
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FONE: PRECISE SINGLE-TOKEN NUMBER
EMBEDDINGS VIA FOURIER FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Language models treat numbers in the same way as ordinary word tokens, which
introduces two major issues: (1) embeddings of numerical tokens primarily reflect
their frequency in text corpora rather than their inherent numerical properties,
leading to frequency bias, and (2) numbers are often split into multiple tokens,
forcing the model to aggregate these pieces to recover their values. Inspired by
the observation that pre-trained Large Language Models (LLMs) internally learn
Fourier-like features for number tokens, we propose Fourier Number Embedding
(FoNE), a novel method that directly maps numbers into the embedding space with
their Fourier features. FoNE encodes each number as a single token with only two
embedding dimensions per digit, effectively capturing numerical values without
fragmentation. Compared to traditional subword and digit-wise embeddings, FoNE
achieves higher accuracy on arithmetic tasks, requires significantly less training
data, and offers more efficient training and inference. A 38M-parameter Trans-
former trained from scratch with FoNE outperforms a fine-tuned Llama-3.2-1B
model on addition, subtraction, and multiplication. FoNE is also the only method
that achieves 100% accuracy on over 100,000 test examples across these tasks. On
6-digit decimal addition, FoNE needs 64× less data than subword and digit-wise
embeddings to reach ≥ 99% accuracy, while using 3× and 6× fewer tokens per
number, respectively.

1 INTRODUCTION

LLMs require precise representations of numerical data to perform number-related tasks effectively.
However, since LLMs treat numbers just like any other token, embeddings of numerical tokens
do not systematically capture important numerical features. As a result, it is challenging for even
billion-parameter models to achieve perfect accuracy in solving simple arithmetic tasks 1 (Saxton
et al., 2019; Dziri et al., 2024; Lee et al., 2023; Shen et al., 2023; Zhou et al., 2023a). While generating
code can be a useful workaround, relying solely on this capability highlights a fundamental limitation:
without a proper understanding of numbers, the model cannot fully grasp concepts critical to domains
like mathematical theorems, physics laws, or quantitative reasoning. Even with approaches like
Chain-of-Thought (CoT) prompting (Wei et al., 2022), it is important to have a perfect accuracy in
solving basic arithmetic tasks to build a strong foundation for more complex reasoning.

Standard tokenization approaches, such as subword tokenization (e.g., GPT-4o Achiam et al., 2023,
Llama-3 (Dubey et al., 2024), Phi-2 (Abdin et al., 2024)) or digit-wise tokenization (e.g., Llama-2
(Touvron et al., 2023), Mistral (Jiang et al., 2023)), require the model to aggregate multiple tokens to
understand numbers and introduces inefficiencies by tokenizing one number into multiple tokens.
However, this inefficiency in tokenizing numbers leads to larger challenges when it comes to their
representation. Numbers, unlike words, require systematic, frequency-agnostic representations, yet
LLMs often exhibit a frequency bias (Razeghi et al., 2022; Shrestha et al., 2025; Shao et al., 2025),
predicting numbers based on training data prevalence rather than their mathematical properties.

We draw inspiration from interpretability analyses of LLMs, which reveal that models internally
develop Fourier-like features. Specifically, pre-trained models embed number tokens using a sparse

1Our evaluation (See Appendix E.1) of recently released LLMs on arithmetic confirms this limitation: they
still struggle with multi-digit addition and multiplication.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0

50

80

30

10

20

40

90

70

60

𝟏𝟖

0

5

8

3

1

2

4

9

7

6

𝐬𝐢𝐧
𝟐𝛑

𝟏𝟎
⋅ 𝟏𝟖

𝐜𝐨𝐬
𝟐𝛑

𝟏𝟎
⋅ 𝟏𝟖

𝐅𝐨𝐍𝐄 𝟏𝟖 = [𝐜𝐨𝐬
𝟐𝛑

𝟏𝟎
⋅ 𝟏𝟖 , 𝐬𝐢𝐧

𝟐𝛑

𝟏𝟎
⋅ 𝟏𝟖 , 𝐜𝐨𝐬

𝟐𝛑

𝟏𝟎𝟎
⋅ 𝟏𝟖 , 𝐬𝐢𝐧

𝟐𝛑

𝟏𝟎𝟎
⋅ 𝟏𝟖 , 𝟎, 𝟎⋯]

𝐜𝐨𝐬
𝟐𝛑

𝟏𝟎𝟎
⋅ 𝟏𝟖

𝐬𝐢𝐧
𝟐𝛑

𝟏𝟎𝟎
⋅ 𝟏𝟖

Figure 1: Overview of Fourier Number Embedding (FoNE). Left: FoNE encoder illustrated with
the token ‘18’, directly mapped into its FoNE. Middle: Test error on 6-digit decimal addition as the
size of the training set increases. Right: Test error on the same task as model size increases. In both
plots, we train transformers from scratch with different embedding or tokenization methods until
convergence and report the final error. We compares FoNE (ours) against digit-wise tokenization,
subword tokenization, XVAL (Golkar et al., 2023), and a fine-tuned Llama-3.2-1B model. FoNE
achieves higher accuracy with less data and model size, even surpassing the finetuned Llama baseline

set of features in the Fourier domain (Zhou et al., 2024). These features enable the representation of
numbers capturing both the magnitude and exact values of numbers, which are critical for solving
arithmetic tasks (Zhou et al., 2024). However, because numbers are split into subwords and their
embeddings are learned from co-occurrence statistics in text during pre-training, current LLMs fail to
learn precise numerical representations and struggle to extend these mechanisms to larger numbers,
underscoring the need for more systematic approaches to numerical representation.

In this paper, we propose a novel approach called Fourier Number Embedding (FoNE), which
directly maps numbers to their Fourier representations, bypassing the tokenization step entirely. By
representing each digit using cosine and sine functions with different periods, as shown in the left
panel of Figure 1, FoNE ensures precise representation of numbers. FoNE represents each digit using
only two dimensions in the embedding vector. This compact design not only reduces computational
overhead but also creates opportunities for future extensions by incorporating additional features to
better capture numeric properties. By embedding and predicting numbers directly as single tokens,
our method eliminates the need for multiple forward passes and token aggregation, significantly
enhancing computational efficiency. Furthermore, we provide a theoretical justification for why
FoNE can represent numbers accurately as single tokens, leveraging the modular encoding properties
of trigonometric functions to ensure exact recovery of each digit through periodic embeddings.

Beyond theoretical justification, we demonstrate the effectiveness of FoNE through extensive ex-
periments on arithmetic tasks, including addition, subtraction, and multiplication. Our results show
that FoNE is the only approach which—when used to train a Transformer from scratch—achieves
perfect accuracy on multiple arithmetic tasks while requiring significantly less training data and fewer
model parameters compared to existing methods. Moreover, FoNE offers faster training and inference
times by encoding each number into a single token. On 6-digit decimal addition it achieves ≥ 99%
accuracy using 64× less data than subword or digit-wise embeddings, while cutting token usage per
number by 3× and 6×, respectively. These findings underscore FoNE’s capacity to represent and
manipulate numerical data both efficiently and precisely within large language models.

2 RELATED WORK

Arithmetic and Number-Related Tasks in LLMs. Using language models for number-related
tasks, including solving math problems (Saxton et al., 2019; Yu et al., 2023; Meidani et al., 2023),
time-series prediction (Tan et al., 2024; Ma et al., 2024; Zhou et al., 2023b; Liu et al., 2024a; Jin
et al., 2023; Cao et al., 2023; Li et al., 2025), quantitative reasoning (McLeish et al., 2024b; Liu et al.,
2024b; Chen et al., 2023; Jin et al., 2024; Cobbe et al., 2021), and handling tabular data (Gao et al.,
2024; Fang et al., 2024; Sahakyan et al., 2021), remains a significant challenge. Despite advancements
in transformer-based models, LLMs such as Qwen3-235B and GPT-5, with billions of parameters,
struggle to solve simple arithmetic problems involving multi-digit addition and multiplication across
multiple forward passes (Dziri et al., 2024; Feng et al., 2024), even when using scratchpads (Nye
et al., 2021).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Golkar et al. (2023); Sundararaman et al. (2020); Jiang et al. (2019); Sivakumar & Moosavi (2024),
introduce number embedding methods to enhance model performance on number-related tasks.
However, the range of numbers these methods can accurately represent is typically limited to fewer
than five digits and fail to achieve perfect accuracy. Additionally, a line of research (McLeish et al.,
2024a; Shen et al., 2023) incorporates the positional information of digits into embeddings or adds
it as extra tokens (Nogueira et al., 2021). Lee et al. (2023) demonstrate that smaller transformer
models can successfully handle multiplication when equipped with carefully designed scratchpads.
However, these approaches are tailored specifically for arithmetic tasks and are difficult to integrate
seamlessly into general-purpose LLM training. Thawani et al. (2021) explores encoding strategies
like digit-by-digit, scientific notation, and base-10 formats, while Jiang et al. (2019) maps numbers
to finite “prototype numerals”. These methods help the model align digits of equal significance but
often require digit-wise tokenization and introduce additional tokens, reducing training and prediction
efficiency. In contrast, the method proposed in this paper precisely encodes all numbers as a single
token, eliminating range limitations and avoiding the efficiency drawbacks associated with previous
approaches (see Section 5 for further details).

3 METHODS

Building on insights from prior studies (Zhou et al., 2024) that highlight the importance of Fourier
features in numerical embeddings, we propose Fourier Number Embedding. Unlike existing methods
that often require digit-wise tokenization or pre-training to handle numeric tasks, FoNE directly maps
numbers into compact Fourier representations. Sections 3.1, 3.3, and 3.4 describe our embedding,
decoding, and integration methods, respectively. The complete process is shown in Figure 2.

3.1 FOURIER NUMBER EMBEDDING (FONE)

We first introduce the following function that maps each x ∈ R to a point on the unit circle.

Definition 3.1 (Circular embedding). Let T be a given period. We define the function ϕ : R→ R2 as

ϕ(x, T) :=
(
cos

(
2π
T x

)
, sin

(
2π
T x

))
.

Next, we formally define FoNE, which directly maps any floating point number x to an embed-
ding. We predefine m and n as the maximum number of digits before and after the decimal point,
respectively.

Definition 3.2 (Fourier Number Embedding). Let m be the integer digit length, and n be the decimal
digit length. We define the Fourier Number Embedding function FoNE : R→ R2(m+n) for an input
number x as follows:

FoNE(x,m, n) :=
[
ϕ(x, T−n+1);ϕ(x, T−n+2); . . . ;ϕ(x, Tm)

]
,

where Ti = 10i for each integer i in the range −n+ 1 to m.

To align the embedding dimensions of FoNE with the model’s input embedding dimension d, we map
the Fourier Number Embedding, which lies in R2(m+n), to Rd. This mapping can be achieved in
two ways: (1) by applying a learnable linear transformation W ∈ Rd×2(m+n), or (2) by appending
zeros to the embedding vector to match the dimensionality d. As demonstrated in Section 4.3, both
approaches achieve comparable results.

3.2 FONE’S REPRESENTATIONAL PROPERTIES

Then, we introduce an elementary lemma and demonstrate why FoNE can preserve the numeracy on
numbers.

Lemma 3.3 (Informal version of Lemma D.1). Given the pair
(
cos

(
2π
T x

)
, sin

(
2π
T x

))
, we can

recover x mod T .

Hence, by applying Lemma 3.3 to each frequency component in FoNE, we immediately obtain the
following result.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Lemma 3.4 (FoNE preserves numeracy). Given a number’s Fourier Number Embedding FoNE(x),
its integer digit length m, and the decimal digit length n, by using Lemma 3.3, we can recover
x mod 10i for each integer i in the range −n+ 1 to m.

A natural question that arises here is the need for x mod 10, if we already know x mod 100. The
reason is that even though knowing x mod 100 exactly suffices to recover x mod 10, this estimation
is noisy in practice. When T becomes very large in a circular embedding (Definition 3.1), the
difference 2π

T (x+ 1)− 2π
T x approaches zero, causing the embedded representations of x and x+ 1

to become arbitrarily close on the unit circle. Consequently, a single large T cannot sufficiently
distinguish adjacent values in the embedding. Hence, one must choose T across a broad range of
scales to ensure that the embedding remains adequately distinguishable for all values of x. In this
paper, we choose T as 10i, ∀i, so that each T effectively captures one digit of x.

To provide a clear illustration of our method, we present a detailed example demonstrating how we
map number 4.17 to its embedding.
Example 3.5. Consider x = 4.17. Its Fourier Number Embedding is given by

[ϕ(4.17, 0.1);ϕ(4.17, 1);ϕ(4.17, 10)],

where ϕ is defined in Definition 3.1. From these components, by using Lemma 3.3, we can recover

[4.17 mod 0.1, 4.17 mod 1, 4.17 mod 10], 2

which simplifies to [0.07, 0.17, 4.17]. If we used only T = 10, then ϕ(4.17, 10) would be nearly
indistinguishable from ϕ(4.18, 10), causing the embedding to lose fine-grained information about
less significant digits. However, with these chosen periods T , we can capture all the digits.

3.3 DECODING

Transformer

𝐅𝐨𝐮𝐫𝐢𝐞𝐫 𝐍𝐮𝐦𝐛𝐞𝐫 𝐃𝐞𝐜𝐨𝐝𝐢𝐧𝐠

Unemb(h)

82predicted number

‘[NUM]’output token

𝒉 =
[𝒂, 𝒃, 𝒄, 𝒅 …]

last hidden state

add together + ++ +

Unit digit =2

𝒉𝟎

8

3

1

2

4

9

7

6

𝒉𝟏
0

5

(𝒂, 𝒃)

8

3

1

2

4

9

7

6

0

5

𝒉𝟑

𝒉𝟐

(𝒄, 𝒅)

Tens digit = 8

…

𝐅𝐨𝐍𝐄 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐞𝐝 𝐰𝐢𝐭𝐡 𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫

input token 18 + 64 =

input embedding (PosEmb)

FoNE(18)

Emb(′[NUM]′)

(PosEmb)

Emb(′+′)

(PosEmb)

FoNE(64)

Emb(′[NUM]′)

(PosEmb)

Emb(′=′)

Figure 2: Left: Each number in the input sequence is replaced by a special token [NUM] and embed-
ded as the sum of [NUM] token embedding, its FoNE (see Figure 1(a)), and the standard position
embedding (if used by the architecture; Llama-3.2 does not use an explicit position embedding).
Right: At decoding time, every pair of hidden-state entries corresponds to one digit, e.g. the first two
entries h0 and h1 correspond to the unit digit. The model identifies the digit whose circular Fourier
representation best matches those two entries. Digits are then combined by their positional weights.

As each number has its own FoNE, calculating the logits for all possible numbers becomes compu-
tationally infeasible. Therefore, we introduce a novel decoding head that maps hidden states from
Fourier space to number space as shown in Figure 2. Below, we explicitly define the loss function
and prediction function for each digit and then show how to combine these to obtain the final loss
and prediction.

2For real x and positive real m, x mod m is defined as x−m ·
⌊

x
m

⌋
, yielding a value in the range [0,m)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Definition 3.6 (Fourier Number Loss Function). Let h ∈ Rd denote the last-layer hidden state of the
model. Let yi denote the i-th digit of the label number y. Let LCE denote the cross entropy loss. For
digit i, we define the Fourier Number Loss Function LFoNE as:

LFoNE(h, y, i) := LCE

(
yi, ([h[2i], h[2i+ 1]]︸ ︷︷ ︸

1×2

· [ϕ(0, 10); · · · ;ϕ(9, 10)]⊤︸ ︷︷ ︸
2×10

)
)
.

This construction allows each digit to be treated as a separate prediction task while sharing the same
underlying model representation h. By taking the average of LFoNE(h, y, i) over all digit positions i,
we obtain the final training loss.

Definition 3.7 (Fourier Number Prediction for the i-th digit). Let h ∈ Rd denote the last-layer hidden
state of the model. For digit i, we define the Fourier Number Prediction as:

ŷi := arg max
j∈{0,...,9}

([
h[2i], h[2i+ 1]

]
·
[
ϕ(j, 10)

])
.

Here, ŷi is determined by the similarity between the hidden states and the circular embedding of
number in {0, · · · , 9} as illustrated in Figure 5(d). Once we have computed ŷi for each digit i, the
final prediction for the entire number can be formed by concatenating these digit-wise predictions.
We defer the detailed algorithms to Appendix A.

3.4 INCORPORATING FONE INTO INPUT SEQUENCES

To incorporate FoNE, we create one special token [NUM] and add it to the vocabulary. This token
must be generated by the model in order to generate any number. We can then remove any tokens
corresponding to numbers from the vocabulary. The integration of FoNE into input sequences
proceeds as follows, as illustrated in Figure 2 and Figure 5:

1. Extract all numbers from the input sequence to create a number list. Replace each number with
[Num] and tokenize the sequence to obtain a token list.

2. Embed the token list using standard word embedding methods.
3. Map each number in the number list to FoNE representation using Algorithm 1 (Section 3.1).
4. Add the FoNE to the word embedding of the corresponding [Num] token.
5. Feed the combined embeddings into the model.
6. Use the model’s output embeddings to predict the next token in the sequence.
7. If the predicted token is [Num], decode the numerical value using the method described in

Section 3.3, or compute the loss during training.

This procedure ensures that FoNE embeddings are seamlessly integrated into the input sequence,
enabling the model to leverage both numerical and contextual information effectively.

4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETTING

We evaluate the performance of our proposed FoNE method on arithmetic tasks designed to bench-
mark different number embedding methods. The dataset includes tasks such as 6-digit integer
addition, 6-digit decimal addition (with 3 digits after the decimal), 5-digit integer subtraction, 3-digit
integer multiplication, and 4-digit integer multiplication. These tasks are curated to measure model
capabilities in accurate numeric computation, while remaining within ranges where baseline embed-
ding methods are still competitive—since their performance degrades rapidly for larger numbers. To
further probe the scalability of our approach, we additionally evaluate FoNE on 60-digit addition in
Section 4.4, which highlights its ability to handle much larger operands where other embeddings fail.

Dataset. Each example in the dataset is formatted as [operand a][operator][operand
b]=, where the operands a and b are sampled based on the operation type. For addition and
multiplication, we ensure a ≤ b to avoid duplication (e.g., a+ b and b+ a are treated as identical
and included only once). For subtraction, we enforce a ≥ b to ensure non-negative results. For an
x-digit operands dataset, each operand can have up to x digits. The dataset is divided into training,
validation, and test subsets as shown in Table 9 in Appendix I.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Baselines. We compare our proposed FoNE method against several baseline methods for numeric
embeddings. First, we consider digit-wise tokenization, where each digit in a number is treated as an
individual token. Second, we evaluate subword tokenization, where numeric values are tokenized
into subword units based on the Llama3.2-1b tokenizer’s default vocabulary. Third, we include the
XVAL method Golkar et al. (2023), which leverages explicit value-based representations for numeric
computation. As XVAL predict floating point numbers, predictions are rounded to calculate accuracy.
Finally, we fine-tune pre-trained LLMs on the same dataset for comparison.

Setup. Our experiments involve multiple configurations of randomly initialized transformer-based
models. Models were evaluated across varying sizes, ranging from small to large architectures as
defined in Table 11. For the accuracy vs. training data size experiments, we use a configuration
similar to Llama-3.2 but with 38M parameters. In Appendix J, we conduct more experiments on a
transformer model with a different configuration and observe consistent results.

Learning rates were determined through an extensive search, with the best rates selected separately
for each method based on the validation performance. Model evaluation used exact match accuracy
to assess numeric prediction correctness. All models were trained from random initialization , except
the fine-tuned Llama-3.2-1B baseline model. We varied the training data size by uniformly sampling
subsets and adjusted model sizes to compare accuracy across methods.

4.2 EXPERIMENT RESULTS

(a) 6-digit integer addition (b) 5-digit integer subtraction

(c) 3-digit integer multiplication (d) 4-digit integer multiplication

Figure 3: Comparison of accuracy for various arithmetic tasks with respect to model and data size.

Data Efficiency. The middle panel of Figure 1 illustrates the accuracy trends of different embedding
methods as the data size increases for the 6-digit decimal addition task. Remarkably, our model
achieves 99% accuracy with just 6, 400 training samples and 37.55 million parameters, requiring
64× less training data than traditional embedding methods (409, 600/6, 400 = 64). Even with only
3, 200 training samples, our method outperforms the fine-tuned Llama-3.2 model. Additionally, it
achieves perfect accuracy with 51, 200 training samples.

Beyond synthetic tasks, our approach also improves compute efficiency in real-world scenarios. For
instance, FoNE requires only 149.25 tokens on average to represent numerical values from a table
in the WikiTableQuestions dataset (Pasupat & Liang, 2015), compared to 329.7 tokens used by a
digit-wise tokenizer. This significant reduction in token usage highlights the efficiency of our method
in encoding numerical data, making it more scalable for number-heavy tasks.

Parameter Efficiency. The right panel of Figure 1 shows the accuracy trends of different embedding
methods as the model size increases for the 6-digit decimal addition task. Our method achieves 97%

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

accuracy with just 1 layer and 8.31 million parameters using 200k examples for training. Furthermore,
with 26.62 million parameters, it surpasses the fine-tuned Llama-3.2 model and achieves 100%
accuracy.

Different Tasks. We conducted the same experiments across all different datasets. As shown in
Figure 3, our method consistently demonstrates superior data and parameter efficiency compared to
other approaches. Notably, it is the only method that achieves perfect accuracy on 6-digit decimal
addition, 6-digit integer addition, 5-digit subtraction, and 3-digit multiplication. We also show that
our method performs better in a binary classification task that involves numerical values in Figure 6
and Figure 7 . Specifically, the task requires predicting a label based on a linear equation applied
to three integers. In addition, we evaluate FoNE on a modular addition task. In Table 6, we show
that it outperforms standard tokenization methods, especially under large moduli where conventional
approaches fail. Due to space limitations, we defer the details to Appendix B.

Training and Inference Efficiency. Table 1 compares the training and test times used for one
epoch across different embedding methods. Our method is consistently faster than digit-wise and
subword embedding methods, as it uses one token to embed each number. Compared with XVAL, our
method consistently achieves higher accuracy. Additionally, we show the number of tokens required
to tokenize the maximum number for different methods, highlighting the efficiency of our approach.

Table 1: Training and inference efficiency comparison across three arithmetic tasks. The times are
reported in minutes (′) and seconds (′′).

Decimal Addition Subtraction Multiplication

Method Train Time Test. Tokens Accuracy Train. Test. Toks. Acc. Train. Test. Toks. Acc.

Ours 3′18′′ 29′′ 1 100 2′42′′ 29′′ 1 100 2′56′′ 33′′ 1 98.56
Digit-wise 11′48′′ 1′25′′ 7 99.85 9′41′′ 1′15′′ 5 99.71 10′11′′ 1′18′′ 8 81.21
Subword 6′46′′ 58′′ 3 97.94 5′47′′ 54′′ 2 91.66 6′20′′ 58′′ 3 8.05
XVAL 3′17′′ 27′′ 1 0.44 2′54′′ 27′′ 1 3.41 2′56′′ 26′′ 1 0

4.3 ABLATION STUDIES

Linear Layer after FoNE. As discussed in Section 3.1, we evaluate the use of a linear layer applied
after FoNE and compare it with the approach of appending zeros to align the embedding dimensions
with the model’s input requirements. As shown in Table 2, both configurations achieve almost the
same accuracy. Hence, either technique can be used to align FoNE with the embedding dimension.

Table 2: Accuracy Comparison Across Datasets
Task Linear Zero Padding

Decimal Addition 100% 100%
Integer Addition 100% 100%
Multiplication 99.95% 99.91%
Subtraction 100% 100%

Table 3: Accuracy Comparison Across Periods
Dataset 2,5,10 10 5 7

Decimal Addition 100 100 1.52 3.64
Integer Addition 100 100 1.55 0.02
Multiplication 99.99 99.95 3.67 1.91
Subtraction 100 100 4.64 0.24

Effect of Different Periods. As discussed in Section 3.1, the modular group captures the necessary
information for each digit, ensuring the effectiveness of our approach. We test the model with
base periods of [2, 5, 10], [5], and [7], as shown in Table 3. The [2, 5, 10] configuration achieves
accuracy comparable to that of the 10-period setup across different datasets. In this paper, we choose
single 10 to make it more parameter efficient. However, configurations using only mod 5 or mod 7
exhibit significantly lower accuracy. This is because neither mod5 nor mod7 can fully represent
the required information for all digits.

The mispredictions are attributed to the absence of critical modular information. As illustrated in
Table 12 in Appendix I, in the decimal addition task, using only a mod5 representation prevents the
model from distinguishing between certain digits, such as 2 and 7, which results in errors.

Necessity of Sine and Cosine Encoding. A natural question arises: are sinusoidal encodings truly
necessary for arithmetic tasks? One could directly encode each digit into a separate dimension of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the embedding, representing a number like 567 as [5, 6, 7]. However, this approach fails to achieve
perfect accuracy. For instance, numbers such as 999 and 888 become nearly indistinguishable after
layer normalization, which reduces their differences and can lead to confusion during training. We
evaluate this direct encoding method on 6-digit decimal addition and, after performing a learning
rate search, find that the best accuracy is 99.3% with a learning rate of 0.01 and training for 100
epochs. In contrast, FoNE achieves better accuracy in just 6 epochs with the same dataset and model
size. This suggests that naive direct encoding does not adequately preserve numerical distinctions
for reliable arithmetic operations. As illustrated in Table 13 in the appendix, the model frequently
mispredicts 8 as 9, further demonstrating the limitations of direct encoding in preserving numerical
structure.

4.4 APPLICATIONS AND COMPLEMENTARITY OF FONE

(a) Impact of combining FoNE with Abacus embedding (b) Test accuracy of 60-digit addition with FoNE

Figure 4: (a) Performance improvements achieved by combining FoNE with the Abacus embedding
method across various random seeds. The transformer is trained on addition tasks with up to 10-digits
numbers (represented by the smaller square) and tested up to 50-digit numbers. (b) Average accuracy
of an 8-layer transformer model on 60-digit addition tasks using FoNE for chunked input.

Combining FoNE with Abacus. FoNE can be combined with other positional embedding methods
even with different tokenization methods, requiring only minor modifications. For instance, we
integrated FoNE with the Abacus embedding method (McLeish et al., 2024a), which operates on
digit-wise tokenization. In this setup, the embeddings for each digit (0–9) are replaced with their
corresponding FoNE. We trained an 8-layer transformer model on integer addition tasks with up to
10 digits and tested it on addition tasks involving up to 50-digit numbers. The results, as illustrated in
Figure 4(a) and Figure 11 in Appendix G, show that incorporating FoNE consistently improves the
performance of the Abacus method across various random seeds. This highlights the complementary
benefits of combining FoNE with other positional embedding strategies.

How does FoNE Handle numbers with longer digit sequences The maximum digit length that a
float64 data type can represent is 15 digits. When x exceeds 15 digits in length, applying FoNE(x)
directly may result in a loss of precision. To address this, x can be divided into smaller chunks, and
FoNE can be applied to each chunk independently. For example, x can be split into groups of five
digits. The FoNE can then be calculated for each chunk, resulting in a representation of length 10 per
chunk, as each digit is encoded in two dimensions. These embeddings are subsequently concatenated
to obtain the final number embedding for x. Note that we are still using one token for each number.
By using this method, as shown in Figure 4(b), an 8-layer transformer trained on 60-digit addition
achieved an average accuracy of 97.42% across different operand length with just one forward pass.
This demonstrates the effectiveness of FoNE in handling long sequences.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 DISCUSSION

Q1: Why not use regression loss instead of classification loss, which minimizes RMSE and
can yield smaller prediction errors (Zausinger et al., 2024). The key limitation is that regression
produces continuous values, making it impossible to integrate number-related tasks with general lan-
guage modeling. For example, when predicting the year “1997”, regression may output “1996.9999”,
which is acceptable under regression metrics but unusable in sequence generation or token-based
reasoning. In contrast, FoNE retains a classification-based loss, so it does not require explicitly
identifying which numbers are used for arithmetic. This ensures seamless compatibility with standard
LLM training while still delivering accurate numerical representations.

Q2: Why does FoNE outperform other number embedding methods? Note that since FoNE
uses the ratio between entries to represent numbers as shown in Lemma 3.4, it is unaffected by
layer normalization and RMS normalization (Lemma D.2), in contrast to xVal (Golkar et al., 2023),
which uses the magnitudes of entries. Other approaches, such as DICE (Sundararaman et al., 2020)
and SALSA (Stevens et al., 2024), map numbers onto a single unit circle, which can limit their
capacity to distinguish between different magnitudes effectively. FoNE, by leveraging multiple
sinusoidal components, captures both the magnitude and periodicity of numbers more precisely.
This comprehensive representation enables FoNE to achieve higher accuracy and generalization in
number-related tasks.

Q3: Why do we choose components with periods that are multiples of 10, i.e., 10, 100, 1000 · · · ?
As shown in Zhou et al. (2024) and Figure 9, pre-trained LLMs trained on diverse datasets and
strategies consistently learn nearly identical key frequency components. These components have
periods of 10 and its divisors, such as 2 and 5. Since mod10 can already represent a single digit,
we believe that mod 2 and mod 5 contribute to enhancing robustness. Models trained on real-world
text data—where numbers are almost always expressed in decimal—commonly learn frequency
components that correspond to mod10. In principle, we could choose alternative bases (such as 5,
16, etc.) to help the model better learn arithmetic in those bases, as demonstrated in Table 5. However,
since most large language models primarily encounter numbers in base 10, and our results show that
base-10 FoNE already performs well on arithmetic tasks in other bases (Table 4), we adopt base 10
as the default. Additional experiments validating this choice are provided in Appendix B.

Q4: Can FoNE be integrated into pretrained LLMs without harming their semantic abilities?
We provide a continual pretraining experiment with a simplified version of FoNE in Appendix H, since
full pretraining from scratch with LLMs is beyond the scope of this paper. The results show that FoNE
can be naturally integrated into LLM pipelines: it improves arithmetic with larger numbers while
preserving general language ability. This suggests that FoNE offers a practical path for enhancing
numerical reasoning in existing pre-trained models without sacrificing their semantic competence.
As discussed by Meng et al. (2022), the semantic associations of tokens—such as the historical or
cultural meaning of a year—are often stored in the MLP layers of transformer models rather than
in the token embeddings themselves. This implies that LLMs can maintain semantic knowledge
of numbers in higher layers, while FoNE provides precise numerical embeddings at the input level.
Consequently, the two roles are complementary: FoNE ensures accurate numerical representation,
and the model’s MLP layers preserve semantic meaning.

6 CONCLUSION

In this paper, we introduced FoNE, a novel method for representing numbers in the embedding space
of LLMs. By leveraging Fourier features, FoNE directly maps numbers into a compact and precise
representation, bypassing tokenization inefficiencies and preserving essential numerical properties.
FoNE has significant implications for pre-training LLMs. By incorporating FoNE, models can
develop a robust understanding of numerical concepts, addressing a fundamental limitation in current
architectures. We believe our work establishes a solid foundation for future research on a wide
range of number-related tasks, including time-series analysis, quantitative reasoning, and complex
operations in fields like physics and mathematics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. The FoNE method is defined
step by step in Section 3.1 and Section A. Our experimental setup, including datasets, sampling rules,
model configurations, and training details, is described in Section 4.1 and Appendix I.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng Li, and Wei Liu. Improving vision
transformers by revisiting high-frequency components. In European Conference on Computer
Vision, pp. 1–18. Springer, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. Tempo:
Prompt-based generative pre-trained transformer for time series forecasting. arXiv preprint
arXiv:2310.04948, 2023.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and
Tony Xia. Theoremqa: A theorem-driven question answering dataset. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 7889–7901, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego
Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models on tabular
data–a survey. arXiv e-prints, pp. arXiv–2402, 2024.

Guhao Feng, Kai Yang, Yuntian Gu, Xinyue Ai, Shengjie Luo, Jiacheng Sun, Di He, Zhenguo Li,
and Liwei Wang. How numerical precision affects mathematical reasoning capabilities of llms.
arXiv preprint arXiv:2410.13857, 2024.

Pierre-Étienne Fiquet and Eero Simoncelli. A polar prediction model for learning to represent visual
transformations. Advances in Neural Information Processing Systems, 36, 2024.

Yanjun Gao, Skatje Myers, Shan Chen, Dmitriy Dligach, Timothy A Miller, Danielle Bitterman,
Matthew Churpek, and Majid Afshar. When raw data prevails: Are large language model embed-
dings effective in numerical data representation for medical machine learning applications? arXiv
preprint arXiv:2408.11854, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one day.
In International Conference on Machine Learning, pp. 11117–11143. PMLR, 2023.

Siavash Golkar, Mariel Pettee, Michael Eickenberg, Alberto Bietti, Miles Cranmer, Geraud Krawezik,
Francois Lanusse, Michael McCabe, Ruben Ohana, Liam Parker, et al. xval: A continuous number
encoding for large language models. arXiv preprint arXiv:2310.02989, 2023.

Jiuxiang Gu, Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits
in neural networks: Unlocking the potential of large language models in mathematical reasoning
and modular arithmetic. arXiv preprint arXiv:2402.09469, 2024.

Keji He, Chenyang Si, Zhihe Lu, Yan Huang, Liang Wang, and Xinchao Wang. Frequency-enhanced
data augmentation for vision-and-language navigation. Advances in Neural Information Processing
Systems, 36, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Ermo Hua, Che Jiang, Xingtai Lv, Kaiyan Zhang, Ning Ding, Youbang Sun, Biqing Qi, Yuchen
Fan, Xuekai Zhu, and Bowen Zhou. Fourier position embedding: Enhancing attention’s periodic
extension for length generalization. arXiv preprint arXiv:2412.17739, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Chengyue Jiang, Zhonglin Nian, Kaihao Guo, Shanbo Chu, Yinggong Zhao, Libin Shen, and Kewei
Tu. Learning numeral embeddings. arXiv preprint arXiv:2001.00003, 2019.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fernando
Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, et al. Cladder: A benchmark to assess
causal reasoning capabilities of language models. Advances in Neural Information Processing
Systems, 36, 2024.

Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition. arXiv
preprint arXiv:2502.00873, 2025.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Amit Arnold Levy and Mor Geva. Language models encode numbers using digit representations in
base 10. arXiv preprint arXiv:2410.11781, 2024.

Shixuan Li, Wei Yang, Peiyu Zhang, Xiongye Xiao, Defu Cao, Yuehan Qin, Xiaole Zhang, Yue Zhao,
and Paul Bogdan. Climatellm: Efficient weather forecasting via frequency-aware large language
models. arXiv preprint arXiv:2502.11059, 2025.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution-graphs/biology.html#dives-addition.

Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, and Shu-Tao
Xia. Taming pre-trained llms for generalised time series forecasting via cross-modal knowledge
distillation. arXiv preprint arXiv:2403.07300, 2024a.

11

https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-addition
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-addition

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei Chang, and Yansong Feng. Are llms capable of
data-based statistical and causal reasoning? benchmarking advanced quantitative reasoning with
data. arXiv preprint arXiv:2402.17644, 2024b.

Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, and James T
Kwok. A survey on time-series pre-trained models. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
arithmetic with the right embeddings. arXiv preprint arXiv:2405.17399, 2024a.

Sean McLeish, Avi Schwarzschild, and Tom Goldstein. Benchmarking chatgpt on algorithmic
reasoning. arXiv preprint arXiv:2404.03441, 2024b.

Kazem Meidani, Parshin Shojaee, Chandan K Reddy, and Amir Barati Farimani. Snip: Bridging math-
ematical symbolic and numeric realms with unified pre-training. arXiv preprint arXiv:2310.02227,
2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
simple arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. An
overview of early vision in inceptionv1. Distill, 5(4):e00024–002, 2020.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 1470–1480, Beijing, China, July 2015. Association for Computational Linguistics.
doi: 10.3115/v1/P15-1142. URL https://aclanthology.org/P15-1142.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Maria Sahakyan, Zeyar Aung, and Talal Rahwan. Explainable artificial intelligence for tabular data:
A survey. IEEE access, 9:135392–135422, 2021.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Jiandong Shao, Yao Lu, and Jianfei Yang. Benford’s curse: Tracing digit bias to numerical hallucina-
tion in llms. arXiv preprint arXiv:2506.01734, 2025.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

Safal Shrestha, Minwu Kim, and Keith Ross. Mathematical reasoning in large language mod-
els: Assessing logical and arithmetic errors across wide numerical ranges. arXiv preprint
arXiv:2502.08680, 2025.

12

https://aclanthology.org/P15-1142

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jasivan Alex Sivakumar and Nafise Sadat Moosavi. How to leverage digit embeddings to represent
numbers? arXiv preprint arXiv:2407.00894, 2024.

Samuel Stevens, Emily Wenger, Cathy Li, Niklas Nolte, Eshika Saxena, François Charton, and Kristin
Lauter. Salsa fresca: angular embeddings and pre-training for ml attacks on learning with errors.
arXiv preprint arXiv:2402.01082, 2024.

Dhanasekar Sundararaman, Shijing Si, Vivek Subramanian, Guoyin Wang, Devamanyu Hazarika, and
Lawrence Carin. Methods for numeracy-preserving word embeddings. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4742–4753,
2020.

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting? arXiv preprint arXiv:2406.16964, 2024.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Avijit Thawani, Jay Pujara, Pedro A Szekely, and Filip Ilievski. Representing numbers in nlp: a
survey and a vision. arXiv preprint arXiv:2103.13136, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Jonas Zausinger, Lars Pennig, Anamarija Kozina, Sean Sdahl, Julian Sikora, Adrian Dendorfer, Timo-
fey Kuznetsov, Mohamad Hagog, Nina Wiedemann, Kacper Chlodny, et al. Regress, don’t guess–a
regression-like loss on number tokens for language models. arXiv preprint arXiv:2411.02083,
2024.

Fan Zhou, Zengzhi Wang, Nikhil Ranjan, Zhoujun Cheng, Liping Tang, Guowei He, Zhengzhong
Liu, and Eric P. Xing. Megamath: Pushing the limits of open math corpora, 2025. URL https:
//arxiv.org/abs/2504.02807.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023a.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained lm. Advances in neural information processing systems, 36:43322–43355, 2023b.

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use fourier
features to compute addition. arXiv preprint arXiv:2406.03445, 2024.

13

https://arxiv.org/abs/2504.02807
https://arxiv.org/abs/2504.02807

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A Detailed Algorithms for Computing FoNE, and Making Predictions 15

B FoNE on Binary Classification and Modular Arithmetic Task 16

C More Related Work 18

D Preliminaries and Missing Proofs 19

D.1 Preliminaries . 19

D.2 Missing Proofs . 19

E More Evidence 21

E.1 LLMs Struggle with Multi-digit Arithmetic . 21

E.2 Emergence of Fourier Features during Pre-training 21

F FoNE for 60-digit Integer Addition in One Forward Pass 23

G Combining FoNE with Abacus 23

H Continue Pretraining LLMs with Simplified FoNE 24

I More Details on Experimental Setup 25

I.1 Ablation Study . 25

J Replicating Results on GPT2-Large Based Model 27

K R2 Comparison for Different Arithmetic Tasks 28

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A DETAILED ALGORITHMS FOR COMPUTING FONE, AND MAKING
PREDICTIONS

In this section, we provide the detail pipeline and algorithms of how we compute FoNE, get the final
loss and final prediction as defined in Section 3.1.

We first show the how are FoNE and Fourier number decoding integrated with regular Transformer
pipeline.

𝟏𝟖 + 64 = ___

0

50

80

30

10

20

40

90

70

60

𝟏𝟖

0

5

8

3

1

2

4

9

7

6

𝐬𝐢𝐧
𝟐𝛑

𝟏𝟎
⋅ 𝟏𝟖

𝐜𝐨𝐬
𝟐𝛑

𝟏𝟎
⋅ 𝟏𝟖

𝐅𝐨𝐍𝐄 𝟏𝟖 = [𝐜𝐨𝐬
𝟐𝛑

𝟏𝟎
⋅ 𝟏𝟖 , 𝐬𝐢𝐧

𝟐𝛑

𝟏𝟎
⋅ 𝟏𝟖 , 𝐜𝐨𝐬

𝟐𝛑

𝟏𝟎𝟎
⋅ 𝟏𝟖 , 𝐬𝐢𝐧

𝟐𝛑

𝟏𝟎𝟎
⋅ 𝟏𝟖 , 𝟎, 𝟎 ⋯]

𝐜𝐨𝐬
𝟐𝛑

𝟏𝟎𝟎
⋅ 𝟏𝟖

𝐬𝐢𝐧
𝟐𝛑

𝟏𝟎𝟎
⋅ 𝟏𝟖

[𝟏𝟖, 64] Num + [Num] = ____

𝐅𝐨𝐮𝐫𝐢𝐞𝐫 𝐍𝐮𝐦𝐛𝐞𝐫 𝐄𝐦𝐛𝐞𝐝𝐝𝐢𝐧𝐠

𝐈𝐧𝐩𝐮𝐭

&

𝟏𝟖

Numbers: Tokens:Input Sequence:

18 𝑚𝑜𝑑 10 18 𝑚𝑜𝑑 100

(a)

(b)

0

5

8

3

1

2

4

9

7

6

0

5

8

3

1

2

4

9

7

6

𝐡𝟐

𝐡𝟏

𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧 𝐡𝟏, 𝐡𝟐, 𝐡𝟑, 𝐡𝟒 = 𝟐 + 𝟖 × 𝟏𝟎 = 𝟖𝟐

𝐡𝟑

𝐡𝟒

𝐅𝐨𝐮𝐫𝐢𝐞𝐫 𝐍𝐮𝐦𝐛𝐞𝐫 𝐃𝐞𝐜𝐨𝐝𝐢𝐧𝐠(d)

𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫
(c)

𝐄𝐦𝐛𝐞𝐝𝐝𝐢𝐧𝐠(𝐍𝐮𝐦)

𝐋𝐚𝐬𝐭 𝐡𝐢𝐝𝐝𝐞𝐧 𝐬𝐭𝐚𝐭𝐞 𝐡: 𝐡𝟏 𝐡𝟐 𝐡𝟑 𝐡𝟒 …

+
𝐅𝐨𝐮𝐫𝐢𝐞𝐫 𝐍𝐮𝐦𝐛𝐞𝐫 𝐄𝐦𝐛𝐞𝐝𝐝𝐢𝐧𝐠

Figure 5: (a) We extract all the numbers from the input sequence. (b) For each number, we use
FoNE to directly map the number to its embedding. The first two entries in the embedding represent
18 mod 10, while the next two entries represent 18 mod 100. (c) We pad the FoNE with zeros, add
it to the word embeddings, and then feed the combined embeddings into the model. (d) For each
digit, we take every two entries from the last hidden state and find the number whose representation
is closest to these two entries.

Next we show the exact algorithms we use to compute FoNE, compute loss and make the final
prediction.

Algorithm 1 Fourier Number Embedding (FoNE) Algorithm
1: procedure FOURIERNUMBEREMBEDDING(x ∈ R,m ∈ Z≥0, n ∈ Z≥0, d ∈ Z>0)
2: Inputs: Number x, integer digit length m, decimal digit length n, embedding dimension d
3: Initialize empty embedding vector FoNE← []
4: for i = −n+ 1→ m do ▷ Loop over all scales from 10−n+1 to 10m

5: Ti ← 10i ▷ Set the period for the current scale
6: ϕ(x, Ti)← (cos(2πTi

x), sin(2πTi
x)) ▷ Compute the circular embedding for scale Ti

7: Append ϕ(x, Ti) to FoNE ▷ Add the embedding for this scale to the result
8: end for
9: while Length(FoNE) < d do ▷ Ensure embedding dimension matches the target

10: Append 0 to FoNE ▷ Zero-pad
11: end while
12: return FoNE
13: end procedure

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 2 Fourier Number Loss & Prediction
1: function FOURIERNUMBERLOSSFUNCTION(h, y, i)
2: yi ← the i-th digit of y
3: a←

[
h[2i], h[2i+ 1]

]
4: b← [ϕ(0, 10), ϕ(1, 10), · · · , ϕ(9, 10)]⊤
5: logits← a · b
6: loss← LCE(yi, logits) ▷ Cross-entropy loss for digit i
7: return loss
8: end function
9: function FOURIERNUMBERPREDICTION(h, i) ▷ Prediction for digit i

10: logits←
[
h[2i], h[2i+ 1]

]
·
[
ϕ(j, 10)

]
j=0,...,9

11: ŷi ← argmaxj∈{0,...,9} logits[j]
12: return ŷi
13: end function

Algorithm 3 Fourier Number Final Loss & Prediction
1: function FOURIERNUMBERFINALLOSS(h, y,m, n) ▷ Compute average loss
2: totalLoss← 0
3: I ← [m+ n]
4: for i ∈ I do
5: digitLoss← FOURIERNUMBERLOSSFUNCTION(h, y, i)
6: totalLoss← totalLoss + digitLoss
7: end for
8: finalLoss← totalLoss

|I| ▷ Average over all digit positions
9: return finalLoss

10: end function
11: function FOURIERNUMBERFINALPREDICTION(h,m, n) ▷ Compute final prediction
12: ŷ ← 0
13: Ifrac ← [0, . . . , n− 1] ▷ Fractional digit indices
14: Iint ← [n, . . . ,m+ n− 1] ▷ Integer digit indices
15: for i ∈ Ifrac do
16: logitsi ←

[
h[2i], h[2i+ 1]

]
·
[
ϕ(j, 10)

]
j=0,...,9

17: ŷi ← argmaxj∈{0,...,9} logitsi[j]
18: ŷ ← ŷ + ŷi · 10−(n−i) ▷ Scale fractional part by 10−(n−i)

19: end for
20: for j ∈ Iint do
21: logitsj ←

[
h[2j], h[2j + 1]

]
·
[
ϕ(j, 10)

]
j=0,...,9

22: ŷj ← argmaxj∈{0,...,9} logitsj [j]
23: ŷ ← ŷ + ŷj · 10j−n ▷ Scale integer part by 10j

24: end for
25: return ŷ
26: end function

B FONE ON BINARY CLASSIFICATION AND MODULAR ARITHMETIC TASK

In this section, we demonstrate that FoNE outperforms other methods on binary classification tasks
and modular arithmetic tasks, benefiting from its precise representation.

Binary Classification Task Each example in the dataset is formatted as [num1,num2,num3],
where the integers num1, num2, and num3 are sorted in ascending order (num1 ≤ num2 ≤ num3)
to ensure uniqueness and eliminate duplicate representations of the same combination. The integers
are uniformly sampled from the range [0, 1000]. The label for each example is determined by
evaluating the linear equation

a · num1+ b · num2+ c · num3− d,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

using predefined coefficients a = 1.5, b = −2, c = 0.5, and d = 10 and a = 1.5, b = −2, c = 0.5,
and d = −190. If the result is greater than zero, the label is assigned as 1; otherwise, it is assigned
as 0. The dataset is divided into training, validation, and test subsets, as outlined in Table 9. Figure
6 and Figure 7 show that FoNE outperforms the regular embedding method, XVAL, and even a
fine-tuned Llama-3.2-1B model by requiring less data and achieving higher accuracy.

(a) Accuracy vs. Training Data Size (b) Accuracy vs. Model Size

Figure 6: We train Llama-3.2-1B from scratch with random initialization using different number
embedding methods on number classification where d = 10. The test accuracy is compared across
varying data sizes and model sizes.

(a) Accuracy vs. Training Data Size (b) Accuracy vs. Model Size

Figure 7: We train Llama-3.2-1B from scratch with random initialization using different number
embedding methods on number classification where d = −190. The test accuracy is compared across
varying data sizes and model sizes.

Modular Arithmetic and Base Selection We conduct experiments varying the FoNE base from 7
to 13 and observed a clear “sweet spot” at base 10. For example, at base 7 the addition, subtraction,
and multiplication accuracies are only 17.66 %, 1.93 %, and 0.54 %, respectively, while at base 10
we achieve 100 % accuracy on addition and subtraction after just 4 and 26 epochs, and 99.25 % on
multiplication after 50 epochs. Accuracy then fall off again at larger bases (e.g., at base 13: 1.06
%, 5.71 %, and 1.91 %). This confirms that bases that are too small or too large degrade digit-level
distinguishability.

We also aligned FoNE’s moduli to the numbers’ representation base by preprocessing inputs into
base 5. In that setting, only the FoNE embedding with period 5 reached perfect accuracy (100 % in 6
epochs), whereas other periods (2–4 and 7–8) yielded near-zero to sub-20 % accuracy (e.g., period 2:
0.25 %; period 3: 0.12 %; period 7: 16.38 %). This again demonstrates that FoNE performs best
when its moduli match the underlying digit base.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Accuracy (%) on arithmetic tasks under different bases.
Base Epochs (Add/Sub/Mul) Accuracy (Add/Sub/Mul)

7 50 / 50 / 50 17.66 / 1.93 / 0.54
8 50 / 50 / 50 40.91 / 6.07 / 0.33
9 50 / 50 / 50 65.49 / 65.63 / 65.78

10 4 / 26 / 50 100.00 / 100.00 / 99.25
11 50 / 50 / 50 99.99 / 99.99 / 78.76
12 50 / 50 / 50 99.78 / 99.99 / 54.14
13 50 / 50 / 50 1.06 / 5.71 / 1.91

Table 5: Accuracy (%) with base-5 number inputs, under varying FoNE periods.
FoNE Period Epochs Accuracy (%)

2 50 0.25
3 50 0.12
4 50 0.17
5 6 100.00
7 50 16.38
8 50 99.97

We additionally benchmarked FoNE on modular addition tasks with varying moduli. The goal is to
predict x+ y mod m, where x, y ∈ [0,m). FoNE consistently outperforms standard tokenization,
especially at higher moduli.

Table 6: Accuracy (%) on modular addition tasks across various moduli.
Modulus m FoNE Accuracy Standard Tokenization Accuracy

11 100.00 99.98
60 99.27 99.99
97 100.00 0.89

100 100.00 18.17
113 100.00 99.99
121 100.00 5.48
225 100.00 65.10
256 100.00 70.20
257 100.00 11.36

These experiments validate our claim that FoNE is most effective when its moduli align with the
target numeral base, and it remains robust even in high-modulus arithmetic settings where standard
tokenization breaks down.

C MORE RELATED WORK

Fourier Features. Fourier features are commonly observed in image models, particularly in the
early layers of vision models Olshausen & Field (1997); Olah et al. (2020); Fiquet & Simoncelli
(2024). These features enable the model to detect edges, textures, and other spatial patterns effectively.
However, Transformers struggle to capture high-frequency components (Bai et al., 2022; Tancik
et al., 2020). Augmenting data with high-frequency components or explicitly encoding coordinates
using Fourier features has been demonstrated to improve model performance (Tancik et al., 2020;
He et al., 2024; Hua et al., 2024). In fact, the original Transformers paper (Vaswani et al., 2017)
uses Fourier features to encode the position information of tokens; however, it does not apply this
idea to number tokens to aid with numerical tasks. In modular addition tasks, studies have revealed
that after “grokking,” a one-layer Transformer can learn to solve the task perfectly by leveraging
Fourier features (Nanda et al., 2023; Gu et al., 2024). Furthermore, Zhou et al. (2024) demonstrate
that LLMs naturally encode numbers using Fourier features during pretraining, leveraging these
representations for arithmetic tasks (Levy & Geva, 2024; Kantamneni & Tegmark, 2025; Lindsey

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

et al., 2025). Building on this insight, we propose using modular Fourier components to explicitly
represent digits, enabling models to perform precise numerical computation. This allows algebraic
operations to be carried out in a component-wise, parallel manner and overcomes the limitations of
token-based number representations.

D PRELIMINARIES AND MISSING PROOFS

D.1 PRELIMINARIES

In this section, we provide the necessary mathematical definitions and concepts used throughout the
paper.

Period and Frequency. A function f(x) is periodic with period T > 0 if f(x+ T) = f(x) for all
x. The period T represents the smallest positive value for which the function repeats. The frequency
f of a periodic function is the reciprocal of its period, f = 1

T , and describes the number of cycles
completed in one unit interval. For the sine and cosine functions cos

(
2π
T x

)
and sin

(
2π
T x

)
, the period

is T .

Unit Circle. The unit circle is the set of points in the plane at a distance of 1 from the origin, given
by x2 + y2 = 1. The coordinates of points on the unit circle can be parameterized as (cos θ, sin θ),
where θ is the angle measured counterclockwise from the positive x-axis. For any angle θ, cos θ
represents the x-coordinate, and sin θ represents the y-coordinate.

Two-Argument Inverse Tangent. The two-argument inverse tangent function, atan2(y, x), deter-
mines the angle θ (modulo 2π) given the coordinates (x, y) = (cos θ, sin θ). Specifically,

θ = atan2(y, x),

which resolves the angle θ uniquely based on the signs of x and y.

Modular Arithmetic. Modular arithmetic considers equivalence classes of numbers under a
modulus T > 0. For integers a and b, a ≡ b (mod T) if T | (a− b), meaning a and b differ by an
integer multiple of T .

Fourier Representation. Periodic functions with period T can be represented using the fundamen-
tal frequencies 2π

T . For example, the embeddings
(
cos

(
2π
T x

)
, sin

(
2π
T x

))
capture the periodicity of x

modulo T by mapping it to a unique point on the unit circle.

D.2 MISSING PROOFS

In this section, we provide some missing proofs.
Lemma D.1 (Formal version of Lemma 3.3). Given the pair

(
cos(2πT x), sin(2πT x)

)
, we can recover

x mod T .

Proof. Let θ = 2π
T x. Then the given pair becomes(

cos(θ), sin(θ)
)
.

From this pair, one can recover θ uniquely modulo 2π. Concretely, θ can be obtained (modulo 2π)
using the two-argument inverse tangent function:

θ ≡ atan2
(
sin(θ), cos(θ)

)
(mod 2π).

Since θ = 2π
T x, we have

x =
T

2π
θ.

Hence x is determined up to integer multiples of T , i.e., x mod T .

In other words, if (
cos(2πT x1), sin(

2π
T x1)

)
=

(
cos(2πT x2), sin(

2π
T x2)

)
,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

then 2π
T x1 ≡ 2π

T x2 (mod 2π), which implies x1 ≡ x2 (mod T). Therefore, from the pair(
cos(2πT x), sin(2πT x)

)
, we can indeed recover x mod T .

Lemma D.2 (Layer-Normalized FoNE Preserves Numeracy). Given a number’s Layer-Normalized
Fourier Number Embedding LN(FoNE(x) + p), where FoNE(x) is the Fourier Number Embedding
of x and p is an orthogonal positional encoding vector, assume the mean of FoNE(x) + p is 0. Let
m be the integer digit length of x and n be the decimal digit length of x. Then, using Lemma 3.3, we
can recover x mod 10i for each integer i in the range −n+ 1 to m.

Proof. Assume the mean of x = FoNE(x) + p is 0, i.e., µ = 0. Under this assumption, LayerNorm
simplifies to:

LN(x) =
x

σ
,

where σ is the standard deviation of x.

Let u = FoNE(x) encode the scalar x, and let p be an orthogonal positional encoding vector such
that:

∥u∥ = ∥p∥ = 1 and u · p = 0.

Then, the input to LayerNorm is:
x = u+ p.

The standard deviation σ of x is given by:

σ =

√√√√1

d

d∑
i=1

(xi − µ)2,

where d is the dimensionality of x. Since µ = 0, this simplifies to:

σ =

√
1

d
∥x∥2.

Substitute x = u+ p:

∥x∥2 = ∥u+ p∥2 = ∥u∥2 + ∥p∥2 + 2u · p.

By orthogonality and unit norm, u · p = 0, ∥u∥2 = 1, and ∥p∥2 = 1. Thus:

∥x∥2 = 1 + 1 + 0 = 2.

Therefore:

σ =

√
1

d
· 2 =

√
2

d
.

The LayerNorm operation simplifies to:

LN(x) =
x

σ
=

u+ p√
2
d

=

√
d

2
(u+ p).

This rescales u and p by a factor of
√

d
2 .

The key observation is that LayerNorm applies a uniform scaling to all components of x. Since u
and p are orthogonal and their relative directions are preserved, the numerical relationships encoded
in u (which represent x) are preserved up to a scaling factor.

By Lemma 3.3, the numeracy of x is preserved. This means we can recover x mod 10i for all i in
the range −n+ 1 ≤ i ≤ m, as the normalized embedding retains the necessary information about x.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The same result holds for RMSNorm because it also applies a uniform scaling (based on the root
mean square of the input) while preserving the relative directions of the embedding components, thus
maintaining the numeracy of x.

Notet that standard sinusoidal positional encodings (PEs) (Vaswani et al., 2017) cannot serve as a
substitute for numerical embeddings. PEs are explicitly constructed to distinguish token positions in
a sequence, not to represent the magnitude or digit structure of real numbers. They use a fixed set of
exponentially spaced frequencies to ensure each position has a unique yet non-invertible signature;
as a result, there is no straightforward way to recover the original numeric value (or its individual
digits) from a PE embedding. Moreover, the frequencies in PEs are chosen for positional uniqueness,
not for digit-aligned modular arithmetic, so small changes in numeric value can produce large,
non-monotonic changes in the embedding space—precisely the opposite of the smooth, digit-wise
variation required for accurate number encoding. Unlike FNE’s digit-aligned sinusoidal components
(e.g., mod 10, mod 100, . . .), PEs do not guarantee invertibility with respect to numeric operations.

E MORE EVIDENCE

E.1 LLMS STRUGGLE WITH MULTI-DIGIT ARITHMETIC

We evaluate five production LLMs (Claude 3.7 Sonnet, DeepSeek V3.1, Gemini 2.5 Flash, GPT-5,
and Qwen3-235B) on direct arithmetic without chain-of-thought, code execution, or tools. For each
setting, we sample 100 IID problem instances with uniformly distributed operands over the full d-digit
numbers. Tasks include d ∈ {3, 4, 5, 6} for multiplication and d ∈ {7, 8, 50} for addition. Models
receive a two-shot, operation-matched prompt and must return a single integer only. Decoding uses
temperature 0. We parse the first integer token from the response and score exact-match accuracy by
numeric equality with the reference.

Multiplication Addition

Model 3 4 5 6 7 8 50

Claude 3.7 Sonnet 1.00 0.53 0.02 0.00 1.00 0.97 0.82
DeepSeek V3.1 0.94 0.25 0.01 0.00 0.95 0.95 0.34
Gemini 2.5 Flash 0.58 0.11 0.00 0.00 0.99 0.96 0.33
GPT-5 0.74 0.09 0.00 0.00 0.98 0.92 0.66
Qwen3-235B 0.94 0.62 0.05 0.01 0.99 0.98 0.28

Table 7: Exact-match accuracy on direct multi-digit arithmetic; columns indicate digits per operand.
Each entry averages 100 IID problems per setting with uniformly sampled d-digit operands. Two-shot
prompting, single-integer output only.

Results. Even the most recently released LLMs still struggle with multi-digit multiplication, while fail
to achieve perfect accuracy on addition. For multiplication, accuracy drops sharply as operand length
increases: models perform well on 3-digit multiplication (≥ 0.58), but fall below 0.10 for 5-digit
cases and nearly 0 at 6 digits. Qwen3-235B is the most robust, reaching 0.62 on 4-digit and 0.05 on
5-digit multiplication, yet still fails on 6 digits. For addition, all models achieve ≥ 0.95 on 7–8 digit
tasks, but accuracy declines on long-sequence addition (50 digits), ranging from 0.28 (Qwen3-235B)
to 0.82 (Claude 3.7 Sonnet). In summary, LLMs excel at addition with short to medium operands but
remain brittle for both long-sequence addition and especially large-digit multiplication.

E.2 EMERGENCE OF FOURIER FEATURES DURING PRE-TRAINING

We follow Zhou et al. (2024) and conduct the same Fourier analysis on Pythia model. In Figure 8, we
show how Pythia gradually learns the Fourier features during pre-training. With different model size,
the model gradually learn the same frequency components.

We extend the work of Zhou et al. (2024) to other pre-trained LLMs and observe similar findings:
pre-trained LLMs, regardless of the dataset used, tend to learn the same outlier frequency components.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 8: Fourier analysis of the Pythia model’s number embeddings across pre-training checkpoints.
The figure illustrates how the Fourier features are progressively learned during pre-training, showing
the emergence of specific frequency components. Models of varying sizes exhibit a similar trend,
gradually learning the same frequency components over time.

(a) pre-trained Pythia (b) fine-tuned Llama3.2

(c) pre-trained OPT (d) pre-trained GPT2

Figure 9: Number embedding in Fourier space for different pre-trained models.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F FONE FOR 60-DIGIT INTEGER ADDITION IN ONE FORWARD PASS

Figure 10: Accuracy of an 8-layer transformer on 60-digit addition tasks, illustrating the effectiveness
of FoNE embeddings in handling long sequences. The model achieves an average accuracy of 97.42%
across different operand lengths, showcasing its capability in numerical precision and sequence
representation.

As discussed in Section 5, the maximum digit length that a float64 data type can precisely
represent is 15 digits. Consequently, even if we convert numbers to float64 and then back to
float16 to match the model weight precisionm it still introduce numerical inaccuracies when the
input x exceeds 15 digits. To mitigate this issue, we process x by dividing it into smaller chunks,
allowing the FoNE to operate effectively without precision loss.

Specifically, x is split into groups of five digits, and FoNE is applied independently to each chunk.
Each digit within a chunk is encoded into two dimensions, resulting in an embedding of length 10 per
chunk. These chunk embeddings are then concatenated to form the final representation of x. This
method ensures that even for long inputs, the FoNE still preserve the numeracy of the numbers.

We adopt the data generation approach from McLeish et al. (2024a), which includes all combinations
of operand lengths (i, j) up to a maximum length k, generating 20 million stratified samples to
ensure balanced representation across all length pairs. Training is conducted using a language model
cramming approach (Geiping & Goldstein, 2023), constrained to 8 exaFLOP (equivalent to 24 hours
of training on a single Nvidia RTX A6000 GPU). Using this strategy, as depicted in Figure 4(a),
an 8-layer transformer trained on 60-digit addition achieves an average accuracy of 97.42% across
various operand lengths in just one forward pass. This result underscores the effectiveness of the
FoNE in processing long numbers with high precision and computational efficiency in just one
forward pass.

G COMBINING FONE WITH ABACUS

We train decoder-only causal language models to solve arithmetic problems, following the setup
described in McLeish et al. (2024a). Inputs are formatted in a least-significant-digit-first order (e.g.,
98282 + 3859172 = 2787472), without padding between digits or operands. The training dataset
includes all combinations of operand lengths (i, j) up to a maximum length k, with 20 million
stratified samples ensuring balanced representation across all length pairs.

For input representation, we combine Fourier Number Embeddings (FoNE) with the Abacus method
McLeish et al. (2024a). That each digit is embedded with FoNE. Training is conducted using
a language model cramming approach (Geiping & Goldstein, 2023), constrained to 8 exaFLOP
(equivalent to 24 hours of training on a single Nvidia RTX A6000 GPU).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 11: Heatmaps of accuracy percentages for “FoNE+Abacus” (left column) and “Abacus” (right
column) across three different random seeds. Each heatmap represents accuracy as a function of the
first and second number lengths, with lighter blue shades indicating higher accuracy. The color scale
ranges from white (low accuracy) to blue (high accuracy). These visualizations highlight FoNE can
combine with Abacus to improve performance.

We train and evaluate the models across three runs, each with a different random seed, as shown in
Figure 11. Results indicate that incorporating FoNE enables the Abacus method to achieve better
generalization and higher accuracy.

H CONTINUE PRETRAINING LLMS WITH SIMPLIFIED FONE

In this section, we demonstrate that our FoNE token embedding can be merged with any existing LLM
with slight continual pretraining. We made a simplification of FoNE where instead of override all the
number emebdings which could make continual pretraining harder, we build the simplified FoNE on
top of existing BPE tokenization. For example, an number in the digit-wise form x = a0a1 · · · ak
will be first grouped into subword by BPE tokenization BPE(x) = (a0a1a2), (a3a4a5), · · · , (· · · ak).
We compute FoNE embedding of each subword, and continual pretrain a linear projection layer from
the FoNE embedding space to the orginal token embedding space to align the embeddings similar to
vision language model’s alignment phase.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: A simplified version of FoNE improves model’s zero-shot arithmetic abilities without
sacrificing language abilities.

TASK REGULAR FONE (Simplified)
4-digit addition 51.35% 59.00%
4-digit subtraction 29.60% 39.90%
5-digit addition 29.40% 35.75%
5-digit subtraction 24.95% 33.95%
MMLU 38.10% 38.21%

Dataset. We continual pretrain both the original Llama-3.1-1B model and our FoNE adapted version
on 15B tokesn from MegaMath-Web-Pro (Zhou et al., 2025) and evaluated on arithmetic tasks
from Brown et al. (2020) and on MMLU (Hendrycks et al., 2021).

Results. As shown in Table H, this simplified version of FoNE can improve model’s zero-shot
arithmetic with larger number of digits. Moreover, the lanaguge abilities evaluated by MMLU are not
affected.

I MORE DETAILS ON EXPERIMENTAL SETUP

In this section, we provide the experiments settings that we used in the Section 4.1.

Learning rates were determined through an extensive search, with the best rates selected separately
for each method based on validation performance. Final training hyperparameters include a learning
rate of 0.005 for regular and FoNE methods, and 0.0001 for the xVal method, a batch size of 512,
and 100 epochs. The fine-tuning process required less than 10 hours, while training from scratch took
less than 3 days.

Dataset Train Size Validation Size Test Size
6-digit decimal addition 720,000 80,000 200,000
6-digit integer addition 720,000 80,000 200,000
5-digit integer subtract 720,000 80,000 200,000

3-digit integer multiplication 360,000 40,000 100,000
4-digit integer multiplication 720,000 80,000 200,000

classification 720,00 80,00 200,00

Table 9: Dataset Sizes for Training, Testing, and Validation

Dataset Model Size for Varying Data Size Data Size for Varying Model Size
6-digit decimal addition 37.55M 200,000
6-digit integer addition 37.55M 200,000
5-digit integer subtract 37.55M 200,000

3-digit integer multiplication 37.55M 360,000
4-digit integer multiplication 37.55M 360,000
4-digit integer multiplication 37.55M 360,000

classification 37.55M 50,000

Table 10: Dataset and Configuration Sizes for Model and Data Variation Experiments

I.1 ABLATION STUDY

In this section, we present the mispredictions of the model trained with an FoNE, where the periods
are multiples of 5 instead of 10. Table 12 demonstrates that, for each digit, the mispredictions
consistently deviate from the true labels by 5.

We also present the model’s mispredictions in Table 13, where each digit is encoded into a separate
dimension of the embedding. For example, the number 567 is represented as [5, 6, 7]. During training,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Model Hidden Size Intermediate Size # Hidden Layers # Attention Heads # Key-Value Heads
1 64 256 1 4 2
2 128 512 2 4 2
3 192 768 3 6 3
4 256 1024 4 8 4
5 320 1280 5 8 4
6 384 1536 6 8 4

Table 11: Model Configuration Table

Table 12: Mispredictions in the Final Evaluation with when we embed each digit with only mod5.
Index Predicted Value Actual Value

1 934.03 934.585
2 3.009 558.509
3 912.311 917.366
4 6201.003 1756.008
5 1240.34 1290.84

we compute the RMSE loss between the last hidden states and the labels. During prediction, we
interpret each entry in the last hidden state as a single digit.

Table 13: Mispredictions in the Final Evaluation when directly encoding numbers into their embed-
dings.

Index Predicted Value Actual Value
1 883.888 993.999
2 787.878 898.989
3 888.758 989.759
4 748.785 849.895
5 677.677 688.788

10 1179.488 1189.499

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

J REPLICATING RESULTS ON GPT2-LARGE BASED MODEL

We conduct the same experiments on decimal addition using a GPT-2 Large-based model. The results
indicate that changing the model architecture does not affect the outcomes. For instance, GPT-2
Large employs LayerNorm, while Llama 3.2 uses RMSNorm.

(a) 6-digit decimal addition: Accuracy vs. Train-
ing Data Size

(b) 6-digit decimal addition: Accuracy vs. Model
Size

Figure 12: We train GPT2-Large from scratch with random initialization using different number
embedding methods on 6-digit decimal addition. The test accuracy is compared across varying data
sizes and model sizes.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

K R2 COMPARISON FOR DIFFERENT ARITHMETIC TASKS

xVal Golkar et al. (2023) performs well on the R2 metric

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
,

because it uses RMSE as its loss function. However, we demonstrate that FoNE outperforms xVal on
R2 in most tasks. We show the final R2 on test dataset in our experiments(Section 4.2).

(a) Data size vs. Accuracy (b) Model size vs. Accuracy

Figure 13: Comparison of R2 trends for 6-digit decimal addition with respect to model size and data
size.

(a) 6-digit integer addition: Model&Data size vs. Ac-
curacy (b) 5-digit integer addition: Model&Data size vs. Ac-

curacy

(c) 5-digit integer subtraction: Model&Data size vs.
Accuracy

(d) 3-digit integer multiplication: Model&Data size vs.
Accuracy

Figure 14: Comparison of R2 trends for various arithmetic tasks with respect to model size and data
size.

THE USE OF LLMS

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

28

	Introduction
	Related Work
	Methods
	Fourier Number Embedding (FoNE)
	FoNE's Representational Properties
	Decoding
	Incorporating FoNE into Input Sequences

	Empirical Evaluation
	Experimental Setting
	Experiment Results
	Ablation Studies
	Applications and Complementarity of FoNE

	Discussion
	Conclusion
	Appendix
	Detailed Algorithms for Computing FoNE, and Making Predictions
	FoNE on Binary Classification and Modular Arithmetic Task
	More Related Work
	Preliminaries and Missing Proofs
	Preliminaries
	Missing Proofs

	More Evidence
	LLMs Struggle with Multi-digit Arithmetic
	Emergence of Fourier Features during Pre-training

	FoNE for 60-digit Integer Addition in One Forward Pass
	Combining FoNE with Abacus
	Continue Pretraining LLMs with Simplified FoNE
	More Details on Experimental Setup
	Ablation Study

	Replicating Results on GPT2-Large Based Model
	R2 Comparison for Different Arithmetic Tasks

