
Watch Every Step! LLM Agent Learning via
Iterative Step-level Process Refinement

Anonymous ACL submission

Abstract

Large language model agents have exhibited001
exceptional performance across a range of com-002
plex interactive tasks. Recent approaches have003
utilized tuning with expert trajectories to en-004
hance agent performance, yet they primarily005
concentrate on outcome rewards, which may006
lead to errors or suboptimal actions due to007
the absence of process supervision signals. In008
this paper, we introduce the Iterative step-level009
Process Refinement (IPR) framework, which010
provides detailed step-by-step guidance to en-011
hance agent training. Specifically, we adopt012
the Monte Carlo method to estimate step-level013
rewards. During each iteration, the agent ex-014
plores along the expert trajectory and generates015
new actions. These actions are then evaluated016
against the corresponding step of expert trajec-017
tory using step-level rewards. Such compari-018
son helps identify discrepancies, yielding con-019
trastive action pairs that serve as training data020
for the agent. Our experiments on three com-021
plex agent tasks demonstrate that our frame-022
work outperforms a variety of strong baselines.023
Moreover, our analytical finds highlight the ef-024
fectiveness of IPR in augmenting action effi-025
ciency and its applicability to diverse models.026

1 Introduction027

The advancements in large language models028

(LLMs), such as GPT-3.5 (Ouyang et al., 2022),029

GPT-4 (Achiam et al., 2023), LLaMA (Touvron030

et al., 2023) have paved ways for LLM-based031

agents to excel in handling complex interactive032

tasks, including online shopping (Yao et al., 2022a)033

and embodied housework (Shridhar et al., 2020).034

To accomplish these tasks, LLM agents explore035

the environment step by step, achieving sub-goals036

along action trajectories (Ma et al., 2024). The037

efficacy of this task-solving process is pivotal to038

agent’s overall performance.039

Initial efforts in the task-solving process for040

agents involve generating trajectories by directly041

Figure 1: Comparison of three different training
paradigms. Green and red circles represent correct and
incorrect actions respectively, while check and cross
marks indicate the final outcome. Compared to the
other methods, IPR can provide process supervision.

leveraging the planning ability of LLMs, such as 042

ReAct (Yao et al., 2022b) and Reflexion (Shinn 043

et al., 2024). To further enhance LLM agent 044

abilities, several studies focus on trajectory tun- 045

ing (Chen et al., 2023; Yin et al., 2023; Zeng et al., 046

2023). Chen et al. (2023) and Yin et al. (2023) 047

construct agent trajectory data from teacher agents 048

(e.g., GPT-4) and fine-tune open-source LLMs for 049

specific agent abilities, such as reasoning. Con- 050

versely, Zeng et al. (2023) employ a multi-task 051

supervised fine-tuning (SFT) approach, which does 052

not significantly improve generalized agent capabil- 053

ities. Observing that the SFT-based works predom- 054

inantly rely on expert success trajectories (Figure 055

1(a)), Song et al. (2024) utilize failure trajectories 056

and propose the exploration-based trajectory opti- 057

mization (ETO) method to learn the task-solving 058

process (Figure 1(b)). Although these methods 059

1

present a promising avenue for enhancing agent ca-060

pabilities, they treat an entire trajectory as a single061

entity during training and prioritize the final reward062

of a trajectory over the process, thus overlooking063

the potentially exploitable information throughout064

interaction process.065

Regarding agent trajectories, it is well-known066

that alongside those with correct outcomes, there067

are trial-and-error paths with detours and erroneous068

ones that achieve accidental success. Step-level069

process supervision can offer granular guidance070

at each step hence is beneficial for task resolution071

(Lightman et al., 2023). Nevertheless, the appli-072

cation of step-level optimization to LLM agents073

encounters two practical challenges. Firstly, the074

majority of existing LLM agent environments (Yao075

et al., 2022a; Shridhar et al., 2020; Yang et al.,076

2024) provide only final outcome feedback. Even077

in cases where environments offer sub-goal level078

feedback (Ma et al., 2024), the information is of-079

ten too sparse. Secondly, the question of how to080

effectively utilize step rewards to enhance agent081

training, particularly for tasks with long trajectories082

and complex action spaces, remains unexplored.083

In this paper, we address these challenges084

by introducing the Iterative step-level Process085

Refinement (IPR) framework (§ 3) , which en-086

compasses two principal mechanisms: Step-level087

Reward Acquisition (§ 3.2) and Iterative Agent Op-088

timization (§ 3.3). More specifically, to construct089

the step reward within the agent environment, we090

employ Monte Carlo (MC) method to estimate re-091

wards via sampling. The Iterative Agent Optimiza-092

tion component aims to refine the agent’s actions093

through a cyclical process. During each cycle, the094

agent navigates the expert trajectory and generate095

new actions. These actions are then compared with096

the corresponding step of the expert trajectory us-097

ing step-level rewards to pinpoint errors, resulting098

in contrastive step pairs. Subsequently, we train the099

agent using an arrangement of outcome-level direct100

preference optimization (DPO), step-level DPO,101

and SFT losses, thereby enhancing the agent’s ac-102

tion capabilities at each step (Figure 1(c)).103

We assess our IPR framework on three represen-104

tative benchmarks: online shopping environment105

WebShop (Yao et al., 2022a), interactive SQL envi-106

ronment InterCodeSQL (Yang et al., 2024) and tex-107

tual embodied environment ALFWorld (Shridhar108

et al., 2020). The experimental results, detailed in109

§ 4.2, reveal that our method surpasses the current110

leading method by margins of 5.8%, 7.2% and 3.2%111

on WebShop, InterCodeSQL, and ALFWorld, re- 112

spectively. Moreover, we present a comprehensive 113

analysis to substantiate the efficacy of our method 114

from various perspectives. 115

In summary, our contributions are as follows: 116

• We introduce the IPR framework, marking the 117

first integration of step-level process supervision 118

into LLM agent training. This innovation en- 119

ables fine-grained adjustments of the agent’s task 120

completion. 121

• Our experiments across three complex interac- 122

tive agent tasks reveal that IPR outperforms es- 123

tablished leading baselines. 124

• Additional analyses indicate that: (1) our IPR en- 125

hances the reward per step for the agent, thereby 126

increasing the efficiency of task completion; and 127

(2) constructing a step reward model automati- 128

cally is a viable approach to reduce the training 129

costs associated with the MC method. 130

2 Task Formulation 131

The primary scope of this study is the task-solving 132

of LLM agents interacting with the environment 133

and receiving feedback. Following Song et al. 134

(2024), we formulate the task as a partially observ- 135

able Markov decision process (POMDP) defined 136

by the elements (U ,S,A,O, T ,R). Here, U de- 137

notes the instruction space, S the state space, A 138

the action space, O the observation space, T the 139

transition function (T : S × A → S), and R the 140

reward function (R : S ×A → [0, 1]). In the con- 141

text of our LLM-based agent, U ,A,O are subsets 142

of natural language space. 143

At time step t, the LLM agent πθ receives the ob- 144

servation ot−1 ∈ O from the environment and takes 145

an action at ∈ A following the policy πθ(·|et−1), 146

where et−1 = (u, a1, o1, ..., at−1, ot−1) represents 147

the historical trajectory. The action leads to a 148

change in the state space st ∈ S, and receives 149

execution feedback as observation ot ∈ O. The in- 150

teraction loop continues until the task is completed 151

or the maximum steps are reached. The final tra- 152

jectory is en = (u, a1, o1, ..., an, on), where n de- 153

notes the trajectory length, and the outcome reward 154

is ro(u, en) ∈ [0, 1]. For the convenience of subse- 155

quent content, we define et:n = (at, ot, ..., an, on) 156

to represent the trajectory after time step t. 157

3 Method 158

The overall architecture of our method is depicted 159

in Figure 2. Initially, we empower the language 160

2

Figure 2: The overall architecture of IPR in a single iteration. The agent trained after SFT first explores new actions
along the expert trajectory. Then we use the scorer to reward each step and construct contrastive action data. Finally
we optimize the agent with a mixed loss.

model with fundamental agent capabilities via su-161

pervised learning (§ 3.1). Subsequently, we de-162

velop the MC method to estimate the step-wise163

rewards within the agent’s environment (§ 3.2). In164

the final stage, we enhance the agent’s performance165

through iterative optimization (§ 3.3): by construct-166

ing contrastive action pairs and executing mixture167

trajectory optimization.168

3.1 Supervised Fine-tuning169

To develop an agent with basic task capabilities,170

we perform supervised fine-tuning (SFT) on an ex-171

pert trajectory dataset in ReAct-Style (Yao et al.,172

2022b). We denote this expert trajectory as D =173 {
(u, e)(i)

}|D|

i=1
, where |D| is the number of trajec-174

tories. The loss can be computed as:175

LSFT (θ) = −Ee∼D[log πθ(e|u)]. (1)176

Since πθ(e|u) =
∏n

t=1 πθ(at|u, ..., ot−1) =177 ∏n
t=1 πθ(at|et−1) in practice. The loss function178

can further be expressed as:179

LSFT (θ) = −Ee∼D

[n∑
t=1

log πθ(at|et−1)

]
. (2)180

3.2 Step-level Reward Acquisition181

Step-level process reward provide precise feedback182

by pinpointing the exact location of potential er-183

rors, offering a valuable signal for agent learning. 184

However, most agent environments are limited to 185

outputting only final outcome reward. Prior stud- 186

ies (Uesato et al., 2022; Lightman et al., 2023) rely 187

on human annotators for step supervision annota- 188

tions, rendering the acquisition of step rewards a 189

labor-intensive process. To circumvent this, we 190

adopt an exploration-based method to estimate the 191

reward for action at at step t. 192

It is intuitive that a more accurate action would 193

contribute to a higher reward. Therefore, we de- 194

fine the step reward rs(st, at) as the anticipated 195

outcome reward from subsequent exploration start- 196

ing at step t, with st being the current state of the 197

environment. A dedicated scorer πs with fixed pa- 198

rameters is employed to generate new subsequent 199

trajectory et:m from step t, based on the histori- 200

cal trajectory et−1. The probability of generating 201

et:m is given by πs(et:m|et−1), and the environ- 202

ment assigns an outcome reward ro(u, em) for the 203

trajectory. The step reward can be calculated as: 204

rs(st, at) = Eem∼πs(et:m|et−1)[ro(u, em)] (3) 205

Given the complexity of directly calculating this ex- 206

pectation value, we employ Monte Carlo sampling 207

method for estimation. By sampling N trajectories 208

from step t with πs, we generate a set of trajecto- 209

3

ries:210

{e(i)|i = 1, ..., N} = MCπs(et−1;N), (4)211

The step reward is then calculated as:212

rs(st, at) =

{
1
N

∑N
i=1 ro(u, e

(i)), for t < n

ro(u, en), for t = n
(5)213

In our approach, the scorer πs is the agent trained214

via SFT, ensuring its full capability of executing215

the required task.216

3.3 Iterative Agent Optimization217

Agent tasks typically involve long action sequences218

and large decision spaces. Suppose we have a base219

agent πθ trained through SFT. Given an instruction220

u, the agent interacts with the environment to pro-221

duce a trajectory e = (u, a1, o1, ..., an, on). If the222

agent makes an error action at at step t, a straight-223

forward approach would be to use reinforcement224

learning methods like proximal policy optimization225

(PPO, Schulman et al., 2017) to optimize the action226

at step t. However, applying online reinforcement227

learning directly to the LLM agent may cause prac-228

tical issues such as instability (Shen et al., 2023;229

Rafailov et al., 2024). To address this issue, we230

perform offline learning on the contrastive action231

pairs data instead, which ensures stability.232

Step-wise Trajectory Construction To gener-233

ate contrastive action pairs data, we allow the base234

agent πθ to explore on the expert trajectory. This235

approach has two benefits: Firstly, upon identify-236

ing an incorrect action by the agent, we can easily237

acquire a correct action for contrastive learning pur-238

poses. Secondly, it prevents arbitrary exploration239

by the agent, thereby yielding a more informative240

trajectory. For the task instruction u with expert241

trajectory en = (u, a1, ..., on−1, an), we use the242

first t− 1 steps (u, a1, ..., at−1, ot−1) as historical243

trajectory et−1. The agent then predict the actions244

from step t to get the trajectory:245

et:m = (ât, ôt, ..., âm, ôm), (6)246

The rewards for at and ât are rs(st, at) and247

rs(st, ât), respectively. We use a threshold τ to248

filter actions. If the reward of ât is lower than that249

of at by a margin greater than τ , and the outcome250

reward of êm is lower than that of en, we consider251

the agent to have made a mistake at step t. We252

then contrast the subsequent trajectory from that 253

step ewt:n ≻ elt:m | et−1. Here, ew and el repre- 254

sent win/lose trajectories with higher and lower re- 255

wards. We perform exploration across the entire ex- 256

pert trajectory set and obtain the contrastive action 257

dataset Ds =
{
(et−1, e

w
t:n, e

l
t:m)(i)

}|Ds|

i=1
. Addition- 258

ally, we construct a contrastive trajectory dataset 259

Dt =
{
(u, ewn , e

l
m)(i)

}|Dt|

i=1
based on the outcome 260

reward. 261

Mixture Trajectory Optimization During this 262

phase, the agent policy undergoes updates through 263

three loss components: outcome-DPO loss, step- 264

DPO loss, and SFT loss. Initially, to facilitate 265

agent’s learning from incorrect trajectories, we 266

compute the outcome-DPO loss using the con- 267

trastive trajectory dataset: 268

Lo-DPO = −E(u,ewn ,elm)∼Dt

[
log σ(β log

πθ(e
w
n |u)

πref (ewn |u)

−β log
πθ(e

l
m|u)

πref (elm|u)
)

]
,

(7) 269

Next, the step-DPO loss imparts process-level su- 270

pervision. Suppose the agent makes an error at step 271

t, we have the agent performing a comparison for 272

the subsequent trajectory, which is calculated as: 273

Ls-DPO = −E(et−1,ewt:n,e
l
t:m)∼Ds

[
log σ(β log

πθ(e
w
t:n|et−1)

πref (e
w
t:n|et−1)

−β log
πθ(e

l
t:m|et−1)

πref (e
l
t:m|et−1)

)

]
,

(8) 274

As demonstrated by Yuan et al. (2024), DPO only 275

optimizes the relative differences between chosen 276

and rejected data, neglecting the absolute magni- 277

tudes of the rewards. This oversight can be prob- 278

lematic in agent tasks where the space of correct 279

actions is significantly narrower than that of incor- 280

rect ones. To mitigate this issue, we add the SFT 281

loss, aiming to directly increase the likelihood of 282

the success trajectory: 283

LSFT = −E(u,ewn ,elm)∼Dt

[
log πθ(e

w
n |u)

]
, (9) 284

The final loss combines DPO and SFT losses: 285

L = Lo-DPO + Ls-DPO + LSFT (10) 286

To further refine the agent’s performance post- 287

optimization, we employ the updated agent as the 288

new base agent to continue collecting contrastive 289

action pairs data for additional training. This it- 290

erative process is maintained until reaching the 291

predetermined iteration limit. 292

4

Dataset Train Test Action Space Max Turns

WebShop 1624 200 8 10
ALFWorld 2851 274 13 20
InterCodeSQL 1500 200 - 10

Table 1: Statistics overview of tested datasets. "Max
Turns" refers to the maximum number of interactions in
the expert trajectory.

4 Experiments293

4.1 Experiment Settings294

Datasets We evaluate our method on three rep-295

resentative agent datasets: WebShop (Yao et al.,296

2022a) for web navigation, InterCodeSQL (Yang297

et al., 2024) for SQL database querying, and ALF-298

World for embodied agent tasks. Both WebShop299

and InterCodeSQL provide a dense reward scale300

from 0 to 1 to gauge task completion, while ALF-301

World only provides a binary reward to indicate302

whether the task is completed. We employ the av-303

erage reward as the evaluation metric for all tasks.304

To collect training expert trajectories, we prompt305

GPT-4 to interact with the environment in ReAct306

pattern. We then filter the results based on the307

final outcome rewards to retain only the correct308

trajectories. Please refer to Appendix D for more309

details. The statistical information of the dataset310

is summarized in Table 1, and more details can311

be found in Appendix A. Note the ALFWorld test312

set is divided into 140 seen cases and 134 unseen313

cases, evaluating the agents’ in-domain and out-of-314

domain proficiencies, respectively.315

Implementation Details We utilize Llama-2-7B-316

Chat (Touvron et al., 2023) as the base model317

to train LLM agents. The training epoch is 3318

and with a batch size of 48. The AdamW opti-319

mizer (Loshchilov and Hutter, 2017) is employed,320

coupled with a cosine learning scheduler. For step-321

level rewards acquisition via the scorer, we set the322

temperature to 1 and the number of samples N to 5,323

promoting diversity in sampling. In the generation324

of contrastive action pairs, the base agent’s temper-325

ature is fixed at 0, while the filtering threshold τ326

is adjusted to 0.5 for ALFWorld and 0.1 for both327

WebShop and InterCodeSQL. All the generations328

are carried using vllm (Kwon et al., 2023). Dur-329

ing the mixture trajectory optimization phase, we330

search for the learning rate from 1e-5 to 5e-5, and331

β for the DPO loss from 0.1 to 0.5. The iteration332

cap is set to 4. All experiments are conducted on a333

suite of 8 NVIDIA A100 80G GPUs.334

Baselines We evaluate IPR against three types 335

of baselines: prompt-based, outcome refinement, 336

and process refinement methods. For prompt- 337

based methods, we compare the efficacy of GPT- 338

4 (Achiam et al., 2023), GPT-3.5-turbo (Ouyang 339

et al., 2022), and the untrained Llama-2-7B- 340

Chat (Touvron et al., 2023) utilizing ReAct prompt- 341

ing paradigm. These baselines are tested in a 342

one-shot context. Regarding outcome refinement 343

methods, four tuning strategies are juxtaposed: (1) 344

SFT (Chen et al., 2023) tunes the agent using 345

solely expert trajectories, which is the base agent 346

of other baselines; (2) PPO (Schulman et al., 2017) 347

is a reinforcement learning (RL) technique that 348

directly optimizes the agents to maximize the out- 349

come reward; (3) RFT (Rejection sampling Fine- 350

Tuning) (Yuan et al., 2023) augments the expert 351

trajectory dataset with successful trajectories, sub- 352

sequently training the agent on the enriched dataset; 353

and (4) ETO (Song et al., 2024) contrasts success 354

and failure trajectories via DPO (Rafailov et al., 355

2024). For process refinement methods, we com- 356

pare the Step-PPO method, which optimizes the 357

agents to maximize the step-level process reward. 358

4.2 Results 359

Table 2 illustrates that, in comparison to outcome 360

refinement and process refinement methods, both 361

open-source and proprietary models under prompt- 362

based methods perform significantly worse. This 363

discrepancy is particularly evident with the un- 364

trained Llama-2-7B, which struggles to complete 365

the InterCodeSQL and ALFWorld tasks. However, 366

after training with our IPR method, there is a re- 367

markable increase in the average reward from 5.5 368

to 69.4, surpassing the best performance of GPT- 369

4. Regarding outcome refinement baselines, our 370

method outperforms the previous state-of-the-art 371

(SOTA) method ETO by margins of 5.8%, 7.2%, 372

2.5% and 3.2% on WebShop, InterCodeSQL, ALF- 373

World (seen), and AFLWorld (unseen) respectively, 374

with an average improvement of 4.5%. This un- 375

derscores the superiority of integrating process su- 376

pervision in enhancing agent performance. As 377

for process refinement baselines, while Step-PPO 378

performs well on InterCodeSQL, surpassing both 379

prompt-based and outcome refinement baselines, 380

its instability within RL optimization procedures 381

results in poor performance on the other two tasks. 382

In contrast, IPR significantly enhances agent perfor- 383

mance, outperforming all baselines across the three 384

complex interactive agent tasks. We also present 385

5

Paradigm Models WebShop InterCodeSQL ALFWorld Average
Seen Unseen

Prompt-based
GPT-4 63.2 38.5 42.9 38.1 45.7
GPT-3.5-Turbo 62.4 37.8 7.9 10.5 29.7
Llama-2-7B 17.9 4.0 0.0 0.0 5.5

Outcome Refinement

Llama-2-7B + SFT 60.2 54.9 60.0 67.2 60.6
Llama-2-7B + PPO 64.2 52.4 22.1 29.1 42.0
Llama-2-7B + RFT 63.6 56.3 62.9 66.4 62.3
Llama-2-7B + ETO 67.4 57.2 68.6 72.4 66.4

Process Refinement
Llama-2-7B + Step-PPO 64.0 60.2 65.7 69.4 64.8
Llama-2-7B + IPR (ours) 71.3 61.3 70.3 74.7 69.4

Table 2: Performance of different methods on three agent datasets. IPR shows superiority over prompt-based and
outcome refinement methods. For ETO and IPR, we report the best performance across all iterations.

case studies to delineat the task-solving trajecto-386

ries of our method in Appendix C. Moreover, IPR387

showcases robustness on the ALFWorld unseen388

task, affirming its generalization capabilities.389

5 Analysis390

5.1 Different Base Models391

To further substantiate the efficacy of our method,392

we conduct validations across a variety of base393

models. We select Mistral-7B (Jiang et al., 2023a),394

Llama-2-13B-Chat (Touvron et al., 2023) and395

Llama-3-8B (Meta, 2024) as our base LLMs, em-396

ploying WebShop and InterCodeSQL as evaluation397

datasets. We juxtapose the performance of IPR398

with that of ETO and SFT. The comparative re-399

sults are summarized in Table 3. IPR consistently400

outperforms ETO and SFT across all models and401

datasets. Notably, on the Mistral model, where SFT402

performance is relatively poor, our method realizes403

a significant improvement, demonstrating that our404

approach can effectively enhance the performance405

of weaker models. Furthermore, we observe that on406

the WebShop task, Llama-2-13B achieves the best407

performance after SFT and maintains its leading408

position after IPR. Similarly, Llama-3-8B shows409

superior performance on the InterCodeSQL task.410

This pattern indicates that base agents with higher411

initial performance are prone to achieve more pro-412

nounced final performance post-IPR training.413

5.2 Ablation Study414

We conduct ablation experiments on the training415

methods and iteration rounds for IPR. For ALF-416

World, we evaluate performance on the unseen test417

set. As shown in Table 4, removing each module418

results in a clear drop in the agent’s performance,419

Base LLM Setting WebShop InterCodeSQL

Mistral-7B
SFT 58.5 50.0
ETO 66.2 54.3
IPR 69.6 58.9

Llama-2-13B
SFT 62.2 59.3
ETO 68.9 61.5
IPR 72.2 64.5

Llama-3-8B
SFT 61.2 63.4
ETO 66.2 65.8
IPR 72.0 68.1

Table 3: The performance of different base LLMs on
WebShop and InterCodeSQL.

underscoring the power of our method. For the ab- 420

lation on training methods, we discern that the re- 421

moval of SFT loss engenders the most pronounced 422

performance drop in the agent. Additionally, we 423

find that removing the step-DPO loss induce a more 424

substantial performance decline than that of remov- 425

ing the outcome-DPO loss, suggesting the necessity 426

of process supervision. The iteration ablation re- 427

sults show that in the initial rounds of iteration, the 428

agent continually refine its performance by learning 429

from incorrect actions. However, excessive itera- 430

tions can lead to a decrease in performance. This 431

decline might be attributed to overfitting, a con- 432

sequence of excessive exploration of the training 433

set. 434

5.3 Step Reward Estimation Quality 435

The employment of a scorer agent to estimate pro- 436

cess rewards may introduce some noise. To eval- 437

uate the accuracy of step rewards, we conduct an 438

experimental analysis on WebShop. In WebShop, 439

each action navigates to a new web page, and scor- 440

ing rules are established to calculate the final re- 441

6

Training Scheme WebShop InterCodeSQL ALFWorld

w/o o-DPO 70.2 59.3 72.4
w/o s-DPO 66.4 58.0 70.2
w/o SFT 61.8 31.7 64.9

Iteration=1 63.6 56.6 68.7
Iteration=2 63.7 58.2 70.2
Iteration=3 68.2 59.2 74.7
Iteration=4 71.3 61.3 73.5
Iteration=4 68.1 57.9 71.4

Table 4: Ablation study on training methods and itera-
tions.

1 5 10 15 20
N = number of sampling times

74

76

78

80

82

%
 A

cc
ur

ac
y

Llama2-7B
Llama2-13B
Llama3-8B

Figure 3: Step reward estimation quality on WebShop.

ward for purchasing a product. Ma et al. (2024)442

heuristically expands the product scoring rules to443

assign scores at different web pages, thereby scor-444

ing each action. This helps us evaluate the quality445

of two different actions taken from the same state.446

Please refer to Appendix B for more details. We447

define accuracy as the ratio of our constructed con-448

trastive action pairs’ order that satisfy the scoring449

function introduced by Ma et al. (2024). We an-450

alyze the impact of using different LLM agents451

as scorers and varying the Monte Carlo sampling452

times on the accuracy of step reward estimation.453

Figure 3 illustrates that, despite inherent noise,454

the sampling approach yields satisfactory process455

reward estimations, achieving an accuracy of up456

to 82% . The accuracy is influenced by the457

base model’s performance on the task. For ex-458

ample, with the same sample count, Llama-2-13B459

achieves the highest quality in step reward estima-460

tion. This suggests that using a more powerful461

base model (Table 3) can improve the quality of462

step reward annotations. Additionally, the number463

of samples affects step reward estimation quality.464

Increasing samples can improve scoring accuracy465

but raise time costs. Despite the efficiency con-466

cerns with MC method, we can balance sample467

WebShop IntercodeSQL ALFWorld
30

40

50

60

70

Av
g.

 R
ew

ar
d

SFT
ETO
IPR

Figure 4: The average reward per step.

size and scoring accuracy. For WebShop, setting 468

the sampling number N = 5 achieves performance 469

comparable to a larger sample size. Without in- 470

creasing inference time costs, IPR achieves nearly 471

a 6% performance improvement at the expense of 472

three times the ETO training duration. 473

5.4 Average Reward Per Step 474

The purpose of IPR is to provide process-level su- 475

pervision to the agent, enabling it to take more 476

accurate actions at each step. Here, we evaluate 477

the changes in the average reward per step after 478

training. The reward for each step is estimated ac- 479

cording to the procedure in Section 3.2. We calcu- 480

late the average rewards for all actions within each 481

trajectory and then average these values across the 482

entire test set. Figure 4 illustrates the significant 483

improvements in average step rewards achieved by 484

our IPR method compared to SFT and ETO across 485

three tasks. It can also be observed that for datasets 486

where SFT training has a higher average step re- 487

ward, such as InterCodeSQL, the improvement in 488

step reward is even more pronounced. These results 489

underscore the superior performance of IPR, con- 490

firming its effectiveness in enhancing the accuracy 491

and efficacy of agent actions. 492

5.5 Exploration of Step Reward Modeling 493

Based on the step reward data we collected, we 494

conduct further exploration and develop a step re- 495

ward model, which can reduce the training time 496

for new models within that environment. Given 497

the historical trajectory et−1 and the current ac- 498

tion at, the reward model outputs a score as the 499

step reward. We conduct experiments on Web- 500

Shop, using Llama-2-7B to build the reward model. 501

We collect 70k actions generated by Llama-2-7B 502

and Llama-2-13B as training data, with the step 503

rewards estimated using the MC method. We train 504

the reward model with MSE loss. To evaluate the 505

7

Models No Reward Reward Model MC Method

Llama-2-7B 67.4 68.9 71.3
Llama-2-13B 68.9 70.7 72.2
Llama-3-8B 66.2 70.6 72.0

Table 5: The performance of different step reward ac-
quisition methods.

effectiveness of the reward model, we replace the506

scorer in Section 3.2 with the reward model and507

compare the results against ETO (which does not508

use step rewards) and the MC method. As shown in509

Table 5, the reward model can enhance the perfor-510

mance of Llama-3-8B, even though its actions are511

not included in the training data. This indicates the512

generalization and robustness of the reward model.513

However, despite outperforming ETO, the results514

still fall short of the MC method. This may be at-515

tributed to the model’s less accurate estimation of516

step rewards within the environment, suggesting517

the need for further improvement.518

6 Related Work519

6.1 LLM as Agents520

The emerging reasoning and instruction-following521

capabilities of LLMs (Wei et al., 2022) enable them522

to act as adept agents, particularly in zero-shot gen-523

eralization across new tasks and problems (Yao524

et al., 2022b; Richards, 2023; Wang et al., 2023a).525

The key technique involves formulating prompts526

that furnish LLMs with instructions and context527

about the environment, thereby enabling them to528

generate executable actions and leverage external529

tools for complex task-solving (Song et al., 2023;530

Xie et al., 2023). To enhance the capabilities of531

open-source LLMs as agents, recent efforts have532

adopted fine-tuning methods (Chen et al., 2023;533

Zeng et al., 2023; Yin et al., 2023). These methods534

enables agent learn from successful trajectories or535

utilize contrastive information with failed trajecto-536

ries (Song et al., 2024). However, these approaches537

only leverage final outcome reward, with no stud-538

ies to date investigating the integration of process539

information to improve agent performance.540

6.2 Step-level Process Supervision541

In the resolution of complex tasks, even SOTA542

models may still make mistakes at intermediate543

steps. To monitor the task completion process and544

avoid such errors, some approaches (Uesato et al.,545

2022; Lightman et al., 2023) employ process-based546

methods which can provide step-level guidance. To547

avoid the high cost of manually collecting process 548

supervision, recent works (Liu et al., 2023; Wang 549

et al., 2023b; Havrilla et al., 2024; Wang et al., 550

2024) construct pseudo-labels, using the model’s 551

potential to complete the task given the previous 552

steps as process labels. These methods (Ma et al., 553

2023; Luong et al., 2024) use PPO to optimize the 554

model but suffer from training efficiency and insta- 555

bility issues. Our approach, designed with mixture 556

trajectory optimization, effectively enhances the 557

agent’s performance. 558

6.3 Self-Improvement 559

To compensate for the scarcity of high-quality train- 560

ing data (Tao et al., 2024), self-improvement meth- 561

ods empower the model to autonomously acquire, 562

refine, and learn from self-generated experiences. 563

Certain works (Jiang et al., 2023b; Singh et al., 564

2023; Zelikman et al., 2023; Chen et al., 2024) fo- 565

cus on alignment, refining the model by discerning 566

these self-generated responses from those obtained 567

from human-annotated data. Others concentrate on 568

LLM agents utilized for task-solving and interac- 569

tion in dynamic environments. They enhance the 570

agent’s capabilities in planning (Qiao et al., 2024), 571

tool using (Bousmalis et al., 2023; Zhu et al., 2024), 572

and communication (Ulmer et al., 2024). These en- 573

deavors demonstrate that models can refine them- 574

selves through exploration in diverse domains. Our 575

work aims to amplify this self-improvement pro- 576

cess by providing fine-grained guidance. 577

7 Conclusion 578

In this paper, we present IPR, a noel framework de- 579

signed to elevate the capabilties of LLM agents in 580

complex interaction tasks. Our approach integrates 581

process-level supervision, enabling agents to learn 582

from contrast action pairs. To provide fine-grained 583

guidance in environments where only outcome re- 584

wards are available, we use the MC method to au- 585

tomatically calculate step rewards. By employing 586

iterative agent optimization, IPR provides an effec- 587

tive way to optimize agent decision-making trajec- 588

tories. Experiments on three benchmarks demon- 589

strate that our framework consistently outperforms 590

existing baselines. Subsequent analyses validate 591

the efficacy of each part of the framework and ac- 592

tion efficiency. We believe the IPR framework can 593

serve as a potent tool for enhancing agent perfor- 594

mance at the action level, thereby catalyzing future 595

progress in intelligent agent development. 596

8

Limitations597

Despite achieving the best performance compared598

to other baselines, it is important to acknowledge599

several limitations of this work. 1) Our method600

provides fine-grained supervision for the agent’s601

self-improvement process. However due to limited602

training data, which is a quite common scenario,603

iterative preference learning on self-generated sam-604

ples can lead to overfitting. Future work could605

explore the augmentation of training tasks using606

GPT-4 to mitigate this issue. 2) Our method only607

explores identifying error actions and creating con-608

trastive datasets through step rewards. However, it609

does not fully exploit the potential of these rewards.610

The numerical values of step rewards could indi-611

cate the severity of errors at each step. For instance,612

adopting the curriculum learning approach (Wang613

et al., 2021), where more severe errors are corrected614

first before addressing less significant ones, might615

further enhance agent performance. 3) Our step616

reward model is only trained on a single agent task,617

which affects its generalizability across different618

tasks. Future work could develop a general agent619

step reward model applicable to various tasks.620

Ethics Statement621

This work fully complies with the ACL Ethics Pol-622

icy. We declare that there are no ethical issues in623

this paper, to the best of our knowledge.624

References625

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama626
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,627
Diogo Almeida, Janko Altenschmidt, Sam Altman,628
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.629
arXiv preprint arXiv:2303.08774.630

Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao,631
Coline Manon Devin, Alex X Lee, Maria Bauza Villa-632
longa, Todor Davchev, Yuxiang Zhou, Agrim Gupta,633
Akhil Raju, et al. 2023. Robocat: A self-improving634
generalist agent for robotic manipulation. Transac-635
tions on Machine Learning Research.636

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,637
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:638
Toward language agent fine-tuning. arXiv preprint639
arXiv:2310.05915.640

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,641
and Quanquan Gu. 2024. Self-play fine-tuning con-642
verts weak language models to strong language mod-643
els. arXiv preprint arXiv:2401.01335.644

Alex Havrilla, Sharath Raparthy, Christoforus Nalm- 645
pantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi, 646
Eric Hambro, and Roberta Railneau. 2024. Glore: 647
When, where, and how to improve llm reasoning 648
via global and local refinements. arXiv preprint 649
arXiv:2402.10963. 650

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 651
sch, Chris Bamford, Devendra Singh Chaplot, Diego 652
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 653
laume Lample, Lucile Saulnier, et al. 2023a. Mistral 654
7b. arXiv preprint arXiv:2310.06825. 655

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023b. 656
Selfevolve: A code evolution framework via large 657
language models. arXiv preprint arXiv:2306.02907. 658

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 659
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 660
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 661
cient memory management for large language model 662
serving with pagedattention. In Proceedings of the 663
ACM SIGOPS 29th Symposium on Operating Systems 664
Principles. 665

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 666
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 667
John Schulman, Ilya Sutskever, and Karl Cobbe. 668
2023. Let’s verify step by step. arXiv preprint 669
arXiv:2305.20050. 670

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, 671
Yejin Choi, Hannaneh Hajishirzi, and Asli Celiky- 672
ilmaz. 2023. Don’t throw away your value model! 673
making ppo even better via value-guided monte-carlo 674
tree search decoding. arXiv e-prints, pages arXiv– 675
2309. 676

Ilya Loshchilov and Frank Hutter. 2017. Decou- 677
pled weight decay regularization. arXiv preprint 678
arXiv:1711.05101. 679

Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng 680
Sun, Xiaoran Jin, and Hang Li. 2024. Reft: Rea- 681
soning with reinforced fine-tuning. arXiv preprint 682
arXiv:2401.08967. 683

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, 684
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng 685
Kong, and Junxian He. 2024. Agentboard: An analyt- 686
ical evaluation board of multi-turn llm agents. arXiv 687
preprint arXiv:2401.13178. 688

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, 689
Pengfei Liu, Yang You, and Hongxia Yang. 2023. 690
Let’s reward step by step: Step-level reward model 691
as the navigators for reasoning. arXiv preprint 692
arXiv:2310.10080. 693

AI Meta. 2024. Introducing meta llama 3: The most 694
capable openly available llm to date. Meta AI. 695

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 696
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 697
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 698

9

2022. Training language models to follow instruc-699
tions with human feedback. Advances in neural in-700
formation processing systems, 35:27730–27744.701

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,702
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei703
Lv, and Huajun Chen. 2024. Autoact: Automatic704
agent learning from scratch via self-planning. arXiv705
preprint arXiv:2401.05268.706

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-707
pher D Manning, Stefano Ermon, and Chelsea Finn.708
2024. Direct preference optimization: Your language709
model is secretly a reward model. Advances in Neu-710
ral Information Processing Systems, 36.711

Toran Bruce Richards. 2023. Significant-712
gravitas/autogpt: An experimental open-source713
attempt to make gpt-4 fully autonomous. URL714
https://github. com/Significant-Gravitas/AutoGPT.715

John Schulman, Filip Wolski, Prafulla Dhariwal,716
Alec Radford, and Oleg Klimov. 2017. Proxi-717
mal policy optimization algorithms. arXiv preprint718
arXiv:1707.06347.719

Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu,720
Weilong Dong, Zishan Guo, Xinwei Wu, Yan Liu,721
and Deyi Xiong. 2023. Large language model align-722
ment: A survey. arXiv preprint arXiv:2309.15025.723

Noah Shinn, Federico Cassano, Ashwin Gopinath,724
Karthik Narasimhan, and Shunyu Yao. 2024. Re-725
flexion: Language agents with verbal reinforcement726
learning. Advances in Neural Information Process-727
ing Systems, 36.728

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,729
Yonatan Bisk, Adam Trischler, and Matthew730
Hausknecht. 2020. Alfworld: Aligning text and em-731
bodied environments for interactive learning. arXiv732
preprint arXiv:2010.03768.733

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh734
Anand, Piyush Patil, Peter J Liu, James Harri-735
son, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al.736
2023. Beyond human data: Scaling self-training737
for problem-solving with language models. arXiv738
preprint arXiv:2312.06585.739

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li,740
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest-741
gpt: Connecting large language models with real-742
world applications via restful apis. arXiv preprint743
arXiv:2306.06624.744

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian745
Li, and Bill Yuchen Lin. 2024. Trial and error:746
Exploration-based trajectory optimization for llm747
agents. arXiv preprint arXiv:2403.02502.748

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu749
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,750
Dacheng Tao, and Jingren Zhou. 2024. A survey751
on self-evolution of large language models. arXiv752
preprint arXiv:2404.14387.753

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 754
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 755
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 756
Bhosale, et al. 2023. Llama 2: Open founda- 757
tion and fine-tuned chat models. arXiv preprint 758
arXiv:2307.09288. 759

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran- 760
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell, 761
Geoffrey Irving, and Irina Higgins. 2022. Solv- 762
ing math word problems with process-and outcome- 763
based feedback. arXiv preprint arXiv:2211.14275. 764

Dennis Ulmer, Elman Mansimov, Kaixiang Lin, Justin 765
Sun, Xibin Gao, and Yi Zhang. 2024. Bootstrapping 766
llm-based task-oriented dialogue agents via self-talk. 767
arXiv preprint arXiv:2401.05033. 768

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 769
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An- 770
ima Anandkumar. 2023a. Voyager: An open-ended 771
embodied agent with large language models. arXiv 772
preprint arXiv:2305.16291. 773

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai 774
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui. 775
2023b. Math-shepherd: A label-free step-by-step 776
verifier for llms in mathematical reasoning. arXiv 777
preprint arXiv:2312.08935. 778

Xin Wang, Yudong Chen, and Wenwu Zhu. 2021. 779
A survey on curriculum learning. IEEE transac- 780
tions on pattern analysis and machine intelligence, 781
44(9):4555–4576. 782

Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, 783
Le Hou, Hongkun Yu, and Jingbo Shang. 2024. 784
Multi-step problem solving through a verifier: An 785
empirical analysis on model-induced process super- 786
vision. arXiv preprint arXiv:2402.02658. 787

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 788
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 789
Maarten Bosma, Denny Zhou, Donald Metzler, et al. 790
2022. Emergent abilities of large language models. 791
arXiv preprint arXiv:2206.07682. 792

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Lu- 793
oxuan Weng, Yitao Liu, Toh Jing Hua, Junning Zhao, 794
Qian Liu, Che Liu, et al. 2023. Openagents: An 795
open platform for language agents in the wild. arXiv 796
preprint arXiv:2310.10634. 797

John Yang, Akshara Prabhakar, Karthik Narasimhan, 798
and Shunyu Yao. 2024. Intercode: Standardizing and 799
benchmarking interactive coding with execution feed- 800
back. Advances in Neural Information Processing 801
Systems, 36. 802

Shunyu Yao, Howard Chen, John Yang, and Karthik 803
Narasimhan. 2022a. Webshop: Towards scalable 804
real-world web interaction with grounded language 805
agents. Advances in Neural Information Processing 806
Systems, 35:20744–20757. 807

10

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak808
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.809
React: Synergizing reasoning and acting in language810
models. arXiv preprint arXiv:2210.03629.811

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-812
athi Chandu, Kai-Wei Chang, Yejin Choi, and813
Bill Yuchen Lin. 2023. Lumos: Learning agents814
with unified data, modular design, and open-source815
llms. arXiv preprint arXiv:2311.05657.816

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,817
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-818
ing Yao, Shanelle Roman, et al. 2018. Spider: A819
large-scale human-labeled dataset for complex and820
cross-domain semantic parsing and text-to-sql task.821
arXiv preprint arXiv:1809.08887.822

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,823
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,824
Ruobing Xie, Yankai Lin, et al. 2024. Advancing llm825
reasoning generalists with preference trees. arXiv826
preprint arXiv:2404.02078.827

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting828
Dong, Chuanqi Tan, and Chang Zhou. 2023. Scal-829
ing relationship on learning mathematical reason-830
ing with large language models. arXiv preprint831
arXiv:2308.01825.832

Eric Zelikman, Eliana Lorch, Lester Mackey, and833
Adam Tauman Kalai. 2023. Self-taught optimizer834
(stop): Recursively self-improving code generation.835
arXiv preprint arXiv:2310.02304.836

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao837
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:838
Enabling generalized agent abilities for llms. arXiv839
preprint arXiv:2310.12823.840

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng,841
Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,842
Jinjie Gu, and Huajun Chen. 2024. Knowa-843
gent: Knowledge-augmented planning for llm-based844
agents. arXiv preprint arXiv:2403.03101.845

11

A Dataset Details846

WebShop WebShop (Yao et al., 2022a) is847

a network-based simulation environment for e-848

commerce experiences, features a website with849

1.8 million actual products, each with distinct la-850

bels and attributes. In this environment, the agent851

is allowed to interact with the system through852

"search[QUERY]" or "click[ELEMENT]" actions853

to purchase products matching the instructions.854

Once the agent clicks the "buy" option, the environ-855

ment provides a final reward, which is calculated856

based on the matching heuristics of the product’s857

attributes and price.858

InterCodeSQL InterCodeSQL is an interactive859

database environment within InterCode bench-860

mark (Yang et al., 2024), where the agent inter-861

acts with the environment to retrieve necessary ta-862

ble information and complete the corresponding863

SQL queries. The database is constructed from864

the Spider (Yu et al., 2018) dataset, a large-scale865

cross-domain dataset originally designed for evalu-866

ating SQL query generation from natural language867

questions. We have modified InterCodeSQL to fit868

for our evaluation framework. When the agent per-869

form the "submit" action, the environment provides870

a final reward. The reward is calculated using the871

Intersection over Union (IoU) metric to quantify872

the correctness of the submitted execution output873

generated by the against the gold output, with both874

outputs being lists of records.875

ALFWorld ALFWorld (Shridhar et al., 2020)876

are household tasks that require agents to explore877

rooms and use commonsense reasoning to perform878

tasks, such as "put a pencil on the desk". The en-879

vironment provides the outcome on whether the880

agent successfully completes the task within given881

steps. The original ALFWorld dataset comprises882

both seen and unseen evaluation sets. The seen set883

is designed to assess in-distribution generalization,884

whereas the unseen set with new task instances885

measures out-of-distribution generalization of the886

agents.887

B Details of the Scoring Function888

In the WebShop environment, Yao et al. (2022a)889

provides the scoring formula to calculate the score890

of any product (the distance from the target prod-891

uct) as follows: 892

f = ftype ·
|Uatt∩Yatt|+|Uopt∩Yopt|+1[yprice≤uprice]

|Uatt|+|Uopt|+1 ,
(11) 893

where ftype = TextMatch(y, y∗). Following Ma 894

et al. (2024), we expand the product scoring rules to 895

derive the score for each action. Typically, complet- 896

ing a web shopping task involves three continuous 897

states: search, product selection, and finalizing the 898

product style before placing an order. Each action 899

leads to deterministic state change in the environ- 900

ment. Therefore, to calculate the step reward, we 901

measure the distance between the result state and 902

the target state. We primarily calculate scores for 903

three pages (states): search result page, product 904

description page, and order confirmation page. On 905

the search result page, we calculate the score of 906

each product on the page and take the highest score 907

for this page. On the product description page, we 908

compute the highest score for the product under 909

various options as the page score. On the order 910

confirmation page, the score of the finally selected 911

product is considered as the score for that page. 912

C Case Study 913

Here, we provide a detailed comparison of the tra- 914

jectories of IPR and ETO on the same tasks within 915

WebShop and ALFWorld, which illustrates how 916

IPR provides fine-grained guidance to correct erro- 917

neous actions and improves the efficacy of agent 918

actions. The cases are shown in Figure 5 and 6. 919

In the WebShop scenario, ETO learned the pro- 920

cess of selecting products and choosing their at- 921

tributes. However, when selecting a product, it 922

overlooked the requirement for product type and di- 923

rectly purchased the first item on the search page, a 924

dress shirt, ignoring the request for a tank top. 925

In contrast, our IPR, benefiting from fine-grained 926

process supervision, corrected this error and chose 927

the correct tank top product. 928

In the ALFWorld scenario, ETO engaged in 929

blind exploration to find the desired item potato, 930

which introduced a lot of irrelevant information and 931

unnecessary context. In contrast, our IPR improved 932

the efficiency of each action, directly navigating 933

to the sinkbasin to locate the potato. Moreover, 934

ETO made a mistake in the details by cooling the 935

potato down without picking it up, whereas IPR 936

rectified this action. 937

12

Case Study of WebShop

ETO
Task Instruction: I want to find a small purple
bike tank top for men that has a classic fit, and
price lower than 50.00 dollars
Thought: I need to search for a small purple
bike tank top for men that has a classic fit and
is priced under $50.
Action: search[small purple bike tank top men
classic fit]
Observation: Page 1 (Total results: 50) [SEP]
Next > [SEP] B09PBY1KJG [SEP] Men’s Ver-
tical Striped Button Down Dress Shirt Long
Sleeve Casual Comfort Regular Fit Business
Oxford Shirts [SEP] $1.97 to $22.97 ... [SEP]
B08W4FVVXC [SEP] Just Send It Motocross
Cool Motorcycle Dirt Bike Biker Gift Tank Top
[SEP] $19.9 ...
Overlooking important requirements
Thought: The search results are displayed. The
first item, B09PBY1KJG, is a men’s vertical
striped button-down dress shirt that fits the cri-
teria. I should click on it to see more details and
confirm if it’s the right size and price.
Action: click[B09PBY1KJG]
Observation: <product details>
Thought: The shirt is available in purple,
which is the color I want. I should select this
color option.
Action: click[purple]
Observation: <product details>
Thought: Now I need to ensure the shirt is
available in small size, as that’s the size I’m
looking for.
Action: click[small]
Observation: <product details>
Thought: The shirt is purple, small-sized, and
within my budget. It meets all the criteria I was
looking for. I should go ahead and purchase this
item.
Action: click[Buy Now]
Reward: 0.0

IPR
Task Instruction: I want to find a small purple
bike tank top for men that has a classic fit, and
price lower than 50.00 dollars.
Thought: I think I should use the search bar to
look for the product I need.
Action: search[small purple bike tank top men
classic fit]
Observation: Page 1 (Total results: 50) [SEP]
Next > [SEP] B09PBY1KJG [SEP] Men’s Ver-
tical Striped Button Down Dress Shirt Long
Sleeve Casual Comfort Regular Fit Business
Oxford Shirts [SEP] $1.97 to $22.97 ... [SEP]
B08W4FVVXC [SEP] Just Send It Motocross
Cool Motorcycle Dirt Bike Biker Gift Tank Top
[SEP] $19.9 ...
Thought: I think I should click on the
product that matches my criteria, which is
B08W4FVVXC.
Action: click[B08W4FVVXC]
Observation: <product details>
Thought: I think I should click on the ’purple’
color option to select the color I need.
Action: click[purple]
Observation: <product details>
Thought: I think I should click on the ’small’
size option to select the size I need.
Action: click[small]
Observation: <product details>
Thought: I think I should click on the ’Buy
Now’ button to purchase the product.
Action: click[Buy Now]
Reward: 1.0

938

Figure 5: Case study for WebShop.

13

Case Study of ALFWorld

ETO
Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3,
a cabinet 2, a cabinet 1, a coffeemachine 1, a
countertop 3, a countertop 2, a countertop 1, a
drawer 3, a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a shelf 3, a shelf
2, a shelf 1, a sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a stoveburner
1, and a toaster 1. Your task is to: cool some
potato and put it in microwave.
Actions of blind exploration
Thought: I need to cool a potato before putting
it in the microwave. The fridge is the best place
to cool food items quickly.
Action: go to fridge 1
Observation: The fridge 1 is closed.
Thought: The fridge is closed. I need to open
it to access the cooling space inside.
Action: open fridge 1
Observation: You open the fridge 1. The
fridge 1 is open. In it, you see a bowl 1, a cup
1, a lettuce 1, a plate 2, and a tomato 1.
Thought: I’ve opened the fridge, but I realize
I don’t need to put the potato inside since I
can cool it while holding it. I should close the
fridge to conserve energy.
Action: close fridge 1
Observation: You close the fridge 1.
Thought: I need to cool the potato, but I can’t
use the fridge since I closed it. I should find
another way to cool it down quickly.
Action: go to sinkbasin 1
Observation: On the sinkbasin 1, you see a
bowl 3, a butterknife 2, a egg 2, a fork 2, a
knife 1, and a potato 2.
Making a mistake in the details by cooling
down without picking up the potato
Thought: I’m at the sink basin, which is a
common place to cool food items by placing
them in cold water. I can use this method to
cool the potato.
Action: cool potato 2 with sinkbasin 1
Observation: Nothing happens.
Thought: Now that the potato is cooled, I need
to put it in the microwave. I should go to the
microwave to proceed with the task.

IPR
Task Instruction: You are in the middle of a
room. Looking quickly around you, you see a
cabinet 6, a cabinet 5, a cabinet 4, a cabinet 3,
a cabinet 2, a cabinet 1, a coffeemachine 1, a
countertop 3, a countertop 2, a countertop 1, a
drawer 3, a drawer 2, a drawer 1, a fridge 1, a
garbagecan 1, a microwave 1, a shelf 3, a shelf
2, a shelf 1, a sinkbasin 1, a stoveburner 4, a
stoveburner 3, a stoveburner 2, a stoveburner
1, and a toaster 1. Your task is to: cool some
potato and put it in microwave.
Thought: I need to cool a potato and then put
it in the microwave. First, I should locate the
potato.
Action: go to sinkbasin 1
Observation: On the sinkbasin 1, you see a
bowl 3, a butterknife 2, a egg 2, a fork 2, a
knife 1, and a potato 2.
Thought: There’s a potato here on the sink
basin. I should pick it up to proceed with the
task.
Action: take potato 2 from sinkbasin 1
Observation: You pick up the potato 2 from
the sinkbasin 1.
Thought: To cool the potato, I need to use the
fridge. I should go to the fridge now.
Action: go to fridge 1
Observation: The fridge 1 is closed.
Thought: The fridge is closed. I need to open
it to cool the potato inside.
Action: open fridge 1
Observation: You open the fridge 1. The
fridge 1 is open. In it, you see a bowl 1, a cup
1, a lettuce 1, a plate 2, and a tomato 1.
Thought: The fridge is open now. I can use it
to cool the potato by placing the potato inside.
Action: cool potato 2 with fridge 1
Thought: The potato is cooled. The next step
is to put it in the microwave, so I need to go to
the microwave.
Action: go to microwave 1
Observation: The microwave 1 is closed.
Thought: The microwave is closed. I need to
open it to place the potato inside.
Action: open microwave 1
Observation: You open the microwave 1. The
microwave 1 is open. In it, you see a egg 1.

939

14

Action: go to microwave 1
Observation: The microwave 1 is closed.
Thought: The microwave is closed. I need to
open it to place the potato inside.
Action: open microwave 1
Observation: You open the microwave 1. The
microwave 1 is open. In it, you see a egg 1.
Thought: I’ll proceed with the given instruc-
tions and place the potato in the microwave.
Action: put potato 2 in/on microwave 1
Observation: Nothing happens
Thought: With the potato in the microwave,
the next step is to close it to complete the task.
Action: close microwave 1
Observation: You close the microwave 1.
Thought: The task is complete with the potato
placed in the microwave. I should ensure the
microwave is closed before finishing.
Action: put potato 2 in/on microwave 1
Observation: You cool the potato 2 using the
fridge 1.
....
Reward: 0.0

Thought: The microwave is open, I’ll proceed
with placing the potato in as instructed.
Action: put potato 2 in/on microwave 1
Observation: You put the potato 2 in/on the
microwave 1.
Reward: 1.0

940

Figure 6: Case study for ALFWorld.

15

D Expert Trajectories Collection941

We primarily us the expert trajectories collected942

by Song et al. (2024) in ReAct pattern. For Inter-943

CodeSQL tasks not covered by these trajectories,944

we conducted our annotations.945

• WebShop (Yao et al., 2022a). In addition to946

manually annotated trajectories provided by947

the WebShop, GPT-4 is employed to annotate948

additional trajectories. The trajectories with949

final rewards exceeding 0.7 are reserved.950

• InterCodeSQL (Yang et al., 2024). We anno-951

tate expert trajectories using GPT-4 and retain952

trajectories with a reward of 1.0.953

• ALFWorld (Shridhar et al., 2020). The954

dataset provides human-annotated trajecto-955

ries.956

As the original trajectories lack the thoughts for957

each action step, we have employed GPT-4 to gen-958

erate the corresponding information.959

E Prompt for Evaluation960

We show the instruction prompts for WebShop, In-961

terCodeSQL, ALFWorld in Figure 7, 8, 9, respec-962

tively.963

16

Instruction Prompt for WebShop

You are doing a web shopping task. I will give you instructions about what to do. You have to
follow the instructions. Every round I will give you an observation and a list of available actions,
you have to respond to an action based on the state and instruction. You can use search action if
search is available. You can click one of the buttons in clickables. An action should be one of the
following structure: search[keywords] or click[value]

If the action is not valid, perform nothing. Keywords in search are up to you, but the value in click
must be a value in the list of available actions. Remember that your keywords in search should be
carefully designed.

Your response should use the following format:
Thought: I think ...
Action: click[something]

964

Figure 7: Instruction prompt for WebShop.

Instruction Prompt for InterCodeSQL

You are a helpful assistant assigned with the task of problem-solving. To achieve this, you will
interact with a MySQL Database system using SQL queries to answer a question.
At each turn, you should first provide your step-by-step thinking for solving the task. Your thought
process should start with "Thought: ", for example: Thought: I should write a SQL query that gets
the average GNP and total population from nations whose government is US territory.

After that, you have two options:
1) Interact with a mysql programming environment and receive the corresponding output. Your
code should start with "Action: " , for example: Action: SELECT AVG(GNP), SUM(population)
FROM nations WHERE government = ‘US Territory’
2) Directly submit the result, for example: Action: submit.

You should use this format:
Thought: your thought
Action: <the mysql command>.

You will receive the corresponding output for your sql command. Your output should contain only
one "Action" part. The "Action" part should be executed with a mysql interpreter or propose an
answer. Any natural language in it should be commented out. The SQL query and submit parts
can not appear in your output simultaneously.

965

Figure 8: Instruction prompt for InterCodeSQL.

Instruction Prompt for ALFWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a household
environment and your target is to perform actions to complete the task goal. At the beginning of
your interactions, you will be given a detailed description of the current environment and your

966

17

goal to accomplish.
For each of your turn, you will be given the observation of the last turn. You should first think
about the current condition and plan for your future actions, and then output your action in this
turn. Your output must strictly follow this format:"Thought: your thoughts. Action: your next
action".

The available actions are:
1. go to recep
2. task obj from recep
3. put obj in/on recep
4. open recep
5. close recep
6. toggle obj recep
7. clean obj with recep
8. heat obj with recep
9. cool obj with recep
where obj and recep correspond to objects and receptacles.
After each turn, the environment will give you immediate feedback based on which you plan your
next few steps. if the environment outputs "Nothing happened", that means the previous action is
invalid and you should try more options.

Your response should use the following format:
Thought: <your thoughts>
Action: <your next action>

967

Figure 9: Instruction prompt for ALFWorld.

18

	Introduction
	Task Formulation
	Method
	Supervised Fine-tuning
	Step-level Reward Acquisition
	Iterative Agent Optimization

	Experiments
	Experiment Settings
	Results

	Analysis
	Different Base Models
	Ablation Study
	Step Reward Estimation Quality
	Average Reward Per Step
	Exploration of Step Reward Modeling

	Related Work
	LLM as Agents
	Step-level Process Supervision
	Self-Improvement

	Conclusion
	Dataset Details
	Details of the Scoring Function
	Case Study
	Expert Trajectories Collection
	Prompt for Evaluation

