

EXCESSIVE REASONING ATTACK ON REASONING LLMs

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907

054 rely on modifying model internals, controlling output logits, or injecting external distractions, which
 055 can limit their generality and practicality.
 056

057 In this work, we aim to directly perturb the input to elicit excessive reasoning behavior, increasing
 058 computational overhead without requiring external content or architectural manipulation. How-
 059 ever, directly optimizing for excessive reasoning is non-trivial because reasoning length is non-
 060 differentiable explicitly. Therefore, we propose differentiable proxy losses to approximate the length
 061 objective and enhance the attack performance via shaping token-level behavior. Concretely, we craft
 062 the adversarial suffixes with three complementary losses:

- 063 • **Priority Cross-Entropy Loss** prioritizes key tokens while masking less informative ones
 064 to enhance optimization efficiency. This loss leverages the autoregressive nature of LM to
 065 enable more targeted and effective gradient updates.
- 066 • **Excessive Reasoning Loss** increases the likelihood of branched or recursive reasoning,
 067 leading to greater computational overhead.
- 069 • **Delayed Termination Loss** encourages the model to defer the termination of reasoning
 070 and answer generation.

072 We optimize and evaluate our attacks for the GSM8K (Cobbe et al., 2021) and ORCA (Mitra et al.,
 073 2024) datasets on DeepSeek-R1-Distill-Llama and DeepSeek-R1-Distill-Qwen. Our attacks con-
 074 sistently increase the reasoning length by over 3x to 6.5x using only 10 crafted adversarial tokens.
 075 Moreover, our attack demonstrates strong transferability across models on commercial platforms,
 076 including OpenAI o3-mini, GPT-OSS (Jaech et al., 2024), DeepSeek-R1, and QWQ, suggesting a
 077 broader vulnerability among reasoning-optimized LLMs. These findings expose an underexplored
 078 issue. While such models are proficient in reasoning, they remain susceptible to targeted manipu-
 079 lations that exploit their reasoning mechanisms to induce significant computational overhead. Our
 080 results underscore the urgent need for defenses that can detect and mitigate excessive reasoning
 081 triggered by adversarial prompts.

083 2 METHODOLOGY

085 This section presents our adversarial attack framework that increases the computational overhead
 086 of reasoning LLMs by inducing excessive reasoning. We begin by stating the threat model and the
 087 use cases. We then conduct two studies. First, we design proxy objectives to approximate the non-
 088 differentiable length objective. Second, we introduce two token-level losses that further shape token
 089 behaviors. Finally, we describe the optimization procedure used to generate adversarial attacks.

091 2.1 THREAT MODEL

093 The primary objective of our attack is to craft inputs (e.g., suffixes) that compel the model to extend
 094 the reasoning processes as long as possible, thus significantly increasing the computational cost at
 095 inference time. Similar to prior work Carlini et al. (2023); Zou et al. (2023); Gao et al. (2024);
 096 Boucher et al. (2022), we assume a white-box scenario in which the attacker has complete access to
 097 the model’s architecture, parameters, and gradients.

098 Following Carlini et al. (2023), we consider two primary use cases for our attack. In the first use
 099 case, a malicious user intentionally induces excessive computational load, degrading overall system
 100 performance and diminishing service quality for other users, akin to a DoS attack. In the second
 101 use case, a benign user queries the model within an autonomous system (e.g., LLM Agent) that
 102 processes untrusted third-party data (e.g., crafted adversarial data), resulting in significantly higher
 103 costs (e.g., money) than expected. As we later demonstrate, these crafted adversarial inputs exhibit
 104 strong transferability across different models. Moreover, our attack aligns with the Model Denial of
 105 Service (MDoS) threat as defined by OWASP, wherein adversarial inputs lead to resource exhaus-
 106 tion, degrading system responsiveness and service availability for other users.¹

1^{https://genai.owasp.org/llmrisk2023-24/llm04-model-denial-of-service/}

108
109

2.2 APPROXIMATE OBJECTIVE FOR LONG REASONING TRAJECTORIES

110
111
112
113

In this attack, we aim to craft inputs that elicit the model to produce excessive reasoning. Formally, this corresponds to optimizing the objective \mathcal{L}_{long} that rewards generations exhibiting excessive reasoning. Since \mathcal{L}_{long} depends on non-differentiable properties of sampled text (e.g., the length and density of intermediate steps), it cannot be optimized directly.

114
115
116
117
118
119
120
121

Following the adversarial prompt optimization paradigm, we instead optimize against a differentiable proxy. Prior work, such as ATA (Gan et al., 2024) and GCG (Zou et al., 2023), employs cross-entropy (CE) against short fixed targets (e.g., “Sorry, I’m unable to answer the question” or “Sure, I can...”) as surrogates for latent objectives like refusal or compliance. A natural extension is to use CE with long, reasoning-dense targets as a proxy for \mathcal{L}_{long} . However, this direct approach is ineffective since when supervision is spread uniformly across thousands of tokens, gradients become diffuse. Moreover, because the adversarial suffix typically contains only a few tokens, forcing it to match the distribution of thousands of target tokens is unrealistic.

122
123
124
125

To address this, we propose Priority Cross-Entropy (PCE) loss, which reweights supervision to focus on informative, prompt-dependent tokens rather than treating all positions equally. We further enhance the attack performance by constructing reasoning-rich target sequences with DSPy (Khattab et al., 2024), yielding more effective surrogates for the \mathcal{L}_{long} objective.

126
127
128
129
130

Optimizing toward long targets. We begin by examining the standard CE objective and its limitations when applied to a long target. Traditional adversarial attacks on LMs minimize CE to increase the likelihood of a target sequence (e.g., “Sure, I can ...”). Formally, for base input x , adversarial suffix x' , and target sequence y , the objective is

131

$$\mathcal{L}_{CE} = -\log p(y | \{x, x'\}). \quad (1)$$

132
133
134
135
136
137
138

In prior work, the target y is typically short (often < 10 tokens). However, to elicit excessive reasoning, y is much longer (e.g., $> 1,000$ tokens). Uniformly supervising all positions in such sequences is optimization-inefficient since the gradient signal is spread across thousands of tokens. Also, many tokens (e.g., “the” and “I”) can be accurately generated even without the prompt, due to statistical priors learned during pretraining. This suggests that optimizing every token is unnecessary; instead, supervision should focus on the prompt-dependent tokens that may influence the emergence of excessive reasoning.

139
140
141
142
143
144
145
146
147

Figure 1: The perplexity of a reasoning sample in the output with and without the prompt. Bold tokens are assigned 1 in the mask.

150
151
152
153
154

To investigate this, we analyze the per-token perplexity distribution of a target sequence with and without the input prompt. As shown in Fig. 1, only a small subset of tokens exhibits a substantial change in perplexity when the prompt is removed. This supports our hypothesis that informativeness is not uniformly distributed across tokens, and that only a subset is highly dependent on the prompt.

155
156
157

Building on this insight, we design a token-level importance mask that emphasizes tokens the model considers informative, thereby improving optimization efficiency. For each target token y_t , we compute an importance score as the change in log-probability with and without the prompt:

158
159

$$S_t = \log p(y_t | x, y_{<t}) - \log p(y_t | y_{<t}). \quad (2)$$

160
161

This score quantifies the extent to which each token’s prediction relies on the presence of the prompt. We then construct a binary mask \mathcal{M} by selecting the top $K\%$ of tokens with the highest importance scores (set $M_t = 1$) and assigning zero weight to the rest (set $M_t = 0$).

162 **Priority Cross-Entropy Loss.** Putting these pieces together, we modify standard CE to focus su-
 163 pervision on prompt-sensitive tokens. The resulting PCE objective is
 164

$$165 \quad \mathcal{L}_{\text{PCE}} = -\frac{1}{|y|} \sum_{t=1}^{|y|} \mathcal{M}_t \cdot \log p(y_t | \{x, x'\}, y_{<t}). \quad (3)$$

168 This targeted supervision improves optimization efficiency and increases the likelihood that the
 169 model produces excessive reasoning at inference. Empirically, PCE substantially raises the fre-
 170 quency of reasoning (Fig. 3).

171 **Constructing long targets.** Because our attack seeks to elicit excessive reasoning, the proxy objec-
 172 tive itself must involve long outputs. Short fixed targets (as in ATA and GCG) are less effective here
 173 since they do not encourage extended reasoning and provide little supervision on reasoning struc-
 174 ture. We therefore construct long proxy targets. As simple baselines, we (i) sample multiple model
 175 outputs per input and select the longest sequence, and (ii) append the reasoning-oriented prompt
 176 (e.g., CoT) that naturally elicits step-by-step derivations to each input.

177 To obtain stronger proxies, we first leverage DSPy to iteratively refine the CoT prompt on a small
 178 dataset with the explicit objective of maximizing output length. Then, we query the model with
 179 each input and append the DSPy-optimized prompt to obtain the long, reasoning-dense target tra-
 180 jectories. Together with PCE, these long trajectories serve as effective proxies for the $\mathcal{L}_{\text{long}}$ objec-
 181 tive. App. C.3 provides the DSPy-optimized prompt, a sample output, and statistics across different
 182 prompting baselines. We also examine the impact of various construction baselines in App. C.5.

184 2.3 SHAPING TOKEN-LEVEL BEHAVIOR FOR EXCESSIVE REASONING

186 Building on PCE and long targets, we next shape token-level behavior to further promote exces-
 187 sive reasoning. We introduce two complementary losses: Excessive Reasoning (ER) Loss, which
 188 increases the likelihood of reasoning-associated tokens, and Delayed Termination (DT) Loss, which
 189 discourages premature end-of-thinking/sequence decisions.

190 **Excessive Reasoning Loss.** In the previous section, we have described how DSPy-optimized
 191 prompts yield long target trajectories. Within these outputs, we observe that certain tokens (e.g.,
 192 “Wait”, “Alternatively”; see App. C.3) frequently occur in outputs and often signal branching or
 193 recursive reasoning steps, consistent with prior findings (Wang et al., 2025; Chen et al., 2024). To
 194 exploit this behavior, we aim to increase the likelihood of generating such tokens during the rea-
 195 soning. While it is possible to construct a manual list of indicative tokens, this approach does not
 196 scale and may miss less obvious but influential cases. Instead, we adopt a data-driven approach to
 197 automatically identify reasoning-associated tokens. As demonstrated in our analysis (Sec. 3.2), this
 198 approach uncovers influential tokens that would likely be overlooked through manual inspection,
 199 underscoring the efficacy of our method.

200 Concretely, we extract the top n most frequent tokens that appear in the first two positions of each
 201 sentence generated during constructing long-from targets. These tokens are hypothesized to play a
 202 critical role in initiating new reasoning trajectories. Let \mathcal{T} denote the collected set of high-impact
 203 tokens. To promote their occurrence during generation, we define the ER Loss as:

$$204 \quad \mathcal{L}_{\text{ER}} = -\frac{1}{|y|} \sum_{t=1}^{|y|} \sum_{v \in \mathcal{T}} \log p(y_t = v | \{x, x'\}, y_{<t}). \quad (4)$$

207 This objective increases the likelihood of generating collected high-impact tokens, thereby inducing
 208 longer reasoning sequences.

210 **Delayed Termination Loss.** In many reasoning LLMs, the generation process typically begins
 211 with intermediate reasoning steps, which conclude with a designated end-of-thinking (EOT) token
 212 (e.g., </think>). Then, the model would generate an answer conclusion terminated by an end-of-
 213 sequence (EOS) token (e.g., <eos>). To prolong both the reasoning and answer conclusion phases,
 214 we aim to reduce the model’s tendency to emit these termination tokens during decoding. However,
 215 due to the stochastic nature of autoregressive generation, the precise timestep at which these tokens
 appear is not fixed. To address this, we adopt a strategy from prior work (Chen et al., 2022; Gao

et al., 2024), which minimizes the likelihood of generating termination tokens across all positions in the output sequence:

$$\mathcal{L}_{\text{DT}} = \frac{1}{|y|} \sum_{t=1}^{|y|} \left[p(y_t = \text{EOS} \mid \{x, x'\}, y_{<t}) + p(y_t = \text{EOT} \mid \{x, x'\}, y_{<t}) \right].$$

This objective discourages premature termination, encouraging the model to continue generating extended reasoning and answer conclusions before finalizing its output.

2.4 OPTIMIZATION

Optimizing suffixes in the text domain presents a unique challenge due to the discrete nature of language. Unlike continuous domains (e.g., images), where gradients can be directly applied to pixel values, LMs operate on sequences of discrete tokens drawn from a fixed vocabulary. As a result, standard gradient-based optimization cannot be directly applied to manipulate individual tokens.

To address this, we adopt the Greedy Coordinate Gradient-based Search (GCG) framework (Zou et al., 2023), which has demonstrated strong performance in adversarial text generation. GCG linearizes the loss landscape by computing gradients with respect to input embeddings and identifying substitutions that are most likely to improve the loss. Specifically, for a given token position i in the suffix, we compute the gradient of the loss with respect to its embedding and search for the token x'_i that maximally improves the objective. Formally:

$$x'_i = \arg \max_{w \in V} \langle \nabla_{e(x_i)} \mathcal{L}, e(w) - e(x_i) \rangle, \quad (5)$$

where $\nabla_{e(x_i)} \mathcal{L}$ denotes the gradient of the loss with respect to the embedding of token x_i , and $e(w)$ is the embedding of candidate token w . This inner product quantifies the expected gain from substituting x_i with w , and the best candidate is selected greedily. Our overall objective combines the three loss components introduced previously:

$$\mathcal{L}_{\text{long}} = \alpha \cdot \mathcal{L}_{\text{PCE}} + \beta \cdot \mathcal{L}_{\text{ER}} + \gamma \cdot \mathcal{L}_{\text{DT}}. \quad (6)$$

In this work, we employ a fixed-length suffix-based optimization, where a set of tokens is appended to the end of the original prompt. Each token in the suffix is iteratively updated using GCG to minimize the combined loss. Although this paper focuses on crafting adversarial suffixes, it is important to note that our approach is *method-agnostic* and can be adapted to any paradigms. For instance, alternative strategies such as character-level perturbations (e.g., typos) can be incorporated, as shown in prior work (Gan et al., 2024). This flexible framework facilitates the efficient generation of adversarial inputs tailored to different attack constraints.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUPS

Models and Datasets. We optimize adversarial suffixes and evaluate them on two reasoning LLMs: DeepSeek-R1-distill-LLaMA-8B and DeepSeek-R1-distill-Qwen-7B.² Both models are distilled variants of DeepSeek-R1. We report results under two decoding strategies: greedy decoding and sampling decoding. For sampling, we set the temperature to 0.6, apply nucleus sampling with $\text{top-}p = 0.95$, and **repeat 10 times**. To assess cross-model transferability, we additionally evaluate the attack on larger-scale models, including o3-mini, GPT-OSS (with low and medium reasoning), DeepSeek-R1, and QWQ-32B, using their respective default decoding settings. Our evaluation is conducted on two widely used mathematical reasoning benchmarks: GSM8K (Cobbe et al., 2021) and ORCA (Mitra et al., 2024). For each dataset, we randomly sample 50 examples for both optimization and evaluation. More details are provided in App. C.4.

Attack Setup. For DSPy, we use the COPRO optimizer with “gpt-4o-mini” to refine the CoT prompt. Specifically, we use 10 training examples from the GSM8K dataset for DSPy optimization

²For simplicity, we omit the prefix DeepSeek-R1-distill throughout the remainder of the paper.

	Models	Methods	GSM8K					ORCA						
			Rea	Ans	Full	Lat	Ent	Acc	Rea	Ans	Full	Lat	Ent	
270 271 272 273 274 275 276 277 278 279 280	LLaMA	Original	668	239	907	24.3	4628	72%	499	213	712	19.3	4366	82%
		Random	447	264	711	19.0	3571	74%	440	228	668	17.6	3570	76%
		CoT	574	266	839	22.2	4712	70%	344	259	603	14.7	2789	82%
		Engorgio	168	274	443	10.4	1804	68%	189	219	408	9.19	1644	82%
		CatAttack	496	232	729	19.7	3959	76%	338	233	571	15.3	3013	78%
		Ours	1914	160	2074	54.9	12827	92%	1575	167	1743	47.2	9929	80%
281 282 283 284 285 286 287 288 289 290 291 292	Qwen	Original	237	282	519	12.8	2498	84%	531	220	750	18.4	4034	84%
		Random	159	294	453	11.2	2097	82%	527	225	752	18.7	3505	86%
		CoT	169	310	479	11.9	2535	82%	379	248	626	15.6	2910	86%
		Engorgio	832	274	1106	24.4	4661	82%	273	203	476	9.99	1811	86%
		CatAttack	167	295	461	11.3	2171	78%	532	234	766	18.5	4040	82%
		Ours	1531	193	1724	42.4	8188	88%	1459	166	1624	39.6	9155	88%

Table 1: The token length for reasoning (Rea), answer (Ans), and full output (Full); inference latency (Lat, in seconds); energy consumption (Ene, in joules); and task accuracy (Acc). Experimental results across methods under greedy decoding. **Bold** indicates the best result.

and evaluate on a separate set of 10 randomly selected test samples. Due to computational constraints, we restrict target outputs to a maximum length of 3,000 tokens. For the PCE Loss, we set the token selection threshold $K = 1$, and for the ER Loss, we use $n = 5$. The overall loss function combines the three components using the following weighting coefficients: $\alpha = 1$, $\beta = 50$, and $\gamma = 1$. We fix the length of the adversarial suffix to 10 tokens. During optimization, we apply the GCG algorithm for 1,000 steps per input. The candidate pool size is set to 64, and at each step, the top 64 candidate tokens are retained.

Evaluation Metrics. To evaluate the effectiveness of our adversarial attack, we consider three primary metrics: (1) output sequence length (tokens), (2) inference latency (seconds), and (3) energy consumption (Joules). Energy usage is measured using the NVIDIA Management Library, following the methodology introduced by (Shumailov et al., 2021). To ensure consistency and fair comparison, all inference is performed using the HuggingFace pipeline (Wolf et al., 2019) on a single hardware (NVIDIA A100 80GB). Each inference is repeated three times to reduce the impact of runtime variability. To assess model utility, we extract final answers from the generated outputs using “Meta-Llama-3.1-8B-Instruct”, and compute accuracy by comparing the extracted answers against ground-truth labels. The exact prompt used for extraction is provided in App. C.1.

Baselines. We compare our attack against several baseline methods:

- **Random:** 10 randomly sampled tokens.
- **Standard CoT (Wei et al., 2022):** A widely used CoT prompt that appends the phrase “Let’s think step by step.”
- **Engorgio (Dong et al., 2025):** A method for crafting “inference-cost” attacks via adversarial prompts that force auto-regressive LLMs to produce excessively long outputs.
- **CatAttack (Rajeev et al., 2025):** A prompt-based adversarial strategy that appends the distractor statement “Interesting fact: cats sleep most of their lives,” which has been shown to induce incorrect reasoning outputs.

3.2 MAIN RESULTS

Performance. As shown in Table 1 and Table 12, our adversarial suffix substantially increases computational overhead while preserving task accuracy across all settings. For example, our attack causes LLaMA to generate significantly longer outputs on the GSM8K dataset with greedy decoding, increasing the average reasoning length by 3x from 668 to 1,914 tokens. This is accompanied by a corresponding increase in energy consumption (from 4,628J to 12,827J) and latency (from 24.3s to 54.9s). A similar trend is observed for Qwen, where the average reasoning length increases by 6.5x, demonstrating the effectiveness of our attack across different model architectures. Under sampling-based decoding, the attack remains robust. The reasoning length increases by 3x for LLaMA and 4x for Qwen on GSM8K, with similar results observed on the ORCA dataset.

324	325	Models	Methods	GSM8K					ORCA						
				326	Rea	Ans	Full	Lat	Ent	Acc	327	Rea	Ans	Full	Lat
328	329	LLaMA	Original	556	257	812	71.5	9778	76%	550	248	798	86.7	10490	81%
			Random	401	270	671	54.0	7928	72%	493	244	737	80.6	9689	81%
			CoT	476	280	757	68.5	7713	75%	402	266	668	75.9	9148	80%
			Engorgio	161	282	443	15.3	3055	68%	249	234	484	39.1	9663	80%
			CatAttack	528	257	785	64.8	9818	77%	475	224	700	81.4	10680	82%
			Ours	1437	204	1641	197.0	21228	90%	1425	206	1631	178.2	19243	87%
330	331	Qwen	Original	345	277	622	37.0	5996	82%	452	250	701	51.2	7538	84%
			Random	221	296	518	23.4	4245	84%	501	254	755	54.5	7353	86%
			CoT	176	308	484	16.0	3799	85%	293	274	567	33.1	5722	87%
			Engorgio	191	300	490	20.5	4352	81%	268	205	473	21.9	4718	78%
			CatAttack	187	295	482	17.4	3398	81%	432	253	686	50.0	6458	83%
			Ours	1479	217	1696	149.1	16031	91%	1238	183	1421	111.2	14747	87%

Table 2: Experimental results across methods under sampling decoding.

In comparison, baseline methods generally induce relatively short reasoning. For example, CoT prompts produce shorter outputs than our adversarial prompt on LLaMA for GSM8K under greedy decoding (839 vs. 2,074 tokens), indicating the limitations of standard methods in eliciting excessive reasoning behavior. More broadly, our results suggest that reasoning LLMs are resistant to short prompting, as neither CoT nor CatAttack reliably triggers long reasoning. Interestingly, we observe a consistent inverse correlation between the lengths of reasoning and answer segments. We hypothesize that as the model allocates more capacity to the reasoning phase, the corresponding answer portion becomes shorter. Also, the increase in reasoning length does not degrade task accuracy. In most cases, our triggered excessive reasoning produces meaningless reasoning, as shown in App. C.2 (sample 1). However, we also find that in a few cases, the regular reasoning is too simple and fails to solve the problem, while our triggered excessive reasoning occasionally fixes it, as shown in App. C.2 (sample 2). For example, the original response contains a single solution (reasoning path) and it actually leads to an incorrect calculation. In contrast, our attack triggers excessive reasoning that explicitly extends the thinking with multiple solutions; however, we can see that the last solution (reasoning path) is redundant since the answer has already been inferred correctly. In general, the majority of problems can be solved with baseline prompting, and our attack, in most cases, simply extends the reasoning unnecessarily, leading to computational waste. Together, these results demonstrate that our attack amplifies the computational burden of reasoning models without compromising their effectiveness. We also provide an additional study on ELI5, optimized suffix, and sample outputs in App. C.2.

Analysis. To determine whether our adversarial suffixes truly elicit excessive reasoning rather than merely increasing output length, we conduct an analysis of the generated outputs. First, we observe a substantial increase in the average number of reasoning sentences. For LLaMA, the average rises from 32 to 88, and for Qwen, from 11 to 74, when comparing outputs generated from original prompts to those generated with adversarial suffixes. This indicates that our attack expands the number of reasoning rather than just inflating output length.

Figure 2: Token counts between the generated outputs from the original and adversarial prompts.

Next, we examine the distribution of the first two tokens in reasoning sentences (Fig. 2). The results reveal distinct lexical patterns between the two models. LLaMA often begins with deliberative tokens such as “Alternatively” and “Wait,” associated with recursive reasoning, while Qwen is less

	Models	Methods	GSM8K			ORCA		
			Toks	Acc	Toks/Acc	Toks	Acc	Toks/Acc
LLaMA	Original	907	72%	12.6		712	82%	8.7
	Ours	2074	92%	22.5 (1.8×)		1743	80%	21.8 (2.5×)
Qwen	Original	519	84%	6.2		750	84%	8.9
	Ours	1724	88%	19.6 (3.2×)		1624	88%	18.5 (2.1×)

Table 3: Tokens per accuracy (Toks/Acc) under Original vs. our attack with greedy decoding. Ratios show relative increases over Original.

Model	Reason	Answer	LLaMA			Qwen		
			Full	Accuracy	Match	Reason	Answer	Full
QWQ	1761 (-151)	231 (-6)	1992 (-157)	93% (-3%)	62%	2489 (+577)	317 (+80)	2806 (+657)
R1	997 (-74)	185 (-13)	1182 (-87)	95% (-2%)	4%	1295 (+224)	233 (+36)	1528 (+260)
o3-mini	446 (+199)	184 (+46)	630 (+245)	90% (+1%)	20%	645 (+398)	336 (+199)	982 (+596)
gpt5-mini	343 (+175)	106 (+34)	449 (+209)	77% (-7%)	60%	578 (+410)	210 (+138)	787 (+547)
Gemini-Flash	665 (+146)	350 (+76)	1015 (+222)	86% (-3%)	—	874 (+355)	513 (+239)	1388 (+594)
OSS (low)	79 (+13)	170 (+35)	249 (+48)	92% (+2%)	20%	95 (+19)	316 (+167)	411 (+186)
OSS (medium)	569 (+149)	237 (+111)	806 (+259)	90% (+1%)	20%	3015 (+2569)	348 (+206)	3363 (+2775)

Table 4: Transferability analysis of adversarial suffixes originally optimized for LLaMA and Qwen.

sensitive to “*Alternatively*,” suggesting that the expression of excessive reasoning may manifest differently across architectures. Notably, Qwen does not exhibit the same degree of excessive reasoning as LLaMA under standard conditions but becomes vulnerable when adversarial suffixes are applied. Tokens such as “*Let*”, “*Maybe*”, and “*Hmm*”, which are difficult to detect manually, highlight the utility of ER Loss combined with automated token selection in surfacing subtle prompts that trigger excessive reasoning behavior.

Finally, we use the Tokens per Accuracy metric to measure reasoning efficiency in Table 3. Lower values indicate concise, effective reasoning, while higher values reflect inefficient reasoning. Across all model–dataset pairs, adversarial suffixes inflate this metric. For instance, on GSM8K, LLaMA’s tokens per accuracy point increase from 12.6 to 22.5 (a 1.8x increase), indicating that the model requires substantially more tokens per correct answer. This consistent pattern demonstrates that our method successfully induces inefficient, overextended reasoning.

Transferability. We evaluate the transferability of our adversarial suffixes to larger commercial LMs, including o3-mini, GPT-OSS, DeepSeek-R1, and QWQ. Specifically, we test adversarial suffixes optimized on the LLaMA and Qwen models for the GSM8K dataset, with results summarized in Table 4. Our findings show that these adversarial suffixes generalize effectively, consistently promoting longer output sequences without degrading task accuracy. For the OpenAI model family, both LLaMA- and Qwen-optimized suffixes successfully increase output length. For example, suffixes optimized on LLaMA lead to a 245-token increase in total output length for o3-mini, and Qwen-optimized suffixes yield a 596-token increase.

In contrast, transferability to DeepSeek-R1 appears to depend on the source model. Qwen-optimized suffixes result in a 260-token increase, whereas LLaMA-optimized suffixes fail to induce longer outputs. **We hypothesize that this discrepancy is due to the token mismatch between the source and target models.** We report the Match metric to reflect the token alignment rate between the source model and the target model. Specifically, we check whether the token length of the optimized suffix—when encoded by the source model and by the target model (e.g., gpt5)—is the same. If the lengths match, it indicates that none of the tokens in the optimized suffix are split or merged when processed by the target model. We observe that when the Match score is high, the overall length is also high, demonstrating a positive relationship between the two. These results suggest that while architectural differences influence the degree of computational overhead, token alignment plays a critical role in the transferability of adversarial prompts.

3.3 ABLATION STUDIES

We conduct a series of ablation studies to assess the impact of different experimental configurations, including the introduction of the PCE Loss and the individual contribution of each loss component.

432
433
434
435
436
437
438
439
440441 Figure 3: Impact of varying the top-K most informative tokens on LLaMA under greedy decoding.
442443
444
445
446
447
448

Setup	Reason	Answer	Full	Latency	Energy	Accuracy
\mathcal{L}_{PCE}	1100	202	1303	35.0	7016	84%
$\mathcal{L}_{PCE} + \mathcal{L}_{ER}$	1169	188	1357	36.1	8089	88%
$\mathcal{L}_{PCE} + \mathcal{L}_{DT}$	1447	201	1648	43.9	9558	88%
$\mathcal{L}_{PCE} + \mathcal{L}_{ER} + \mathcal{L}_{DT}$	1914	160	2074	54.9	12827	92%

449
450

Table 5: Different loss combinations on LLaMA under greedy decoding.

451
452
453
454
455
456
457
458
459
460
461

PCE Loss. We begin by evaluating the effectiveness of the proposed PCE Loss by varying the proportion of top- K tokens from 100% (Original CE) to 1%, as shown in Fig. 3. The results show that focusing optimization on the top 5%, and particularly the top 1% of tokens, consistently outperforms applying loss uniformly across all tokens. Peak performance is observed when focusing solely on the top 1%, with the number of reasoning tokens increasing from 660 to 1,100. This pattern suggests that selectively emphasizing a small subset of salient, prompt-dependent tokens can more effectively induce extended reasoning behavior. Additionally, we observe an inverse relationship between the number of reasoning and answer tokens, implying a redistribution of the model’s generative capacity toward reasoning content. These findings underscore the value of targeted token optimization and demonstrate that prioritizing high-impact tokens is more effective than uniformly distributing the loss across the entire sequence.

462
463
464
465
466
467
468

Loss Objectives. Second, we evaluate the individual contributions of each loss function and assess their collective impact as presented in Table 5. The results show that optimizing each loss independently leads to an increase in output sequence length, and the combination of all three losses yields the most substantial gains in both sequence length and computational burden. For instance, the full composite loss achieves the longest average output (up to 2,074 tokens), the highest inference latency (54.9 seconds), and the greatest energy consumption (12,827J). These results underscore the synergistic effect of combining all three objectives.

469
470
471
472
473
474
475

To further analyze the behavior encouraged by the ER Loss, we visualize a word cloud of the most frequently prioritized tokens in Fig. 5. Common deliberative tokens identified in prior work, such as “Alternatively” and “Wait”, are prominently featured. In addition, our method surfaces previously underexplored tokens such as “Maybe” and “Hmm”, which act as effective triggers for extended reasoning. These findings confirm that the joint loss formulation effectively amplifies reasoning behavior while preserving task accuracy, and that the ER Loss successfully uncovers subtle lexical cues indicative of recursive reasoning.

476
477
478

4 POTENTIAL DEFENSES

479
480
481
482
483
484
485

Currently, no defenses are proposed explicitly against reasoning-based attacks. To evaluate potential countermeasures, we test four strategies: two at the input level and two at the output level, with details summarized in App.B. Naïve methods, such as perplexity-based filtering, yield high false positives and significantly degrade user experience. Safety classifiers are another possible input-level defense, but our attack bypasses them with high success rates. At the output level, we examine two decoding techniques aimed at curbing excessive reasoning. Thought Switching Penalty (TIP) (Wang et al., 2025) penalizes reasoning-disruptive tokens but fails to shorten overall outputs, while Dynamic Early Exit for Reasoning (DEER) (Yang et al., 2025) halts decoding once a confident

486 answer is reached but may even reduce model utility. Overall, these findings show that our attack
 487 remains robust against different defenses.
 488

489 5 RELATED WORK 490

491 **Adversarial Attacks on LLMs.** Adversarial attacks on LLMs present unique challenges due to the
 492 discrete nature of text, which limits the applicability of gradient-based techniques commonly used in
 493 vision tasks. Early work, such as HotFlip (Ebrahimi et al., 2018), has introduced token-level pertur-
 494 bations as vectors, enabling efficient gradient-guided attacks on classification models. This approach
 495 was further developed by Universal Adversarial Triggers (UAT) (Wallace et al., 2019), which iden-
 496 tified fixed token sequences that could consistently manipulate model outputs across diverse input
 497 data. More recently, GCG (Zou et al., 2023) demonstrated strong performance in generating adver-
 498 sarial suffixes that elicit specific responses. BEAST (Sadasivan et al., 2024) improves upon GCG
 499 by incorporating beam search to enhance linguistic coherence, thereby increasing the effectiveness
 500 of adversarial prompts in bypassing safety filters.

501 **Denial-of-Service Attacks on LLMs.** Denial-of-service (DoS) attacks on LLMs aim to degrade
 502 system performance by manipulating input prompts to increase computational cost, latency, or en-
 503 ergy consumption. For example, Sponge attacks (Shumailov et al., 2021) maximize the L2 norm
 504 of internal activations, thereby exhausting system resources during inference. Subsequent work on
 505 energy-latency manipulation introduced crafted inputs that prolong decoding time or increase mem-
 506 ory usage. NICGSlowDown (Chen et al., 2022) demonstrated that minimizing the probability of
 507 EOS tokens results in excessively long outputs in captioning models, significantly increasing the
 508 computational load. More recently, Overthink (Kumar et al., 2025) was proposed as an indirect
 509 prompt injection method that utilizes decoy tasks to induce unnecessary reasoning overhead. In
 510 contrast, Crabs (Zhang et al., 2025) shares a similar idea but places the decoy within the user query.
 511 Additionally, Engorgio Prompt (Dong et al., 2025) demonstrates how attackers can trigger excessive
 512 resource usage in white-box settings with a re-parameterization design.

513 6 CONCLUSION 514

515 In this work, we present a novel adversarial attack on reasoning LLMs that induces computational
 516 overhead during inference. Our approach appends adversarial suffixes that trigger extended rea-
 517 soning trajectories, optimized through a composite loss function that maximizes output length and
 518 complexity. Empirical results demonstrate that the method reliably increases sequence length, infer-
 519 ence latency, and energy consumption. Moreover, the strong cross-model transferability highlights
 520 the practical relevance of this threat.

521 **Limitations.** Based on the analysis, we can see that the choice of optimized tokens is also criti-
 522 cal and constrained by the tokenizer used. Right now, many commercial APIs—such as Ope-
 523 nAI—release their tokenizers, and tokenizer inference attacks also exist and can be used to recover
 524 unknown tokenizers. In future work, the selection of optimized tokens can be incorporated as an
 525 additional optimization constraint, not only for this attack but for other adversarial methods as well.

527 528 ETHICS STATEMENT 529

530 This study utilizes publicly available datasets and models, with appropriate citations provided. No
 531 private or sensitive information is used, and the work does not include any harmful content. Because
 532 the research relies exclusively on publicly available data and does not involve human participants,
 533 it does not qualify as human subjects research under Institutional Review Board (IRB) definitions.
 534 Accordingly, we conclude that this paper raises no ethical concerns.

536 537 REPRODUCIBILITY STATEMENT 538

539 We provide detailed descriptions of the training and evaluation procedures used in our experiments.
 In particular, we describe our proposed attack in detail (see Sec. 2), followed by the specifications

540 of the models, datasets, and decoding strategies used (see Sec. 3.1). All prompting templates are
 541 included in the Appendix for reference. The code will be released upon publication of this paper.
 542

543 **REFERENCES**

545 Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Giani-
 546 nazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczek, and Torsten Hoe-
 547 fler. Graph of Thoughts: Solving Elaborate Problems with Large Language Models. In *AAAI*
 548 *Conference on Artificial Intelligence (AAAI)*, pp. 17682–17690. AAAI, 2024.

549 Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. Bad Characters: Imper-
 550 ceptible NLP Attacks. In *IEEE Symposium on Security and Privacy (S&P)*, pp. 1987–2004. IEEE,
 551 2022.

552 Nicholas Carlini, Milad Nasr, Christopher A. Choquette-Choo, Matthew Jagielski, Irena Gao,
 553 Pang Wei Koh, Daphne Ippolito, Florian Tramèr, and Ludwig Schmidt. Are aligned neural net-
 554 works adversarially aligned? In *Annual Conference on Neural Information Processing Systems*
 555 (*NeurIPS*). NeurIPS, 2023.

556 Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and Wei Yang. NICGSlowDown: Evaluating
 557 the Efficiency Robustness of Neural Image Caption Generation Models. In *IEEE Conference on*
 558 *Computer Vision and Pattern Recognition (CVPR)*, pp. 15344–15353. IEEE, 2022.

559 Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuwei Liu,
 560 Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do NOT
 561 Think That Much for 2+3=? On the Overthinking of o1-Like LLMs. *CoRR* *abs/2412.21187*,
 562 2024.

563 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 564 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 565 Schulman. Training Verifiers to Solve Math Word Problems. *CoRR* *abs/2110.14168*, 2021.

566 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 567 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 568 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 569 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 570 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 571 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 572 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 573 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 574 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 575 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 576 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng
 577 Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen,
 578 R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu
 579 Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. DeepSeek-R1: Incentivizing
 580 Reasoning Capability in LLMs via Reinforcement Learning. *CoRR* *abs/2501.12948*, 2025.

581 Jianshuo Dong, Ziyuan Zhang, Qingjie Zhang, Tianwei Zhang, Hao Wang, Hewu Li, Qi Li, Chao
 582 Zhang, Ke Xu, and Han Qiu. An engorgio prompt makes large language model babble on. In
 583 *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,*
 584 *April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=m4eXBo0VNC>.

585 Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. HotFlip: White-Box Adversarial Exam-
 586 ples for Text Classification. In *Annual Meeting of the Association for Computational Linguistics*
 587 (*ACL*), pp. 31–36. ACL, 2018.

588 Esther Gan, Yiran Zhao, Liying Cheng, Yancan Mao, Anirudh Goyal, Kenji Kawaguchi, Min-Yen
 589 Kan, and Michael Shieh. Reasoning Robustness of LLMs to Adversarial Typographical Errors. In
 590 *Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 10449–10459.
 591 ACL, 2024.

594 Kuofeng Gao, Yang Bai, Jindong Gu, Shu-Tao Xia, Philip Torr, Zhifeng Li, and Wei Liu. Inducing
 595 High Energy-Latency of Large Vision-Language Models with Verbose Images. In *International
 596 Conference on Learning Representations (ICLR)*, 2024.

597

598 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 599 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
 600 Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
 601 Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrey
 602 Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben
 603 Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen
 604 Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaressi, Cary Bassin,
 605 Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris
 606 Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kap-
 607 pler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
 608 Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
 609 abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
 610 Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
 611 von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
 612 Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart, in,
 613 Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichian, Ian
 614 O'Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya. OpenAI o1 System Card.
CoRR *abs/2412.16720*, 2024.

615

616 Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
 617 hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
 618 Zaharia, and Christopher Potts. DSPy: Compiling Declarative Language Model Calls into State-
 619 of-the-Art Pipelines. In *International Conference on Learning Representations (ICLR)*, 2024.

620

621 Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr,
 622 and Eugene Bagdasarian. OverThink: Slowdown Attacks on Reasoning LLMs. *CoRR*
abs/2502.02542, 2025.

623

624 Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-Math: Unlocking
 625 the potential of SLMs in Grade School Math. *CoRR* *abs/2402.14830*, 2024.

626

627 Meghana Arakkal Rajeev, Rajkumar Ramamurthy, Prapti Trivedi, Vikas Yadav, Oluwanifemi Bamg-
 628 bose, Sathwik Tejaswi Madhusudhan, James Zou, and Nazneen Rajani. Cats Confuse Reasoning
 629 LLM: Query Agnostic Adversarial Triggers for Reasoning Models. *CoRR* *abs/2503.01781*, 2025.

630

631 Vinu Sankar Sadasivan, Shoumik Saha, Gaurang Sriramanan, Priyatham Kattakinda,
 632 Atoosa Malemir Chegini, and Soheil Feizi. Fast adversarial attacks on language
 633 models in one GPU minute. In *Forty-first International Conference on Machine Learn-
 634 ing, ICML 2024, Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL
<https://openreview.net/forum?id=wCMNbdshcY>.

635

636 Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Papernot, Robert D. Mullins, and Ross Anderson.
 637 Sponge Examples: Energy-Latency Attacks on Neural Networks. In *IEEE European Symposium
 638 on Security and Privacy (Euro S&P)*, pp. 212–231. IEEE, 2021.

639

640 Qwen Team. QwQ-32B: Embracing the Power of Reinforcement Learning. <https://qwenlm.github.io/blog/qwq-32b/>, 2025.

641

642 Miles Turpin, Julian Michael, Ethan Perez, and Samuel R. Bowman. Language Models Don't Al-
 643 ways Say What They Think: Unfaithful Explanations in Chain-of-Thought Prompting. *CoRR*
abs/2305.04388, 2023.

644

645 Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal Adversar-
 646 ial Triggers for Attacking and Analyzing NLP. In *Conference on Empirical Methods in Natu-
 647 ral Language Processing and International Joint Conference on Natural Language Processing
 (EMNLP-IJCNLP)*, pp. 2153–2162. ACL, 2019.

648 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
 649 Chowdhery, and Denny Zhou. Self-Consistency Improves Chain of Thought Reasoning in Lan-
 650 guage Models. In *International Conference on Learning Representations (ICLR)*, 2023.

651

652 Yue Wang, Qizhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
 653 Juntao Li, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Thoughts Are
 654 All Over the Place: On the Underthinking of o1-Like LLMs. *CoRR* *abs/2501.18585*, 2025.

655 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 656 Quoc V. Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language
 657 Models. In *Annual Conference on Neural Information Processing Systems (NeurIPS)*. NeurIPS,
 658 2022.

659

660 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 661 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. HuggingFace’s Trans-
 662 formers: State-of-the-art Natural Language Processing. *CoRR* *abs/1910.03771*, 2019.

663 Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
 664 standing chain-of-thought length in llms. *CoRR*, *abs/2502.07266*, 2025. doi: 10.48550/ARXIV.
 665 2502.07266. URL <https://doi.org/10.48550/arXiv.2502.07266>.

666

667 Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping
 668 Wang. Dynamic early exit in reasoning models. *CoRR*, *abs/2504.15895*, 2025. doi: 10.48550/
 669 ARXIV.2504.15895. URL <https://doi.org/10.48550/arXiv.2504.15895>.

670 Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E. Gon-
 671 zalez, and Bin Cui. Buffer of Thoughts: Thought-Augmented Reasoning with Large Language
 672 Models. *CoRR* *abs/2406.04271*, 2024.

673

674 Yuanhe Zhang, Zhenhong Zhou, Wei Zhang, Xinyue Wang, Xiaojun Jia, Yang Liu, and Sen Su.
 675 Crabs: Consuming resource via auto-generation for llm-dos attack under black-box settings.
 676 In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.),
 677 *Findings of the Association for Computational Linguistics, ACL 2025, Vienna, Austria, July 27*
 678 - *August 1, 2025*, pp. 11128–11150. Association for Computational Linguistics, 2025. URL
 679 <https://aclanthology.org/2025.findings-acl.580/>.

680 Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and Transferable Adversarial
 681 Attacks on Aligned Language Models. *CoRR* *abs/2307.15043*, 2023.

682

683 A THE USE OF LARGE LANGUAGE MODELS

685 In this paper, LLMs are employed to enhance the clarity, fluency, and overall quality of writing.
 686 Their use is limited to language refinement and does not extend to the design, execution, or analysis
 687 of the experiments. Also, all polished texts are double-checked by authors to ensure accuracy, avoid
 688 overclaims, and prevent confusion.

690 B DEFENSE STUDIES

693 **Input-level.** At the input level, we begin by evaluating a perplexity-based filtering strategy, follow-
 694 ing the similar setup described in (Dong et al., 2025). We compute universal perplexity thresholds
 695 using the Open-Platypus dataset, assuming the model owner has no prior knowledge of the adversar-
 696 ial suffix. Specifically, we select the 25th, 50th, and 75th percentile quantiles as thresholds to filter
 697 prompts exhibiting unusually high perplexity.

698 We test the filter on both clean prompts and prompts appended with adversarial suffixes as shown
 699 in Table 7. While this method achieves a 100% true positive rate in detecting adversarial prompts,
 700 it also results in high false positive rates for clean prompts—100%, 78%, and 16% on LLaMA,
 701 and 100%, 84%, and 28% on Qwen at the respective thresholds. These results suggest that our
 optimized suffixes are difficult to identify when the model owner lacks prior knowledge of their

	LLaMA				Qwen			
	Reason	Answer	Full	Accuracy	Reason	Answer	Full	Accuracy
Base	668	239	907	72%	237	282	519	84%
Base + TIP	422	250	673	74%	264	283	547	84%
Ours	1914	160	2074	92%	1531	193	1724	88%
Ours + TIP	1863	173	2037	94%	1464	198	1661	84%
Base	668	239	907	72%	237	282	519	84%
Base + DEER	247	237	484	70%	217	268	485	86%
Ours	1914	160	2074	92%	1531	193	1724	88%
Ours + DEER	1074	216	1290	72%	426	518	945	88%

Table 6: Output-level defense results for GSM8k on LLaMA and Qwen.

Quantile	LLaMA		Qwen	
	FP (%)	TP (%)	FP (%)	TP (%)
25	100	100	100	100
50	78	100	84	100
75	16	100	28	100

Table 7: False positive rate (FP) for filtering clean prompts and true positive rate (TP) for filtering attack prompts using perplexity-based filtering across different quantiles.

structure. Also, applying high-percentile quantile thresholds may severely degrade the utility of the model on benign inputs. For the second defense, we apply an open-source safety classifier, “meta-llama/Llama-Prompt-Guard-2-86M,” to flag unsafe inputs. The classifier detects only 8% of adversarial prompts on LLaMA and 6% on Qwen. These findings indicate that our adversarial suffixes are able to bypass the classifier in most cases.

Output-level. At the output level, we evaluate two complementary mitigation techniques. The first, Thought Switching Penalty (TIP) (Wang et al., 2025), penalizes the generation of reasoning-disruptive tokens such as “Wait” or “Alternatively.” The second, Dynamic Early Exit for Reasoning (DEER) (Yang et al., 2025), reduces unnecessary token generation by terminating decoding early once a confident answer is detected.

As shown in Table 6, on LLaMA, our attack generated 1,914 reasoning tokens and 160 answer tokens, totaling 2,074 tokens, with an accuracy of 92%. Applying TIP led to a modest reduction in total tokens (2,037) and a slight increase in accuracy to 94%. In contrast, DEER reduced the length of reasoning (to 1,290 tokens) but caused a more substantial performance drop, lowering accuracy to 72%. A similar trend was observed on Qwen: TIP preserved accuracy while modestly reducing output length, whereas DEER can only reduce the total token count (945 tokens). In addition, DEER requires extra processing time, which also incurs additional latency and energy costs. Overall, these results suggest that TIP provides only limited mitigation against our attack, while DEER is more effective at curbing excessive reasoning, but at the cost of degraded task performance and additional computational resources. Nevertheless, our attack still incurs substantial resource overhead due to excessive and redundant token generation compared to Original.

C ADDITIONAL EXPERIMENTAL DETAILS

In this section, we present additional details of our experimental setup, including the prompting templates, sample outputs and suffixes, outputs and prompts from DSPy, analysis of the attack behavior, descriptions of the models and datasets employed, as well as the computational resources utilized.

756 C.1 PROMPT TEMPLATE
757758 **Prompting template for extracting answer**
759760 Here is a math question and a model's answer about this question.
761 Please extract the EXACT number from the answer text as the final answer for question.
762 QUESTION: {}
763 ANSWER: {}
764 Final format should be a legal 'number' without any suffix such as '\$'.
765 The final answer is:766
767
768 C.2 SAMPLES
769
770771 **Prompt + Optimized Suffix**772 Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins
773 for her friends every day with four. She sells the remainder at the farmers' market daily for \$2
774 per fresh duck egg. How much in dollars does she make every day at the farmers' market? ?!
775 Contains more tricks..... Elijahnumeric paradox nearer[/]776
777
778
779 **Sample response 1 from our attack**780 Okay, so I need to figure out how much money Janet makes every day from selling her duck
781 eggs. Let me start by breaking down the information given.
782 First, Janet's ducks lay 16 eggs per day. That's the total number of eggs she gets each day. Now,
783 she has some daily responsibilities that involve using these eggs. She eats three for breakfast
784 every morning, so that's 3 eggs used daily. Then, she bakes muffins for her friends every day
785 with four eggs. Wait, does that mean she uses 4 eggs per day ...
786 So far, she's using 3 eggs for breakfast and 4 for baking, which totals 7 eggs per day. She lays
787 16 eggs ...
788 So, 9 eggs sold at \$2 each would be 9 times 2, which equals \$18. Therefore, Janet makes \$18
789 every day from selling her eggs ...
790 Wait, let me double-check to make sure I didn't miss anything. She lays 16, uses 3 for breakfast,
791 4 for baking, so $16 - 3 - 4 = 9$. Yes, that's correct. And each egg is sold for \$2, so 9 times 2 is
792 indeed \$18. I think that's all there is to it.793
794
795796 **Sample response 1 from original**797 First, determine the total number of eggs Janet's ducks lay each day, which is 16.
798 Next, calculate the number of eggs Janet uses for breakfast and baking muffins. She eats 3 eggs
799 for breakfast and uses 4 eggs for baking, totaling 7 eggs.
800 Subtract the used eggs from the total to find out how many eggs she has left to sell: $16 - 7 = 9$
801 eggs.
802 Finally, multiply the number of eggs she sells by the price per egg to find out how much money
803 she makes daily: 9 eggs * \$2 per egg = \$18 ...804
805
806807 **Sample question 2**808 Raymond and Samantha are cousins.
809 Raymond was born 6 years before Samantha.

810

Raymond had a son at the age of 23.
 If Samantha is now 31, how many years ago was Raymond's son born?

811

812

813

814

815

Sample response 2 from our attack

816

Okay, so I'm trying to figure out this problem about Raymond and Samantha ...
 Raymond and Samantha are cousins. Raymond was born 6 years before Samantha. Raymond had a son at the age of 23 ...
 Alright, so Raymond was born 6 years before Samantha ...
 Wait, no, that's not right. If Raymond was born 6 years before Samantha ...
 Yeah, that makes sense because if you subtract 6 years from Samantha's age ...
 So, $31 - 6 = 25$?
 Wait, no, that's the opposite ...
 Raymond had a son at the age of 23.
 So, Raymond was 23 when his son was born.
 Now, Raymond is 37, so the time between Raymond having his son and now is $37 - 23 = 14$ years.
 So, the son was born 14 years ago.
 Wait, but let me double-check that. If Raymond was 23 when his son was born, and he is now 37, then $37 - 23 = 14$ years have passed since the son was born.
 So, the son is now 14 years old, which means he was born 14 years ago. That seems right.
 ...
 </think>... **Answer:** Raymond's son was born 14 years ago.

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Sample response 2 from original

834

835

836

837

First, I need to determine Samantha's age when Raymond's son was born.
 Since Samantha is currently 31 years old, I'll subtract 6 years from her current age to find out how old she was when Raymond was born.
 This gives me 25 years old.
 Next, I'll figure out how long ago Raymond's son was born.
 Raymond had his son at the age of 23.
 To find out how many years ago this happened, I'll subtract 23 from Samantha's age at that time.
 So, 25 minus 23 equals 2 years ago.
 Therefore, Raymond's son was born 2 years ago.
 </think>... Final Answer:
 </n>\boxed{2}

838

839

840

841

842

843

844

845

846

847

848

849

850

C.3 DSPY

851

852

853

854

855

856

	Mean
Raw	805
CoT	717
CoT+DSPY	1247

857

858

859

860

861

862

863

DSPY-optimized prompt

Provide a detailed breakdown of the problem or topic at hand, considering every aspect and nuance. Start from an introductory overview, followed by dissecting the components logically, integrating examples, addressing possible counterarguments or misconceptions, and uniformly

864
865
866
867
868
869
870

elaborating on each point with explanatory details. Prioritize presenting a thorough, analytical approach that can include speculative insights, hypothetical scenarios, or alternative viewpoints, without rushing to conclusions. Aim to showcase a clear conceptualization followed by logical reasoning, actively prompting self-reflection on the implications of your insights.

871
872

Sample output from DSPy-optimized prompt

873
874

Okay, so I need to figure out how much money Janet makes every day from selling her duck eggs at the farmers' market. Let me start by breaking down the problem step by step.

875
876
877
878
879
880

First, Janet's ducks lay 16 eggs per day. That's the total number of eggs she gets each day. Now, she has some daily expenses and uses related to these eggs. She eats three eggs for breakfast every morning. So that's 3 eggs used for breakfast. Then, she bakes muffins for her friends every day, using four eggs each time. **Wait**, does she bake muffins once a day using four eggs, or does she bake them multiple times? The problem says "bakes muffins for her friends every day with four," which is a bit ambiguous. I think it probably means she uses four eggs per day for baking muffins. So that's another four eggs.

881
882
883
884

So, adding up her daily egg usage: 3 eggs for breakfast plus 4 eggs for muffins equals 7 eggs used each day. Now, she lays 16 eggs, so how many does she have left after using 7? Let me subtract: 16 minus 7 equals 9 eggs remaining. These 9 eggs are sold at the farmers' market, and she sells each for \$2. So, 9 eggs times \$2 per egg would give her \$18 per day.

885
886

Wait, let me double-check that. 16 eggs laid minus 7 used equals 9 sold. 9 times 2 is indeed 18.

...

887
888

C.4 EXPERIMENTAL SETUPS

891
892
893
894
895
896

All models in our experiments are downloaded from HuggingFace. DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-Distill-Qwen-7B are originally licensed under the Apache 2.0 License. The GSM8K and ORCA datasets are under the MIT License. All experiments in the paper were conducted on an A100 (80GB) compute node. Also, we interact with o3-mini via the OpenAI API, and with DeepSeek-R1 and QWQ-32B via the Baidu Cloud API, to simulate real-world deployment conditions.

897
898

C.5 TARGET OUTPUT CONSTRUCTION

899

Setup	Reason	Answer	Full	Latency	Energy	Accuracy
Raw	1695	190	1885	50.9	12120	80%
CoT	1060	224	1283	34.0	7719	80%
CoT + DSPy	1914	160	2074	54.9	12827	92%

900
901
902
903

Table 9: Different target constructions on LLaMA under greedy decoding.

904

Setup	Reason	Answer	Full	Latency	Energy	Accuracy
Raw	1396	223	1619	206.8	20252	82%
CoT	1034	250	1283	150.2	15685	79%
CoT + DSPy	1501	216	1718	209.9	19491	87%

905
906
907
908
909
910
911

Table 10: Different target construction strategies on LLaMA under sampling decoding.

912

913
914
915
916
917

We evaluate several strategies for constructing target outputs to guide adversarial optimization, as summarized in Table 9 and 10. The comparison includes a raw baseline (no additional prompt), a standard CoT prompt, and a DSPy-optimized CoT prompt. Interestingly, we find that the standard CoT prompt does not consistently produce longer reasoning sequences; in some cases, it even results in shorter outputs than raw prompting, highlighting its limitations in eliciting extended reasoning.

In contrast, DSPy-optimized CoT prompts increase the average output length from 1,283 to 2,074 tokens under greedy decoding compared to CoT prompts, with corresponding increases in both energy consumption and task accuracy. These results highlight the critical role of target output quality in guiding adversarial optimization. Longer reasoning sequences, especially those produced via DSPy, serve as more effective targets for inducing excessive computation. This reinforces the importance of target construction in maximizing the efficacy of our attack.

C.6 ADDITIONAL RESULTS

Figure 4: Impact of varying the top-K most informative tokens on LLaMA under sampling decoding.

Setup	Reason	Answer	Full	Latency	Energy	Accuracy
\mathcal{L}_{PCE}	1104	218	1322	143.9	19810	86%
$\mathcal{L}_{PCE} + \mathcal{L}_{ER}$	1095	205	1301	124.9	14879	87%
$\mathcal{L}_{PCE} + \mathcal{L}_{DT}$	1184	223	1407	145.3	17731	88%
$\mathcal{L}_{PCE} + \mathcal{L}_{ER} + \mathcal{L}_{DT}$	1437	204	1641	197.0	21228	90%

Table 11: Ablation study of loss objectives combinations on LLaMA under sampling decoding.

Figure 5: Tokens used for ER Loss. Word clouds generated from the CoT outputs of LLaMA and Qwen on GSM8K.

	Reason	Answer	Full
Original	1070	287	1356
Ours	1495	310	1805

Table 12: Experimental results for ELI5 on Qwen under greedy decoding.