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Abstract

One major problem in black-box adversarial attacks is the high query complexity
in the hard-label attack setting, where only the top-1 predicted label is available. In
this paper, we propose a novel geometric-based approach called Tangent Attack
(TA), which identifies an optimal tangent point of a virtual hemisphere located on
the decision boundary to reduce the distortion of the attack. Assuming the decision
boundary is locally flat, we theoretically prove that the minimum `2 distortion
can be obtained by reaching the decision boundary along the tangent line passing
through such tangent point in each iteration. To improve the robustness of our
method, we further propose a generalized method which replaces the hemisphere
with a semi-ellipsoid to adapt to curved decision boundaries. Our approach is free
of pre-training. Extensive experiments conducted on the ImageNet and CIFAR-
10 datasets demonstrate that our approach can consume only a small number of
queries to achieve the low-magnitude distortion. The implementation source code
is released online at https://github.com/machanic/TangentAttack.

1 Introduction

Adversarial attacks cause deep neural networks (DNNs) to make incorrect predictions by slightly
perturbing benign images during the test time. They can be divided into two main categories on the
basis of the amount of information exposed by the target model, namely white-box and black-box
attacks. Many white-box attacks [6, 29, 32] have been proposed, and they can compute the gradients
w.r.t. the target model’s input images to generate adversarial examples with the first-order optimization
techniques. In contrast, black-box attacks are more practical because they craft adversarial examples
without requiring the target model’s gradients.

Over the past years, the community has made considerable efforts in developing black-box attacks,
and the proposed methods can be divided into transfer- and query-based attacks. Transfer-based
attacks [25, 37, 38] generate adversarial examples by using a white-box attack method against a
surrogate model to fool the target model. Although there is no need to query the target model in
these attacks, the attack success rate can not be guaranteed, especially in the case of targeted attacks.
To achieve satisfactory attack success rates, the query-based attacks use elaborate queries to obtain
the feedback of the target model for crafting adversarial examples. In the score-based setting, the
query-based attacks [2, 12, 22, 28] estimate approximate gradients by querying the predicted scores
of the target model at multiple points. However, in most real-world scenarios, the score-based setting
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Figure 1: Simplified two-dimensional illustration of our motivation. H is the decision boundary, and
xt−1 is the current adversarial example mapped onto the decision boundary at the (t− 1)-th iteration.
HSJA updates xt−1 along the gradient direction to reach g and then maps it to H at xg along the
line through x and g. However, the optimal update should be the tangent point k because it can be
mapped onto H at xt that has the shortest distance to the original image x.

is not applicable because the public service returns only the top-1 predicted label (i.e., the hard
label) rather than the predicted score. In this case, since the feedback information is limited and the
objective function is discontinuous, the attack requires solving a high-dimensional combinatorial
optimization problem, which is often challenging.

To reformulate the attack as a real-valued continuous optimization problem, OPT [10], Sign-OPT [11],
and RayS [8] focus on minimizing an objective function g(θ), which is defined as the distance from
the original image to the nearest adversarial example along the direction θ. However, when attacking
complex models, it may be difficult to find a suitable direction θ along which adversarial examples
exist.

Boundary Attack (BA) [4], HopSkipJumpAttack (HSJA) [7], QEBA [24], qFool [26], and Policy
Driven Attack (PDA) [40] eliminate the search of the direction θ. Instead, they start from a large
adversarial perturbation and then reduce its distortion while staying in the adversarial region. Because
the output labels of the target model flip only near the decision boundary, these attacks restrict their
explorations to the regions near the decision boundary. However, they do not thoroughly investigate
the geometric properties of the decision boundary to accelerate the attack. For example, PDA uses
a reinforcement learning framework to train a policy network to predict search directions, which
are not geometrically optimal. In addition, the prediction accuracy of the policy network decreases
significantly in the later stages of the iterations, resulting in worse performance of these iterations.
HSJA and qFool simply use the gradient u estimated at the decision boundary as the direction of each
update, while ignoring a geometrically critical issue, i.e., u is not the optimal direction to be followed
(Fig. 1). We could explore better search directions at each attack iteration.

To find the optimal search direction for minimizing the distortions of attack, we propose a new
geometric-based approach whose motivation is illustrated in Fig. 1. We construct a virtual semicircle
B centered at xt−1 to indicate all possible locations that xt−1 can reach along different directions,
and the radius ofB limits the range of updates for successful attacks. It is easy to observe that moving
along the tangent line can reach the nearest location of the decision boundary to the original image
x, thereby producing the adversarial example with the minimum distortion. In real attack scenarios,
the image data reside in a high-dimensional space, and the semicircle becomes a hemisphere. In this
case, the benefit of using tangent points still exists, and we provide the detailed description and the
formal proof in Section 3 and appendix.

To summarize, the main contributions of this study are as follows.

1. We cast the problem of minimizing the distortion in hard-label attacks into a geometric problem.
We discover that the minimum distortion can be obtained by searching the optimal tangent point
of a virtual hemisphere around the adversarial example at each iteration.

2. We propose a novel geometric-based method to obtain a closed-form solution of the optimal
tangent point. We provide an intuitive explanation of our approach, as well as a formal proof of its
correctness.

3. To improve robustness, we further propose a generalized method that replaces the hemisphere
with a semi-ellipsoid to adapt to the target models with curved decision boundaries.

4. Extensive experiments conducted on the CIFAR-10 [23] and ImageNet [14] datasets demonstrate
the effectiveness of our approach.
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2 Related Work

Query-based black-box attacks can be divided into score- and decision-based attack (a.k.a. the
hard-label attack). Score-based attacks [1–3, 9, 12, 22, 28, 31] use the predicted probability score
to craft adversarial examples, which is not always available in most real-world systems. Hard-label
attacks are more useful, but obviously more challenging, because only the top-1 predicted label can
be obtained. The hard-label attacks usually fall into three categories.

The first category starts from the original image x0 and attempts to find a optimal direction θ to reach
the adversarial example. OPT [10] searches an optimal θ to minimize the distance from x0 to the
nearest adversarial example. Sign-OPT [11] improves the query efficiency of OPT by using a single
query to estimate the sign of the directional derivative. RayS [8] eliminates the gradient estimation
and proposes a fast check step to efficiently find the direction θ. However, RayS is only applicable to
the untargeted attack under the `∞ norm because it is difficult to find a suitable direction to reach the
region of the target class in a targeted attack, especially in the case of a large number of classes.

The second category starts from a large perturbation or an image of the target class, and then reduces
its distortion while staying in adversarial region, thereby gradually making it closer to the original
image. BA [4] and NES [1] are two representative methods, but they have high query complexity.
Biased BA [5] reinterprets BA as a biased sampling framework and incorporates different biases
to improve the query efficiency. HSJA [7] utilizes the gradient estimation and the binary search to
outperform BA. HSJA can be used as the baseline of hard-label attacks. QEBA [24] improves HSJA
by using dimension reduction techniques. SurFree [30] and GeoDA [33] improve the performance of
HSJA by exploiting geometric properties of DNNs. However, the geometric features of DNNs have
not been fully explored, and they do not support the targeted attack. PDA [40] uses a reinforcement
learning framework to train a policy network to predict promising directions. However, PDA requires
a high-cost pre-training, which is not always available in all tasks.

The third category uses a random sampling technique to improve query efficiency. Customized
Adversarial Boundary (CAB) attack [34] uses the current noise to select the sensitive area of images
and customize sampling distribution. Evolutionary [16] improves the query efficiency by reducing
the dimension of the search space with the stochastic coordinate selection.

The issue of RayS and GeoDA is that they only support untargeted attacks. Because moving the
original image far enough in any direction can always make it escape the non-adversarial region in
untargeted attacks. However, in targeted attacks, it is difficult to find a suitable direction along which
the target class’s region exists. In contrast, our approach supports all types of attacks, and we exploit
the geometric characteristics of the decision boundaries of DNNs to boost the attack.

3 The Proposed Approach

3.1 The Goal of Hard-label Attacks

Given a target model f : Rd → Rk and a benign image x ∈ [0, 1]d that is correctly classified using
f , the goal of the adversary is to slightly perturb x into xadv, such that f(xadv) outputs incorrect
prediction. In the hard-label attack, the adversary can only observe the top-1 predicted label of f ,
denoted as ŷ = arg maxi f(xadv)i. We define an indicator function φ(·) of a successful attack:

φ(xadv) :=


1 if ŷ = yadv in the targeted attack,

or ŷ 6= y in the untargeted attack,
0 otherwise,

(1)

where y ∈ R is the true label of x and yadv ∈ R is a predefined target class label. In this study, we
focus on generating an adversarial example xadv that satisfies φ(xadv) = 1, such that the distortion
d(xadv,x) := ‖xadv − x‖p is minimized. This goal can be formulated as the optimization problem:

min
xadv

d(xadv,x) s.t. φ(xadv) = 1. (2)

3.2 Motivation

Most recent attacks belong to the second category (Section 2) follow a common procedure: it starts
from an adversarial image yet not close enough to the benign one, then it iteratively searches for a
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closer adversarial image. Let us take a typical attack HSJA [7] for example (Fig. 1). First, the attack
initializes the adversarial example by using an image of the target class (in a targeted attack) or a
noisy version of the original image (in an untargeted attack). Next, it performs the binary search to
map the initial sample onto the decision boundaryH , denoted as xt−1. Then, the algorithm iteratively
performs three steps to update xt−1: estimating gradient u at H by sampling many probes around
xt−1; jumping to the point g along the direction u with the step size determined by the geometric
progression; and mapping g onto H at xg by performing the binary search along the line passing
through g and the original image x. However, geometrically speaking, the estimated gradient u is
not the optimal search direction, and we can find a better boundary point xt by connecting x to a
certain point on the semicircle B and then taking the intersection point on H . Fig. 1 shows that the
tangent point k is the optimum update because it leads to the minimum distortion of the attack.

3.3 Definition of Optimal Tangent Points
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x
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Figure 2: Geometrical explanation of Theo-
rem 1. All points on H that are closer to x
than xt are within a red disk, which is the in-
tersection of H and the red cone whose vertex
is x. Clearly k is the only intersection point of
the cone and the hemisphere B. Thus, of all
the lines intersecting B, only the intersection
of the tangent line and H is closest to x.

There is some experimental evidence that the deci-
sion boundaries of DNNs are smooth surfaces with
the low curvature [17, 33]. Based on this observa-
tion, we approximate the local decision boundary
with a hyperplane H . Fig. 3 illustrates our prob-
lem in three-dimensional space. We will derive our
algorithm from R3 and show that it can be directly
extended to higher-dimensional spaces. Lastly, we
address the case of curved decision boundaries.

As described in Section 3.2, xt−1 denotes the bound-
ary sample that already lies on the decision boundary.
We create a virtual hemisphere B centered at xt−1
with a radius R, which is an estimation of the safe
region where we can search for adversarial exam-
ples. In the targeted attack, B represents the current
estimation of the target class region around xt−1.
Ideally, B is small enough to be fully contained in
the target class’s region, i.e., φ(x′) = 1 for ∀x′ ∈ B.
Then, we need to find a point on B which would produce the minimum distortion when mapped to
H . In two-dimensional case, this point is the tangent point. However, in n-dimensional space where
n ≥ 3, there are infinitely many tangent lines of B passing through x which create infinitely many
tangent points on B, shown as the red points in Figs. 2 and 3. Still, we will show that exactly one
tangent point can lead to the minimum distortion when mapping it onto H along the tangent line.

Formally, let k be any point on the surface of B, u be the approximate gradient of H estimated at
xt−1, and xt be the intersection of H and the line passing through x and k, we have the following
theorem.

Theorem 1 Let H , u, k, x, and xt−1 be defined above, then the distance ‖x− xt‖ is minimized if k
is the optimal solution of the following constrained optimization problem:

arg max
k

〈k− xt−1,u〉 (3)

s.t. 〈k− xt−1,x− k〉 = 0, (4)
‖k− xt−1‖ = R, (5)
〈k− xt−1,u〉 ≥ 0. (6)

In particular, the optimal k is in the plane spanned by u and x− xt−1.

The objective function of Eq. (3) is to maximize the projection of the vector k− xt−1 onto u, which
is equivalent to finding k that is farthest away from H . The first constraint ensures that k is a tangent
point. The second constraint indicates k is on the surface ofB. The last constraint states that k cannot
appear on the same side of H as x, which is always satisfied if ‖ΠH(x − xt−1)‖ ≥ R, where the
notation ΠH : Rn 7→ H denotes the orthogonal projection from Rn onto the hyperplane H . If there
is no feasible solution, then our algorithm (Algorithm 1) reduces the radius R to guarantee that the
last constraint is always satisfied. The formal proof of Theorem 1 is presented in the appendix. Here,
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Figure 3: The illustration of the optimal tangent point k for the flat decision boundary. The tangent
point k is on the surface of a virtual hemisphere B with a radius R centered at the adversarial
example xt−1. x is the original image, xt is the intersection point of the tangent line and the decision
hyperplane H , k′ and x′ are the orthogonal projections of k and x onto H and z axis, respectively.

we refer the readers to Fig. 2 for an intuitive geometrical explanation. Eq. (3) is computationally
expensive to solve in the high-dimensional space. Fortunately, we show there actually exists a
closed-form solution.

3.4 Closed-Form Solution of the Optimal Tangent Point

The main intuition of the derivation is illustrated in Fig. 3, which shows an example in R3. For ease
of presentation, we move xt−1 to 0. The known variables are x, xt−1, the unit normal vector u of
hyperplane H , and the radius R. We need to solve for the unknown k. Let V = span({x,u}) be
the plane spanned by x and u. According to Theorem 1, we know k ∈ V . Let us denote the angle
between x and H as α, the angle between x and k as β, and the angle between k and H as γ. Then,
β = α + γ because all three points x, k, and xt−1 are on the same plane V . Because the angle
between x and u is π / 2 + α, we have

〈x,u〉 = ‖x‖ · ‖u‖ · cos(
π

2
+ α) = ‖x‖ · ‖u‖ · (− sinα) . (7)

Then we have sinα = − 〈x,u〉
‖x‖·‖u‖ and cosα =

√
1− sin2 α =

√
‖x‖2·‖u‖2−〈x,u〉2
‖x‖·‖u‖ . By the con-

straint (4), x− k is orthogonal to k. Thus, we have cosβ = R / ‖x‖ and sinβ =
√

1− cos2 β =√
‖x‖2 −R2 / ‖x‖. Then sin γ and cos γ can be derived as functions of α and β from basic facts of

trigonometric functions:
sin γ = sin(β − α) = sinβ cosα− cosβ sinα,

cos γ = cos(β − α) = cosβ cosα+ sinβ sinα.
(8)

Now, let k′ ∈ H be the orthogonal projection of k onto the plane H . The distance between k and k′

is denoted as h (Fig. 3). Then h = R · sin γ = R · (sinβ cosα− cosβ sinα).

To derive k′, let us denote x′ as the orthogonal projection of x onto z axis. So we have x′ =
〈x,−u〉 · (−u) / ‖u‖2 = 〈x,u〉 · u / ‖u‖2. Then, because k′ and x− x′ are on the same direction,
we have

k′

‖k′‖
=

x− x′

‖x− x′‖
. (9)

Now, ‖k′‖ = R · cos γ and x′ = 〈x,u〉 · u / ‖u‖2 are plugged into Eq. (9), and k′ is obtained as

k′ =
x− x′

‖x− x′‖
· ‖k′‖ =

x− 〈x,u〉 · u / ‖u‖2

‖x− 〈x,u〉 · u / ‖u‖2‖
·R · cos γ. (10)

Therefore, k can be derived as

k = k′ + h · u =
x− 〈x,u〉 · u / ‖u‖2

‖x− 〈x,u〉 · u / ‖u‖2‖
·R · cos γ + h · u. (11)
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Figure 4: Illustration of the derivation of Generalized Tangent Attack, which replaces the hemisphere
B with a semi-ellipsoid to increase the height of k to adapt to curved decision boundaries.

Finally, because xt−1 has been moved to the origin, we need to move k back by adding xt−1.

We remark that although the above derivation is illustrated in R3, it can be directly applied to higher
dimensions. The reason is Theorem 1, which essentially reduces any dimension space to R2: to find
the optimal k, we only need to focus on the plane V spanned by u and x− xt−1.

3.5 Generalized Tangent Attack

When the local decision boundary is not flat enough, the boundary point obtained via the tangent
line may not be the optimal, as shown in Fig. 4a. A simple solution is to simply continue halving the
radius R of the hemisphere: as long as R becomes small enough, the local flatness can always be
obtained. However, too small a radius will reduce the convergence rate of our algorithm, because
the distance between xt and xt−1 is proportional to R. Therefore, when the classification decision
boundary is a curved surface, the attack algorithm should change the shape of hemisphere rather than
simply reducing R. Based on this idea, we propose the Generalized Tangent Attack (G-TA).

First, although the shape of the decision boundary can be very complex in a high-dimensional space,
the important thing for our algorithm is only the situation in the two-dimensional plane spanned by x
and u. In particular, if the decision boundary is “downward” curved (as opposed to the example in
Fig. 4a), then searching along the tangent line is still a better approach than HSJA’s solution. Thus,
the only “bad case” we have to deal with is when the decision boundary is “upward” curved and has
a large curvature, as shown in Fig. 4a.

According to Theorem 1, we only need to focus on the plane V spanned by x and u, as shown in
Fig. 4b. Now, u and v := (x − 〈x,u〉 · u / ‖u‖2) / ‖x − 〈x,u〉 · u / ‖u‖2‖ form an orthogonal
basis of the plane V , then x can be identified with coordinates (x0, z0), i.e., x = x0v + z0u. Let
θ denote the angle between the vector x and the vector −u, i.e., θ = arccos

(
〈x,−u〉
‖x‖·‖u‖

)
. Then

(x0, z0) = (‖x‖ · sin θ,−‖x‖ · cos θ). Consider the projection of the ellipsoid on V (which is an
ellipse), we denote L as its radius along the direction of u, and S as its radius along the direction of v.
Because the optimal tangent point k lies in the plane V , k can also be identified as k = xkv + zku,
and we only need to solve for the unknown (xk, zk).

The ellipse is characterized by the equation x2 / S2 + z2 / L2 = 1, thus the tangent point k satisfies
x2k / S

2 + z2k / L
2 = 1. Now we view z as a function of x, and take the derivative w.r.t. x at both

sides of the equation to get the following formula:
2xk
S2

+
2zk
L2
· dz
dx

∣∣∣∣
x=xk

= 0. (12)

Thus, we have the slope of tangent line at k be dz
dx

∣∣
x=xk

= −xkL
2

zkS2 . Therefore, the tangent line

can be written as z − zk = −xkL
2

zkS2 (x − xk). Since the tangent line passes through x, we know
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z0 − zk = −xkL
2

zkS2 (x0 − xk). In summary, we can obtain the following system of equations:
L2x2k + S2z2k − xkx0L2 − z0zkS2 = 0,

x2k
S2

+
z2k
L2

= 1.
(13)

In Eq. (13), the known variables are L, S, x0 and z0, and the unknown variables that we need to
solve for are xk and zk. In general, there are two solutions for Eq. (13), i.e., k and k′ depicted in
Fig. 4b. Apparently, the solution of the optimal tangent point should satisfy zk > 0, so the one of two
solutions in which zk > 0 should be picked:

xk =

S2

(
L2 − z0 ·

L2S2z0+L2x0

√
−L2S2+L2x2

0+S2z2
0

L2x2
0+S2z2

0

)
L2 · x0

,

zk =
L2S2z0 + L2x0

√
−L2S2 + L2x20 + S2z20

L2x20 + S2z20
.

(14)

Finally, the optimal tangent point k is obtained via k = |xk| · x−〈x,u〉·u/‖u‖2
‖x−〈x,u〉·u/‖u‖2‖ + zk · u. In the

implementation, the value of L is determined in the same way as the radius R in TA (the hemisphere
version). So we fix L = R, and use a hyperparameter r = L/S to control the value of S. Imagine
that in the case of R3, the semi-ellipsoid becomes “slender” by setting r > 1, thereby adapting to the
decision boundary of curved surface while preserving a relatively large step size.

3.6 The Complete Algorithm

TA (the hemisphere version) and G-TA (the semi-ellipsoid version) can be combined into one
algorithm process, which is shown in Algorithm 1. It first performs a binary search to map the
initial sample x̃0 to the decision boundary. Note that the binary search step always maps any xadv to
the adversarial side of H that satisfies φ(xadv) = 1, hence the attack success rate is always 100%.
Then, it performs a for loop of T iterations to find the adversarial example that is close to x. In the
first iteration, we sample B0 probes around the boundary sample to estimate the gradient, which is
increased to B0

√
t at the t-th iteration. This is because the error of gradient estimation in the later

iterations has a greater impact on the attack performance, so using more samples can reduce the
estimation error. Then, a while loop is performed to determine a reasonable radius R by repeatedly
halving the radius until the tangent point k is in the adversarial region. Finally, Algorithm 1 uses the
binary search method to map k back to the classification decision boundary to end this iteration.

Algorithm 1 Tangent Attack

Input: benign image x, attack success indicator function φ(·) defined in Eq. (1), initial batch size
B0, iteration T , mode m ∈ {semi-ellipsoid, hemisphere}, radius ratio r.
Initialize x̃0 that satisfies φ(x̃0) = 1;
x0 ← BinarySearch(x̃0,x, φ); . boundary search
d0 = ‖x0 − x‖;
for t in 1, . . . , T do

Sample Bt ← B0

√
t random vectors to estimate the gradient u;

Initialize R← dt−1/
√
t; . the initial radius

while true do
Compute the optimal tangent point k based on Eq. (11) if m = hemisphere else Eq. (14);
R← R

2 ; . search the radius, and we set L = R,S = L
r if m = semi-ellipsoid

if φ(k) = 1 then
break;

end if
end while
k← Clip(k, 0, 1);
xt ← BinarySearch(k,x, φ); . boundary search
dt = ‖xt − x‖;

end for
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4 Experiment

4.1 Experimental Setting

Datasets. TA and G-TA are evaluated on two datasets, namely CIFAR-10 and ImageNet with the
image resolutions of 32×32×3 and 299×299×3, respectively. We randomly select 1,000 correctly
classified images from their validation sets for experiments.

Method Setting. The initial batch size B0 is set to 100, which means the algorithm samples 100
probes for estimating a gradient at the first iteration. The threshold γ that controls the termination of
the binary search is set to 1.0 in the CIFAR-10 dataset and 1,000 in the ImageNet dataset. The radius
ratio r is set to 1.5 in the CIFAR-10 dataset and 1.1 in the ImageNet dataset. Besides, we also set r to
1.5 when attacking defense models. In targeted attacks, the target class label is set to yadv = (y + 1)
mod C, where y is the true label, and C is the number of classes.

Compared Methods. The advantage of our method is that it supports all types of attacks, including
both untargeted and targeted attacks under `2 norm and `∞ norm constraints. Therefore, for complete
and fair comparisons, we select the compared methods that support both untargeted and targeted
attacks with state-of-the-art performance, including Boundary Attack (BA) [4], Sign-OPT [11],
SVM-OPT [11], and HopSkipJumpAttack (HSJA) [7]. HSJA is adopted as the baseline, whose
hyperparameters are set to be the same with ours (e.g, the same initial batch size B0 and threshold γ).
In addition, QEBA [24] is a HSJA-based method which has three variants: QEBA-I, QEBA-S and
QEBA-F. We select QEBA-S in the additional experiment to verify whether the proposed method can
improve attack performance of other HSJA-based method. For the consistency of experiments, we
translate the implementations of Sign-OPT, SVM-OPT and HSJA from the official NumPy version
into the PyTorch version by replacing each NumPy function with the corresponding PyTorch function.
Thus, the two versions behave exactly the same. In the targeted attack, we randomly select an image
from the target class of the validation set to be the initial sample of HSJA, BA, TA and G-TA. For fair
comparison, we set the initial direction θ0 of Sign-OPT and SVM-OPT to the direction of a randomly
selected image of the target class. The detailed settings are presented in the appendix.

Target Models. In the CIFAR-10 dataset, we select four target models implemented using the
PyTorch framework2: (1) a 272-layer PyramidNet+ShakeDrop network (PyramidNet-272) [19, 39]
trained using AutoAugment [13] ; (2) a model obtained through a neural architecture search called
GDAS [15]; (3) a wide residual network with 28 layers and 10 times width expansion (WRN-28) [41];
and (4) a wide residual network with 40 layers (WRN-40) [41]. In the ImageNet dataset, we select
four target models from an off-the-shelf library containing pre-trained weights3: (1) Inception-v3
[36], (2) Inception-v4 [35], (3) ResNet-101 [20], and (4) SENet-154 [21].

Evaluation Metric. Following previous studies [40], we report the mean `2 distortions as
1
|X|
∑

x∈X(‖xadv − x‖) under different query budgets, where X is the test set.

4.2 Comparisons with State-of-the-Art Methods

Results of Attacks against Undefended Models. Tables 1 and 2 show the experimental results on
the ImageNet and CIFAR-10 datasets. We derive two conclusions based on the results:

(1) We found that the experiments of CIFAR-10 requires a larger radius ratio r than that of ImageNet
to achieve the satisfactory performance of G-TA. We speculate that the reason is that the target models
of ImageNet have relatively flat decision boundaries.

(2) TA is more effective in targeted attacks, while the G-TA performs better in untargeted ones. This
is because the adversarial region of the target class is narrower and more scattered, making the local
classification decision boundary smoother, so that Theorem 1 holds and TA performs better.

In addition, one unique benefit of our approach is that it can be used as a performance enhanced
plug-in when combining it with other HSJA-based approaches (e.g., QEBA-S). Specifically, the
method is to change the jump directions of boundary samples of QEBA-S to the directions of the
optimal tangent points. We present that “QEBA-S + TA” can further improve the performance of
QEBA-S, as shown in Table 3.

2Pre-trained weights: https://github.com/machanic/SimulatorAttack
3Pre-trained weights: https://github.com/Cadene/pretrained-models.pytorch
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Table 1: Mean `2 distortions of different query budgets on the ImageNet dataset, where r = 1.1.
Target Model Method Targeted Attack Untargeted Attack

@300 @1K @2K @5K @8K @10K @300 @1K @2K @5K @8K @10K

Inception-v3

BA [4] 111.798 108.044 106.283 102.715 86.931 78.326 - 107.558 102.309 95.776 78.668 60.296
Sign-OPT [11] 103.939 87.706 71.291 46.744 34.640 29.414 121.085 79.158 43.642 16.625 10.557 8.680
SVM-OPT [11] 101.630 82.950 67.965 46.275 35.694 31.106 121.135 66.027 36.763 15.736 10.501 8.789

HSJA [7] 111.562 95.295 82.111 52.544 37.395 30.425 103.605 57.295 37.185 15.484 9.989 7.967
TA 103.781 80.327 66.708 42.121 30.846 25.566 94.752 52.523 35.229 15.040 9.748 7.793

G-TA 103.724 81.089 67.168 42.434 31.011 25.587 94.972 52.278 34.734 14.850 9.673 7.757

Inception-v4

BA [4] 110.343 106.616 104.586 100.321 84.058 75.507 - 116.075 111.474 104.451 86.572 66.283
Sign-OPT [11] 101.620 85.731 69.719 46.416 34.957 30.004 132.991 86.431 48.292 18.678 11.567 9.262
SVM-OPT [11] 99.856 81.342 66.982 45.667 35.477 31.152 132.227 72.920 41.095 17.611 11.418 9.372

HSJA [7] 109.670 93.916 80.937 52.358 37.773 30.958 110.727 63.731 42.290 17.936 11.367 8.911
TA 101.666 78.683 65.304 41.629 30.993 25.958 101.207 58.616 40.314 17.639 11.304 8.907

G-TA 101.495 79.210 65.888 42.002 30.965 25.847 101.324 58.718 40.106 17.296 11.032 8.691

SENet-154

BA [4] 81.090 77.723 76.122 71.967 55.953 47.652 - 75.998 71.671 66.983 53.917 40.725
Sign-OPT [11] 75.722 62.876 49.191 30.155 21.333 17.672 70.035 47.705 27.314 10.890 6.643 5.245
SVM-OPT [11] 75.680 58.932 47.073 30.348 22.553 19.312 69.854 40.291 23.692 10.494 6.666 5.409

HSJA [7] 77.035 63.488 51.802 30.138 19.680 16.261 71.248 38.035 24.895 10.218 5.855 4.842
TA 70.739 55.256 43.694 24.961 16.756 13.876 65.589 35.689 24.037 10.039 5.774 4.766

G-TA 70.591 55.224 44.047 25.041 16.854 14.047 65.846 35.601 23.730 9.902 5.720 4.738

ResNet-101

BA [4] 81.565 77.903 76.366 72.392 58.746 51.679 - 64.007 60.389 56.544 44.175 31.371
Sign-OPT [11] 76.732 63.939 51.231 32.439 23.160 19.248 56.244 38.282 21.985 10.048 7.050 6.050
SVM-OPT [11] 77.031 61.417 49.842 32.806 24.553 20.964 55.894 32.638 19.409 9.830 7.185 6.281

HSJA [7] 76.121 63.091 52.301 31.018 20.472 16.911 56.264 27.443 17.717 7.649 4.723 4.019
TA 72.434 57.969 47.142 27.699 18.788 15.414 53.197 26.777 17.651 7.730 4.822 4.107

G-TA 72.459 58.320 47.297 27.905 19.045 15.633 53.142 26.597 17.345 7.568 4.712 4.021

Table 2: Mean `2 distortions with different query budgets on the CIFAR-10 dataset, where r = 1.5.
Target Model Method Targeted Attack Untargeted Attack

@300 @1K @2K @5K @8K @10K @300 @1K @2K @5K @8K @10K

PyramidNet-272

BA [4] 8.651 8.073 8.013 6.387 4.189 3.333 - 5.636 4.725 4.414 2.750 1.696
Sign-OPT [11] 8.279 6.331 4.250 1.718 0.960 0.718 4.387 2.334 1.178 0.403 0.267 0.226
SVM-OPT [11] 9.207 6.801 4.530 2.010 1.207 0.947 4.481 2.318 1.093 0.414 0.276 0.236

HSJA [7] 7.917 4.329 2.523 0.793 0.489 0.397 4.505 1.279 0.713 0.333 0.255 0.227
TA 7.943 4.267 2.488 0.809 0.503 0.406 4.256 1.275 0.710 0.329 0.253 0.226

G-TA 7.816 4.277 2.469 0.803 0.505 0.412 4.432 1.270 0.702 0.329 0.252 0.225

GDAS

BA [4] 8.487 7.885 7.821 6.034 3.632 2.703 - 2.717 2.514 2.373 1.642 1.106
Sign-OPT [11] 8.372 6.514 4.351 1.827 0.987 0.711 4.917 4.159 3.260 1.352 0.452 0.250
SVM-OPT [11] 9.529 7.243 5.092 2.347 1.317 0.958 4.909 3.950 2.736 1.082 0.371 0.234

HSJA [7] 7.714 3.566 1.966 0.591 0.365 0.301 2.188 0.756 0.483 0.261 0.208 0.189
TA 7.674 3.529 1.946 0.585 0.366 0.302 2.190 0.774 0.485 0.257 0.206 0.187

G-TA 7.697 3.558 1.959 0.583 0.361 0.298 2.161 0.745 0.476 0.255 0.204 0.185

WRN-28

BA [4] 8.688 8.046 7.984 5.786 2.486 1.555 - 4.425 3.648 3.435 1.543 0.832
Sign-OPT [11] 8.258 5.576 3.260 1.087 0.593 0.459 3.093 1.494 0.828 0.319 0.239 0.213
SVM-OPT [11] 9.516 5.968 3.744 1.367 0.728 0.553 2.977 1.466 0.723 0.325 0.245 0.221

HSJA [7] 6.810 2.603 1.326 0.518 0.389 0.347 3.052 0.797 0.508 0.299 0.250 0.232
TA 6.802 2.556 1.311 0.519 0.394 0.353 2.974 0.785 0.496 0.293 0.249 0.233

G-TA 6.755 2.543 1.281 0.513 0.387 0.345 2.995 0.782 0.502 0.298 0.250 0.232

WRN-40

BA [4] 8.658 8.014 7.953 5.738 2.484 1.566 - 4.377 3.586 3.367 1.487 0.821
Sign-OPT [11] 8.156 5.579 3.300 1.186 0.646 0.501 4.754 3.239 1.885 0.311 0.226 0.201
SVM-OPT [11] 9.339 6.061 3.840 1.445 0.800 0.605 4.457 2.756 0.739 0.310 0.229 0.206

HSJA [7] 6.909 2.648 1.330 0.528 0.400 0.357 2.992 0.777 0.498 0.290 0.242 0.225
TA 6.944 2.579 1.295 0.523 0.398 0.358 2.926 0.770 0.490 0.288 0.243 0.227

G-TA 6.783 2.605 1.320 0.535 0.403 0.361 2.952 0.772 0.492 0.288 0.241 0.223

Table 3: Experimental results of the combined method of QEBA-S and TA.
Target Model Method Targeted Attack

@300 @1K @2K @5K @8K @10K

Inception-v3 QEBA-S [24] 100.295 79.604 63.621 35.194 22.773 18.414
QEBA-S + TA 104.490 75.622 59.836 33.112 22.329 17.799

Inception-v4 QEBA-S [24] 97.772 77.347 62.451 35.275 23.204 19.002
QEBA-S + TA 101.845 73.838 58.554 33.288 23.160 18.736

SENet-154 QEBA-S [24] 72.831 55.367 42.674 21.988 13.888 11.210
QEBA-S + TA 76.547 52.269 39.740 20.608 13.873 11.016

ResNet-101 QEBA-S [24] 75.567 57.929 44.983 23.209 14.402 11.467
QEBA-S + TA 78.709 53.917 41.245 21.198 13.856 10.773

Results of Attacks against Defense Models. We conduct the experiments of untargeted attacks
on defense models. Fig. 5 shows the experimental results on the CIFAR-10 dataset. We select 4
defense models: (1) a model obtained through adversarial training, abbreviated as AT [29]; (2) an
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(d) Feature Distillation

Figure 5: Experimental results of the attacks against defense models with the backbone of ResNet-50.

improved AT that optimizes a regularized surrogate loss, named as TRADES [42]; (3) an image-
transformation-based defense called JPEG [18]; and (4) a DNN-oriented compression defense called
Feature Distillation [27]. All defense models adopt ResNet-50 as the backbone. Previous studies [43]
have shown that AT and TRADES have the issue of robust overfitting, which leads to a significant
increase in the curvature of the classification decision boundary. Figs. 5a and 5b show that G-TA
outperforms TA when attacking AT and TRADES. This advantage is also demonstrated in attacking
other defenses (e.g., Figs. 5d and 5c), proving the effectiveness of G-TA in attacking defense models.

4.3 Comprehensive Understanding of Tangent Attack

In the ablation studies, we conduct the experiments of the targeted attacks on the ImageNet dataset to
understand our approach in depth, and the target model is ResNet-50. The results are shown in Fig. 6.

Initialization. Our algorithm starts with an image x̃0 selected from the target class, and we study
three selection strategies: (1) a randomly selected image, (2) the image with the shortest distance to
the original image, and (3) the image with the longest distance to the original image. Fig. 6a shows
that the strategy of (2) achieves the best performance.

Radius Ratio. Fig. 6b shows that the performance of G-TA is not sensitive to the radius ratio r.

Jump Direction. Fig. 6c shows the effects of different jump directions. RandomHSJA is a variant of
HSJA which adopts a random vector r that satisfies 〈r,u〉 > 0 as the jump direction. Fig. 6c verifies
the benefit of jumping to the optimal tangent point.

Initial Batch Size. In general, Fig. 6d shows that a smaller B0 performs better since it saves queries.
But B0 = 5 performs worse than B0 = 30 because it uses too few samples for gradient estimation.
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(c) jump directions
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Figure 6: Experimental results of ablation studies.

5 Conclusion

In this paper, we propose a new geometric-based method for query-efficient hard-label black-box
attacks. Our method relies on the observation that the minimum `2 distortion can be obtained by
searching a boundary point along a tangent line of a virtual hemisphere. We offer a closed-form
solution for computing the optimal tangent point and provide a formal proof of its correctness. We
further propose a generalized method that replaces the hemisphere with a semi-ellipsoid to adapt
to the target models with curved decision boundaries. Lastly, we evaluate our approach through
extensive experiments and show its superior performance compared with baseline methods.
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