Sq represents the quality score, 332

and S is their average. Additionally, we have ob- 333

served that generating overly long texts often leads 334

to severe repetition. We consider such repetitive 335

generations as failed outputs, and thus, we calcu- 336

late the Corrupted Ratio to evaluate the effec- 337

tiveness of the generation. The corrupted ratio is 338

defined as the number of repeated samples divided 339

by the total number of samples. For MMLU and 340

GSM8K, the evaluation metric is accuracy. To save 341

resources and ensure reproducibility of results, we 342

use LLaMA-3.3-70B-Instruct2 as the judge model, 343

and the inference engine is vLLM (Kwon et al., 344

2023). More details are shown in Appendix A. 345

4.2 PIC 346

To verify the effectiveness and generalization of 347

Naive PIC, NTK-aware PIC, and Dynamic PIC, we 348

have tested the long-form text generation capabili- 349

ties of the three models under different parameters. 350

The experimental results are shown in Figure 1 and 351

Table 1. Based on the experimental results, we 352

draw the following conclusions: 353

2https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct
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Table 1: The results of the three PIC methods, Naive PIC, NTK-aware PIC, and Dynamic PIC, with varying
parameters are presented. Evaluation Benchmark is HelloBench. “CR” denotes Corrupted Ratio. The results for
Quality and CR have been multiplied by 100. Only a subset of the results is shown here, more detailed experimental
results can be found in Appendix B. The blue row represents the baseline.

Parameter LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct GLM-4-9B-Chat

Length ↑ Tokens ↑ Quality ↑ CR ↓ Length ↑ Tokens ↑ Quality ↑ CR ↓ Length ↑ Tokens ↑ Quality ↑ CR ↓

Naive PIC, Parameter = Compression Ratio

0.5 779.26 806.91 73.91 43.09 824.68 850.16 69.00 59.35 802.42 850.29 77.82 6.50
0.75 959.35 998.88 78.52 4.07 832.16 860.22 77.65 11.38 946.47 994.15 79.64 0.81

1 1001.86 1055.42 79.85 1.63 958.33 990.54 80.17 4.07 990.09 1039.23 81.07 2.44
2 691.76 725.72 71.96 13.01 858.95 905.18 71.51 54.47 1120.43 1109.97 71.17 46.34

NTK-aware PIC, Parameter = RoPE Base Scaling Ratio

0.33 770.85 806.58 77.54 0 797.55 823.27 78.95 4.88 869.17 914.07 79.18 0
0.67 882.79 925.79 79.49 0 962.98 997.83 78.67 5.69 944.34 989.40 80.02 0.81

1 1020.80 1071.84 80.97 1.63 954.75 988.72 80.98 4.07 986.97 1031.88 81.03 2.44
4 1522.97 1604.71 82.38 7.32 1140.97 1178.38 80.98 6.50 1154.25 1203.4 82.16 1.63
16 1802.11 1902.17 81.05 34.15 1391.56 1436.65 81.77 13.01 1352.04 1404.38 82.52 1.63

Dynamic PIC, Parameter = Compression Ratio, Length of Initial Context = 4, Length of Recent Context = 200

0.25 816.65 857.19 79.30 0 823.67 854.88 78.88 4.88 930.33 973.37 79.92 3.25
0.5 893.25 940.46 79.15 0 864.46 895.39 79.25 5.69 937.21 980.22 79.40 1.63
1 1024.05 1076.16 81.07 1.63 966.61 1001.67 80.19 4.07 984.50 1029.95 80.86 2.44
4 1380.63 1444.02 81.31 0.81 1125.13 1164.26 81.58 17.07 1154.62 1206.48 81.75 0.81
16 1938.24 2028.61 81.12 24.39 1520.81 1569.01 80.93 22.76 1347.92 1406.73 82.72 4.88
128 1961.89 2101.06 75.31 61.79 1490.53 1543.54 81.96 35.77 1478.12 1538.12 83.43 4.07

(1). Naive PIC performs poorly: As observed354

in Table 5, when the compression ratio is not equal355

to 1, the generation quality tends to degrade signifi-356

cantly, with the quality score dropping to 0 and the357

corrupted ratio close to 100%. This result aligns358

with the conclusions from PI (Chen et al., 2023),359

where directly applying linear interpolation to po-360

sition ids leads to undesirable outcomes.361

(2). NTK-aware PIC and Dynamic PIC per-362

form well: From the trend in Figure 1, it can be363

observed that as the Compression Ratio or RoPE364

Base Scaling Ratio increases, the generation length365

increases smoothly. At the same time, the genera-366

tion quality does not deteriorate and even shows a367

slight improvement, which is consistent with our368

core idea: compressing position ids can stimulate369

the model’s inherent ability for long-form text gen-370

eration. This validates the effectiveness and gener-371

alization of PIC across three models.372

(3). Corrupted Ratio: Based on Table 6 and Ta-373

ble 7, in most cases, the corrupted ratio remains be-374

low 20% (with srr ranging from 0.25 to 64 and scr375

ranging from 0.25 to 64). This indicates that within376

a certain range, NTK-aware PIC and Dynamic PIC377

do not negatively impact generation quality. This378

result confirms the superiority of NTK-aware PIC379

and Dynamic PIC compared to Naive PIC. How-380

ever, there is a threshold for these ranges. When381

the threshold is exceeded (e.g., when srr exceeds 8382

on LLaMA-3.1-8B-Instruct), the generation quality383

deteriorates significantly. 384

(4). Generation Length: The trend of genera- 385

tion length is entirely consistent with the generation 386

token. Additionally, it can be observed that NTK- 387

aware PIC and Dynamic PIC are able to extend 388

the model’s generated length to approximately 1.5 389

times the original length without compromising 390

generation quality, and this is achieved without any 391

additional training. 392

4.3 PIC-SFT 393

To further improve the long-form text generation 394

capabilities of LLMs, we propose PIC-SFT and 395

conduct experiments. The experimental results are 396

shown in Table 2 and Figure 3. Based on the 397

results, we summarize the following conclusions: 398

(1). SFT improves performance significantly: 399

Fine-tuning with high-quality instruction datasets 400

can significantly enhance the long-form text gener- 401

ation capabilities of the model. Regardless of the 402

specific SFT method, fine-tuning improves both 403

the generation length and generation quality. On 404

HelloBench, the generation length increases by 4–5 405

times, and the generation quality improves from 406

82.25 to 89.26 (on LLaMA-3.1-8B-Instruct). 407

(2). Dynamic PIC-SFT performs best: As 408

shown in Table 2, Dynamic PIC-SFT achieves the 409

best results in both generation length and genera- 410

tion quality, whether for in-distribution benchmark 411

LongBench-Write or out-of-distribution bench- 412
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Table 2: The experimental results of different SFT methods. “CR” denotes Corrupted Ratio. All experimental
results maintain consistency between training and inference, for example, the inference method for NTK-aware
PIC-SFT is NTK-aware PIC.

Method HelloBench-HTG LongBench-Write

Length ↑ Quality ↑ CR ↓ Sl ↑ Sq↑ S ↑ CR ↓

LLaMA-3.1-8B-Instruct

w/o SFT 1040.89 82.25 1.63 18.87 90.33 54.60 3.33
SFT 4342.24 86.87 3.25 78.06 98.73 88.40 1.67

NTK-aware PIC-SFT 4737.44 89.17 4.07 77.71 97.80 87.75 1.67
Dynamic PIC-SFT 5032.98 89.26 4.07 82.08 97.00 89.54 1.67

Qwen-2.5-7B-Instruct

w/o SFT 965.51 80.58 4.07 41.59 98.12 69.85 8.33
SFT 4070.64 87.85 3.25 81.92 99.64 90.78 3.33

NTK-aware PIC-SFT 3964.59 87.46 8.13 81.13 98.48 89.81 1.67
Dynamic PIC-SFT 4282.14 89.39 0.81 84.15 99.57 91.86 0.83

GLM-4-9B-Chat

w/o SFT 967.32 81.09 2.44 27.03 95.65 61.34 3.33
SFT 4057.83 84.05 14.63 77.86 96.94 87.40 8.33

NTK-aware PIC-SFT 3910.37 81.82 30.08 77.52 94.17 85.84 20.0
Dynamic PIC-SFT 4357.59 82.57 3.25 76.48 98.7 87.59 0
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Figure 3: Results of different SFT methods evaluated on MMLU and GSM8K. The base model is LLaMA-3.1-8B-
Instruct. ∗ represents standard inference, † represents NTK-aware PIC inference, and ‡ represents Dynamic PIC
inference.

mark HelloBench. Furthermore, Dynamic PIC-413

SFT does not compromise the validity of the gen-414

erated content. For example, for GLM-4-9B-Chat,415

both SFT and NTK-aware PIC-SFT result in re-416

duced validity (the corrupted ratio on HelloBench417

is 14.63 and 30.08, and on LongBench-Write is418

8.33 and 20.0, respectively). In contrast, the cor-419

rupted ratio for Dynamic PIC-SFT is only 3.25 on420

HelloBench and 0 on LongBench-Write.421

(3). The decoupling of PIC-SFT: Figure 3422

shows the performance of different methods on423

MMLU and GSM8K. Since the fine-tuning focuses424

solely on long-form text generation tasks, the over- 425

all output distribution tends to favor longer content. 426

As a result, the model’s ability for shorter text gen- 427

eration may decline, leading to lower scores on 428

tasks such as MMLU and GSM8K. However, an 429

interesting observation arises when the PIC-SFT 430

model is used for standard (i.e., non-PIC) infer- 431

ence. In this case, it achieves higher scores on 432

MMLU and GSM8K. In addition, we have con- 433

ducted additional experiments to demonstrate this, 434

as detailed in Appendix C. These Phenomena in- 435

dicate that PIC-SFT exhibits decoupling. Specifi- 436
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Table 3: Ablation Study on Dynamic PIC. The base model is LLaMA-3.1-8B-Instruct. “IC” denotes initial context,
“RC” denotes recent context. The blue row represents the baseline.

Parameter HelloBench-HTG LongBench-Write

Length ↑ Quality ↑ CR ↓ Sl ↑ Sq↑ S ↑ CR ↓

Ablation study on the modules of Dynamic PIC

Baseline 1401.97 81.13 0.81 27.73 4.36 16.05 5.83
w/o IC 1400.53 81.45 1.63 29.32 4.44 16.88 6.67
w/o RC 306.11 15.3 78.05 2.14 1.39 1.76 48.33

w/o IC&RC 266.61 10.72 77.24 0 1.43 0.72 45.0
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Figure 4: Ablation Study on length of IC and length of RC.

cally, in NTK-aware PIC, the RoPE Base value is437

modified, while in Dynamic PIC, the position ids438

of the middle context are compressed. When train-439

ing with NTK-aware PIC-SFT, standard inference440

retains more of the model’s original capabilities,441

while NTK-aware PIC Inference focuses more on442

long-form text generation tasks. This observation443

suggests the potential for decoupling a model’s abil-444

ities in short-form text generation and long-form445

text generation through PIC-SFT.446

4.4 Ablation Study on Dynamic PIC447

To investigate the effectiveness of each module in448

Dynamic PIC, we have conducted an ablation study,449

with the results shown in Table 3 and Figure 4.450

It can be observed that the Recent Context (RC)451

is crucial for Dynamic PIC. Removing RC leads452

to a significant drop in both generation length and453

generation quality, as well as an increase in the454

corrupted ratio, resulting in an overall decline in455

output performance. As for the Initial Context (IC),456

its impact on the long-form text generation tasks is457

not significant. However, based on the conclusions458

from StreamingLLM (Xiao et al., 2023), the Initial459

Context is critical for long-context understanding.460

For consistency, we choose to include the Initial461

Context by default. Lastly, the length of RC has462

a noticeable effect on the generation length and463

generation quality. As shown in Figure 4, when464

the length of RC is smaller, the model tends to 465

produce longer outputs, but the generation quality 466

decreases. 467

5 Conclusion 468

In this work, we introduce Position ID Compres- 469

sion (PIC), a simple, efficient, and plug-in approach 470

to enhance the long-form text generation capabil- 471

ities of LLMs. By compressing position ids, PIC 472

enables models to generate longer content without 473

additional training. We propose two improved vari- 474

ants, NTK-aware PIC and Dynamic PIC, which 475

achieve better efficiency and flexibility. To fur- 476

ther improve long-form text generation, we com- 477

bine PIC with SFT and propose PIC-SFT, which 478

achieves up to a 5x increase in generation length 479

while maintaining the generation quality. Through 480

extensive experiments, we show that PIC-SFT 481

achieves state-of-the-art performance on both in- 482

distribution and out-of-distribution datasets, with 483

significantly reduced corrupted ratios compared to 484

other methods. Additionally, the observed ability 485

of PIC-SFT to decouple short-text and long-text 486

capabilities highlights its potential for more flexi- 487

ble deployment in future LLM applications. These 488

findings suggest that proper design and configura- 489

tion of position id compression strategies are key 490

to unlocking the full potential of long-form text 491

generation in LLMs. 492
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Limitations493

The choice of the judge model The quality eval-494

uation for HelloBench and LongBench-Write in-495

volves the use of the judge model. In this work,496

to ensure the reproducibility of results while sav-497

ing resources, we selected the latest open-source498

model, LLaMA-3.3-70B-Instruct, as our judge499

model. However, in the original works of Hel-500

loBench and LongBench-Write, GPT-4o was used501

for evaluation. In the future, we plan to conduct502

evaluations using GPT-4o and provide the corre-503

sponding results.504

Further exploration on the decoupling of PIC-505

SFT In Section 4.3, we have discussed the de-506

coupling phenomenon of PIC-SFT. This interesting507

finding suggests that the model’s capabilities might508

be decoupled and expressed through different infer-509

ence methods. However, in this work, we focus on510

identifying and explaining this phenomenon, with-511

out conducting further exploration. We consider512

further investigation of this phenomenon as future513

work.514
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A Details of Metrics743

For HelloBench and LongBench-Write, we use dif-744

ferent metrics to represent the generation length745

and generation quality. For HelloBench, we mea-746

sure generation quality using the HelloEval scores747

from HelloBench, which are referred to as “Qual-748

ity” in the experimental table for simplicity. It is749

worth noting that we do not adopt Score Rescaling750

as described in the original paper. For LongBench-751

Write, we use the S metric as defined by Bai et752

al. (Bai et al., 2024) to represent the overall gen-753

eration quality. For MMLU evaluation, we use754

5-shot, and for GSM8K evaluation, we use 4-shot755

combined with Chain-of-Thought (CoT).756

In addition, we have used the Corrupted Ratio757

to measure the model’s effective generation rate.758

Since different models may have varying numbers759

of corrupted samples, we ensure comparability by 760

following a specific approach. For models with a 761

Corrupted Ratio of less than 20%, we have calcu- 762

lated the average of non-corrupted examples shared 763

among compared models as the final experimental 764

result, ensuring direct comparability. For models 765

with a Corrupted Ratio greater than 20%, includ- 766

ing their corrupted examples in the shared non- 767

corrupted set would result in too few examples 768

for averaging, diminishing comparability. There- 769

fore, for models with a Corrupted Ratio above 20%, 770

we have computed their averaged results indepen- 771

dently. We use the NLTK (Bird, 2006) library to 772

calculate the generated length. Additionally, we 773

have observed that most repetitive samples do not 774

end with the typical end-of-token of LLMs. There- 775

fore, we determine whether a sample is corrupted 776

based on regular expressions and whether it ends 777

with the end-of-token. 778

Through comparisons, we have observed that the 779

error introduced by considering or not considering 780

the shared non-corrupted examples is less than 5%. 781

However, for the sake of rigor, we provide this 782

clarification. 783

B Additional Experimental Results 784

Table 4: Results of different SFT methods evaluated on
MMLU and GSM8K. The base model is LLaMA-3.1-
8B-Instruct. ∗ represents standard inference, † repre-
sents NTK-aware PIC inference, and ‡ represents Dy-
namic PIC inference.

Method MMLU GSM-8K

w/o SFT 66.17 80.64
SFT 46.48 64.82

NTK-aware PIC-SFT∗ 50.33 65.73
NTK-aware PIC-SFT† 47.82 61.71

Dynamic PIC-SFT∗ 54.77 66.57
Dynamic PIC-SFT‡ 50.10 59.21

C The impact of different inference 785

methods 786

We further conduct experiments on the different 787

inference methods on PIC-SFT, the experimental 788

results are shown in Table 8. We observe that, 789

compared to NTK-aware PIC Inference, standard 790

inference tends to generate shorter content with 791

lower generation quality. Similarly, compared to 792

Dynamic PIC Inference, standard inference also 793
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Table 5: The experimental results of Naive PIC with varying Compression Ratio are presented. “CR” denotes
Corrupted Ratio. The blue row represents the baseline.

Compression Ratio LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct GLM-4-9B-Chat

Length Tokens Quality CR Length Tokens Quality CR Length Tokens Quality CR

0.25 0 0 0 100 0 0 0 100 0 0 0 100
0.33 0 0 0 100 0 0 0 100 0 0 0 100
0.5 779.26 806.91 73.91 43.09 824.68 850.16 69 59.35 802.42 850.29 77.82 6.5

0.67 904.13 947 77.91 6.5 841.76 869.94 77.8 13.01 896.15 945.18 78.87 1.63
0.75 959.35 998.88 78.52 4.07 832.16 860.22 77.65 11.38 946.47 994.15 79.64 0.81

1 1001.86 1055.42 79.85 1.63 958.33 990.54 80.17 4.07 990.09 1039.23 81.07 2.44
2 691.76 725.72 71.96 13.01 858.95 905.18 71.51 54.47 1120.43 1109.97 71.17 46.34
3 593.78 618.3 43.9 43.9 876.75 917.61 66.44 77.24 1233.74 1288.02 60.05 65.85
4 266.61 279.64 10.72 77.24 1660 1721.57 54.1 94.31 2304.38 2453.56 24.3 84.55
8 27.67 28.76 0 22.76 0 0 0 100 5937.6 6642.4 0 95.12

16 6.63 7.88 0 2.44 72.27 85.45 0 91.06 1923.5 2076 0 98.37

Table 6: The experimental results of NTK-aware PIC with varying RoPE Base Scaling Ratio are presented. “RBSR”
denotes RoPE Base Scaling Ratio. “CR” denotes Corrupted Ratio. The blue row represents the baseline.

RBSR LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct GLM-4-9B-Chat

Length Tokens Quality CR Length Tokens Quality CR Length Tokens Quality CR

0.25 693.05 721.01 76.45 0.81 812.38 837.8 77.14 4.07 866.12 909.25 79.39 0.81
0.33 770.85 806.58 77.54 0 797.55 823.27 78.95 4.88 869.17 914.07 79.18 0
0.5 849.8 888.56 78.97 0.81 890.93 922.84 78.91 6.5 909.26 954.31 79.62 0.81
0.67 882.79 925.79 79.49 0 962.98 997.83 78.67 5.69 944.34 989.4 80.02 0.81
0.75 924.98 972.79 80.79 0.81 866.75 897.66 78.89 5.69 980.88 1025.65 80.86 0.81

1 1020.8 1071.84 80.97 1.63 954.75 988.72 80.98 4.07 986.97 1031.88 81.03 2.44
2 1259.69 1326.76 81.59 0 1042.36 1080.24 80.22 3.25 1051.68 1096.56 81.62 2.44
3 1381.08 1454.8 82.34 6.5 1092.58 1128.23 80.29 8.13 1106.7 1156.73 81.52 0
4 1522.97 1604.71 82.38 7.32 1140.97 1178.38 80.98 6.5 1154.25 1203.4 82.16 1.63
8 1675.86 1765.35 81.67 22.76 1256.05 1303.24 81.13 9.76 1245.97 1294.94 82.88 0.81
16 1802.11 1902.17 81.05 34.15 1391.56 1436.65 81.77 13.01 1352.04 1404.38 82.52 1.63
32 1811.1 1917.76 80.77 41.46 1519.52 1573.89 81.27 22.76 1453.24 1505.29 83.98 2.44
64 1676.64 1812.77 77.61 61.79 1585.94 1651.06 80.71 47.15 1605.64 1666.28 84.03 4.07
128 1493.38 1583.02 77.86 61.79 1761.41 1832.64 80.11 46.34 1701.72 1765.42 83.98 9.76
256 1312.87 1382.3 73.13 81.3 1776.43 1867.52 77.41 62.6 1798.69 1865.31 83.05 23.58
512 1066.64 1118.73 73.45 91.06 1900.31 2006.42 74.84 70.73 1880.8 1953.73 81.86 31.71

Table 7: The experimental results of Dynamic PIC with varying Compression Ratio are presented. “CR” denotes
Corrupted Ratio. The blue row represents the baseline.

Compression Ratio LLaMA-3.1-8B-Instruct Qwen-2.5-7B-Instruct GLM-4-9B-Chat

Length Tokens Quality CR Length Tokens Quality CR Length Tokens Quality CR

0.25 816.65 857.19 79.3 0 823.67 854.88 78.88 4.88 930.33 973.37 79.92 3.25
0.33 858.72 902.11 79.84 1.63 858.68 889.78 78.36 4.07 899.69 941.86 80.5 0.81
0.5 893.25 940.46 79.15 0 864.46 895.39 79.25 5.69 937.21 980.22 79.4 1.63
0.67 945.2 994.1 80.16 1.63 883.42 916.3 78.91 5.69 931.02 974.52 81.11 1.63
0.75 982.13 1033.77 80.23 0.81 902 933.7 79.13 5.69 951.4 993.65 80.63 0.81

1 1024.05 1076.16 81.07 1.63 966.61 1001.67 80.19 4.07 984.5 1029.95 80.86 2.44
2 1155.42 1211.42 81.89 1.63 1075.7 1112.8 80.12 8.13 1051.12 1101.73 81.11 1.63
3 1283.81 1346.92 81.54 0.81 1104.83 1144.6 79.55 13.01 1130.18 1179.9 82 0.81
4 1380.63 1444.02 81.31 0.81 1125.13 1164.26 81.58 17.07 1154.62 1206.48 81.75 0.81
8 1656.45 1734.45 81.88 6.5 1282.11 1324.32 82.35 13.82 1234.58 1288.33 82.27 5.69
16 1938.24 2028.61 81.12 24.39 1520.81 1569.01 80.93 22.76 1347.92 1406.73 82.72 4.88
32 1919.77 2022.68 76.68 47.15 1479.34 1530.09 81.58 30.08 1428.65 1487.96 82.88 5.69
64 1817.23 1916.1 76.08 60.98 1454.23 1501.58 79.96 31.71 1441.52 1502.96 83.45 4.88

128 1961.89 2101.06 75.31 61.79 1490.53 1543.54 81.96 35.77 1478.12 1538.12 83.43 4.07
256 1737.69 1858.37 74.45 71.54 1471.03 1526.04 79.8 38.21 1462.22 1523.08 82.91 4.07
512 1576.7 1691.36 75.23 73.17 1460.7 1510.07 80.89 38.21 1507.17 1572.32 83.4 4.07
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Table 8: The experimental results of different SFT methods with different inference methods. The base model is
LLaMA-3.1-8B-Instruct. ∗ represents standard inference, † represents NTK-aware PIC inference, and ‡ represents
Dynamic PIC inference.

Method HelloBench-HTG LongBench-Write

Length ↑ Quality ↑ CR ↓ Sl ↑ Sq↑ S ↑ CR ↓

SFT∗ 4207.51 87.37 3.25 76.8 98.37 87.59 1.67
SFT† 5166.1 88.58 21.14 74.03 98.13 86.08 13.33
SFT‡ 4632.37 87.95 3.25 80.02 97.97 89.0 0.0

NTK-aware PIC-SFT∗ 3717.72 87.34 12.2 80.29 97.32 88.80 5.83
NTK-aware PIC-SFT† 4582.63 89.03 4.07 80.08 97.56 88.82 1.67

Dynamic PIC-SFT∗ 4413.57 87.01 3.25 75.34 97.56 86.45 3.33
Dynamic PIC-SFT‡ 5098.45 89.48 4.07 82.49 96.99 89.74 1.67

produces shorter content and lower generation qual-794

ity. This indirectly indicates that after NTK-aware795

PIC-SFT, the long-form text generation capability796

of standard inference weakens. This shows that797

PIC Inference remains effective after SFT, consis-798

tent with the trend identified in Section 4.2.799

D Potential Risks800

LLMs have been observed to exhibit inherent bi-801

ases, generating content that may contain discrimi-802

nation in various aspects such as politics, gender,803

and race (Das et al., 2024; Ferdaus et al., 2024) due804

to biased training data. The harmful stereotypes805

manifested in the generated content can contribute806

to the oppression of those at social margins (Wei-807

dinger et al., 2021). Therefore, in various long-808

form text generation fields such as creative writing809

and story continuation, it is crucial to ensure that810

the relevant long texts generated by LLMs do not811

contain harmful stereotypes. Additionally, LLMs812

are prone to hallucinations, often generating infor-813

mation that is factually incorrect or non-existent814

(Huang et al., 2023; Sahoo et al., 2024). This issue815

is particularly prominent in applications requiring816

high accuracy, such as academic paper editing and817

news writing, where the dissemination of incorrect818

information can have serious consequences. Ensur-819

ing that LLMs generate reliable and accurate long820

texts is essential to maintain the credibility of the821

generated content.822

E Computational Budget for PIC-SFT823

The computation budget for NTK-aware PIC-SFT824

is 20 GPU hours and the computation budget for825

Dynamic PIC is 60 GPU hours.826
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