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ABSTRACT

Language models treat numbers in the same way as ordinary word tokens, which
introduces two major issues: (1) embeddings of numerical tokens primarily reflect
their frequency in text corpora rather than their inherent numerical properties,
leading to frequency bias, and (2) numbers are often split into multiple tokens,
forcing the model to aggregate these pieces to recover their values. Inspired by
the observation that pre-trained Large Language Models (LLMs) internally learn
Fourier-like features for number tokens, we propose Fourier Number Embedding
(FoNE), a novel method that directly maps numbers into the embedding space with
their Fourier features. FONE encodes each number as a single token with only two
embedding dimensions per digit, effectively capturing numerical values without
fragmentation. Compared to traditional subword and digit-wise embeddings, FONE
achieves higher accuracy on arithmetic tasks, requires significantly less training
data, and offers more efficient training and inference. A 38M-parameter Trans-
former trained from scratch with FONE outperforms a fine-tuned Llama-3.2-1B
model on addition, subtraction, and multiplication. FONE is also the only method
that achieves 100% accuracy on over 100,000 test examples across these tasks. On
6-digit decimal addition, FONE needs 64 x less data than subword and digit-wise
embeddings to reach > 99% accuracy, while using 3 x and 6 x fewer tokens per
number, respectively.

1 INTRODUCTION

LLMs require precise representations of numerical data to perform number-related tasks effectively.
However, since LLMs treat numbers just like any other token, embeddings of numerical tokens
do not systematically capture important numerical features. As a result, it is challenging for even
billion-parameter models to achieve perfect accuracy in solving simple arithmetic tasks ! (Saxton
et al., 2019; Dziri et al., 2024; Lee et al., 2023; Shen et al., 2023; Zhou et al., 2023a). While generating
code can be a useful workaround, relying solely on this capability highlights a fundamental limitation:
without a proper understanding of numbers, the model cannot fully grasp concepts critical to domains
like mathematical theorems, physics laws, or quantitative reasoning. Even with approaches like
Chain-of-Thought (CoT) prompting (Wei et al., 2022), it is important to have a perfect accuracy in
solving basic arithmetic tasks to build a strong foundation for more complex reasoning.

Standard tokenization approaches, such as subword tokenization (e.g., GPT-40 Achiam et al., 2023,
Llama-3 (Dubey et al., 2024), Phi-2 (Abdin et al., 2024)) or digit-wise tokenization (e.g., Llama-2
(Touvron et al., 2023), Mistral (Jiang et al., 2023)), require the model to aggregate multiple tokens to
understand numbers and introduces inefficiencies by tokenizing one number into multiple tokens.
However, this inefficiency in tokenizing numbers leads to larger challenges when it comes to their
representation. Numbers, unlike words, require systematic, frequency-agnostic representations, yet
LLMs often exhibit a frequency bias (Razeghi et al., 2022; Shrestha et al., 2025; Shao et al., 2025),
predicting numbers based on training data prevalence rather than their mathematical properties.

We draw inspiration from interpretability analyses of LLMs, which reveal that models internally
develop Fourier-like features. Specifically, pre-trained models embed number tokens using a sparse

!Our evaluation (See Appendix E.1) of recently released LLMs on arithmetic confirms this limitation: they
still struggle with multi-digit addition and multiplication.
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Figure 1: Overview of Fourier Number Embedding (FONE). Left: FONE encoder illustrated with
the token ‘18°, directly mapped into its FONE. Middle: Test error on 6-digit decimal addition as the
size of the training set increases. Right: Test error on the same task as model size increases. In both
plots, we train transformers from scratch with different embedding or tokenization methods until
convergence and report the final error. We compares FONE (ours) against digit-wise tokenization,
subword tokenization, XVAL (Golkar et al., 2023), and a fine-tuned Llama-3.2-1B model. FoNE
achieves higher accuracy with less data and model size, even surpassing the finetuned Llama baseline

set of features in the Fourier domain (Zhou et al., 2024). These features enable the representation of
numbers capturing both the magnitude and exact values of numbers, which are critical for solving
arithmetic tasks (Zhou et al., 2024). However, because numbers are split into subwords and their
embeddings are learned from co-occurrence statistics in text during pre-training, current LLMs fail to
learn precise numerical representations and struggle to extend these mechanisms to larger numbers,
underscoring the need for more systematic approaches to numerical representation.

In this paper, we propose a novel approach called Fourier Number Embedding (FoNE), which
directly maps numbers to their Fourier representations, bypassing the tokenization step entirely. By
representing each digit using cosine and sine functions with different periods, as shown in the left
panel of Figure 1, FONE ensures precise representation of numbers. FONE represents each digit using
only two dimensions in the embedding vector. This compact design not only reduces computational
overhead but also creates opportunities for future extensions by incorporating additional features to
better capture numeric properties. By embedding and predicting numbers directly as single tokens,
our method eliminates the need for multiple forward passes and token aggregation, significantly
enhancing computational efficiency. Furthermore, we provide a theoretical justification for why
FoNE can represent numbers accurately as single tokens, leveraging the modular encoding properties
of trigonometric functions to ensure exact recovery of each digit through periodic embeddings.

Beyond theoretical justification, we demonstrate the effectiveness of FONE through extensive ex-
periments on arithmetic tasks, including addition, subtraction, and multiplication. Our results show
that FONE is the only approach which—when used to train a Transformer from scratch—achieves
perfect accuracy on multiple arithmetic tasks while requiring significantly less training data and fewer
model parameters compared to existing methods. Moreover, FONE offers faster training and inference
times by encoding each number into a single token. On 6-digit decimal addition it achieves > 99%
accuracy using 64 x less data than subword or digit-wise embeddings, while cutting token usage per
number by 3x and 6x, respectively. These findings underscore FONE’s capacity to represent and
manipulate numerical data both efficiently and precisely within large language models.

2 RELATED WORK

Arithmetic and Number-Related Tasks in LLMs. Using language models for number-related
tasks, including solving math problems (Saxton et al., 2019; Yu et al., 2023; Meidani et al., 2023),
time-series prediction (Tan et al., 2024; Ma et al., 2024; Zhou et al., 2023b; Liu et al., 2024a; Jin
et al., 2023; Cao et al., 2023; Li et al., 2025), quantitative reasoning (McLeish et al., 2024b; Liu et al.,
2024b; Chen et al., 2023; Jin et al., 2024; Cobbe et al., 2021), and handling tabular data (Gao et al.,
2024; Fang et al., 2024; Sahakyan et al., 2021), remains a significant challenge. Despite advancements
in transformer-based models, LLMs such as Qwen3-235B and GPT-5, with billions of parameters,
struggle to solve simple arithmetic problems involving multi-digit addition and multiplication across
multiple forward passes (Dziri et al., 2024; Feng et al., 2024), even when using scratchpads (Nye
et al., 2021).
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Golkar et al. (2023); Sundararaman et al. (2020); Jiang et al. (2019); Sivakumar & Moosavi (2024),
introduce number embedding methods to enhance model performance on number-related tasks.
However, the range of numbers these methods can accurately represent is typically limited to fewer
than five digits and fail to achieve perfect accuracy. Additionally, a line of research (McLeish et al.,
2024a; Shen et al., 2023) incorporates the positional information of digits into embeddings or adds
it as extra tokens (Nogueira et al., 2021). Lee et al. (2023) demonstrate that smaller transformer
models can successfully handle multiplication when equipped with carefully designed scratchpads.
However, these approaches are tailored specifically for arithmetic tasks and are difficult to integrate
seamlessly into general-purpose LLM training. Thawani et al. (2021) explores encoding strategies
like digit-by-digit, scientific notation, and base-10 formats, while Jiang et al. (2019) maps numbers
to finite “prototype numerals”. These methods help the model align digits of equal significance but
often require digit-wise tokenization and introduce additional tokens, reducing training and prediction
efficiency. In contrast, the method proposed in this paper precisely encodes all numbers as a single
token, eliminating range limitations and avoiding the efficiency drawbacks associated with previous
approaches (see Section 5 for further details).

3 METHODS

Building on insights from prior studies (Zhou et al., 2024) that highlight the importance of Fourier
features in numerical embeddings, we propose Fourier Number Embedding. Unlike existing methods
that often require digit-wise tokenization or pre-training to handle numeric tasks, FONE directly maps
numbers into compact Fourier representations. Sections 3.1, 3.3, and 3.4 describe our embedding,
decoding, and integration methods, respectively. The complete process is shown in Figure 2.

3.1 FOURIER NUMBER EMBEDDING (FONE)

We first introduce the following function that maps each = € R to a point on the unit circle.
Definition 3.1 (Circular embedding). Let T be a given period. We define the function ¢ : R — R? as

¢(x,T) := (cos (%) ,sin (¥z)).

Next, we formally define FONE, which directly maps any floating point number x to an embed-
ding. We predefine m and n as the maximum number of digits before and after the decimal point,
respectively.

Definition 3.2 (Fourier Number Embedding). Let m be the integer digit length, and n be the decimal
digit length. We define the Fourier Number Embedding function FONE : R — R2(™*") for an input
number x as follows:

FONE($7 m, TL) = [¢(x> T7n+1); (b(l', T,n+2); s qb(l', Tm)} )
where T; = 10° for each integer i in the range —n + 1 to m.

To align the embedding dimensions of FONE with the model’s input embedding dimension d, we map
the Fourier Number Embedding, which lies in R2("+") to R?. This mapping can be achieved in
two ways: (1) by applying a learnable linear transformation W € R?*2(m+7) or (2) by appending
zeros to the embedding vector to match the dimensionality d. As demonstrated in Section 4.3, both
approaches achieve comparable results.

3.2 FONE’S REPRESENTATIONAL PROPERTIES

Then, we introduce an elementary lemma and demonstrate why FoONE can preserve the numeracy on
numbers.

Lemma 3.3 (Informal version of Lemma D.1). Given the pair (cos (2—”96) ,sin (2—”90)) we can

T T
recover x mod T

Hence, by applying Lemma 3.3 to each frequency component in FONE, we immediately obtain the
following result.
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Lemma 3.4 (FoNE preserves numeracy). Given a number’s Fourier Number Embedding FONE(z),
its integer digit length m, and the decimal digit length n, by using Lemma 3.3, we can recover
x mod 10° for each integer 1 in the range —n + 1 to m.

A natural question that arises here is the need for  mod 10, if we already know z mod 100. The
reason is that even though knowing £ mod 100 exactly suffices to recover z mod 10, this estimation
is noisy in practice. When T becomes very large in a circular embedding (Definition 3.1), the
difference 2% (x+1)— QT“ac approaches zero, causing the embedded representations of z and = + 1
to become arbitrarily close on the unit circle. Consequently, a single large I" cannot sufficiently
distinguish adjacent values in the embedding. Hence, one must choose 1" across a broad range of
scales to ensure that the embedding remains adequately distinguishable for all values of x. In this
paper, we choose 7" as 10°, Vi, so that each T effectively captures one digit of z.

To provide a clear illustration of our method, we present a detailed example demonstrating how we
map number 4.17 to its embedding.

Example 3.5. Consider x = 4.17. Its Fourier Number Embedding is given by
[0(4.17,0.1); p(4.17,1); p(4.17,10)],
where ¢ is defined in Definition 3.1. From these components, by using Lemma 3.3, we can recover
[4.17 mod 0.1,4.17 mod 1,4.17 mod 10],

which simplifies to [0.07,0.17,4.17]. If we used only T = 10, then $(4.17,10) would be nearly
indistinguishable from ¢(4.18,10), causing the embedding to lose fine-grained information about
less significant digits. However, with these chosen periods T, we can capture all the digits.

3.3 DECODING

FoNE Integrated with Transformer Fourier Number Decoding
predicted number 82 —
output token ‘INUM]
Unemb(h) I
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Figure 2: Left: Each number in the input sequence is replaced by a special token [NUM] and embed-
ded as the sum of [NUM] token embedding, its FONE (see Figure 1(a)), and the standard position
embedding (if used by the architecture; Llama-3.2 does not use an explicit position embedding).
Right: At decoding time, every pair of hidden-state entries corresponds to one digit, e.g. the first two
entries hg and hq correspond to the unit digit. The model identifies the digit whose circular Fourier
representation best matches those two entries. Digits are then combined by their positional weights.

As each number has its own FoNE, calculating the logits for all possible numbers becomes compu-
tationally infeasible. Therefore, we introduce a novel decoding head that maps hidden states from
Fourier space to number space as shown in Figure 2. Below, we explicitly define the loss function
and prediction function for each digit and then show how to combine these to obtain the final loss
and prediction.

2For real z and positive real m,  mod m is defined as  — m - L J , yielding a value in the range [0, m)

xz
m
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Definition 3.6 (Fourier Number Loss Function). Let h € R? denote the last-layer hidden state of the
model. Let y; denote the i-th digit of the label number y. Let Loy denote the cross entropy loss. For
digit i, we define the Fourier Number Loss Function Lrong as:

Leone(h,y, ) i= Lew(yi, (p[24], h[2i +1]]- [6(0,10); - 36(9,10)])).

1x2 2x10

This construction allows each digit to be treated as a separate prediction task while sharing the same
underlying model representation h. By taking the average of Leone(h, y, 9) over all digit positions 4,
we obtain the final training loss.

Definition 3.7 (Fourier Number Prediction for the i-th digit). Let h € R? denote the last-layer hidden
state of the model. For digit i, we define the Fourier Number Prediction as:

i = arg max ([h[2d], h[2i +1]] - [6(4, 10 )
Goi=arg max([h(2i], A2i+1]) - [6(7,10)]
Here, 7; is determined by the similarity between the hidden states and the circular embedding of
number in {0, - - - , 9} as illustrated in Figure 5(d). Once we have computed y; for each digit ¢, the
final prediction for the entire number can be formed by concatenating these digit-wise predictions.
We defer the detailed algorithms to Appendix A.

3.4 INCORPORATING FONE INTO INPUT SEQUENCES

To incorporate FONE, we create one special token [NUM] and add it to the vocabulary. This token
must be generated by the model in order to generate any number. We can then remove any tokens
corresponding to numbers from the vocabulary. The integration of FONE into input sequences
proceeds as follows, as illustrated in Figure 2 and Figure 5:

1. Extract all numbers from the input sequence to create a number list. Replace each number with
[Num] and tokenize the sequence to obtain a token list.

. Embed the token list using standard word embedding methods.

. Map each number in the number list to FONE representation using Algorithm 1 (Section 3.1).

. Add the FoNE to the word embedding of the corresponding [Num] token.

. Feed the combined embeddings into the model.

. Use the model’s output embeddings to predict the next token in the sequence.

. If the predicted token is [Num], decode the numerical value using the method described in
Section 3.3, or compute the loss during training.

NN AW

This procedure ensures that FONE embeddings are seamlessly integrated into the input sequence,
enabling the model to leverage both numerical and contextual information effectively.

4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETTING

We evaluate the performance of our proposed FoNE method on arithmetic tasks designed to bench-
mark different number embedding methods. The dataset includes tasks such as 6-digit integer
addition, 6-digit decimal addition (with 3 digits after the decimal), 5-digit integer subtraction, 3-digit
integer multiplication, and 4-digit integer multiplication. These tasks are curated to measure model
capabilities in accurate numeric computation, while remaining within ranges where baseline embed-
ding methods are still competitive—since their performance degrades rapidly for larger numbers. To
further probe the scalability of our approach, we additionally evaluate FONE on 60-digit addition in
Section 4.4, which highlights its ability to handle much larger operands where other embeddings fail.

Dataset. Each example in the dataset is formatted as [operand a] [operator] [operand
b=, where the operands a and b are sampled based on the operation type. For addition and
multiplication, we ensure a < b to avoid duplication (e.g., a + b and b 4 a are treated as identical
and included only once). For subtraction, we enforce a > b to ensure non-negative results. For an
z-digit operands dataset, each operand can have up to x digits. The dataset is divided into training,
validation, and test subsets as shown in Table 9 in Appendix I.
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Baselines. We compare our proposed FONE method against several baseline methods for numeric
embeddings. First, we consider digit-wise tokenization, where each digit in a number is treated as an
individual token. Second, we evaluate subword tokenization, where numeric values are tokenized
into subword units based on the Llama3.2-1b tokenizer’s default vocabulary. Third, we include the
X VAL method Golkar et al. (2023), which leverages explicit value-based representations for numeric
computation. As XVAL predict floating point numbers, predictions are rounded to calculate accuracy.
Finally, we fine-tune pre-trained LLMs on the same dataset for comparison.

Setup. Our experiments involve multiple configurations of randomly initialized transformer-based
models. Models were evaluated across varying sizes, ranging from small to large architectures as
defined in Table 11. For the accuracy vs. training data size experiments, we use a configuration
similar to Llama-3.2 but with 38M parameters. In Appendix J, we conduct more experiments on a
transformer model with a different configuration and observe consistent results.

Learning rates were determined through an extensive search, with the best rates selected separately
for each method based on the validation performance. Model evaluation used exact match accuracy
to assess numeric prediction correctness. All models were trained from random initialization , except
the fine-tuned Llama-3.2-1B baseline model. We varied the training data size by uniformly sampling
subsets and adjusted model sizes to compare accuracy across methods.

4.2 EXPERIMENT RESULTS
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Figure 3: Comparison of accuracy for various arithmetic tasks with respect to model and data size.

Data Efficiency. The middle panel of Figure 1 illustrates the accuracy trends of different embedding
methods as the data size increases for the 6-digit decimal addition task. Remarkably, our model
achieves 99% accuracy with just 6,400 training samples and 37.55 million parameters, requiring
64 x less training data than traditional embedding methods (409, 600/6, 400 = 64). Even with only
3,200 training samples, our method outperforms the fine-tuned Llama-3.2 model. Additionally, it
achieves perfect accuracy with 51, 200 training samples.

Beyond synthetic tasks, our approach also improves compute efficiency in real-world scenarios. For
instance, FONE requires only 149.25 tokens on average to represent numerical values from a table
in the WikiTableQuestions dataset (Pasupat & Liang, 2015), compared to 329.7 tokens used by a
digit-wise tokenizer. This significant reduction in token usage highlights the efficiency of our method
in encoding numerical data, making it more scalable for number-heavy tasks.

Parameter Efficiency. The right panel of Figure 1 shows the accuracy trends of different embedding
methods as the model size increases for the 6-digit decimal addition task. Our method achieves 97%
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accuracy with just 1 layer and 8.31 million parameters using 200k examples for training. Furthermore,
with 26.62 million parameters, it surpasses the fine-tuned Llama-3.2 model and achieves 100%
accuracy.

Different Tasks. We conducted the same experiments across all different datasets. As shown in
Figure 3, our method consistently demonstrates superior data and parameter efficiency compared to
other approaches. Notably, it is the only method that achieves perfect accuracy on 6-digit decimal
addition, 6-digit integer addition, 5-digit subtraction, and 3-digit multiplication. We also show that
our method performs better in a binary classification task that involves numerical values in Figure 6
and Figure 7 . Specifically, the task requires predicting a label based on a linear equation applied
to three integers. In addition, we evaluate FONE on a modular addition task. In Table 6, we show
that it outperforms standard tokenization methods, especially under large moduli where conventional
approaches fail. Due to space limitations, we defer the details to Appendix B.

Training and Inference Efficiency. Table 1 compares the training and test times used for one
epoch across different embedding methods. Our method is consistently faster than digit-wise and
subword embedding methods, as it uses one token to embed each number. Compared with XVAL, our
method consistently achieves higher accuracy. Additionally, we show the number of tokens required
to tokenize the maximum number for different methods, highlighting the efficiency of our approach.

Table 1: Training and inference efficiency comparison across three arithmetic tasks. The times are
reported in minutes (') and seconds ().

Decimal Addition Subtraction Multiplication
Method Train Time Test. Tokens Accuracy Train. Test. Toks. Acc. Train. Test. Toks. Acc.
Ours 318" 29" 1 100 2/42" 29" 1 100 2/56" 33" 1 98.56

Digit-wise ~ 11'48”  1'25" 7 99.85 941" 115”7 5 99.71 10'11”7 118" 8 81.21
Subword 646" 58" 3 97.94 547" 547 2 91.66 620" 58" 3 8.5
XVAL 317" 27" 1 044 254" 27" 1 341 256" 26" 1 0

4.3 ABLATION STUDIES

Linear Layer after FONE. As discussed in Section 3.1, we evaluate the use of a linear layer applied
after FONE and compare it with the approach of appending zeros to align the embedding dimensions
with the model’s input requirements. As shown in Table 2, both configurations achieve almost the
same accuracy. Hence, either technique can be used to align FONE with the embedding dimension.

Table 2: Accuracy Comparison Across Datasets Table 3: Accuracy Comparison Across Periods

Task Linear Zero Padding Dataset 2,510 10 5 7

Decimal Addition  100% 100% Decimal Addition 100 100 1.52 3.64
Integer Addition 100% 100% Integer Addition 100 100 1.55 0.02
Multiplication 99.95% 99.91% Multiplication 99.99 99.95 3.67 191
Subtraction 100% 100% Subtraction 100 100 4.64 0.24

Effect of Different Periods. As discussed in Section 3.1, the modular group captures the necessary
information for each digit, ensuring the effectiveness of our approach. We test the model with
base periods of [2,5,10], [5], and [7], as shown in Table 3. The [2,5, 10] configuration achieves
accuracy comparable to that of the 10-period setup across different datasets. In this paper, we choose
single 10 to make it more parameter efficient. However, configurations using only mod 5 or mod 7
exhibit significantly lower accuracy. This is because neither mod5 nor mod7 can fully represent
the required information for all digits.

The mispredictions are attributed to the absence of critical modular information. As illustrated in
Table 12 in Appendix I, in the decimal addition task, using only a mod5 representation prevents the
model from distinguishing between certain digits, such as 2 and 7, which results in errors.

Necessity of Sine and Cosine Encoding. A natural question arises: are sinusoidal encodings truly
necessary for arithmetic tasks? One could directly encode each digit into a separate dimension of
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the embedding, representing a number like 567 as [5, 6, 7]. However, this approach fails to achieve
perfect accuracy. For instance, numbers such as 999 and 888 become nearly indistinguishable after
layer normalization, which reduces their differences and can lead to confusion during training. We
evaluate this direct encoding method on 6-digit decimal addition and, after performing a learning
rate search, find that the best accuracy is 99.3% with a learning rate of 0.01 and training for 100
epochs. In contrast, FONE achieves better accuracy in just 6 epochs with the same dataset and model
size. This suggests that naive direct encoding does not adequately preserve numerical distinctions
for reliable arithmetic operations. As illustrated in Table 13 in the appendix, the model frequently
mispredicts 8 as 9, further demonstrating the limitations of direct encoding in preserving numerical
structure.

4.4  APPLICATIONS AND COMPLEMENTARITY OF FONE
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(a) Impact of combining FONE with Abacus embedding (b) Test accuracy of 60-digit addition with FONE

Figure 4: (a) Performance improvements achieved by combining FONE with the Abacus embedding
method across various random seeds. The transformer is trained on addition tasks with up to 10-digits
numbers (represented by the smaller square) and tested up to 50-digit numbers. (b) Average accuracy
of an 8-layer transformer model on 60-digit addition tasks using FoNE for chunked input.

Combining FoNE with Abacus. FoNE can be combined with other positional embedding methods
even with different tokenization methods, requiring only minor modifications. For instance, we
integrated FONE with the Abacus embedding method (McLeish et al., 2024a), which operates on
digit-wise tokenization. In this setup, the embeddings for each digit (0-9) are replaced with their
corresponding FONE. We trained an 8-layer transformer model on integer addition tasks with up to
10 digits and tested it on addition tasks involving up to 50-digit numbers. The results, as illustrated in
Figure 4(a) and Figure 11 in Appendix G, show that incorporating FONE consistently improves the
performance of the Abacus method across various random seeds. This highlights the complementary
benefits of combining FONE with other positional embedding strategies.

How does FoNE Handle numbers with longer digit sequences The maximum digit length that a
float 64 data type can represent is 15 digits. When x exceeds 15 digits in length, applying FONE(z)
directly may result in a loss of precision. To address this, z can be divided into smaller chunks, and
FoNE can be applied to each chunk independently. For example, = can be split into groups of five
digits. The FoNE can then be calculated for each chunk, resulting in a representation of length 10 per
chunk, as each digit is encoded in two dimensions. These embeddings are subsequently concatenated
to obtain the final number embedding for x. Note that we are still using one token for each number.
By using this method, as shown in Figure 4(b), an 8-layer transformer trained on 60-digit addition
achieved an average accuracy of 97.42% across different operand length with just one forward pass.
This demonstrates the effectiveness of FONE in handling long sequences.
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5 DISCUSSION

Q1: Why not use regression loss instead of classification loss, which minimizes RMSE and
can yield smaller prediction errors (Zausinger et al., 2024). The key limitation is that regression
produces continuous values, making it impossible to integrate number-related tasks with general lan-
guage modeling. For example, when predicting the year “1997”, regression may output “1996.9999”,
which is acceptable under regression metrics but unusable in sequence generation or token-based
reasoning. In contrast, FONE retains a classification-based loss, so it does not require explicitly
identifying which numbers are used for arithmetic. This ensures seamless compatibility with standard
LLM training while still delivering accurate numerical representations.

02: Why does FoNE outperform other number embedding methods? Note that since FONE
uses the ratio between entries to represent numbers as shown in Lemma 3.4, it is unaffected by
layer normalization and RMS normalization (Lemma D.2), in contrast to xVal (Golkar et al., 2023),
which uses the magnitudes of entries. Other approaches, such as DICE (Sundararaman et al., 2020)
and SALSA (Stevens et al., 2024), map numbers onto a single unit circle, which can limit their
capacity to distinguish between different magnitudes effectively. FoNE, by leveraging multiple
sinusoidal components, captures both the magnitude and periodicity of numbers more precisely.
This comprehensive representation enables FONE to achieve higher accuracy and generalization in
number-related tasks.

03: Why do we choose components with periods that are multiples of 10, i.e., 10, 100, 1000 - - - ?
As shown in Zhou et al. (2024) and Figure 9, pre-trained LLMs trained on diverse datasets and
strategies consistently learn nearly identical key frequency components. These components have
periods of 10 and its divisors, such as 2 and 5. Since mod10 can already represent a single digit,
we believe that mod 2 and mod 5 contribute to enhancing robustness. Models trained on real-world
text data—where numbers are almost always expressed in decimal-—commonly learn frequency
components that correspond to mod10. In principle, we could choose alternative bases (such as 5,
16, etc.) to help the model better learn arithmetic in those bases, as demonstrated in Table 5. However,
since most large language models primarily encounter numbers in base 10, and our results show that
base-10 FoNE already performs well on arithmetic tasks in other bases (Table 4), we adopt base 10
as the default. Additional experiments validating this choice are provided in Appendix B.

Q4: Can FoNE be integrated into pretrained LLMs without harming their semantic abilities?
We provide a continual pretraining experiment with a simplified version of FONE in Appendix H, since
full pretraining from scratch with LLMs is beyond the scope of this paper. The results show that FONE
can be naturally integrated into LLM pipelines: it improves arithmetic with larger numbers while
preserving general language ability. This suggests that FONE offers a practical path for enhancing
numerical reasoning in existing pre-trained models without sacrificing their semantic competence.
As discussed by Meng et al. (2022), the semantic associations of tokens—such as the historical or
cultural meaning of a year—are often stored in the MLP layers of transformer models rather than
in the token embeddings themselves. This implies that LLMs can maintain semantic knowledge
of numbers in higher layers, while FONE provides precise numerical embeddings at the input level.
Consequently, the two roles are complementary: FONE ensures accurate numerical representation,
and the model’s MLP layers preserve semantic meaning.

6 CONCLUSION

In this paper, we introduced FONE, a novel method for representing numbers in the embedding space
of LLMs. By leveraging Fourier features, FONE directly maps numbers into a compact and precise
representation, bypassing tokenization inefficiencies and preserving essential numerical properties.
FoNE has significant implications for pre-training LLMs. By incorporating FONE, models can
develop a robust understanding of numerical concepts, addressing a fundamental limitation in current
architectures. We believe our work establishes a solid foundation for future research on a wide
range of number-related tasks, including time-series analysis, quantitative reasoning, and complex
operations in fields like physics and mathematics.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. The FONE method is defined
step by step in Section 3.1 and Section A. Our experimental setup, including datasets, sampling rules,
model configurations, and training details, is described in Section 4.1 and Appendix I.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng Li, and Wei Liu. Improving vision
transformers by revisiting high-frequency components. In European Conference on Computer
Vision, pp. 1-18. Springer, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. Tempo:
Prompt-based generative pre-trained transformer for time series forecasting. arXiv preprint
arXiv:2310.04948, 2023.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang, and
Tony Xia. Theoremqa: A theorem-driven question answering dataset. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 7889-7901, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego
Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models on tabular
data—a survey. arXiv e-prints, pp. arXiv—2402, 2024.

Guhao Feng, Kai Yang, Yuntian Gu, Xinyue Ai, Shengjie Luo, Jiacheng Sun, Di He, Zhenguo Li,
and Liwei Wang. How numerical precision affects mathematical reasoning capabilities of llms.
arXiv preprint arXiv:2410.13857, 2024.

Pierre-Etienne Fiquet and Eero Simoncelli. A polar prediction model for learning to represent visual
transformations. Advances in Neural Information Processing Systems, 36, 2024.

Yanjun Gao, Skatje Myers, Shan Chen, Dmitriy Dligach, Timothy A Miller, Danielle Bitterman,
Matthew Churpek, and Majid Afshar. When raw data prevails: Are large language model embed-
dings effective in numerical data representation for medical machine learning applications? arXiv
preprint arXiv:2408.11854, 2024.

10



Under review as a conference paper at ICLR 2026

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one day.
In International Conference on Machine Learning, pp. 11117-11143. PMLR, 2023.

Siavash Golkar, Mariel Pettee, Michael Eickenberg, Alberto Bietti, Miles Cranmer, Geraud Krawezik,
Francois Lanusse, Michael McCabe, Ruben Ohana, Liam Parker, et al. xval: A continuous number
encoding for large language models. arXiv preprint arXiv:2310.02989, 2023.

Jiuxiang Gu, Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits
in neural networks: Unlocking the potential of large language models in mathematical reasoning
and modular arithmetic. arXiv preprint arXiv:2402.09469, 2024.

Keji He, Chenyang Si, Zhihe Lu, Yan Huang, Liang Wang, and Xinchao Wang. Frequency-enhanced
data augmentation for vision-and-language navigation. Advances in Neural Information Processing
Systems, 36, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URL https://arxiv.
org/abs/2009.03300.

Ermo Hua, Che Jiang, Xingtai Lv, Kaiyan Zhang, Ning Ding, Youbang Sun, Biqing Qi, Yuchen
Fan, Xuekai Zhu, and Bowen Zhou. Fourier position embedding: Enhancing attention’s periodic
extension for length generalization. arXiv preprint arXiv:2412.17739, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Chengyue Jiang, Zhonglin Nian, Kaihao Guo, Shanbo Chu, Yinggong Zhao, Libin Shen, and Kewei
Tu. Learning numeral embeddings. arXiv preprint arXiv:2001.00003, 2019.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-1lm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fernando
Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, et al. Cladder: A benchmark to assess

causal reasoning capabilities of language models. Advances in Neural Information Processing
Systems, 36, 2024.

Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition. arXiv
preprint arXiv:2502.00873, 2025.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Amit Arnold Levy and Mor Geva. Language models encode numbers using digit representations in
base 10. arXiv preprint arXiv:2410.11781, 2024.

Shixuan Li, Wei Yang, Peiyu Zhang, Xiongye Xiao, Defu Cao, Yuehan Qin, Xiaole Zhang, Yue Zhao,
and Paul Bogdan. Climatellm: Efficient weather forecasting via frequency-aware large language
models. arXiv preprint arXiv:2502.11059, 2025.

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer—-circuits.
pub/2025/attribution—-graphs/biology.html#dives—addition.

Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, and Shu-Tao

Xia. Taming pre-trained llms for generalised time series forecasting via cross-modal knowledge
distillation. arXiv preprint arXiv:2403.07300, 2024a.

11


https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-addition
https://transformer-circuits.pub/2025/attribution-graphs/biology.html#dives-addition

Under review as a conference paper at ICLR 2026

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei Chang, and Yansong Feng. Are llms capable of
data-based statistical and causal reasoning? benchmarking advanced quantitative reasoning with
data. arXiv preprint arXiv:2402.17644, 2024b.

Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, and James T
Kwok. A survey on time-series pre-trained models. IEEE Transactions on Knowledge and Data
Engineering, 2024.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, et al. Transformers can do
arithmetic with the right embeddings. arXiv preprint arXiv:2405.17399, 2024a.

Sean McLeish, Avi Schwarzschild, and Tom Goldstein. Benchmarking chatgpt on algorithmic
reasoning. arXiv preprint arXiv:2404.03441, 2024b.

Kazem Meidani, Parshin Shojaee, Chandan K Reddy, and Amir Barati Farimani. Snip: Bridging math-
ematical symbolic and numeric realms with unified pre-training. arXiv preprint arXiv:2310.02227,
2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359-17372, 2022.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
simple arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter. An
overview of early vision in inceptionvl. Distill, 5(4):e00024—002, 2020.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311-3325, 1997.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 1470-1480, Beijing, China, July 2015. Association for Computational Linguistics.
doi: 10.3115/v1/P15-1142. URL https://aclanthology.org/P15-1142.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term
frequencies on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Maria Sahakyan, Zeyar Aung, and Talal Rahwan. Explainable artificial intelligence for tabular data:
A survey. IEEE access, 9:135392-135422, 2021.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Jiandong Shao, Yao Lu, and Jianfei Yang. Benford’s curse: Tracing digit bias to numerical hallucina-
tion in llms. arXiv preprint arXiv:2506.01734, 2025.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

Safal Shrestha, Minwu Kim, and Keith Ross. Mathematical reasoning in large language mod-
els: Assessing logical and arithmetic errors across wide numerical ranges. arXiv preprint
arXiv:2502.08680, 2025.

12


https://aclanthology.org/P15-1142

Under review as a conference paper at ICLR 2026

Jasivan Alex Sivakumar and Nafise Sadat Moosavi. How to leverage digit embeddings to represent
numbers? arXiv preprint arXiv:2407.00894, 2024.

Samuel Stevens, Emily Wenger, Cathy Li, Niklas Nolte, Eshika Saxena, Francois Charton, and Kristin
Lauter. Salsa fresca: angular embeddings and pre-training for ml attacks on learning with errors.
arXiv preprint arXiv:2402.01082, 2024.

Dhanasekar Sundararaman, Shijing Si, Vivek Subramanian, Guoyin Wang, Devamanyu Hazarika, and
Lawrence Carin. Methods for numeracy-preserving word embeddings. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 4742-4753,
2020.

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting? arXiv preprint arXiv:2406.16964, 2024.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn

high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537-7547, 2020.

Avijit Thawani, Jay Pujara, Pedro A Szekely, and Filip Ilievski. Representing numbers in nlp: a
survey and a vision. arXiv preprint arXiv:2103.13136, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Jonas Zausinger, Lars Pennig, Anamarija Kozina, Sean Sdahl, Julian Sikora, Adrian Dendorfer, Timo-
fey Kuznetsov, Mohamad Hagog, Nina Wiedemann, Kacper Chlodny, et al. Regress, don’t guess—a
regression-like loss on number tokens for language models. arXiv preprint arXiv:2411.02083,
2024.

Fan Zhou, Zengzhi Wang, Nikhil Ranjan, Zhoujun Cheng, Liping Tang, Guowei He, Zhengzhong
Liu, and Eric P. Xing. Megamath: Pushing the limits of open math corpora, 2025. URL https:
//arxiv.org/abs/2504.02807.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
arXiv preprint arXiv:2310.16028, 2023a.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained lm. Advances in neural information processing systems, 36:43322-43355, 2023b.

Tianyi Zhou, Deqing Fu, Vatsal Sharan, and Robin Jia. Pre-trained large language models use fourier
features to compute addition. arXiv preprint arXiv:2406.03445, 2024.

13


https://arxiv.org/abs/2504.02807
https://arxiv.org/abs/2504.02807

Under review as a conference paper at ICLR 2026

APPENDIX

Detailed Algorithms for Computing FoNE, and Making Predictions

FoNE on Binary Classification and Modular Arithmetic Task

More Related Work

Preliminaries and Missing Proofs

D.1 Preliminaries . . . . . . . . . . . . e

D.2 MissingProofs . ... ... ... ... oL

More Evidence

E.1 LLMs Struggle with Multi-digit Arithmetic . . . . . . ... ... ..

E.2 Emergence of Fourier Features during Pre-training . . . .. ... ..

FoNE for 60-digit Integer Addition in One Forward Pass

Combining FoNE with Abacus

Continue Pretraining LL.Ms with Simplified FONE

More Details on Experimental Setup

L1 AblationStudy . . . ... .. ... ...

Replicating Results on GPT2-Large Based Model

R? Comparison for Different Arithmetic Tasks

14

15

16

18

19
19
19

21
21
21

23

23

24

25
25

27

28



Under review as a conference paper at ICLR 2026

A DETAILED ALGORITHMS FOR COMPUTING FONE, AND MAKING
PREDICTIONS

In this section, we provide the detail pipeline and algorithms of how we compute FONE, get the final
loss and final prediction as defined in Section 3.1.

We first show the how are FONE and Fourier number decoding integrated with regular Transformer
pipeline.

R N

a
@ Input @ Fourier Number Decoding

Input Sequence: Numbers: Tokens:

18+6i= "™ [1864] [Num] + [Num] = )

l 18

b R
(b) Fourier Number Embedding

Prediction(hy, hy, h3,hy) =2+ 8 x 10 = 82

] Last hidden state h: m-

[(c) Transformer }

FoNE(18) = 2T 18) sin(2T 18 2 1g),sin( 2% 18),0,0
o = [cos 10 ,sin 10 ,COS 100 ,sin 100 ,0, ]
L

L Y J Y J Fourier Number Embedding -
18 mod 10 18 mod 100 Embedding([Num])

J

Figure 5: (a) We extract all the numbers from the input sequence. (b) For each number, we use
FoNE to directly map the number to its embedding. The first two entries in the embedding represent
18 mod 10, while the next two entries represent 18 mod 100. (c) We pad the FONE with zeros, add
it to the word embeddings, and then feed the combined embeddings into the model. (d) For each
digit, we take every two entries from the last hidden state and find the number whose representation
is closest to these two entries.

Next we show the exact algorithms we use to compute FONE, compute loss and make the final
prediction.

Algorithm 1 Fourier Number Embedding (FONE) Algorithm
1: procedure FOURIERNUMBEREMBEDDING(z € R,m € Z>g,n € Z>q,d € Z~q)

2: Inputs: Number z, integer digit length 1, decimal digit length n, embedding dimension d

3: Initialize empty embedding vector FONE ¢ ||

4: fori=—-n+1—mdo > Loop over all scales from 10~"*1 to 10™

5: T; < 10° > Set the period for the current scale

6: o(x,T;) + (cos(%x), sin(%x)) > Compute the circular embedding for scale T;

7: Append ¢(x, T;) to FONE > Add the embedding for this scale to the result

8: end for

9: while Length(FoNE) < d do > Ensure embedding dimension matches the target
10: Append 0 to FoONE > Zero-pad

11: end while
12: return FoNE
13: end procedure

15
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Algorithm 2 Fourier Number Loss & Prediction

1: function FOURIERNUMBERLOSSFUNCTION(h, ¥, 7)
2: y; < the ¢-th digit of y

3 a< [h[2i],h[2i + 1]]

4 b [6(0,10),6(1,10), -+, $(9,10)] T
5: logits <—a - b
6.
7
8

return loss
end function

\o-c .. .

: function FOURIERNUMBERPREDICTION(h, 7)
10: logits < [h[2d], h[2i +1]] - [¢(5,10)] ,_,
11: Ui < argmax;eo,... o} logits[j]

12: return 7;

13: end function

loss < Lcg(y;, logits) > Cross-entropy loss for digit i

> Prediction for digit i

Algorithm 3 Fourier Number Final Loss & Prediction

1: function FOURIERNUMBERFINALLOSS(h, y, m, n)

2: totalLoss < 0

T+ [m+n]

for: € 7 do
digitLoss +— FOURIERNUMBERLOSSFUNCTION(h, y, ©)
totalLoss <— totalLoss + digitLoss

end for

finalLoss < %

9: return finalLoss

10: end function

11: function FOURIERNUMBERFINALPREDICTION(h, m, n)

12: y+<0

13: Trae <+ [0,...,n—1]

14: Tt < [ny...,m+n—1]

15: for ¢ € Zg,. do

AN A

> Compute average loss

> Average over all digit positions

> Compute final prediction

> Fractional digit indices
> Integer digit indices

16: logits; « [h[2d], h[2i + 1]] - [¢(5,10)] .y 4

17: Ui < argmax;eo,... o} logits; [4]

18: G J+7;-10"(n0 > Scale fractional part by 10~ (")
19: end for

20: for j € Z;,; do

21: logits; < [h[2;], h[2j +1]] - [¢(5,10)] ,_, 4

22: Y; + arg max;e{o,....0} logitsj [7] .
23: y—y+y 100" > Scale integer part by 107
24: end for

25: return §

26: end function

B FONE ON BINARY CLASSIFICATION AND MODULAR

ARITHMETIC TASK

In this section, we demonstrate that FONE outperforms other methods on binary classification tasks

and modular arithmetic tasks, benefiting from its precise representation.

Binary Classification Task Each example in the dataset is formatted as [numl, num2, num3],
where the integers numl, num2, and num3 are sorted in ascending order (numl < num2 < numd3)
to ensure uniqueness and eliminate duplicate representations of the same combination. The integers

are uniformly sampled from the range [0,1000]. The label for each
evaluating the linear equation

a-numl 4+ b - num2 + ¢ - num3 — d,

16

example is determined by



Under review as a conference paper at ICLR 2026

using predefined coefficients a = 1.5, b = —2,c=0.5,andd = 10and a = 1.5, b = =2, ¢ = 0.5,
and d = —190. If the result is greater than zero, the label is assigned as 1; otherwise, it is assigned
as 0. The dataset is divided into training, validation, and test subsets, as outlined in Table 9. Figure
6 and Figure 7 show that FONE outperforms the regular embedding method, XVAL, and even a
fine-tuned Llama-3.2-1B model by requiring less data and achieving higher accuracy.

Results - Accuracy (%) Results - Accuracy (%)
100 s s
80+
= —e— Ours [Best Acc=99:805%] 9
2 60- ] < 60-
= «- Finetuned on llama-3.2-1b-instruct [Best Acc=98.195%] -
E —— Regular (digit-wise) [Best Acc=98.165%] E
2 20- Regular (subword) [Best Acc=97.22%] é 40+
< — Xval [Best Acc=54.305%] < Ours [Best Acc=9981%]
igit-wise) [Best Acc=99.175%]
20 (subword) [Best Acc=97.725%]
Finetuned on Llama-3.2-1B-Instruct [Best Acc=97.7%]
« - 01 5 - - - -
102 10° 104 10° 10 20 30 40 50 60
Training Data Size (Log Scale) Model Size (Million Parameters)
(a) Accuracy vs. Training Data Size (b) Accuracy vs. Model Size

Figure 6: We train Llama-3.2-1B from scratch with random initialization using different number
embedding methods on number classification where d = 10. The test accuracy is compared across
varying data sizes and model sizes.

Results - Accuracy (%) Results - Accuracy (%)
80
g € oo
>
5
3 40 $ 40
< —e— Ours [Best Acc=99.82%] —e— Ours [Best Acc=99.765%]
-+~ Finetuned on llama-3.2-1b-instruct [Best Acc=98.465%] —e— Regular (digit-wise) [Best Acc=99.435%] .
200 Regular (digit-wise) [Best Acc=97.975%] 'y 207 e Finetuned on Llama-3.2-1B-Instruct [BestAct;=98ﬁ75%]
Regular (subword) [Best Acc=97.89%)] // Regular (subwe@ﬁest Acc=97.68%]
o= Xyal [Best Acc=14.89%] e o —— Xvak{Best Acc=22.665%]
10? 10° 104 10° 10 20 30 40 50 60
Training Data Size (Log Scale) Model Size (Million Parameters)
(a) Accuracy vs. Training Data Size (b) Accuracy vs. Model Size

Figure 7: We train Llama-3.2-1B from scratch with random initialization using different number
embedding methods on number classification where d = —190. The test accuracy is compared across
varying data sizes and model sizes.

Modular Arithmetic and Base Selection We conduct experiments varying the FONE base from 7
to 13 and observed a clear “sweet spot” at base 10. For example, at base 7 the addition, subtraction,
and multiplication accuracies are only 17.66 %, 1.93 %, and 0.54 %, respectively, while at base 10
we achieve 100 % accuracy on addition and subtraction after just 4 and 26 epochs, and 99.25 % on
multiplication after 50 epochs. Accuracy then fall off again at larger bases (e.g., at base 13: 1.06
%, 5.71 %, and 1.91 %). This confirms that bases that are too small or too large degrade digit-level
distinguishability.

We also aligned FoNE’s moduli to the numbers’ representation base by preprocessing inputs into
base 5. In that setting, only the FONE embedding with period 5 reached perfect accuracy (100 % in 6
epochs), whereas other periods (2—4 and 7-8) yielded near-zero to sub-20 % accuracy (e.g., period 2:
0.25 %; period 3: 0.12 %; period 7: 16.38 %). This again demonstrates that FONE performs best
when its moduli match the underlying digit base.
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Table 4: Accuracy (%) on arithmetic tasks under different bases.
Base Epochs (Add/Sub/Mul) Accuracy (Add/Sub/Mul)

7 50/50/50 17.66/1.93/0.54

8 50/50/50 40.91/6.07/0.33

9 50/50/50 65.49/65.63/65.78
10 4/26/50 100.00 / 100.00 / 99.25
11 50/50/50 99.99/99.99/78.76
12 50/50/50 99.78/99.99/54.14
13 50/50/50 1.06/5.71/1.91

Table 5: Accuracy (%) with base-5 number inputs, under varying FONE periods.
FoNE Period Epochs Accuracy (%)

2 50 0.25
3 50 0.12
4 50 0.17
5 6 100.00
7 50 16.38
8 50 99.97

We additionally benchmarked FoNE on modular addition tasks with varying moduli. The goal is to
predict « + y mod m, where z,y € [0, m). FONE consistently outperforms standard tokenization,
especially at higher moduli.

Table 6: Accuracy (%) on modular addition tasks across various moduli.

Modulus . FoNE Accuracy Standard Tokenization Accuracy

11 100.00 99.98
60 99.27 99.99
97 100.00 0.89

100 100.00 18.17
113 100.00 99.99
121 100.00 5.48
225 100.00 65.10
256 100.00 70.20
257 100.00 11.36

These experiments validate our claim that FONE is most effective when its moduli align with the
target numeral base, and it remains robust even in high-modulus arithmetic settings where standard
tokenization breaks down.

C MORE RELATED WORK

Fourier Features. Fourier features are commonly observed in image models, particularly in the
early layers of vision models Olshausen & Field (1997); Olah et al. (2020); Fiquet & Simoncelli
(2024). These features enable the model to detect edges, textures, and other spatial patterns effectively.
However, Transformers struggle to capture high-frequency components (Bai et al., 2022; Tancik
et al., 2020). Augmenting data with high-frequency components or explicitly encoding coordinates
using Fourier features has been demonstrated to improve model performance (Tancik et al., 2020;
He et al., 2024; Hua et al., 2024). In fact, the original Transformers paper (Vaswani et al., 2017)
uses Fourier features to encode the position information of tokens; however, it does not apply this
idea to number tokens to aid with numerical tasks. In modular addition tasks, studies have revealed
that after “grokking,” a one-layer Transformer can learn to solve the task perfectly by leveraging
Fourier features (Nanda et al., 2023; Gu et al., 2024). Furthermore, Zhou et al. (2024) demonstrate
that LLMs naturally encode numbers using Fourier features during pretraining, leveraging these
representations for arithmetic tasks (Levy & Geva, 2024; Kantamneni & Tegmark, 2025; Lindsey
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et al., 2025). Building on this insight, we propose using modular Fourier components to explicitly
represent digits, enabling models to perform precise numerical computation. This allows algebraic
operations to be carried out in a component-wise, parallel manner and overcomes the limitations of
token-based number representations.

D PRELIMINARIES AND MISSING PROOFS

D.1 PRELIMINARIES

In this section, we provide the necessary mathematical definitions and concepts used throughout the
paper.

Period and Frequency. A function f(x) is periodic with period T' > 0 if f(z + T') = f(x) for all
x. The period T represents the smallest positive value for which the function repeats. The frequency

f of a periodic function is the reciprocal of its period, f = &, and describes the number of cycles

T>
completed in one unit interval. For the sine and cosine functions cos (Q%x) and sin(%ﬂx) , the period

isT.

Unit Circle. The unit circle is the set of points in the plane at a distance of 1 from the origin, given
by 22 + y? = 1. The coordinates of points on the unit circle can be parameterized as (cos ,sin 6),
where @ is the angle measured counterclockwise from the positive x-axis. For any angle 6, cos 6
represents the x-coordinate, and sin 6 represents the y-coordinate.

Two-Argument Inverse Tangent. The two-argument inverse tangent function, atan2(y, x), deter-
mines the angle § (modulo 27) given the coordinates (z,y) = (cos 6, sin §). Specifically,

0 = atan2(y, x),

which resolves the angle 6 uniquely based on the signs of x and y.

Modular Arithmetic. Modular arithmetic considers equivalence classes of numbers under a
modulus 7" > 0. For integers @ and b, a = b (mod T') if T' | (a — b), meaning a and b differ by an
integer multiple of 7.

Fourier Representation. Periodic functions with period 7" can be represented using the fundamen-
tal frequencies 27” Eor faxample,.the embeddings (co.s(g%x) , Sin(%ﬂx)) capture the periodicity of
modulo 7" by mapping it to a unique point on the unit circle.

D.2 MISSING PROOFS

In this section, we provide some missing proofs.

Lemma D.1 (Formal version of Lemma 3.3). Given the pair (cos(3£z),sin(25x)), we can recover
x mod T.

Proof. Let0 = 2% 2. Then the given pair becomes
(cos(8),sin(8)).

From this pair, one can recover ¢ uniquely modulo 27. Concretely, 6 can be obtained (modulo 27)
using the two-argument inverse tangent function:

6 = atan2(sin(6), cos(d)) (mod 2m).
Since 0 = 2% x, we have
T
2
Hence z is determined up to integer multiples of T, i.e., x mod 7.

Tr =

In other words, if

(cos(ZEx1),sin(ZExy)) = (cos(ZEas),sin(ZEx,)),
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then 2Z2y = 2z, (mod 27), which implies 21 = x5 (mod T). Therefore, from the pair
(cos(35x),sin(%%x)), we can indeed recover z mod T'. O

Lemma D.2 (Layer-Normalized FONE Preserves Numeracy). Given a number’s Layer-Normalized
Fourier Number Embedding LN(FoNE(z) + p), where FONE(x) is the Fourier Number Embedding
of © and p is an orthogonal positional encoding vector, assume the mean of FONE(z) + p is 0. Let
m be the integer digit length of x and n be the decimal digit length of x. Then, using Lemma 3.3, we
can recover © mod 10° for each integer i in the range —n + 1 to m.

Proof. Assume the mean of x = FONE(x) 4+ p is 0, i.e., u = 0. Under this assumption, LayerNorm
simplifies to:

LN(x) =

X
]
o
where o is the standard deviation of x.

Let u = FONE(z) encode the scalar x, and let p be an orthogonal positional encoding vector such
that:

lu =|pll=1 and u-p=0.
Then, the input to LayerNorm is:

X =u-+p.

The standard deviation o of x is given by:

where d is the dimensionality of x. Since p = 0, this simplifies to:
1
o=/ 5l

x| = lu+pl* = [ul* + [p|* + 2u - p.

Substitute x = u + p:

By orthogonality and unit norm, u - p = 0, ||u/|? = 1, and ||p||? = 1. Thus:

IxIP=1+1+0=2.

The LayerNorm operation simplifies to:

LNG) = = = 292 = \/§<u+p>.

: d
This rescales u and p by a factor of \g .

Therefore:

The key observation is that LayerNorm applies a uniform scaling to all components of x. Since u
and p are orthogonal and their relative directions are preserved, the numerical relationships encoded
in u (which represent z) are preserved up to a scaling factor.

By Lemma 3.3, the numeracy of x is preserved. This means we can recover x mod 10° for all 7 in
the range —n + 1 < 7 < m, as the normalized embedding retains the necessary information about x.

O
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The same result holds for RMSNorm because it also applies a uniform scaling (based on the root
mean square of the input) while preserving the relative directions of the embedding components, thus
maintaining the numeracy of z.

Notet that standard sinusoidal positional encodings (PEs) (Vaswani et al., 2017) cannot serve as a
substitute for numerical embeddings. PEs are explicitly constructed to distinguish token positions in
a sequence, not to represent the magnitude or digit structure of real numbers. They use a fixed set of
exponentially spaced frequencies to ensure each position has a unique yet non-invertible signature;
as a result, there is no straightforward way to recover the original numeric value (or its individual
digits) from a PE embedding. Moreover, the frequencies in PEs are chosen for positional uniqueness,
not for digit-aligned modular arithmetic, so small changes in numeric value can produce large,
non-monotonic changes in the embedding space—precisely the opposite of the smooth, digit-wise
variation required for accurate number encoding. Unlike FNE’s digit-aligned sinusoidal components
(e.g., mod 10, mod 100, ...), PEs do not guarantee invertibility with respect to numeric operations.

E MORE EVIDENCE

E.1 LLMS STRUGGLE WITH MULTI-DIGIT ARITHMETIC

We evaluate five production LLMs (Claude 3.7 Sonnet, DeepSeek V3.1, Gemini 2.5 Flash, GPT-5,
and Qwen3-235B) on direct arithmetic without chain-of-thought, code execution, or tools. For each
setting, we sample 100 IID problem instances with uniformly distributed operands over the full d-digit
numbers. Tasks include d € {3,4,5,6} for multiplication and d € {7,8, 50} for addition. Models
receive a two-shot, operation-matched prompt and must return a single integer only. Decoding uses
temperature 0. We parse the first integer token from the response and score exact-match accuracy by
numeric equality with the reference.

Multiplication Addition
Model 3 4 5 6 7 8 50

Claude 3.7 Sonnet 1.00 0.53 0.02 0.00 1.00 097 0.82
DeepSeek V3.1 094 025 0.01 000 095 095 0.34
Gemini 2.5 Flash ~ 0.58 0.11 0.00 0.00 099 096 0.33
GPT-5 0.74 0.09 0.00 0.00 098 0.92 0.66
Qwen3-235B 094 0.62 0.05 001 099 098 0.28

Table 7: Exact-match accuracy on direct multi-digit arithmetic; columns indicate digits per operand.
Each entry averages 100 IID problems per setting with uniformly sampled d-digit operands. Two-shot
prompting, single-integer output only.

Results. Even the most recently released LLMs still struggle with multi-digit multiplication, while fail
to achieve perfect accuracy on addition. For multiplication, accuracy drops sharply as operand length
increases: models perform well on 3-digit multiplication (> 0.58), but fall below 0.10 for 5-digit
cases and nearly O at 6 digits. Qwen3-235B is the most robust, reaching 0.62 on 4-digit and 0.05 on
5-digit multiplication, yet still fails on 6 digits. For addition, all models achieve > 0.95 on 7-8 digit
tasks, but accuracy declines on long-sequence addition (50 digits), ranging from 0.28 (Qwen3-235B)
to 0.82 (Claude 3.7 Sonnet). In summary, LLMs excel at addition with short to medium operands but
remain brittle for both long-sequence addition and especially large-digit multiplication.

E.2 EMERGENCE OF FOURIER FEATURES DURING PRE-TRAINING

We follow Zhou et al. (2024) and conduct the same Fourier analysis on Pythia model. In Figure 8§, we
show how Pythia gradually learns the Fourier features during pre-training. With different model size,
the model gradually learn the same frequency components.

We extend the work of Zhou et al. (2024) to other pre-trained LLMs and observe similar findings:
pre-trained LLMs, regardless of the dataset used, tend to learn the same outlier frequency components.
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Fourier Analysis of Number Embeddings for Pythia Models with Different Size and Checkpoints
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Figure 8: Fourier analysis of the Pythia model’s number embeddings across pre-training checkpoints.
The figure illustrates how the Fourier features are progressively learned during pre-training, showing
the emergence of specific frequency components. Models of varying sizes exhibit a similar trend,
gradually learning the same frequency components over time.
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Figure 9: Number embedding in Fourier space for different pre-trained models.
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F FONE FOR 60-DIGIT INTEGER ADDITION IN ONE FORWARD PASS

Accuracy Percentage (Average Accuracy: 97.42%)
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Figure 10: Accuracy of an 8-layer transformer on 60-digit addition tasks, illustrating the effectiveness
of FoNE embeddings in handling long sequences. The model achieves an average accuracy of 97.42%
across different operand lengths, showcasing its capability in numerical precision and sequence
representation.

As discussed in Section 5, the maximum digit length that a f1oat 64 data type can precisely
represent is 15 digits. Consequently, even if we convert numbers to f1oat 64 and then back to
float16 to match the model weight precisionm it still introduce numerical inaccuracies when the
input x exceeds 15 digits. To mitigate this issue, we process = by dividing it into smaller chunks,
allowing the FoNE to operate effectively without precision loss.

Specifically, x is split into groups of five digits, and FONE is applied independently to each chunk.
Each digit within a chunk is encoded into two dimensions, resulting in an embedding of length 10 per
chunk. These chunk embeddings are then concatenated to form the final representation of z. This
method ensures that even for long inputs, the FONE still preserve the numeracy of the numbers.

We adopt the data generation approach from McLeish et al. (2024a), which includes all combinations
of operand lengths (7, j) up to a maximum length %, generating 20 million stratified samples to
ensure balanced representation across all length pairs. Training is conducted using a language model
cramming approach (Geiping & Goldstein, 2023), constrained to 8 exaFLOP (equivalent to 24 hours
of training on a single Nvidia RTX A6000 GPU). Using this strategy, as depicted in Figure 4(a),
an 8-layer transformer trained on 60-digit addition achieves an average accuracy of 97.42% across
various operand lengths in just one forward pass. This result underscores the effectiveness of the
FoNE in processing long numbers with high precision and computational efficiency in just one
forward pass.

G COMBINING FONE WITH ABACUS

We train decoder-only causal language models to solve arithmetic problems, following the setup
described in McLeish et al. (2024a). Inputs are formatted in a least-significant-digit-first order (e.g.,
98282 + 3859172 = 2787472), without padding between digits or operands. The training dataset
includes all combinations of operand lengths (4, ) up to a maximum length k, with 20 million
stratified samples ensuring balanced representation across all length pairs.

For input representation, we combine Fourier Number Embeddings (FONE) with the Abacus method
McLeish et al. (2024a). That each digit is embedded with FONE. Training is conducted using
a language model cramming approach (Geiping & Goldstein, 2023), constrained to 8 exaFLOP
(equivalent to 24 hours of training on a single Nvidia RTX A6000 GPU).
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Figure 11: Heatmaps of accuracy percentages for “FoNE+Abacus” (left column) and “Abacus” (right
column) across three different random seeds. Each heatmap represents accuracy as a function of the
first and second number lengths, with lighter blue shades indicating higher accuracy. The color scale
ranges from white (low accuracy) to blue (high accuracy). These visualizations highlight FONE can
combine with Abacus to improve performance.

‘We train and evaluate the models across three runs, each with a different random seed, as shown in
Figure 11. Results indicate that incorporating FONE enables the Abacus method to achieve better
generalization and higher accuracy.

H CONTINUE PRETRAINING LLMS WITH SIMPLIFIED FONE

In this section, we demonstrate that our FONE token embedding can be merged with any existing LLM
with slight continual pretraining. We made a simplification of FONE where instead of override all the
number emebdings which could make continual pretraining harder, we build the simplified FONE on
top of existing BPE tokenization. For example, an number in the digit-wise form x = aga; - - - ay,
will be first grouped into subword by BPE tokenization BPE(z) = (agayas), (azasas), -« , (- - ax).
We compute FONE embedding of each subword, and continual pretrain a linear projection layer from
the FONE embedding space to the orginal token embedding space to align the embeddings similar to
vision language model’s alignment phase.
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Table 8: A simplified version of FONE improves model’s zero-shot arithmetic abilities without
sacrificing language abilities.

TASK REGULAR FONE (Simplified)
4-digit addition 51.35% 59.00%
4-digit subtraction 29.60% 39.90%
5-digit addition 29.40% 35.75%
5-digit subtraction  24.95% 33.95%
MMLU 38.10% 38.21%

Dataset. We continual pretrain both the original Llama-3.1-1B model and our FoNE adapted version
on 15B tokesn from MegaMath-Web—-Pro (Zhou et al., 2025) and evaluated on arithmetic tasks
from Brown et al. (2020) and on MMLU (Hendrycks et al., 2021).

Results. As shown in Table H, this simplified version of FONE can improve model’s zero-shot
arithmetic with larger number of digits. Moreover, the lanaguge abilities evaluated by MMLU are not
affected.

I MORE DETAILS ON EXPERIMENTAL SETUP

In this section, we provide the experiments settings that we used in the Section 4.1.

Learning rates were determined through an extensive search, with the best rates selected separately
for each method based on validation performance. Final training hyperparameters include a learning
rate of 0.005 for regular and FoONE methods, and 0.0001 for the xVal method, a batch size of 512,
and 100 epochs. The fine-tuning process required less than 10 hours, while training from scratch took
less than 3 days.

Dataset Train Size | Validation Size | Test Size

6-digit decimal addition 720,000 80,000 200,000
6-digit integer addition 720,000 80,000 200,000
5-digit integer subtract 720,000 80,000 200,000
3-digit integer multiplication 360,000 40,000 100,000
4-digit integer multiplication | 720,000 80,000 200,000
classification 720,00 80,00 200,00

Table 9: Dataset Sizes for Training, Testing, and Validation

Dataset Model Size for Varying Data Size | Data Size for Varying Model Size

6-digit decimal addition 37.55M 200,000
6-digit integer addition 37.55M 200,000
5-digit integer subtract 37.55M 200,000
3-digit integer multiplication 37.55M 360,000
4-digit integer multiplication 37.55M 360,000
4-digit integer multiplication 37.55\M 360,000
classification 37.55M 50,000

Table 10: Dataset and Configuration Sizes for Model and Data Variation Experiments

1.1 ABLATION STUDY

In this section, we present the mispredictions of the model trained with an FONE, where the periods
are multiples of 5 instead of 10. Table 12 demonstrates that, for each digit, the mispredictions
consistently deviate from the true labels by 5.

We also present the model’s mispredictions in Table 13, where each digit is encoded into a separate
dimension of the embedding. For example, the number 567 is represented as [5, 6, 7]. During training,
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Model | Hidden Size | Intermediate Size | # Hidden Layers | # Attention Heads | # Key-Value Heads
1 64 256 1 4 2
2 128 512 2 4 2
3 192 768 3 6 3
4 256 1024 4 8 4
5 320 1280 5 8 4
6 384 1536 6 8 4

Table 11: Model Configuration Table

Table 12: Mispredictions in the Final Evaluation with when we embed each digit with only mod5.

Index | Predicted Value | Actual Value
1 934.03 934.585
2 3.009 558.509
3 912.311 917.366
4 6201.003 1756.008
5 1240.34 1290.84

we compute the RMSE loss between the last hidden states and the labels. During prediction, we
interpret each entry in the last hidden state as a single digit.

Table 13: Mispredictions in the Final Evaluation when directly encoding numbers into their embed-

dings.

Index | Predicted Value | Actual Value
1 883.888 993.999
2 787.878 898.989
3 888.758 989.759
4 748.785 849.895
5 677.677 688.788
10 1179.488 1189.499
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J REPLICATING RESULTS ON GPT2-LARGE BASED MODEL

We conduct the same experiments on decimal addition using a GPT-2 Large-based model. The results
indicate that changing the model architecture does not affect the outcomes. For instance, GPT-2
Large employs LayerNorm, while Llama 3.2 uses RMSNorm.

Results - Accuracy (%) Results - Accuracy (%)
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Figure 12: We train GPT2-Large from scratch with random initialization using different number
embedding methods on 6-digit decimal addition. The test accuracy is compared across varying data
sizes and model sizes.
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K R? COMPARISON FOR DIFFERENT ARITHMETIC TASKS

xVal Golkar et al. (2023) performs well on the R? metric
2?21(:%’ —4i)°
i (i —9)?”

because it uses RMSE as its loss function. However, we demonstrate that FONE outperforms xVal on
R? in most tasks. We show the final R? on test dataset in our experiments(Section 4.2).
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Figure 13: Comparison of R? trends for 6-digit decimal addition with respect to model size and data
size.
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Figure 14: Comparison of R? trends for various arithmetic tasks with respect to model size and data
size.

THE USE OF LLMS

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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