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ABSTRACT

Accurately predicting material properties remains a complex and computationally
intensive task. In this work, we introduce TEXT-TO-ENERGY (T2E), a novel
approach combining text-to-vector encoding and a multilayer perceptron (MLP)
for rapid and precise energy predictions. T2E begins by converting pivotal ma-
terial attributes to a vector representation, followed by the utilization of an MLP
block incorporating significant physical data. This novel integration of textual,
physical, and quantum insights enables T2E to swiftly and accurately predict the
total energy of material systems. The proposed methodology marks a signifi-
cant departure from conventional computational techniques, offering a reduction
in computational burden, which is imposed by particle count and their interac-
tions, obviating the need for extensive quantum chemistry expertise. Comprehen-
sive validation across a diverse range of atoms and molecules affirms the superior
performance of T2E over state-of-the-art solutions such as DFT, FERMINET, and
PSIFORMER.

1 INTRODUCTION

The exploration of electronic structures of molecules and solids in quantum mechanics is funda-
mentally guided by Density Functional Theory (DFT) (Hohenberg & Kohn, 1964; Parr & Yang,
1989; Jones & Gunnarsson, 1989; Dreizler & Gross, 1990; Martin, 2004; Saal et al., 2013), a ro-
bust computational method that anchors its principles on the resolution of the Schrödinger equation
(Schrödinger, 1926; Ballentine, 1998; Atkins & Friedman, 2005; Griffiths, 2005; Cohen-Tannoudji
et al., 2006), a fundamental equation describing the behavior of quantum particles within a potential.
Despite its extensive utilization and significance, the application of DFT is not without its intricacies
(Burke, 2012; Rudberg, 2012; Verma & Truhlar, 2020). Central to these is the challenge posed by the
exchange-correlation (XC) functional, a critical term derived from the electron-electron interaction
in the total energy expression of the system (Becke, 1988). This functional, expressed as:

∆EXC = EXC[ρ]− EX [ρ]− EC [ρ] (1)

signifies the discrepancy or error in the XC functional, underscoring the difficulty in accurately cap-
turing both exchange and correlation effects within a single functional, given its unknown exact
form. This limitation manifests in the restricted description of various chemical phenomena, such
as weak interactions and excited states (Cohen et al., 2008). To alleviate this, the Kohn-Sham of-
fers an approximate solution by mapping the interacting system to a non-interacting one, thereby
simplifying the many-body problem to a set of single-electron equations (Kohn & Sham, 1965).
Nevertheless, the success of this method remains confined by the chosen XC functional. In response
to these persistent issues, the adoption of machine learning (ML) (Alpaydin, 2020) techniques has
emerged as a prominent strategy to augment the capabilities of traditional DFT methods (Ward
et al., 2016; Brockherde et al., 2017; Schütt et al., 2017a; Zhang et al., 2018; Sahu et al., 2018;
Xie & Grossman, 2018; Butler et al., 2018; Faber et al., 2019). ML techniques, particularly neural
networks, have demonstrated substantial success in approximating complex wave functions (Cai &
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Liu, 2018; Hermann et al., 2020), directly predicting observables (Hansen et al., 2015; Schütt et al.,
2017b), and determining potential energy surfaces (Behler & Parrinello, 2007; Li et al., 2015), di-
rectly identifying functionals of DFT (Snyder et al., 2012; 2013; Li et al., 2016) and predicting a
wide array of material forms (Fiedler et al., 2023).

Utilizing ML for predicting material properties faces two significant challenges. The Computational
Cost is a foremost hurdle as the inherent complexity of many-body systems substantially prolongs
the training duration, extending it from hours to weeks even with the handling of millions of pa-
rameters (von Glehn et al., 2022). Another crucial barrier is the Requirement of Substantial Domain
Knowledge. Despite the abundant data available for energy estimation, the diversity in inputs that
various ML strategies employ underlines the essential need for extensive domain knowledge (Pfau
et al., 2020; Fiedler et al., 2023). This situation is further complicated by the reliance on pre-trained
networks and scientific libraries such as PYSCF (Sun et al., 2018), adding another layer of approx-
imation and complexity to the problem.

To address these issues, we introduce TEXT-TO-ENERGY (T2E), a novel approach that leverages
text-to-vector encoding with a physics-informed multi-layer perceptron (PIMLP) for swift and ac-
curate energy predictions. The text encoder alleviates the need for extensive domain knowledge by
accepting material’s name, spin, and 3D coordinates as input and converting them into a vector rep-
resentation. This vector then serves as input for our PIMLP model, tailored for enhanced awareness
of orbital characteristics, facilitating accurate material property predictions. Our PIMLP model,
consisting of approximately ≈ 52K parameters, permits rapid energy predictions for unseen mate-
rials, representing a considerable advancement in computational efficiency compared to traditional
ab-initio approaches, as delineated in Figure 1.

The structure of the remainder of the paper is outlined as follows: In section 2, we provide relevant
background on Quantum Mechanics of many-particle systems and Kohn-Sham Functional Theory.
Section 3 describes our T2E approach, while section 4 details our experiments for comparing our
solution, T2E, with the DFT method and the state-of-the-art ML solutions FERMINET and PSI-
FORMER. Finally, section 5 presents our conclusions.

Evaluation of Cutting-Edge Approaches for Materials Understanding
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Figure 1: Comparison of ab-initio approaches and T2E. This figure underscores the trade-offs
among cutting-edge material understanding methods. SE stands out for unmatched accuracy, at the
cost of high computational demand due to the absence of fundamental approximations. DFT lessens
computational load but sacrifices accuracy owing to approximation use. In contrast, T2E optimally
blends efficiency and accuracy, demanding minimal domain knowledge and computational expense
while offering accuracy equivalent to SE and surpassing the efficiency of DFT.
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2 RELATED WORK

2.1 SCHRÖDINGER EQUATION

Understanding the behavior of many-particle systems, such as electrons in an atom or molecules,
requires solving the many-body SE (Shankar, 1994). This equation serves as a cornerstone in quan-
tum chemistry and condensed matter physics, offering a comprehensive depiction of the quantum
state of systems comprised of multiple particles (Bruus & Flensberg, 2004). The time-independent
SE for a system of N electrons in Dirac notation is given by:

Ĥψ(r1, . . . , rN ) = Eψ(r1, . . . , rN ) (2)

Here, Ĥ represents the Hamiltonian operator, which, for a Coulombic system of N electrons, can be
expressed as:

Ĥ = −
∑
i

1

2
∇2

i −
∑
iA

ZA

|ri − rA|
+
∑
i>j

1

|rij |
(3)

Breaking down this Hamiltonian, the first term encapsulates the kinetic energy of each electron, and
the second term accounts for the potential energy experienced by each electron within the external
potential. The third term characterizes the Coulombic interactions between pairs of electrons (Jack-
son, 1999), with the summation over i and j encompassing all pairs within the system. Solving the
time-independent SE (eq. 2) for a system of N electrons presents a formidable challenge, as exact
solutions for Coulombic many-electron systems are generally analytically unattainable, except for
a few special cases. Consequently, researchers employ various approximations and numerical tech-
niques, such as DFT and Variational Monte Carlo (VMC) (Foulkes et al., 2001), to surmount these
challenges and obtain approximate solutions.

2.2 KOHN-SHAM DENSITY FUNCTIONAL THEORY

Solving the many-body SE demands substantial computational resources, and as the system size
increases, the demands for memory and processing power grow exponentially, making the compu-
tational cost prohibitive for large systems (Ratcliff et al., 2017). However, Kohn-Sham (KS) DFT
(Kohn & Sham, 1965) emerges as a powerful solution to address these challenges (Becke, 2014).
DFT is a groundbreaking approach that simplifies the task of solving the many-body SE while main-
taining accuracy. Within the DFT framework, the Kohn-Sham formula provides a straightforward
expression for the ground state energy, which can be represented as the sum of several terms:

E[ρ] = Ts[ρ] + Vext[ρ] + EH [ρ] + Exc[ρ] (4)

where Ts[ρ] is the kinetic energy term, which represents the total kinetic energy of the electrons for
the KS noninteracting reference system, which can be given as:

Ts[ρ] =
∑

< ϕi| −
1

2
∇2|ϕi > (5)

in terms of ϕi, the set of one electron KS orbitals. The electron density (ED) of the KS reference
system is given by:

ρ(r) =
∑

|ϕi(r)|2 (6)

The Vext[ρ] term in Eq. 4 accounts for the potential energy of the electrons due to the presence of
external fields or nuclei. This potential term can be expressed as:

Vext[ρ] =

∫
ρ(r)v(r)dr (7)
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The second-to-last term, EH [ρ], is the Hartree energy term, which represents the classical electro-
static interaction (electron - electron repulsion) energy between the electrons. This term can be
written as:

EH [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ (8)

The last term is the exchange-correlation energy term, which accounts for the quantum mechanical
exchange and correlation effects between the electrons. It can be expressed in the constrained search
formulation for density functionals as follows, although no explicit form is available (Levy, 1979).

EXC [ρ] = (T [ρ]− Ts[ρ]) + (Vee[ρ]− EH [ρ]) (9)

It’s important to note that the choice of the exchange-correlation functional can have a significant
impact on the accuracy of DFT calculations for different systems and properties. Different function-
als may perform better or worse depending on the specific problem at hand. While the KS equa-
tions provide a powerful framework for approximating the electronic structure of a system within
DFT, there are still several challenges and limitations associated with their practical implementation.
The followings are some of the key challenges in the KS equations: Exchange-correlation approx-
imation (Von Barth & Hedin, 1972; Perdew & Yue, 1986; Arbuznikov, 2007); band gap problem
(Perdew, 1985; Perdew et al., 2017); treatment of strongly correlated system (Avella et al., 2012);
self-consistency (Wasserman et al., 2017); sensitivity to basis set (Fouda & Besley, 2018); system
size (Pan, 2021).

3 T2E: TEXT-TO-ENERGY

In this section, we present our T2E model, composed of a text-to-vector encoder and a PIMLP
model. Together, they address significant challenges. The encoder minimizes the necessity for
extensive domain knowledge by excluding particle and interaction calculations from complexity
assessment, thereby enhancing scalability. Simultaneously, our PIMLP model efficiently manages
the balance between the need of physical information for generalization and extensive computational
requirement.

3.1 TEXT-TO-VECTOR ENCODER

Theoretical material simulations demand extensive domain knowledge. Even with packages like
PYSCF that aim to mitigate this need, detailed inputs like basis vectors and material coordinates
are crucial, with output precision heavily reliant on these parameters. ML models like FERMINET
and PSIFORMER also lean on PYSCF for initial settings, maintaining the necessity for significant
domain insight. Table 1 contrasts the settings of the state-of-the-art models with T2E, highlight-
ing the maintained demand for extensive knowledge in other models. Our T2E model employs
a text-to-vector encoder, significantly diminishing the extensive domain knowledge typically re-
quired by reducing necessary inputs to merely the material’s name, coordinates, and spin. This
encoder, illustrated in detail in Figure 2, involves four layers: a tokenizer, a positional embedder,
a transformer (Vaswani et al., 2017), and a layer normalization (Ba et al., 2016) layer, working se-
quentially to convert text inputs into a normalized vector representation. This vector is then utilized
by the PIMLP module. T2E’s encoder efficiently calculates attention scores, α, leveraging a self-
attention mechanism for identifying and weighting relevant queries within a sequence, enhancing
the model’s robustness and precision. α = pπ,τ (QKT ×

√
dk

−1
) · V, where α is the attention

weights, pπ,τ (·) is the softmax function with temperature τ and permutation π, Q is the query ma-
trix, K is the key matrix, V is the value matrix, and dk is the dimension of the key vectors. In
Transformers, position-wise feed-forward networks are applied to the output of the attention mech-
anism as follows: FFN(X) = ReLU(XW1 + b1)W2 + b2. Here, X denotes the attention output,
with W1, b1,W2, b2 representing the learnable weights and biases. These equations form the crux
of the Transformer’s attention mechanism, crucial for discerning and capturing token dependencies
and relationships in a sequence, allowing the model to contextually weigh word significance. We
utilize pretrained CLIP as text embedder (Radford et al., 2021), a neural network adept at converting
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Table 1: Comparison of required setting characteristics. T2E notably reduces the necessity for
extensive domain knowledge compared to other models, promoting easier accessibility and utiliza-
tion in the field while ensuring maintained structure and minimal input dimensions.

Settings
Material Coordinates Spin Basis Initial 

Guess XC Grid 
Settings Optimizer

PySCF Required Required Required Required Required Required Required Required

FermiNet Required Required Required Uses PySCF Uses PySCF Uses PySCF Uses PySCF Itself + Uses 
PySCF

PsiFormer Required Required Required Uses PySCF Uses PySCF Uses PySCF Uses PySCF Itself + Uses 
PySCF

T2E Required Required Required Not Used Not Used Not Used Not Used Itself

text and visuals into significant vectors using contrastive learning. This type of learning starts with
calculating cosine similarity score (S) between text (ti) and image embeddings (xi) as follows to
evaluate the effectiveness of the embeddings.

S(ti, xi) =
t̃i · x̃i

∥t̃i∥ · ∥x̃i∥
(10)

where, t̃i represents the normalized text embedding, x̃i represents the normalized image embedding,
and ∥ · ∥ denotes the Euclidean norm used for normalization. Subsequently, the contrastive loss (L)
for a positive pair and a negative pair can be defined as:

L(ti, xi) = − log

(
exp(S(ti, xi)/τ)∑N
j=1 exp(S(ti, xj)/τ)

)
(11)

In Equation 11, ti and τ represents the embedding and temperature parameter, respectively, N is the
total number of negatives (unrelated text-image pairs), and · denotes the dot product.

In our work, we leverage the text encoder part of this powerful tool to lower the barrier of compu-
tation and domain knowledge required for material property predictions. We achieve this by using
the desired material’s name, 3D coordinates, and spin value as input to the encoder. The encoder
then instantly converts this information into a 768-dimensional vector (xmaterial). Different vectors
are obtained for different materials, coordinates, and spin combinations, depending on the input.
This process is illustrated in Fig. 2. For the shape of the carbon atom, we use the VESTA package
(Momma & Izumi, 2008). After obtaining the vector representation of the text, it is then fed into
our MLP layer, where the model is provided with reminders of physical and quantum properties at
various stages.

3.2 ORBITAL-AWARE PIMLP

The MLP component of T2E is physics-informed (Karniadakis et al., 2021), proficiently extracting
physical relations from data using the quantum property, spin (Griffiths, 2020). Spin (S), vital for
explaining various phenomena, is used to describe the angular properties and behavior of the particle
system (Atkins & Friedman, 2005). Total atomic spin is fundamentally calculated after determining
each particle’s spin. Using the Dirac Equation for electron (Dirac, 1926; Sakurai & Commins, 1995):

(iℏγµ∂µ −mc)ψ(x, t) = 0 (12)

where ψ(x, t) is the Dirac spinor, a four-component wavefunction that describes the electron. γ is a
set of 4x4 complex matrices, m is the rest mass of electron, and c is the speed of light. A solution
for a resting electron is ψ(x, t) = (1 0 0 0). The z component of the spin is Sz = 1/2ℏ(1 − β),
where ℏ is the reduced Planck’s constant and β is a Dirac matrix. We can calculate the eigenvalues
and eigenvectors associated with Sz using the following equation:

5



Under review as a conference paper at ICLR 2024

Positional Embedding

Residual Attention Block

LayerNorm

Tokenizer

...

Residual Attention Block

Input

Multi-Head Self-Attention

LayerNorm

Linear

GeLU

Linear

LayerNorm

Output

Figure 2: Text embedding process of T2E. Material details are first tokenized and positionally
embedded, preparing them for the transformer’s residual attention block. Following layer normal-
ization, a 768-dimensional vector representation is obtained, ready for input into the orbital-aware,
PIMLP of T2E.

Sz |ψ(x, t)⟩ = s |ψ(x, t)⟩ (13)

yielding s = −ℏ
2 , the electron’s spin. A similar process for protons and neutrons yields spin values

of ±ℏ
2 . The ± represents the direction while 1/2 is the magnitude of spin vector in natural units. The

atomic spin, a sum of individual particle spins, significantly influences system properties. Known
spins of particles contribute to the total spin Inuclear + Ielectronic. In our model, this information is
encoded in an MLP layer. The distinctive mass number A (sum of proton (Z) and neutron (N )
numbers) provides Inuclear information, and, in charge-neutral systems where Z = ecount, Ielectronic
information is also obtained. Furthermore, valence electrons (evalence) dictate chemical properties,
bonds, and atomic interactions (Kittel & McEuen, 2018), carrying significant information about the
sysmtem (Szabo & Ostlund, 2012). Therefore, we incorporate evalence to the MLP along with mass
number. The additional features in our network can be expressed as x = [xmaterial, A, evalence].
Once the vector representation of the input is acquired from T2E’s embedder, it is fed into the initial
layer of our orbital-aware PIMLP. During the information processing within the network, it passes
through ReLU activation functions (Fukushima, 1975) after each linear layer except the last one,
integrating spin and mass number information to extract physical data. Refer to Figure 3 for an
illustration of the predictive part of T2E. For a given input vector x, the forward pass of an MLP is
computed as:

a(1) = x, z(i) =W (i)a(i) + b(i), a(i+1) = f(z(i)) (14)

where a(i) is the activation of layer i, z(i) the weighted sum of layer i, W (i) the weight matrix, b(i)
the bias vector, and f the applied element-wise activation function.

4 EXPERIMENTS

We generated simulated data using PYSCF, obtaining ≈ 6000 data for each benchmarked element
and molecule by altering coordinates, which correspond to different text-embedding and total en-
ergy, excluding non-converged positions. Our model, built with PYTORCH (Paszke et al., 2017), fol-
lows an 80/20 train-validation split with batch size of 64, utilizing ADAM (Kingma & Ba, 2014) for
optimization, and mean squared error (MSE) for training loss. Additionally, implementing weight
decay, dropout, and vector augmentation for overfitting mitigation. We evaluated T2E on first and
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Figure 3: Orbital-aware PIMLP in T2E. The orbital-aware PIMLP of T2E predicts total energy
from a 768-dimensional vector produced by the text-encoder, outputting a single variable for the
energy prediction of the input material. Physical and spin informations are reminded to the network
at the connection of L1 and L2 and at the end of the L2 just before the prediction.

second-row elements (excluding He, F, and Ne), untrained elements, and Li H, Li Li,
C O, and N N molecules. Section 4.1 and 4.2 detail DFT experiments via PYSCF with
ccpvdz basis, FERMINET, and PSIFORMER implementations. Training continued until mean vari-
ance was < 0.001 and pmove was < 0.5 while VMC values from Pfau et al. (2020). Section
4.3 maintains PYSCF DFT, securing FERMINET and PSIFORMER values from von Glehn et al.
(2022) and reference value of C O is from (Powell & Dawes, 2016). In-house simulations and
experiments were conducted with an RTX4070 Laptop GPU. More details about simulations and
experiments are given in supplementary material.

4.1 FIRST AND SECOND ROW ELEMENTS

Initially, we embark on a standard experiment in the literature. This experiment involves assessing
the performance of the proposed approach on various first and second-row periodic table elements:
H, Li, Be, B, C, N, and O. The outcomes of this experiment are delineated in Table 2. T2E
outperforms benchmarked models, showing superior precision to DFT and equivalent accuracy with
FERMINET, PSIFORMER, and VMC within a 1% precision range. Uniquely, T2E achieves this
without prior training or substantial domain knowledge, unlike FERMINET and PSIFORMER which
start optimizing with pretrained values from PYSCF, leveraging only periodic table information
to yield comparable results to those demanding more complex prerequisites. Additionally, while
the precision of VMC is highly contingent upon its trial function, necessitating significant domain
knowledge and an expected ground state shape, T2E consistently delivers closely aligned results
using merely periodic table information.
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Figure 4: Optimization and training time comparison. (A): Single optimization time and scal-
ing type for each model, determined by polynomial fitting. (B): Training time for each model to
approach ±0.01% of the reference, both conducted on a RTX4070 laptop.

Table 2: Total energy predictions for first and second row elements (H to O), excluding He:
This table presents total energy values for DFT, FERMINET, and PSIFORMER, derived from our
simulations, alongside VMC and reference values from existing literature. All energy values are
denoted in Hartrees. Pertinent references are cited within the main text, and a comprehensive preci-
sion analysis is available in the supplementary material.

ELEMENT REFERENCE DFT T2E FERMINET PSIFORMER VMC

Hydrogen (H) −0.5 −0.5 −0.5 −0.5 −0.5 NA
Lithium (Li) −7.5 −7.3 −7.4 −7.5 −7.5 −7.5
Beryllium (Be) −14.7 −14.4 −14.6 −14.7 −14.7 −14.7
Boron (B) −24.7 −24.3 −24.5 −24.6 −24.6 −24.7
Carbon (C) −37.8 −37.4 −37.7 −37.8 −37.8 −37.8
Nitrogen (N) −54.6 −54.1 −54.4 −54.6 −54.6 −54.6
Oxygen (O) −75.1 −74.5 −74.8 −75.1 −75.1 −75.1

The primary computational challenges arise from the size of the material. Larger materials entail
a higher number of particles, leading to increased interactions and subsequently escalating both
computational costs and parameter counts, especially in FERMINET and PSIFORMER. Despite
these challenges, T2E offers a distinct advantage, as highlighted in Figure 4. Notably, for ele-
ments from H to O (excluding He), T2E exhibits constant scaling. In contrast, FERMINET and
PSIFORMER demonstrate O(n) and O(n2) scalings, respectively. This advantage arises because
T2E employs a consistent input structure across all materials, characterized by an embedded text
with 768 features. Furthermore, T2E surpasses traditional approaches in iteration time, credited to
its minimal parameter count of (≈ 52k). As depicted in Figure 4 (B), when evaluating the train-
ing durations for FERMINET, PSIFORMER, and T2E, T2E remains unmatched. Specifically, as the
electron count augments eight-fold from H to O, the training times soar approximately 80× and
60× for PsiFormer and FermiNet, respectively, juxtaposed with T2E. Unlike conventional meth-
ods that front-load physical knowledge, escalating computational demands, T2E incorporates this
knowledge seamlessly via its orbital-informed MLP. Consequently, T2E accomplishes remarkable
precision without compromising on computational efficiency.

4.2 PREDICTION OF NEW MATERIALS

In this experiment, we evaluate the capability of T2E in predicting the total energy of untrained
elements. The model, trained exclusively on Li, Be, and C, attempts to forecast the total energy
of B and trains exclusively on Li, Be, and B, attempts to predict the total energy of C. The de-
tailed outcomes are delineated in Figure 5. Figure 5 (A) emphasizes T2E’s proficiency in precisely
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Table 3: Total energy predictions for common molecules: The table showcases total energy val-
ues from FERMINET and PSIFORMER, sourced from prior studies, and DFT values from PYSCF
simulations. All energy values in Hartrees. Note: NC indicates non-convergence. See the supple-
mentary material for an extensive precision analysis and details on bond lenghts.

MOLECULE REFERENCE T2E FERMINET PSIFORMER DFT

Li H −8.1 −8.0 −8.1 −8.1 −7.8
Li Li −15.0 −15.0 −15.0 −15.0 −14.7
C O −112.9 −113.7 −113.3 −113.3 −102.1 (NC)
N N −109.5 −110.4 −109.5 −109.5 −108.0

estimating the total energy of an unseen element, B, underscoring its capacity to internalize and
generalize physical information from limited training data. This outcome further indicates that the
incorporation of mass number and valence electron information enables the model to learn behav-
ior of quantum systems. One can argue that the spin and valance electron values of B fall within
the range of those for Li to C, leading to the expectation that the model would successfully predict
the total energy of B. However, as demonstrated in Figure 5 (B), T2E continues to perform excep-
tionally even when tested on elements outside the training parameter range. This serves as further
proof of T2E’s ability to extract and generalize physical information using only basic periodic table
parameters.
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0 50 100 250150 200
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Test 
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Test 

Figure 5: Total energy prediction performance of T2E for new materials. T2E’s performance
when its tested to predict total energy of untrained elements. Vector augmentation and weight decay
kept same while lowering the batch size to one. (A): Prediction of total energy of B when trained on
data of Li, Be, and C. (B): Total energy prediction of C when trained on data of Li, Be, and B.

4.3 MOLECULES

As a general experiment, we assess the performance of T2E on molecules of Li H, Li Li,
C O, and N N. Observations from Table 3 indicate that T2E retains its competitive edge
with the same number of parameters used. It exhibits superior accuracy compared to DFT, while
remaining within a 1% range of the reference.

5 CONCLUSION AND FUTURE WORK

Our T2E model is a promising new tool for quantum property predictions. It outperforms state-
of-the-art models such as DFT, FERMINET, PSIFORMER, and VMC on a variety of elements and
molecules, without requiring prior training or extensive domain expertise. Future work will focus
on expanding T2E to heavier elements and highly correlated systems, as well as exploring advanced
quantum features.
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