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Figure 1. TransFusion: Multimodal fusion transformer for short-term object interaction anticipation. Given a video sequence of
past observations, the task aims to predict a set of objects visible in the current frame that will be interacted with in the future, i.e. in the
activation frame that is A frames away from the current prediction frame. Additionally, the task requires estimating the bounding box, the
associated action described by a verb-noun pair, and the time to contact for each predicted object. We propose TransFusion, a multimodal
fusion architecture that uses language summaries of past actions and salient objects to effectively predict future object interactions.

Abstract

We study object interaction anticipation in egocentric
videos. This task requires an understanding of the spatio-
temporal context formed by past actions on objects, coined
action context. We propose TransFusion, a multimodal
transformer-based architecture for short-term object inter-
action anticipation. Our method exploits the representa-
tional power of language by summarizing the action con-
text textually, after leveraging pre-trained vision-language
foundation models to extract the action context from past
video frames. The summarized action context and the last
observed video frame are processed by the multimodal fu-
sion module to forecast the next object interaction. Exper-
iments on the Ego4D next active object interaction dataset
show the effectiveness of our multimodal fusion model and
highlight the benefits of using the power of foundation mod-
els and language-based context summaries in a task where

* Authors contributed equally.

vision may appear to suffice. Our novel approach outper-
forms all state-of-the-art methods on both versions of the
Ego4D dataset. A project video and code are available at
https://eth—ait.github.io/transfusion—-proj/.

1. Introduction

The ability to predict plausible future human-object inter-
actions is important for many assistive technologies. The
task of short-term object interaction anticipation [18, 22] is
defined as predicting which object a user will interact with
next, what action will be performed and when in the future,
given an egocentric video input. Providing an effective so-
lution would help artificial agents, such as care robots, as-
sist humans in their daily activities, as well as enable safety
applications such as child and elderly monitoring.

This task is challenging because it requires reasoning
about user intent [6, 35, 43], which is not directly observ-
able. For example, if the video shows the user holding

18286



a vegetable, the most likely next action is to slice it, but
only with a knife and cutting board present. Without those,
there is significantly more uncertainty. Therefore, under-
standing what has happened in the past and what relevant
objects are present is critical for predicting the next object
interaction. We collectively refer to these concepts as ac-
tion context. Existing interaction forecasting methods do
not explicitly model action context and rely on neural net-
works to extract that information from fixed-sized video
chunks [5, 18, 22, 32].

In this paper, we propose to use language summarization
of the past as an explicit representation of action context.
This filters out ambiguities caused by visual clutter. It also
puts focus on objects and actions directly relevant to the
ongoing and likely future activities. For the object interac-
tion anticipation, we next introduce a multimodal fusion ap-
proach. Specifically, we propose a transformer-based mul-
timodal fusion model, TransFusion. As shown in Figure 1,
our model takes language summaries of the action context
and the last observed single frame of a video as input and
predicts future object interactions. We employ an existing
image captioning system [53] to generate a concise descrip-
tion of past actions given by pairs of verbs and nouns. We
use CLIP [38], a vision-language model trained on pairs of
images and captions, to detect salient objects in the predic-
tion frame of interest, and deem these objects task-relevant.
The verb-noun pairs together with the list of salient ob-
jects form the summary of the past action context. Lever-
aging the vast knowledge contained in pre-trained vision-
language foundation models yields more generic represen-
tations of the past action context and enables us to better
generalize towards various scenarios, in particular rare ones
not well-represented in the dataset.

Our experiments show that our language-based sum-
maries can effectively represent the past action context.
We evaluate on both versions of the challenging egocen-
tric dataset Ego4D [22]. Our approach improves interaction
prediction accuracy and outperforms state-of-the-art models
pre-trained on large video datasets [7, 40]. Such improve-
ments show that large vision-language models can be useful
even for a task that seems purely visual.

In summary, our contributions are:

* A strategy for generating concise language-based sum-
maries of action context over longer timespans from
frame-wise language-based summaries, for instance
obtained using vision-language foundation models.

¢ TransFusion, a multimodal fusion model for short-
term object interaction anticipation combining action
context descriptions and visual features.

» Experiments on both versions of the Ego4D dataset
showing improvements over state-of-the-art methods
on the short-term object interaction anticipation task,
in particular for long-tailed classes.

2. Related work

Object interaction anticipation. Several works have been
proposed for human-object interaction prediction. Furnari
et al. [18] first introduced next-active-object (NAO) pre-
diction, which predicts the active/not active label for each
object using its motion trajectory features, but doesn’t con-
sider action anticipation. Closely related to NAO, Bertasius
et al. [5] introduced action-objects, which considers objects
that capture the human actor’s visual attention or tactile in-
teraction. Bertasius et al. use the data from a stereo camera
system in a two-stream network, integrating RGB and depth
information. They show that certain aspects of human ac-
tions can be predicted by exploiting the spatial configura-
tion of the objects and the actor’s head. Their approach is
not easily scalable due to the need for stereo data.

In addition to different tasks, Liu et al. [32] propose a
model that improves NAO prediction by incorporating fu-
ture hand trajectory modeling. They obtain impressive re-
sults using 3D CNNs, confirming that hand motion cues
and scene dynamics have important explanatory power in
predicting the short-term future. Nonetheless, their ap-
proach also encounters scaling limitations because addi-
tional ground-truth labels for hand trajectories are needed.

The Ego4D dataset [22] proposed object interaction an-
ticipation. Apart from locating the NAO, the task in Ego4D
also requires the prediction of associated nouns and verbs,
as well as the time to contact (TTC) for the future interacted
objects. The official Ego4D baseline uses the current frame
and past video frames as input and employs a two-stage ap-
proach to first learn noun and box prediction, and afterwards
learn verb and TTC prediction. InternVideo [7] similarly
leverages a DINO [62] model to detect objects in the first
stage, and a VideoMAE [49]-pretrained ViT [14] spacetime
attention model to predict verbs and TTC conditioned on
the object predictions in the second stage. StillFast [40]
presents an end-to-end method for NAO prediction, fusing
multi-scale high-resolution image and low-resolution video
features and combining local Rol features with global scene
features to boost the interaction anticipation performance.
GANOV2 [46, 47] and its predecessor [48] extract features
from objects detected in past observed frames and fuse them
with global frame features, forwarding them to a StillFast
predictor and a motion-object-separating encoder-decoder
architecture, respectively.

Action anticipation. Besides localizing future object inter-
actions, predicting the next action steps is an equally impor-
tant task that intelligent systems need to perform to interact
with humans. A longer prediction timespan requires a bet-
ter grasp of the structure behind the succession of actions.
A pioneering advancement in this field is the introduction
of the EPIC-Kitchens 100 (EK100) [9] dataset, which fa-
cilitates research in action anticipation within egocentric
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videos. Significant research efforts have been dedicated
to exploring the action anticipation task utilizing EK100.
Anticipative Video Transformer (AVT) [20] is one of the
best-performing architectures on the EK100 [9] action an-
ticipation benchmark. AVT uses a pre-trained Vision Trans-
former [14] as the image feature backbone and attends to the
previously observed video frames to anticipate future ac-
tions. MeMViT [54] improves AVT by exploiting a longer
temporal context, highlighting the importance of modeling
a long sequence of previous actions. Other model archi-
tectures such as recurrent neural networks [17, 55], multi-
modal temporal CNNs [25] and transformers [19, 51] are
also used to model the temporal contexts. Note that these
methods are designed for action classification using video
data and adapting them for object detection is not trivial.
It is worth noting that the action anticipation task from the
EK100 benchmark is a subtask of our short-term object in-
teraction anticipation task. Our task not only predicts the
action label of verb-noun pairs, but we also predict the lo-
cation of the object and the time to contact, which is more
challenging than the action anticipation task itself. Trans-
Fusion focuses on detecting the next active objects, as all
evaluation metrics are conditioned on the box IoU. There-
fore, comparing our work with the state-of-the-art methods
for the action anticipation task on EK100 is out of the scope
of this work. The Ego4D dataset itself further introduces a
long-term action anticipation benchmark, which [61] tack-
les using pre-trained visual grounding models.

Vision-language models. Our approach combines the vi-
sual and language modalities to improve object interaction
anticipation. Most recent multimodal vision-language ar-
chitectures are based on Transformer [50] fusion schemes
applied on features extracted by various encoders [4, 12,
26]. We follow their spirit by employing self-attention-
based modality fusion. Our work differs in one significant
aspect: the language features represent the past action con-
text. This serves as an additional signal to disambiguate
the actor’s intent given similar visual scenes. The model
must learn to predict from the multimodal fusion of lan-
guage context summaries and visual cues in a considerably
smaller data regime.

More broadly, there are numerous transformer-based
works aimed at learning cross-modal representations be-
tween vision and language [24, 28, 36, 38, 44, 45, 58, 59,
64] using terabyte-scale datasets crawled from multiple in-
ternet sources. When combined with large language models
such as GPT-2 [37], BERT [13], Sentence-BERT [41], and
the TS5 variants [8, 39], these vision-language models can be
applied to several downstream tasks such as VQA [3] and
image captioning [56, 57]. Similar to other vision-language
models that are trained with language input, our approach
leverages state-of-the-art image captioning models [53] to
provide a consistent description of past actions.

3. Language-guided prediction

We use language-based context summaries to represent the
spatial-temporal context formed by past actions and ob-
ject relationships. The context summary offers an explicit
yet compact representation, which allows us to focus on
task-relevant content and filter out unimportant information
from the likely cluttered environment. To this end, we pro-
pose TransFusion, a transformer-based model that leverages
a joint-attention fusion mechanism to effectively learn to
predict object interactions in the future from the past ac-
tion context. In the following, we describe our framework,
which takes video clips as input and anticipates the next ob-
ject interaction. We begin by defining the object interaction
anticipation task (Sec. 3.1). We then show how to gener-
ate a summary for a prediction frame from an egocentric
video to represent the action context provided by the past
frames (Sec. 3.2). Finally, we present our multimodal fu-
sion model’s architecture (Sec. 3.3).

3.1. Task definition

Given a video V = {f1,-- -, fr} of length T as input, our
goal is to predict the next object interaction O in the last ob-
served video frame fr, possibly using older frames to ex-
tract context information. We call fr the prediction frame.
As illustrated in Figure 1, the task is to anticipate the ob-
ject interaction in fr. Or = {oT,--- , 0%} denotes the set
of future object interactions, with /N > 1 whenever multiple
objects are interacted with simultaneously. In other words,
multiple o] can be detected in the prediction frame fr. For
example, N = 2 when one hand is holding two mugs in
a kitchen scene, or the left hand is touching a plant while
the right hand is moving a pot in a garden scene. Each ob-
jectinteraction of = (b1, nT vl tT') consists of the object
bounding box b7, the semantic object label (noun) n!, the
action label (verb) v}, and the time to contact (TTC) ¢
The task is to predict the next active object location b} in
the prediction frame fr, the associated action described by
the verb-noun pair (n?,v}"), and the time ! to the point of
contact when the interaction is going to start. The task is set
up such that the actual object interaction takes place after
a buffer time A on frame f7a and the predicted time to
contact t7 = A. EgodD uses A > 0.033s. This requires
anticipating future actions and increases the task difficulty.

3.2. Summarizing the past

Anticipating object interactions in the future requires an un-
derstanding of what happened in the past. We first infer the
per-frame action context from each egocentric video. This
process consists of extracting action descriptions and held
objects. These information sources are generated and ag-
gregated independently across frames and finally forwarded
as the action context to our anticipation model.
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Figure 2. Overview of the TransFusion model. TransFusion takes the prediction frame and the action context summary as input and
predicts the bounding box of the next-active object, the noun-verb pair describing the associated action, and the time to contact (TTC).
Feature maps of different scales are extracted from the visual encoder and then fused via a multimodal fusion module with the encoded
language features. Their output is then processed by a regular feature pyramid network (FPN), denoted as multi-scale region proposal

networks, before being fed into the Faster R-CNN detector.

Extracting frame-wise action descriptions. Inspired by
the label format used in egocentric video datasets [10, 22],
we aim to describe the past actions by sequences of verb-
noun pairs (e.g. “wash tomato”, “cut tomato™), so-called
action descriptions. For each video frame f, we extract the
action currently performed by the agent, represented by a
single pair (v, n) of a verb v and a noun n.

We use an off-the-shelf image captioning model [53] to
generate multiple full-sentence captions for each frame of
interest, so as to find repeatedly occurring outputs and re-
duce noise: we perform part-of-speech tagging [2] on these
captions and collect candidate pairs consisting of verbs fol-
lowed by nouns within some cutoff distance d € N. Set-
ting d > 0 allows us to account for additional words ap-
pearing between a verb-noun pair (e.g. “eat apple” from “A
person eating a red apple”) and thereby obtain more valid
candidate pairs from the captions. However, larger cutoff
distances may introduce more spurious detections (e.g. “eat
gathering”, from “A person eating while at a gathering”).
We use d = 4 in our experiments. The most frequent candi-
date pair across the frame’s captions is selected as the verb-
noun action description of this frame. If no valid verb-noun
pair is found, the frame will have no action description.
Extracting frame-wise salient objects. Another character-
istic shared by many daily action sequences is that the next
active object is likely to have already appeared in the actor’s
view before the upcoming interaction. The current environ-
ment in the recording may also provide model conditioning.
Therefore, we select a set of salient objects in each frame
as (1) the potential candidates for future active objects and
(2) a proxy of the surroundings.

Encouraged by its previous successful use in action-
related tasks [30, 52], we use CLIP [38], a pre-trained open-
vocabulary zero-shot classifier, to compute the cosine simi-
larities between the CLIP image embedding of a frame and
the embeddings of the object categories from the Ego4D do-

main. We choose to keep the highest-scoring k objects as
the set of salient objects for a given frame. A small £ may
fail to provide sufficient information, while a large k£ makes
capturing the true salient objects more likely, yet introduces
more noise due to false detections. We set k=3.

Aggregating summaries over multiple frames. After the
frame-wise summarization step, we have, for each frame ¢,
at most one verb-noun pair describing the frame-wise action
a; = (n,v) € AF. We then apply a cross-frame aggrega-
tion scheme to all A" 5o as to identify contiguous segments
of frames exhibiting the same activity, while accounting for
individual noisy frames possibly not matching the frame-
wise summaries of their neighbors. The aggregation pro-
cesses the frames in temporal order. We consider frames
belonging to the same atomic action as an action segment,
which is initiated by observing a number of reoccurrences
of some verb-noun pair and terminated by a lack of its oc-
currence within a number of contiguous frames. After the
aggregation, we obtain 4, the sequence of all action seg-
ments in the video. For each prediction frame, we construct
its action context from a number of action segments preced-
ing the frame, and the objects from A/ in that frame.

By aggregating across frames, we thus capture dominant
actions in the past, reduce noise in the generated action con-
text and represent long timespans of similar activity by short
textual descriptions. The complete action context is pro-
vided to our model by concatenating the textual representa-
tions of the aggregation results of any desired subset of the
two context representations {.4, N }, where we drop the in-
dex t for convenience. For more details, see the Supp. Mat.

3.3. TransFusion: Multimodal fusion

Figure 2 visualizes the architecture of the proposed multi-
modal TransFusion model. TransFusion employs two dif-
ferent base encoders, for language and image input respec-
tively. The input prediction frame f7 is processed by a regu-
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lar CNN-based visual encoder [23], producing a set of mul-
tiscale feature maps F3,(fr), with s indicating the scale.
The frame’s action context is encoded by a language en-
coder [41] and yields F.(Cr). The feature maps belonging
to different scale levels from the visual encoder are fused
with the encoded language features via a joint-attention
scheme. The result is then processed by a regular feature
pyramid network (FPN) [29] before being forwarded to the
Faster R-CNN [42] detector.

Multimodal fusion. For simplicity, we describe the multi-
modal fusion module for a single input scale s, which we
hence omit from notation. See Figure 3 for a detailed view
of a single Transformer encoder layer together with the in-
put projection stages. For the visual modality, we first split
the image into a sequence of tokens. Specifically, the visual
features Fy (fr) € RO*HXW are reshaped to RN *(P*-C),
where P is the token size and N = & ;ZW the number of
tokens. We add unique type embeddings as well as a posi-
tional encoding to each modality. Both visual and language
tokens are first mapped to R” via a linear projection be-
fore being fed to the fusion module in a concatenated form.
The fusion block consists of a regular Transformer encoder
layer replicated M times. Finally, the visual tokens are re-
grouped into their initial shape to compose the feature map
for the feature pyramid network (FPN).

Multiscale fusion. The multimodal fusion block outputs
multiple fused feature maps of varying scales: Fy; €
RC*HixWi where i is the scale index. They are fed into
the FPN, which has different parameters for each feature

map, allowing the network to learn specialized features for
each downsampling ratio. The output of the FPN is pro-
cessed by a Faster R-CNN detector.

Prediction head networks. The Faster R-CNN detector
outputs the bounding box b through a regression layer, an
associated object n and verb v, and time to contact .
Training objective. We train TransFusion using the stan-
dard Faster R-CNN [42] objective Ly, for bounding box
prediction, which consists of localization and objectness
terms; further, cross-entropy losses Ly oun and Lyerp for
noun and verb prediction respectively, and an L1 loss Ly
for time to contact prediction. The overall objective is

L= Ebox + Lnoun + ‘Cverb + Ett(z- (1)

As defined in Faster R-CNN, L, is

1 . A N X
Lyoz = m zi:ﬁcls(piapi) + N Xi:pi 'Lreg(bi - bi),

reg

2
where p; is the predicted probability of a box being classi-
fied as a foreground object (true positive), p; is the ground-
truth label; b; and b are the predicted and ground-truth box
coordinates. Vi, is the number of bounding boxes used in
training, N5 the detection network’s image batch size. We
leave A = 11 as in the reference implementation.

4. Experiments

Dataset. We use both versions (vl and v2) of the dataset
provided for the short-term object interaction anticipation
task in Ego4D [22]. It contains various activities rang-
ing from gardening work to cooking or car parts chang-
ing. There are in total 64,798 (v2: 165,451) annotated video
clips of ~ 5 minutes each with frame rate fps = 30. The
dataset has a highly imbalanced long tail distribution, in-
cluding 87 nouns and 74 verbs (v2: 128 and 81 resp.). For
instance, the “take” class encompasses almost 40% of all
the verb labels in version 1, while “mold” appears only in
one video. The train set consists of about 28k (v2: 98Kk)
samples, while the rest are roughly equally split between
validation and test.

Evaluation. As in the official Ego4D benchmark [22], we
use the Top-5 mean Average Precision (mAP) to evaluate
the performance of individual predictions. It considers two
constraints: The IoU constraint requires that the predicted
boxes are counted as hits only if there is an intersection over
union IoU > 0.5 with the ground-truth box. The TTC con-
straint requires that the predicted time-to-contact ¢; is close
enough to the ground-truth £;, i.e. |t; — ;| < Ts, T5 = 0.25.
The following metrics are considered:
* Noun refers to the Noun-Box Top-5 mAP. In addition
to the IoU constraint, a correct match with the ground-
truth noun is required.
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Ver. | Model Nt | NNVT | N-TT | AT
FRCNN+Rnd. [22] | 20.45 2.22 3.86 | 0.44
FRCNN+SF [22] 20.45 6.78 6.17 | 2.45

vl InternVideo [7] 24.60 9.18 7.64 3.40
StillFast [40] 19.51 9.95 6.45 | 3.49
TF (ours) 24.90 | 10.06 7.57 | 3.54
FRCNN+SF [22] 26.15 | 945 8.69 | 3.61

v StillFast [40] 25.06 | 13.29 9.14 | 5.12
GANOV2 [46] 25.67 | 13.60 9.02 | 5.16
TF (ours) 30.43 | 1345 | 10.38 | 5.18

Table 1. Comparison with the state-of-the-art. Our method
TransFusion (TF) outperforms all state-of-the-art approaches on
3 out of 4 metrics, on both versions of the Ego4D test set. We
report the top-5 mean average precision for the Noun (N), Noun-
Verb (N-V), Noun-TTC (N-T), and Noun-Verb-TTC (A) metrics.

* Noun-Verb refers to the Noun-Verb-Box Top-5 mAP.
Correct noun and verb match with the IoU constraint.
* Noun-TTC refers to the Noun-Box Top-5 mAP. Cor-
rect noun matches with the TTC constraint.
¢ Noun-Verb-TTC (“Overall”) refers to the overall
Top-5 mAP, intersecting correct noun-verb matches
with IoU and TTC constraints.
Note that since detecting the next-active objects is the main
focus of the task, all evaluation metrics are conditioned on
the ToU constraint.

Implementation details. We make use of the pre-trained
Torchvision [34] Faster R-CNN. ResNet-50 [23] is used as
the visual encoder and Sentence-BERT (SBERT) [41] is
used as the language encoder. We freeze ResNet-50 and
apply the multimodal fusion scheme on top. We use the
RAdam [31] optimizer with a weight decay of 2e %, and
an effective batch size of 32. Besides the default Faster
R-CNN background class in nouns, we also add it in the
verb class, which improves the Noun-Verb mAP by almost
2 points. We reduce the region proposal network’s sampling
batch size and the detection network’s image batch size and
use data augmentation techniques to reduce overfitting. The
number of verb-noun pairs used in the input is defined as the
context length L.. On average, an action segment described
by one verb-noun phrase corresponds to one second with
30 frames, as computed from the GT annotations. Unless
specified otherwise, we use L.=3. We perform postprocess-
ing involving non-maximum suppression on the predicted
bounding boxes, as elaborated in the Supp. Mat.

4.1. Comparison with state-of-the-art

We first compare our method against the baselines proposed
in the Ego4D work [22]. The FRCNN + SF method em-
ploys a two-stage approach: a ResNet-based Faster R-CNN
detector first produces bounding box regressions and noun
predictions from the prediction frame, without using any
video features. In the second stage, a SlowFast [16] 3D
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Figure 4. Prediction of Noun-Verb in relation to time-to-
contact. Histogram of the time-to-contact labels in Ego4Dv1 is
shown in blue bars. Performance measured in Noun-Verb is plot-
ted as a function of time-to-contact. We compare our method to
Ego4D’s official FRCNN + SF [22] baseline.

CNN video processing module performs region-of-interest
(Rol) pooling [21] on the corresponding SlowFast 3D CNN
video features. The pooled video features are then used by
Rol heads to predict the verb and TTC values. The FR-
CNN + Rnd. baseline, with results published on v1 only,
drops the second stage of FRCNN + SF and uses randomly
drawn verb and TTC predictions, following their respective
distributions in the training set.

Another baseline on vl is given by InternVideo [7], a
method achieving strong results on the short-term object in-
teraction anticipation task with a two-stage strategy similar
to FRCNN+SF: bounding boxes and noun labels are first
obtained using a DINO-based object detector [62], after
which a VideoMAE-pretrained [49] ViT [14] model lever-
ages space-time attention to predict the corresponding verb
classes and TTC values.

We further compare TransFusion to the recent StillFast
[40] approach on both dataset versions. StillFast uses a
Faster-RCNN-based spatial stream operating on a high-
resolution version of the input image, and an X3D-based
[15] temporal stream operating on a low-resolution version
of the input video. The two streams each produce a mul-
tiscale feature map. Both feature maps are fused into a
combined feature pyramid, from which local Rol features
and global scene features are extracted, merged by a fusion
network, and finally used by linear layers to predict each
boxes’ noun, verb and TTC.

GANOV2 [46] enhances StillFast by adding a multi-head
guided attention mechanism to its temporal stream, achiev-
ing favorable performance on version 2 of the dataset. The
mechanism attends to object detections produced from the
network’s temporal branch, together with patches from the
3-D temporal feature stack, in a cross-fusion manner, and
uses the fused tokens as the input to StillFast’s feature pyra-
mid and subsequent architecture.

Table 1 demonstrates that TransFusion outperforms all
state-of-the-art methods in terms of the N, N-V and A met-

18291



m Ego4D m TransFusion

Noun/Verb-only MAP

Top Noun Tail Noun Tail Verb

Top Verb

Figure 5. Classification performance on top/tail categories. We
show the relative and absolute gains of TransFusion over Ego4D’s
FRCNN + SF baseline [22] on the validation set, for Noun-Only
and Verb-Only mAP (without any box IoU constraint). Relative
improvements are written on top of the red bars.

rics on version 1 of the dataset, and approaches the state-
of-the art performance on the N-T metric while requiring
a fraction of the competitor’s resources during training [7]
(see the Supp. Mat. for details). On the dataset’s second
version, TransFusion performs best in terms of N, N-T and
A, while approaching the runner-up method on N-V. These
favorable results validate the advantages of modeling action
context explicitly for the interaction anticipation task.

We henceforth analyze our performance gains over the
official Ego4D FRCNN + SF baseline on the first version of
the Ego4D dataset. Figure 4 shows the long tail distribution
of the time-to-contact labels in the validation set, split into
buckets. We see that TransFusion consistently outperforms
the baseline on the N-V metric for all TTC ranges. The
results in Figure 5 indicate that our method not only outper-
forms the Ego4D method on top noun and verb classes, but
also achieves bigger gains in the tail classes, demonstrating
the generalization ability of using our language-based con-
text summaries. Top and tail buckets represent roughly 50%
of the samples in the validation set.

Figure 6 shows that the Ego4D approach manages to de-
tect the most salient objects in the environment, but fails
to reliably associate the bounding boxes to the correct ac-
tion phrase. In contrast, TransFusion is able to correctly
associate the drawer bounding box to “open drawer” and to
predict the correct action associated with the phone. More
examples are provided in the Supp. Mat.

4.2. Ablation studies

Evaluation of action context representation. In Table 2,
we ablate different variants of context representation and
compare against the representation that uses the ground-
truth (GT) action labels provided by Ego4D in the action
context, to assess the quality of our generated context sum-
maries. The observed TTC Average Precision difference
measures around 2% and was thus omitted from the com-
parison. We report on the Noun and Noun-Verb metrics as
we expect major differences in semantic-related tasks.
Experiments show that we achieve results approaching
GT, demonstrating the effectiveness of our context repre-

GT: open drawer 0.1s

GT: take phone 1.0s

(a) Ego4D: take container 0.7s, (b)
, take pot

Ego4D: take table 0.78s,
, take com-
0.42s, take lid 0.46s puter 0.86s, take phone 1.11s

(¢) TF (ours): open draer (d) TF (ours): take phone 0.87s,
0.56s, , open
drawer 0.44s, take lid 0.6s

, operate
tablet 0.73s, take phone 0.98s

Figure 6. Qualitative results of the proposed approach. Results
of Ego4D’s FRCNN + SF baseline [22] are shown in the top row
and TransFusion in the bottom row. Green denotes the ground
truth bounding box, with the labels shown on top of each column.

Rep. [] A | Nn | Ns [ A+Ny | A+NS || GT
N1 |17.71]20.09|19.33|19.75| 19.03 | 20.19 || 21.71
N-V1| 6.14 | 7.16 | 6.86 | 7.05 7.12 7.55 7.86

Table 2. Comparison of different action context representa-
tions. We evaluate different variations of context representations
on the predicted noun (N) and noun-verb (N-V), and compare
them against ground-truth annotations (GT) provided by v1 of the
Ego4D validation set. GT only contains action descriptions of
verb-noun pairs. Action context represented by A+N; achieves
the best N-V performance.

sentations. Using a vision-only version of our model ()
yields markedly worse results than when adding any type
of language conditioning. Action descriptions A consis-
tently boost the verb classification performance. Adding
salient objects Ns to A further improves task performance.
These together offer a reasonable picture of using language
summaries to represent the action context. In addition, we
notice a domain gap in the choice of words between the
generated labels and the ground-truth ones. In some cases,
even if the description is satisfactory for a human evaluator,
the information may be too vague to be directly useful to
the model. Phrasing differences between the generated cap-
tions and the training corpus of the language encoders may
further help to improve the performance.

As an additional type of action context, we hypothesize
that the sequence of objects held by the actor may be indica-
tive of the overall task and can help the model better infer
the immediate next steps. Motivated by this, we use an ex-
isting hand-object interaction predictor [11] jointly with an
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Figure 7. Comparison to video features. TransFusion outper-
forms TransFusion-Video over different context lengths measured
by Noun-Verb mAP. TransFusion using GT-based context sum-
maries as language input represents an upper performance bound.

object detector [65] to look for held objects and their se-
mantic labels in each frame. Usually, such objects occur
only in a subset of frames (e.g. due to limited visibility of
the actor’s hands), which results in a lower performance of
the resulting NV}, and A+ N}, representations. We hence use
A+N to represent the action context, considering the good
performance achieved. Ablations on the hyperparameters d,
the cutoff distance, and &, the number of salient objects per
frame, show that the performance is less sensitive to their
settings. More details can be found in the Supp. Mat.

Comparison to video features. We evaluate whether lan-
guage summaries can better represent action context than
video features for the object-anticipation task. To do so, we
implement TransFusion-Video, which takes video features
extracted from the Ego4D SlowFast [16] model as input and
uses an identical fusion module as in TransFusion.

Figure 7 shows that TransFusion consistently outper-
forms TransFusion-Video. L. x 30 frames are taken in
TransFusion-Video. For video features, the domain gap
between pre-training and target datasets seems to be too
large to allow effective generalization to a diverse dataset
such as Ego4D. We suspect that the feature representations
are more entangled due to the need to represent tempo-
ral, visual, and semantic aspects simultaneously. With lan-
guage, temporal information is directly encoded in the syn-
tax, i.e. the succession of words. Given a video clip of one
second, language can summarize it in two words whereas
corresponding video features use more than 12 times the
space (e.g. smaller SBERT [41] features of 2 x 384 com-
pared to SlowFast [16] features of 4 x 2304). Therefore,
our language-based context representation has an advantage
when it comes to longer video sequences. Overall, Trans-
Fusion obtains a 21% boost in N-V performance. See the
Supp. Mat. for details.

Length of action context. A significant parameter in ob-
taining good performance is the length of action context,
i.e., how many past actions to include in the input. An ade-
quate context length is important to allow the model to pick
up more specific activity patterns. Some activities that have
a more structured nature or certain repeating patterns (e.g.

Language Encoder Tokensize | N1 | N-V 1
SBERT/BERT [13, 41] 384 20.19 | 7.55
SBERT/RoBERTa [33, 41] 768 19.78 | 7.78
GPT-2 [37] 768 1898 | 7.08
Flan-T5 [8] 1024 18.26 | 6.61

Table 3. Language encoder ablations. We compare SBERT us-
ing BERT and RoBERTa backbones, with GPT-2 and Flan-TS5.

cooking or repairing a bicycle) are easier to model with an
increased context length compared to more random activ-
ities such as playing basketball. Figure 7 shows that the
overall performance plateaus at L, = 2 and higher.
Language encoder. A language encoder is used to process
the context summaries in TransFusion. To understand the
impact of different language encoders, we experiment with
multiple LLMs including SBERT with a RoBERTa back-
bone [33, 41], GPT-2 [37], and FLAN-TS5 [8], using version
1 of the validation set. Table 3 summarizes the performance
of different language encoders, showing that the SBERT
models perform best. We consider TTC less relevant here.
We hypothesize that the difference comes from the train-
ing objectives of language models. SBERT is trained to
map semantically similar sentences closer to each other in
the embedding space. This is particularly useful when the
model needs to understand descriptions with semantically
close words, e.g. “cut carrots” and “slice carrots”. GPT-
2 and FLAN-TS5 are optimized using generative objectives,
which makes them overly sensitive to the input word choice.
Fusion module. We provide ablations regarding the fusion
module in the Supp. Mat.

5. Conclusion and discussion

We propose TransFusion, a multimodal fusion model that
anticipates object interactions by considering the past action
context represented by language summaries. Our success-
ful experiments on a challenging egocentric video dataset
demonstrate how language summaries and the vast knowl-
edge contained in vision-language foundation models can
improve object interaction anticipation, highlighting the
representational power of language. It appears promising
to investigate fusing even more modalities, such as motion
cues from optical flow. We emphasize that the proposed
summarization approach is not limited to this task. Lan-
guage provides a universal interface to complement the vi-
sual input with information encoded in foundation mod-
els or task-specific pipelines. Future work can leverage
language summarization for other video reasoning tasks
[60, 63], or extend it temporally to describe possible future
activities [1, 27] for long-term interaction anticipation.
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