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ABSTRACT

Recent reasoning large language models (LLMs), such as OpenAI o1 and
DeepSeek-R1, exhibit strong performance on complex tasks through test-time in-
ference scaling. However, prior studies have shown that these models often in-
cur significant computational costs due to excessive reasoning, such as frequent
switching between reasoning trajectories (e.g., underthinking) or redundant rea-
soning on simple questions (e.g., overthinking). In this work, we expose a novel
threat: crafting adversarial inputs to exploit excessive reasoning behaviors. How-
ever, directly optimizing for excessive reasoning is non-trivial because reasoning
length is non-differentiable. To overcome this, we introduce a proxy framework
that approximates the long reasoning objective and shapes token-level behavior:
(1) Priority Cross-Entropy Loss, a modification of the standard cross-entropy ob-
jective that emphasizes key tokens by leveraging the autoregressive nature of LMs;
(2) Excessive Reasoning Loss, which encourages the model to initiate additional
reasoning paths during inference; and (3) Delayed Termination Loss, which is
designed to extend the reasoning process and defer the generation of final out-
puts. We optimize and evaluate our attack for the GSM8K and ORCA datasets on
DeepSeek-R1-Distill-LLaMA and DeepSeek-R1-Distill-Qwen. Empirical results
demonstrate a 3x to 6.5x increase in reasoning length with comparable utility per-
formance. Furthermore, our crafted adversarial inputs exhibit transferability, in-
ducing computational overhead in o3-mini, GPT-OSS, DeepSeek-R1, and QWQ
models. Our findings highlight an emerging efficiency-oriented vulnerability in
modern reasoning LLMs, posing new challenges for their reliable deployment.

1 INTRODUCTION

Inference-time scaling has emerged as a critical technique for enhancing the reasoning capabilities
of LLMs (Wei et al., 2022; Wang et al., 2023; Besta et al., 2024; Yang et al., 2024). Methods such
as Chain-of-Thought (CoT) (Wei et al., 2022) guide models through intermediate reasoning steps by
outside prompts, while recent models like DeepSeek (DeepSeek-AI et al., 2025) and QWQ (Team,
2025) embed reasoning capabilities inside models themselves during training. However, recent stud-
ies have shown that these models often suffer from excessive reasoning behaviors, such as frequent
shifts in reasoning strategies or redundant processing, which can lead to substantial computational
overhead (Wang et al., 2025; Chen et al., 2024). In addition, recent studies (Turpin et al., 2023; Wu
et al., 2025) have shown that longer reasoning chains can sometimes result in unfaithful or incor-
rect outputs. In particular, Wu et al. (2025) demonstrates that task accuracy initially improves but
declines once the reasoning becomes too lengthy. These inefficiencies introduce a novel security
risk: the attacker can craft adversarial inputs to exploit them, intentionally inflating inference-time
resource usage or inducing unfaithful behaviors.

Prior work has explored related threats in LMs. For example, Sponge examples (Shumailov et al.,
2021) increase computational costs by maximizing activation norms, while the NICGSlowdown at-
tack (Chen et al., 2022) manipulates token logits to delay output generation. More recently, Kumar
et al. (2025) propose the Overthink attack, which adopts an indirect prompt injection strategy and
inserts a decoy to external resources. This compels the model to allocate additional reasoning re-
sources toward solving an intermediary task before addressing the primary query. These attacks
highlight the vulnerability of LMs to resource-exhaustion threats. However, these approaches either
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rely on modifying model internals, controlling output logits, or injecting external distractions, which
can limit their generality and practicality.

In this work, we aim to directly perturb the input to elicit excessive reasoning behavior, increasing
computational overhead without requiring external content or architectural manipulation. How-
ever, directly optimizing for excessive reasoning is non-trivial because reasoning length is non-
differentiable explicitly. Therefore, we propose differentiable proxy losses to approximate the length
objective and enhance the attack performance via shaping token-level behavior. Concretely, we craft
the adversarial suffixes with three complementary losses:

• Priority Cross-Entropy Loss prioritizes key tokens while masking less informative ones
to enhance optimization efficiency. This loss leverages the autoregressive nature of LM to
enable more targeted and effective gradient updates.

• Excessive Reasoning Loss increases the likelihood of branched or recursive reasoning,
leading to greater computational overhead.

• Delayed Termination Loss encourages the model to defer the termination of reasoning
and answer generation.

We optimize and evaluate our attacks for the GSM8K (Cobbe et al., 2021) and ORCA (Mitra et al.,
2024) datasets on DeepSeek-R1-Distill-Llama and DeepSeek-R1-Distill-Qwen. Our attacks con-
sistently increase the reasoning length by over 3x to 6.5x using only 10 crafted adversarial tokens.
Moreover, our attack demonstrates strong transferability across models on commercial platforms,
including OpenAI o3-mini, GPT-OSS (Jaech et al., 2024), DeepSeek-R1, and QWQ, suggesting a
broader vulnerability among reasoning-optimized LLMs. These findings expose an underexplored
issue. While such models are proficient in reasoning, they remain susceptible to targeted manipu-
lations that exploit their reasoning mechanisms to induce significant computational overhead. Our
results underscore the urgent need for defenses that can detect and mitigate excessive reasoning
triggered by adversarial prompts.

2 METHODOLOGY

This section presents our adversarial attack framework that increases the computational overhead
of reasoning LLMs by inducing excessive reasoning. We begin by stating the threat model and the
use cases. We then conduct two studies. First, we design proxy objectives to approximate the non-
differentiable length objective. Second, we introduce two token-level losses that further shape token
behaviors. Finally, we describe the optimization procedure used to generate adversarial attacks.

2.1 THREAT MODEL

The primary objective of our attack is to craft inputs (e.g., suffixes) that compel the model to extend
the reasoning processes as long as possible, thus significantly increasing the computational cost at
inference time. Similar to prior work Carlini et al. (2023); Zou et al. (2023); Gao et al. (2024);
Boucher et al. (2022), we assume a white-box scenario in which the attacker has complete access to
the model’s architecture, parameters, and gradients.

Following Carlini et al. (2023), we consider two primary use cases for our attack. In the first use
case, a malicious user intentionally induces excessive computational load, degrading overall system
performance and diminishing service quality for other users, akin to a DoS attack. In the second
use case, a benign user queries the model within an autonomous system (e.g., LLM Agent) that
processes untrusted third-party data (e.g., crafted adversarial data), resulting in significantly higher
costs (e.g., money) than expected. As we later demonstrate, these crafted adversarial inputs exhibit
strong transferability across different models. Moreover, our attack aligns with the Model Denial of
Service (MDoS) threat as defined by OWASP, wherein adversarial inputs lead to resource exhaus-
tion, degrading system responsiveness and service availability for other users.1

1https://genai.owasp.org/llmrisk2023-24/llm04-model-denial-of-service/
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2.2 APPROXIMATE OBJECTIVE FOR LONG REASONING TRAJECTORIES

In this attack, we aim to craft inputs that elicit the model to produce excessive reasoning. Formally,
this corresponds to optimizing the objective Llong that rewards generations exhibiting excessive
reasoning. Since Llong depends on non-differentiable properties of sampled text (e.g., the length
and density of intermediate steps), it cannot be optimized directly.

Following the adversarial prompt optimization paradigm, we instead optimize against a differen-
tiable proxy. Prior work, such as ATA (Gan et al., 2024) and GCG (Zou et al., 2023), employs
cross-entropy (CE) against short fixed targets (e.g., “Sorry, I’m unable to answer the question” or
“Sure, I can. . . ”) as surrogates for latent objectives like refusal or compliance. A natural extension
is to use CE with long, reasoning-dense targets as a proxy for Llong. However, this direct approach
is ineffective since when supervision is spread uniformly across thousands of tokens, gradients be-
come diffuse. Moreover, because the adversarial suffix typically contains only a few tokens, forcing
it to match the distribution of thousands of target tokens is unrealistic.

To address this, we propose Priority Cross-Entropy (PCE) loss, which reweights supervision to
focus on informative, prompt-dependent tokens rather than treating all positions equally. We further
enhance the attack performance by constructing reasoning-rich target sequences with DSPy (Khattab
et al., 2024), yielding more effective surrogates for the Llong objective.

Optimizing toward long targets. We begin by examining the standard CE objective and its limita-
tions when applied to a long target. Traditional adversarial attacks on LMs minimize CE to increase
the likelihood of a target sequence (e.g., “Sure, I can ...”). Formally, for base input x, adversarial
suffix x′, and target sequence y, the objective is

LCE = − log p(y | {x, x′}). (1)

In prior work, the target y is typically short (often < 10 tokens). However, to elicit excessive reason-
ing, y is much longer (e.g., > 1,000 tokens). Uniformly supervising all positions in such sequences
is optimization-inefficient since the gradient signal is spread across thousands of tokens. Also, many
tokens (e.g., “the” and “I”) can be accurately generated even without the prompt, due to statistical
priors learned during pretraining. This suggests that optimizing every token is unnecessary; in-
stead, supervision should focus on the prompt-dependent tokens that may influence the emergence
of excessive reasoning.
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Figure 1: The perplexity of a reasoning sample in the output with and without the prompt. Bold
tokens are assigned 1 in the mask.

To investigate this, we analyze the per-token perplexity distribution of a target sequence with and
without the input prompt. As shown in Fig. 1, only a small subset of tokens exhibits a substantial
change in perplexity when the prompt is removed. This supports our hypothesis that informativeness
is not uniformly distributed across tokens, and that only a subset is highly dependent on the prompt.

Building on this insight, we design a token-level importance mask that emphasizes tokens the model
considers informative, thereby improving optimization efficiency. For each target token yt, we com-
pute an importance score as the change in log-probability with and without the prompt:

St = log p(yt | x, y<t)− log p(yt | y<t). (2)

This score quantifies the extent to which each token’s prediction relies on the presence of the prompt.
We then construct a binary mask M by selecting the top K% of tokens with the highest importance
scores (set Mt = 1) and assigning zero weight to the rest (set Mt = 0).
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Priority Cross-Entropy Loss. Putting these pieces together, we modify standard CE to focus su-
pervision on prompt-sensitive tokens. The resulting PCE objective is

LPCE = − 1

|y|

|y|∑
t=1

Mt · log p(yt | {x, x′}, y<t). (3)

This targeted supervision improves optimization efficiency and increases the likelihood that the
model produces excessive reasoning at inference. Empirically, PCE substantially raises the fre-
quency of reasoning (Fig. 3).

Constructing long targets. Because our attack seeks to elicit excessive reasoning, the proxy objec-
tive itself must involve long outputs. Short fixed targets (as in ATA and GCG) are less effective here
since they do not encourage extended reasoning and provide little supervision on reasoning struc-
ture. We therefore construct long proxy targets. As simple baselines, we (i) sample multiple model
outputs per input and select the longest sequence, and (ii) append the reasoning-oriented prompt
(e.g., CoT) that naturally elicits step-by-step derivations to each input.

To obtain stronger proxies, we first leverage DSPy to iteratively refine the CoT prompt on a small
dataset with the explicit objective of maximizing output length. Then, we query the model with
each input and append the DSPy-optimized prompt to obtain the long, reasoning-dense target tra-
jectories. Together with PCE, these long trajectories serve as effective proxies for the Llong objec-
tive. App. C.3 provides the DSPy-optimized prompt, a sample output, and statistics across different
prompting baselines. We also examine the impact of various construction baselines in App. C.5.

2.3 SHAPING TOKEN-LEVEL BEHAVIOR FOR EXCESSIVE REASONING

Building on PCE and long targets, we next shape token-level behavior to further promote exces-
sive reasoning. We introduce two complementary losses: Excessive Reasoning (ER) Loss, which
increases the likelihood of reasoning-associated tokens, and Delayed Termination (DT) Loss, which
discourages premature end-of-thinking/sequence decisions.

Excessive Reasoning Loss. In the previous section, we have described how DSPy-optimized
prompts yield long target trajectories. Within these outputs, we observe that certain tokens (e.g.,
“Wait”, “Alternatively”; see App. C.3) frequently occur in outputs and often signal branching or
recursive reasoning steps, consistent with prior findings (Wang et al., 2025; Chen et al., 2024). To
exploit this behavior, we aim to increase the likelihood of generating such tokens during the rea-
soning. While it is possible to construct a manual list of indicative tokens, this approach does not
scale and may miss less obvious but influential cases. Instead, we adopt a data-driven approach to
automatically identify reasoning-associated tokens. As demonstrated in our analysis (Sec. 3.2), this
approach uncovers influential tokens that would likely be overlooked through manual inspection,
underscoring the efficacy of our method.

Concretely, we extract the top n most frequent tokens that appear in the first two positions of each
sentence generated during constructing long-from targets. These tokens are hypothesized to play a
critical role in initiating new reasoning trajectories. Let T denote the collected set of high-impact
tokens. To promote their occurrence during generation, we define the ER Loss as:

LER = − 1

|y|

|y|∑
t=1

∑
v∈T

log p(yt = v | {x, x′}, y<t). (4)

This objective increases the likelihood of generating collected high-impact tokens, thereby inducing
longer reasoning sequences.

Delayed Termination Loss. In many reasoning LLMs, the generation process typically begins
with intermediate reasoning steps, which conclude with a designated end-of-thinking (EOT) token
(e.g., </think>). Then, the model would generate an answer conclusion terminated by an end-of-
sequence (EOS) token (e.g., <eos>). To prolong both the reasoning and answer conclusion phases,
we aim to reduce the model’s tendency to emit these termination tokens during decoding. However,
due to the stochastic nature of autoregressive generation, the precise timestep at which these tokens
appear is not fixed. To address this, we adopt a strategy from prior work (Chen et al., 2022; Gao

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

et al., 2024), which minimizes the likelihood of generating termination tokens across all positions in
the output sequence:

LDT =
1

|y|

|y|∑
t=1

[
p(yt = EOS | {x, x′}, y<t) + p(yt = EOT | {x, x′}, y<t)

]
.

This objective discourages premature termination, encouraging the model to continue generating
extended reasoning and answer conclusions before finalizing its output.

2.4 OPTIMIZATION

Optimizing suffixes in the text domain presents a unique challenge due to the discrete nature of
language. Unlike continuous domains (e.g., images), where gradients can be directly applied to pixel
values, LMs operate on sequences of discrete tokens drawn from a fixed vocabulary. As a result,
standard gradient-based optimization cannot be directly applied to manipulate individual tokens.

To address this, we adopt the Greedy Coordinate Gradient-based Search (GCG) framework (Zou
et al., 2023), which has demonstrated strong performance in adversarial text generation. GCG lin-
earizes the loss landscape by computing gradients with respect to input embeddings and identifying
substitutions that are most likely to improve the loss. Specifically, for a given token position i in the
suffix, we compute the gradient of the loss with respect to its embedding and search for the token x′

i
that maximally improves the objective. Formally:

x′
i = argmax

w∈V

〈
∇e(xi)L, e(w)− e(xi)

〉
, (5)

where ∇e(xi)L denotes the gradient of the loss with respect to the embedding of token xi, and
e(w) is the embedding of candidate token w. This inner product quantifies the expected gain from
substituting xi with w, and the best candidate is selected greedily. Our overall objective combines
the three loss components introduced previously:

Llong = α · LPCE + β · LER + γ · LDT. (6)

In this work, we employ a fixed-length suffix-based optimization, where a set of tokens is appended
to the end of the original prompt. Each token in the suffix is iteratively updated using GCG to
minimize the combined loss. Although this paper focuses on crafting adversarial suffixes, it is
important to note that our approach is method-agnostic and can be adapted to any paradigms. For
instance, alternative strategies such as character-level perturbations (e.g., typos) can be incorporated,
as shown in prior work (Gan et al., 2024). This flexible framework facilitates the efficient generation
of adversarial inputs tailored to different attack constraints.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUPS

Models and Datasets. We optimize adversarial suffixes and evaluate them on two reasoning
LLMs: DeepSeek-R1-distill-LLaMA-8B and DeepSeek-R1-distill-Qwen-7B.2 Both models are dis-
tilled variants of DeepSeek-R1. We report results under two decoding strategies: greedy decoding
and sampling decoding. For sampling, we set the temperature to 0.6, apply nucleus sampling with
top-p = 0.95, and repeat 10 times. To assess cross-model transferability, we additionally evaluate
the attack on larger-scale models, including o3-mini, GPT-OSS (with low and medium reasoning),
DeepSeek-R1, and QWQ-32B, using their respective default decoding settings. Our evaluation is
conducted on two widely used mathematical reasoning benchmarks: GSM8K (Cobbe et al., 2021)
and ORCA (Mitra et al., 2024). For each dataset, we randomly sample 50 examples for both opti-
mization and evaluation. More details are provided in App. C.4.

Attack Setup. For DSPy, we use the COPRO optimizer with “gpt-4o-mini” to refine the CoT
prompt. Specifically, we use 10 training examples from the GSM8K dataset for DSPy optimization

2For simplicity, we omit the prefix DeepSeek-R1-distill throughout the remainder of the paper.
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GSM8K ORCA
Models Methods Rea Ans Full Lat Ent Acc Rea Ans Full Lat Ent Acc

LLaMA

Original 668 239 907 24.3 4628 72% 499 213 712 19.3 4366 82%
Random 447 264 711 19.0 3571 74% 440 228 668 17.6 3570 76%
CoT 574 266 839 22.2 4712 70% 344 259 603 14.7 2789 82%
Engorgio 168 274 443 10.4 1804 68% 189 219 408 9.19 1644 82%
CatAttack 496 232 729 19.7 3959 76% 338 233 571 15.3 3013 78%
Ours 1914 160 2074 54.9 12827 92% 1575 167 1743 47.2 9929 80%

Qwen

Original 237 282 519 12.8 2498 84% 531 220 750 18.4 4034 84%
Random 159 294 453 11.2 2097 82% 527 225 752 18.7 3505 86%
CoT 169 310 479 11.9 2535 82% 379 248 626 15.6 2910 86%
Engorgio 832 274 1106 24.4 4661 82% 273 203 476 9.99 1811 86%
CatAttack 167 295 461 11.3 2171 78% 532 234 766 18.5 4040 82%
Ours 1531 193 1724 42.4 8188 88% 1459 166 1624 39.6 9155 88%

Table 1: The token length for reasoning (Rea), answer (Ans), and full output (Full); inference latency
(Lat, in seconds); energy consumption (Ene, in joules); and task accuracy (Acc). Experimental
results across methods under greedy decoding. Bold indicates the best result.

and evaluate on a separate set of 10 randomly selected test samples. Due to computational con-
straints, we restrict target outputs to a maximum length of 3,000 tokens. For the PCE Loss, we set
the token selection threshold K = 1, and for the ER Loss, we use n = 5. The overall loss function
combines the three components using the following weighting coefficients: α = 1, β = 50, and
γ = 1. We fix the length of the adversarial suffix to 10 tokens. During optimization, we apply the
GCG algorithm for 1,000 steps per input. The candidate pool size is set to 64, and at each step, the
top 64 candidate tokens are retained.

Evaluation Metrics. To evaluate the effectiveness of our adversarial attack, we consider three
primary metrics: (1) output sequence length (tokens), (2) inference latency (seconds), and (3) energy
consumption (Joules). Energy usage is measured using the NVIDIA Management Library, following
the methodology introduced by (Shumailov et al., 2021). To ensure consistency and fair comparison,
all inference is performed using the HuggingFace pipeline (Wolf et al., 2019) on a single hardware
(NVIDIA A100 80GB). Each inference is repeated three times to reduce the impact of runtime
variability. To assess model utility, we extract final answers from the generated outputs using “Meta-
Llama-3.1-8B-Instruct”, and compute accuracy by comparing the extracted answers against ground-
truth labels. The exact prompt used for extraction is provided in App. C.1.

Baselines. We compare our attack against several baseline methods:

• Random: 10 randomly sampled tokens.

• Standard CoT (Wei et al., 2022): A widely used CoT prompt that appends the phrase
“Let’s think step by step.”

• Engorgio (Dong et al., 2025): A method for crafting “inference-cost” attacks via adver-
sarial prompts that force auto-regressive LLMs to produce excessively long outputs.

• CatAttack (Rajeev et al., 2025): A prompt-based adversarial strategy that appends the
distractor statement “Interesting fact: cats sleep most of their lives,” which has been shown
to induce incorrect reasoning outputs.

3.2 MAIN RESULTS

Performance. As shown in Table 1 and Table 12, our adversarial suffix substantially increases
computational overhead while preserving task accuracy across all settings. For example, our attack
causes LLaMA to generate significantly longer outputs on the GSM8K dataset with greedy decod-
ing, increasing the average reasoning length by 3x from 668 to 1,914 tokens. This is accompanied by
a corresponding increase in energy consumption (from 4,628J to 12,827J) and latency (from 24.3s to
54.9s). A similar trend is observed for Qwen, where the average reasoning length increases by 6.5x,
demonstrating the effectiveness of our attack across different model architectures. Under sampling-
based decoding, the attack remains robust. The reasoning length increases by 3x for LLaMA and 4x
for Qwen on GSM8K, with similar results observed on the ORCA dataset.

6
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GSM8K ORCA
Models Methods Rea Ans Full Lat Ent Acc Rea Ans Full Lat Ent Acc

LLaMA

Original 556 257 812 71.5 9778 76% 550 248 798 86.7 10490 81%
Random 401 270 671 54.0 7928 72% 493 244 737 80.6 9689 81%
CoT 476 280 757 68.5 7713 75% 402 266 668 75.9 9148 80%
Engorgio 161 282 443 15.3 3055 68% 249 234 484 39.1 9663 80%
CatAttack 528 257 785 64.8 9818 77% 475 224 700 81.4 10680 82%
Ours 1437 204 1641 197.0 21228 90% 1425 206 1631 178.2 19243 87%

Qwen

Original 345 277 622 37.0 5996 82% 452 250 701 51.2 7538 84%
Random 221 296 518 23.4 4245 84% 501 254 755 54.5 7353 86%
CoT 176 308 484 16.0 3799 85% 293 274 567 33.1 5722 87%
Engorgio 191 300 490 20.5 4352 81% 268 205 473 21.9 4718 78%
CatAttack 187 295 482 17.4 3398 81% 432 253 686 50.0 6458 83%
Ours 1479 217 1696 149.1 16031 91% 1238 183 1421 111.2 14747 87%

Table 2: Experimental results across methods under sampling decoding.

In comparison, baseline methods generally induce relatively short reasoning. For example, CoT
prompts produce shorter outputs than our adversarial prompt on LLaMA for GSM8K under greedy
decoding (839 vs. 2,074 tokens), indicating the limitations of standard methods in eliciting exces-
sive reasoning behavior. More broadly, our results suggest that reasoning LLMs are resistant to
short prompting, as neither CoT nor CatAttack reliably triggers long reasoning. Interestingly, we
observe a consistent inverse correlation between the lengths of reasoning and answer segments. We
hypothesize that as the model allocates more capacity to the reasoning phase, the corresponding
answer portion becomes shorter. Also, the increase in reasoning length does not degrade task accu-
racy. In most cases, our triggered excessive reasoning produces meaningless reasoning, as shown in
App. C.2 (sample 1). However, we also find that in a few cases, the regular reasoning is too sim-
ple and fails to solve the problem, while our triggered excessive reasoning occasionally fixes it, as
shown in App. C.2 (sample 2). For example, the original response contains a single solution (reason-
ing path) and it actually leads to an incorrect calculation. In contrast, our attack triggers excessive
reasoning that explicitly extends the thinking with multiple solutions; however, we can see that the
last solution (reasoning path) is redundant since the answer has already been inferred correctly. In
general, the majority of problems can be solved with baseline prompting, and our attack, in most
cases, simply extends the reasoning unnecessarily, leading to computational waste. Together, these
results demonstrate that our attack amplifies the computational burden of reasoning models without
compromising their effectiveness. We also provide an additional study on ELI5, optimized suffix,
and sample outputs in App. C.2.

Analysis. To determine whether our adversarial suffixes truly elicit excessive reasoning rather than
merely increasing output length, we conduct an analysis of the generated outputs. First, we observe
a substantial increase in the average number of reasoning sentences. For LLaMA, the average rises
from 32 to 88, and for Qwen, from 11 to 74, when comparing outputs generated from original
prompts to those generated with adversarial suffixes. This indicates that our attack expands the
number of reasoning rather than just inflating output length.
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Figure 2: Token counts between the generated outputs from the original and adversarial prompts.

Next, we examine the distribution of the first two tokens in reasoning sentences (Fig. 2). The results
reveal distinct lexical patterns between the two models. LLaMA often begins with deliberative to-
kens such as “Alternatively” and “Wait,” associated with recursive reasoning, while Qwen is less
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GSM8K ORCA
Models Methods Toks Acc Toks/Acc Toks Acc Toks/Acc

LLaMA Original 907 72% 12.6 712 82% 8.7
Ours 2074 92% 22.5 (1.8×) 1743 80% 21.8 (2.5×)

Qwen Original 519 84% 6.2 750 84% 8.9
Ours 1724 88% 19.6 (3.2×) 1624 88% 18.5 (2.1×)

Table 3: Tokens per accuracy (Toks/Acc) under Original vs. our attack with greedy decoding. Ratios
show relative increases over Original.

LLaMA Qwen
Model Reason Answer Full Accuracy Match Reason Answer Full Accuracy Match

QWQ 1761 (-151) 231 (-6) 1992 (-157) 93% (-3%) 62% 2489 (+577) 317 (+80) 2806 (+657) 98% (+2%) 100%
R1 997 (-74) 185 (-13) 1182 (-87) 95% (-2%) 4% 1295 (+224) 233 (+36) 1528 (+260) 93% (-4%) 60%
o3-mini 446 (+199) 184 (+46) 630 (+245) 90% (+1%) 20% 645 (+398) 336 (+199) 982 (+596) 89% (0%) 70%
gpt5-mini 343 (+175) 106 (+34) 449 (+209) 77% (-7%) 60% 578 (+410) 210 (+138) 787 (+547) 83% (-2%) 70%
Gemini-Flash 665 (+146) 350 (+76) 1015 (+222) 86% (-3%) – 874 (+355) 513 (+239) 1388 (+594) 90% (+1%) –
OSS (low) 79 (+13) 170 (+35) 249 (+48) 92% (+2%) 20% 95 (+19) 316 (+167) 411 (+186) 90% (0%) 70%
OSS (medium) 569 (+149) 237 (+111) 806 (+259) 90% (+1%) 20% 3015 (+2569) 348 (+206) 3363 (+2775) 88% (-2%) 70%

Table 4: Transferability analysis of adversarial suffixes originally optimized for LLaMA and Qwen.

sensitive to “Alternatively,” suggesting that the expression of excessive reasoning may manifest dif-
ferently across architectures. Notably, Qwen does not exhibit the same degree of excessive reasoning
as LLaMA under standard conditions but becomes vulnerable when adversarial suffixes are applied.
Tokens such as “Let”, “Maybe”, and “Hmm”, which are difficult to detect manually, highlight the
utility of ER Loss combined with automated token selection in surfacing subtle prompts that trigger
excessive reasoning behavior.

Finally, we use the Tokens per Accuracy metric to measure reasoning efficiency in Table 3. Lower
values indicate concise, effective reasoning, while higher values reflect inefficient reasoning. Across
all model–dataset pairs, adversarial suffixes inflate this metric. For instance, on GSM8K, LLaMA’s
tokens per accuracy point increase from 12.6 to 22.5 (a 1.8x increase), indicating that the model
requires substantially more tokens per correct answer. This consistent pattern demonstrates that our
method successfully induces inefficient, overextended reasoning.

Transferability. We evaluate the transferability of our adversarial suffixes to larger commercial
LMs, including o3-mini, GPT-OSS, DeepSeek-R1, and QWQ. Specifically, we test adversarial suf-
fixes optimized on the LLaMA and Qwen models for the GSM8K dataset, with results summarized
in Table 4. Our findings show that these adversarial suffixes generalize effectively, consistently
promoting longer output sequences without degrading task accuracy. For the OpenAI model fam-
ily, both LLaMA- and Qwen-optimized suffixes successfully increase output length. For example,
suffixes optimized on LLaMA lead to a 245-token increase in total output length for o3-mini, and
Qwen-optimized suffixes yield a 596-token increase.

In contrast, transferability to DeepSeek-R1 appears to depend on the source model. Qwen-optimized
suffixes result in a 260-token increase, whereas LLaMA-optimized suffixes fail to induce longer
outputs. We hypothesize that this discrepancy is due to the token mismatch between the source and
target models. We report the Match metric to reflect the token alignment rate between the source
model and the target model. Specifically, we check whether the token length of the optimized
suffix—when encoded by the source model and by the target model (e.g., gpt5)—is the same. If the
lengths match, it indicates that none of the tokens in the optimized suffix are split or merged when
processed by the target model. We observe that when the Match score is high, the overall length is
also high, demonstrating a positive relationship between the two. These results suggest that while
architectural differences influence the degree of computational overhead, token alignment plays a
critical role in the transferability of adversarial prompts.

3.3 ABLATION STUDIES

We conduct a series of ablation studies to assess the impact of different experimental configurations,
including the introduction of the PCE Loss and the individual contribution of each loss component.
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Figure 3: Impact of varying the top-K most informative tokens on LLaMA under greedy decoding.

Setup Reason Answer Full Latency Energy Accuracy

LPCE 1100 202 1303 35.0 7016 84%
LPCE + LER 1169 188 1357 36.1 8089 88%
LPCE + LDT 1447 201 1648 43.9 9558 88%
LPCE + LER + LDT 1914 160 2074 54.9 12827 92%

Table 5: Different loss combinations on LLaMA under greedy decoding.

PCE Loss. We begin by evaluating the effectiveness of the proposed PCE Loss by varying the pro-
portion of top-K tokens from 100% (Original CE) to 1%, as shown in Fig. 3. The results show that
focusing optimization on the top 5%, and particularly the top 1% of tokens, consistently outperforms
applying loss uniformly across all tokens. Peak performance is observed when focusing solely on
the top 1%, with the number of reasoning tokens increasing from 660 to 1,100. This pattern suggests
that selectively emphasizing a small subset of salient, prompt-dependent tokens can more effectively
induce extended reasoning behavior. Additionally, we observe an inverse relationship between the
number of reasoning and answer tokens, implying a redistribution of the model’s generative capacity
toward reasoning content. These findings underscore the value of targeted token optimization and
demonstrate that prioritizing high-impact tokens is more effective than uniformly distributing the
loss across the entire sequence.

Loss Objectives. Second, we evaluate the individual contributions of each loss function and assess
their collective impact as presented in Table 5. The results show that optimizing each loss indepen-
dently leads to an increase in output sequence length, and the combination of all three losses yields
the most substantial gains in both sequence length and computational burden. For instance, the full
composite loss achieves the longest average output (up to 2,074 tokens), the highest inference la-
tency (54.9 seconds), and the greatest energy consumption (12,827J). These results underscore the
synergistic effect of combining all three objectives.

To further analyze the behavior encouraged by the ER Loss, we visualize a word cloud of the most
frequently prioritized tokens in Fig. 5. Common deliberative tokens identified in prior work, such as
“Alternatively” and “Wait”, are prominently featured. In addition, our method surfaces previously
underexplored tokens such as “Maybe” and “Hmm”, which act as effective triggers for extended
reasoning. These findings confirm that the joint loss formulation effectively amplifies reasoning
behavior while preserving task accuracy, and that the ER Loss successfully uncovers subtle lexical
cues indicative of recursive reasoning.

4 POTENTIAL DEFENSES

Currently, no defenses are proposed explicitly against reasoning-based attacks. To evaluate poten-
tial countermeasures, we test four strategies: two at the input level and two at the output level,
with details summarized in App.B. Naı̈ve methods, such as perplexity-based filtering, yield high
false positives and significantly degrade user experience. Safety classifiers are another possible
input-level defense, but our attack bypasses them with high success rates. At the output level, we
examine two decoding techniques aimed at curbing excessive reasoning. Thought Switching Penalty
(TIP) (Wang et al., 2025) penalizes reasoning-disruptive tokens but fails to shorten overall outputs,
while Dynamic Early Exit for Reasoning (DEER) (Yang et al., 2025) halts decoding once a confident
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answer is reached but may even reduce model utility. Overall, these findings show that our attack
remains robust against different defenses.

5 RELATED WORK

Adversarial Attacks on LLMs. Adversarial attacks on LLMs present unique challenges due to the
discrete nature of text, which limits the applicability of gradient-based techniques commonly used in
vision tasks. Early work, such as HotFlip (Ebrahimi et al., 2018), has introduced token-level pertur-
bations as vectors, enabling efficient gradient-guided attacks on classification models. This approach
was further developed by Universal Adversarial Triggers (UAT) (Wallace et al., 2019), which iden-
tified fixed token sequences that could consistently manipulate model outputs across diverse input
data. More recently, GCG (Zou et al., 2023) demonstrated strong performance in generating adver-
sarial suffixes that elicit specific responses. BEAST (Sadasivan et al., 2024) improves upon GCG
by incorporating beam search to enhance linguistic coherence, thereby increasing the effectiveness
of adversarial prompts in bypassing safety filters.

Denial-of-Service Attacks on LLMs. Denial-of-service (DoS) attacks on LLMs aim to degrade
system performance by manipulating input prompts to increase computational cost, latency, or en-
ergy consumption. For example, Sponge attacks (Shumailov et al., 2021) maximize the L2 norm
of internal activations, thereby exhausting system resources during inference. Subsequent work on
energy-latency manipulation introduced crafted inputs that prolong decoding time or increase mem-
ory usage. NICGSlowDown (Chen et al., 2022) demonstrated that minimizing the probability of
EOS tokens results in excessively long outputs in captioning models, significantly increasing the
computational load. More recently, Overthink (Kumar et al., 2025) was proposed as an indirect
prompt injection method that utilizes decoy tasks to induce unnecessary reasoning overhead. In
contrast, Crabs (Zhang et al., 2025) shares a similar idea but places the decoy within the user query.
Additionally, Engorgio Prompt (Dong et al., 2025) demonstrates how attackers can trigger excessive
resource usage in white-box settings with a re-parameterization design.

6 CONCLUSION

In this work, we present a novel adversarial attack on reasoning LLMs that induces computational
overhead during inference. Our approach appends adversarial suffixes that trigger extended rea-
soning trajectories, optimized through a composite loss function that maximizes output length and
complexity. Empirical results demonstrate that the method reliably increases sequence length, infer-
ence latency, and energy consumption. Moreover, the strong cross-model transferability highlights
the practical relevance of this threat.

Limitations. Based on the analysis, we can see that the choice of optimized tokens is also crit-
ical and constrained by the tokenizer used. Right now, many commercial APIs—such as Ope-
nAI—release their tokenizers, and tokenizer inference attacks also exist and can be used to recover
unknown tokenizers. In future work, the selection of optimized tokens can be incorporated as an
additional optimization constraint, not only for this attack but for other adversarial methods as well.

ETHICS STATEMENT

This study utilizes publicly available datasets and models, with appropriate citations provided. No
private or sensitive information is used, and the work does not include any harmful content. Because
the research relies exclusively on publicly available data and does not involve human participants,
it does not qualify as human subjects research under Institutional Review Board (IRB) definitions.
Accordingly, we conclude that this paper raises no ethical concerns.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the training and evaluation procedures used in our experiments.
In particular, we describe our proposed attack in detail (see Sec. 2), followed by the specifications
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of the models, datasets, and decoding strategies used (see Sec. 3.1). All prompting templates are
included in the Appendix for reference. The code will be released upon publication of this paper.
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A THE USE OF LARGE LANGUAGE MODELS

In this paper, LLMs are employed to enhance the clarity, fluency, and overall quality of writing.
Their use is limited to language refinement and does not extend to the design, execution, or analysis
of the experiments. Also, all polished texts are double-checked by authors to ensure accuracy, avoid
overclaims, and prevent confusion.

B DEFENSE STUDIES

Input-level. At the input level, we begin by evaluating a perplexity-based filtering strategy, follow-
ing the similar setup described in (Dong et al., 2025). We compute universal perplexity thresholds
using the Open-Platypus dataset, assuming the model owner has no prior knowledge of the adversar-
ial suffix. Specifically, we select the 25th, 50th, and 75th percentile quantiles as thresholds to filter
prompts exhibiting unusually high perplexity.

We test the filter on both clean prompts and prompts appended with adversarial suffixes as shown
in Table 7. While this method achieves a 100% true positive rate in detecting adversarial prompts,
it also results in high false positive rates for clean prompts—100%, 78%, and 16% on LLaMA,
and 100%, 84%, and 28% on Qwen at the respective thresholds. These results suggest that our
optimized suffixes are difficult to identify when the model owner lacks prior knowledge of their
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LLaMA Qwen
Reason Answer Full Accuracy Reason Answer Full Accuracy

Base 668 239 907 72% 237 282 519 84%
Base + TIP 422 250 673 74% 264 283 547 84%
Ours 1914 160 2074 92% 1531 193 1724 88%
Ours + TIP 1863 173 2037 94% 1464 198 1661 84%

Base 668 239 907 72% 237 282 519 84%
Base + DEER 247 237 484 70% 217 268 485 86%
Ours 1914 160 2074 92% 1531 193 1724 88%
Ours + DEER 1074 216 1290 72% 426 518 945 88%

Table 6: Output-level defense results for GSM8k on LLaMA and Qwen.

Quantile LLaMA Qwen

FP (%) TP (%) FP (%) TP (%)

25 100 100 100 100
50 78 100 84 100
75 16 100 28 100

Table 7: False positive rate (FP) for filtering clean prompts and true positive rate (TP) for filtering
attack prompts using perplexity-based filtering across different quantiles.

structure. Also, applying high-percentile quantile thresholds may severely degrade the utility of
the model on benign inputs. For the second defense, we apply an open-source safety classifier,
“meta-llama/Llama-Prompt-Guard-2-86M,” to flag unsafe inputs. The classifier detects only 8%
of adversarial prompts on LLaMA and 6% on Qwen. These findings indicate that our adversarial
suffixes are able to bypass the classifier in most cases.

Output-level. At the output level, we evaluate two complementary mitigation techniques. The
first, Thought Switching Penalty (TIP) (Wang et al., 2025), penalizes the generation of reasoning-
disruptive tokens such as “Wait” or “Alternatively.” The second, Dynamic Early Exit for Reasoning
(DEER) (Yang et al., 2025), reduces unnecessary token generation by terminating decoding early
once a confident answer is detected.

As shown in Table 6, on LLaMA, our attack generated 1,914 reasoning tokens and 160 answer
tokens, totaling 2,074 tokens, with an accuracy of 92%. Applying TIP led to a modest reduction in
total tokens (2,037) and a slight increase in accuracy to 94%. In contrast, DEER reduced the length
of reasoning (to 1,290 tokens) but caused a more substantial performance drop, lowering accuracy
to 72%. A similar trend was observed on Qwen: TIP preserved accuracy while modestly reducing
output length, whereas DEER can only reduce the total token count (945 tokens). In addition, DEER
requires extra processing time, which also incurs additional latency and energy costs. Overall, these
results suggest that TIP provides only limited mitigation against our attack, while DEER is more
effective at curbing excessive reasoning, but at the cost of degraded task performance and additional
computational resources. Nevertheless, our attack still incurs substantial resource overhead due to
excessive and redundant token generation compared to Original.

C ADDITIONAL EXPERIMENTAL DETAILS

In this section, we present additional details of our experimental setup, including the prompting tem-
plates, sample outputs and suffixes, outputs and prompts from DSPy, analysis of the attack behavior,
descriptions of the models and datasets employed, as well as the computational resources utilized.
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C.1 PROMPT TEMPLATE

Prompting template for extracting answer

Here is a math question and a model’s answer about this question.
Please extract the EXACT number from the answer text as the final answer for question.
QUESTION: {}
ANSWER: {}
Final format should be a legal ’number’ without any suffix such as ’$’.
The final answer is:

C.2 SAMPLES

Prompt + Optimized Suffix

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins
for her friends every day with four. She sells the remainder at the farmers’ market daily for $2
per fresh duck egg. How much in dollars does she make every day at the farmers’ market? ?!
Contains more tricks........ Elijahnumeric paradox nearer[/

Sample response 1 from our attack

Okay, so I need to figure out how much money Janet makes every day from selling her duck
eggs. Let me start by breaking down the information given.
First, Janet’s ducks lay 16 eggs per day. That’s the total number of eggs she gets each day. Now,
she has some daily responsibilities that involve using these eggs. She eats three for breakfast
every morning, so that’s 3 eggs used daily. Then, she bakes muffins for her friends every day
with four eggs. Wait, does that mean she uses 4 eggs per day ...
So far, she’s using 3 eggs for breakfast and 4 for baking, which totals 7 eggs per day. She lays
16 eggs ...
So, 9 eggs sold at $2 each would be 9 times 2, which equals $18. Therefore, Janet makes $18
every day from selling her eggs ...
Wait, let me double-check to make sure I didn’t miss anything. She lays 16, uses 3 for breakfast,
4 for baking, so 16 - 3 - 4 = 9. Yes, that’s correct. And each egg is sold for $2, so 9 times 2 is
indeed $18. I think that’s all there is to it. ... ...

Sample response 1 from original

First, determine the total number of eggs Janet’s ducks lay each day, which is 16.
Next, calculate the number of eggs Janet uses for breakfast and baking muffins. She eats 3 eggs
for breakfast and uses 4 eggs for baking, totaling 7 eggs.
Subtract the used eggs from the total to find out how many eggs she has left to sell: 16 - 7 = 9
eggs.
Finally, multiply the number of eggs she sells by the price per egg to find out how much money
she makes daily: 9 eggs * $2 per egg = $18 ...

Sample question 2

Raymond and Samantha are cousins.
Raymond was born 6 years before Samantha.
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Raymond had a son at the age of 23.
If Samantha is now 31, how many years ago was Raymond’s son born?

Sample response 2 from our attack

Okay, so I’m trying to figure out this problem about Raymond and Samantha ...
Raymond and Samantha are cousins. Raymond was born 6 years before Samantha. Raymond
had a son at the age of 23 ...
Alright, so Raymond was born 6 years before Samantha ...
Wait, no, that’s not right. If Raymond was born 6 years before Samantha ...
Yeah, that makes sense because if you subtract 6 years from Samantha’s age ...
So, 31 - 6 = 25?
Wait, no, that’s the opposite ...
Raymond had a son at the age of 23.
So, Raymond was 23 when his son was born.
Now, Raymond is 37, so the time between Raymond having his son and now is 37 - 23 = 14
years.
So, the son was born 14 years ago.
Wait, but let me double-check that. If Raymond was 23 when his son was born, and he is now
37, then 37 - 23 = 14 years have passed since the son was born.
So, the son is now 14 years old, which means he was born 14 years ago. That seems right.
...
</think>... **Answer:** Raymond’s son was born 14 years ago.

Sample response 2 from original

First, I need to determine Samantha’s age when Raymond’s son was born.
Since Samantha is currently 31 years old, I’ll subtract 6 years from her current age to find out
how old she was when Raymond was born.
This gives me 25 years old.
Next, I’ll figure out how long ago Raymond’s son was born.
Raymond had his son at the age of 23.
To find out how many years ago this happened, I’ll subtract 23 from Samantha’s age at that time.
So, 25 minus 23 equals 2 years ago.
Therefore, Raymond’s son was born 2 years ago.
</think>... Final Answer:\n\\[\n \\boxed{\{ 2}}\n\\]

C.3 DSPY

Mean

Raw 805
CoT 717
CoT+DSPy 1247

Table 8: The statistics of sample outputs with different promptings.

DSPy-optimized prompt

Provide a detailed breakdown of the problem or topic at hand, considering every aspect and
nuance. Start from an introductory overview, followed by dissecting the components logically,
integrating examples, addressing possible counterarguments or misconceptions, and uniformly
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elaborating on each point with explanatory details. Prioritize presenting a thorough, analytical
approach that can include speculative insights, hypothetical scenarios, or alternative viewpoints,
without rushing to conclusions. Aim to showcase a clear conceptualization followed by logical
reasoning, actively prompting self-reflection on the implications of your insights.

Sample output from DSPy-optimized prompt

Okay, so I need to figure out how much money Janet makes every day from selling her duck eggs
at the farmers’ market. Let me start by breaking down the problem step by step.
First, Janet’s ducks lay 16 eggs per day. That’s the total number of eggs she gets each day. Now,
she has some daily expenses and uses related to these eggs. She eats three eggs for breakfast
every morning. So that’s 3 eggs used for breakfast. Then, she bakes muffins for her friends every
day, using four eggs each time. Wait, does she bake muffins once a day using four eggs, or does
she bake them multiple times? The problem says ”bakes muffins for her friends every day with
four,” which is a bit ambiguous. I think it probably means she uses four eggs per day for baking
muffins. So that’s another four eggs.
So, adding up her daily egg usage: 3 eggs for breakfast plus 4 eggs for muffins equals 7 eggs
used each day. Now, she lays 16 eggs, so how many does she have left after using 7? Let me
subtract: 16 minus 7 equals 9 eggs remaining. These 9 eggs are sold at the farmers’ market, and
she sells each for $2. So, 9 eggs times $2 per egg would give her $18 per day.
Wait, let me double-check that. 16 eggs laid minus 7 used equals 9 sold. 9 times 2 is indeed 18.
...

C.4 EXPERIMENTAL SETUPS

All models in our experiments are downloaded from HuggingFace. DeepSeek-R1-Distill-Llama-
8B and DeepSeek-R1-Distill-Qwen-7B are originally licensed under the Apache 2.0 License. The
GSM8K and ORCA datasets are under the MIT License. All experiments in the paper were con-
ducted on an A100 (80GB) compute node. Also, we interact with o3-mini via the OpenAI API,
and with DeepSeek-R1 and QWQ-32B via the Baidu Cloud API, to simulate real-world deployment
conditions.

C.5 TARGET OUTPUT CONSTRUCTION

Setup Reason Answer Full Latency Energy Accuracy

Raw 1695 190 1885 50.9 12120 80%
CoT 1060 224 1283 34.0 7719 80%
CoT + DSPy 1914 160 2074 54.9 12827 92%

Table 9: Different target constructions on LLaMA under greedy decoding.

Setup Reason Answer Full Latency Energy Accuracy

Raw 1396 223 1619 206.8 20252 82%
CoT 1034 250 1283 150.2 15685 79%
CoT + DSPy 1501 216 1718 209.9 19491 87%

Table 10: Different target construction strategies on LLaMA under sampling decoding.

We evaluate several strategies for constructing target outputs to guide adversarial optimization, as
summarized in Table 9 and 10. The comparison includes a raw baseline (no additional prompt), a
standard CoT prompt, and a DSPy-optimized CoT prompt. Interestingly, we find that the standard
CoT prompt does not consistently produce longer reasoning sequences; in some cases, it even results
in shorter outputs than raw prompting, highlighting its limitations in eliciting extended reasoning.
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In contrast, DSPy-optimized CoT prompts increase the average output length from 1,283 to 2,074
tokens under greedy decoding compared to CoT prompts, with corresponding increases in both
energy consumption and task accuracy. These results highlight the critical role of target output
quality in guiding adversarial optimization. Longer reasoning sequences, especially those produced
via DSPy, serve as more effective targets for inducing excessive computation. This reinforces the
importance of target construction in maximizing the efficacy of our attack.

C.6 ADDITIONAL RESULTS
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Figure 4: Impact of varying the top-K most informative tokens on LLaMA under sampling decoding.

Setup Reason Answer Full Latency Energy Accuracy

LPCE 1104 218 1322 143.9 19810 86%
LPCE + LER 1095 205 1301 124.9 14879 87%
LPCE + LDT 1184 223 1407 145.3 17731 88%
LPCE + LER + LDT 1437 204 1641 197.0 21228 90%

Table 11: Ablation study of loss objectives combinations on LLaMA under sampling decoding.

(a) LLaMA (b) Qwen

Figure 5: Tokens used for ER Loss. Word clouds generated from the CoT outputs of LLaMA and
Qwen on GSM8K.

Reason Answer Full

Original 1070 287 1356
Ours 1495 310 1805

Table 12: Experimental results for ELI5 on Qwen under greedy decoding.
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