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Abstract001

The illustration or visualization of figurative002
language, such as linguistic metaphors, is an003
emerging challenge for existing Large Lan-004
guage Models (LLMs) and multimodal models.005
Due to their comparison of seemingly unre-006
lated concepts in metaphors, existing LLMs007
have a tendency of over-literalization, which008
illustrates figurative language solely based009
on literal objects, ignoring the underlying010
groundings and associations across disparate011
metaphorical domains. Furthermore, prior ap-012
proaches have ignored the binding process013
between visual objects and metaphorical at-014
tributes, which further intensifies the infidelity015
of visual metaphors. To address the issues016
above, we propose GOME (GrOunding-based017
MEtaphor Binding), which illustrates linguis-018
tic metaphors from the grounding perspective019
elaborated through LLMs. GOME consists of020
two steps for metaphor illustration, including021
grounding-based elaboration and scenario visu-022
alization. In the elaboration step, metaphorical023
knowledge is integrated into systematic instruc-024
tions for LLMs, which employs a CoT prompt-025
ing method rooted in rhetoric. This approach026
specifies metaphorical devices such as vehicles027
and groundings, to ensure accurate and faithful028
descriptions consumed by text-to-image mod-029
els. In the visualization step, an inference-time030
metaphor binding method is realized based on031
elaboration outputs, which register attentional032
control during the diffusion process, and cap-033
tures the underlying attributes from the abstract034
metaphorical domain. Comprehensive evalua-035
tions using multiple downstream tasks confirm036
that, GOME is superior to isolated LLMs, dif-037
fusion models, or their direct collaboration.038

1 Introduction039

Figurative language, such as metaphors, is a rhetor-040

ical device that describes an object or concepts in a041

non-literal manner to elucidate an idea or facilitate042

a comparison (LAKOFF, 1993). For example, in043

Figure 1: For the illustration of ‘a blanket of snow cov-
ered the streets’, we are expecting some metaphorical
attributes, such as pervasive or encompassing, to be
adapted from ‘blanket’ (source domain) to ‘snow’ (tar-
get domain), instead of a real blanket to be presented
(over-literalization).

the famous saying ‘books are the ladder of human 044

progress’, books are described as ladders, which 045

highlights the role of books in facilitating intellec- 046

tual and societal advancement. Visualizing such fig- 047

ures of speech is exceedingly beneficial to express 048

creative ideas in a more intuitive way (Schwering 049

et al., 2009), which facilitates the understanding 050

of both perceptible objects and implicit concepts 051

or emotions, and has been leveraged as persuasive 052

tools to evoke attitudes (Jahameh and Zibin, 2023). 053

Due to the non-literal juxtaposition in figurative 054

expressions (Zhang et al., 2024), metaphors can not 055

be visualized directly through large diffusion-based 056

text-to-image models, which can only work con- 057

ditioned on descriptive texts with literal captions 058

(Rombach et al., 2022; Saharia et al., 2022). Recent 059

works primarily deal with this issue through object- 060

based visual elaboration (Chilton et al., 2019; 061

Chakrabarty et al., 2023), which is a query rewrit- 062

ing method with Large Language Models (LLMs) 063

focusing on the objects to be represented. For in- 064
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stance, the metaphorical statement ‘A blanket of065

snow coverd the streets’, can be elaborated into a066

descriptive caption, like ‘An illustration of a blan-067

ket with snowflakes falling on it and the streets068

below’, which identifies the objects of ‘blanket’,069

‘snowflake’, and then consumed by diffusion-based070

models for illustration, as shown in Figure 1 (a).071

Despite their inspiring exploration, we’ve found072

two main problems in the entire process, includ-073

ing over-literalization and metaphorical attribute-074

object binding. (1) Over-literalization means that,075

when depicting a linguistic metaphor as an image076

with LLMs, objects within the metaphor are ex-077

cessively detailed, especially for the objects in the078

source domain for evoking abstract concepts, lead-079

ing to a cluttered or diverted representation from080

the metaphor’s original intent (Black et al., 1979).081

Still take Figure 1 as the example, ‘blanket’ in082

the statement is used for reflecting the pervasive083

or encompassing nature of ‘snow’, rather than a084

referential object to be depicted. Such excessive085

concretization may diminish the metaphor’s orig-086

inal grounding, becoming overly straightforward087

and singular (Davidson, 1984). (2) Attribute Bind-088

ing is the task of binding the attributes to the cor-089

rect objects (Rombach et al., 2022; Saharia et al.,090

2022), which is particularly challenging for fig-091

ures of speech because, the attributes is metaphor-092

ically entailed across different metaphorical do-093

mains (source domain and target domain), which094

impulses extra burden to diffusion models.095

To address the issues above, we propose GOME096

(LLM-elaborated Metaphor), which illustrates lin-097

guistic metaphors from the grounding perspective098

to avoid over-literalization in LLM elaborations.099

The core idea of GOME is to unfold the non-100

literal expressions through a textual description101

from a rhetorical perspective, including tenor, ve-102

hicle, and pragmatic groundings, which are fur-103

ther leveraged for metaphor binding to preserve104

provoking attributes, instead of referential objects.105

GOME involves three main stages, firstly, follow-106

ing (Chakrabarty et al., 2023), we compile a collec-107

tion of linguistic metaphors from six sets as a rich108

source of figurative language, which is post-filtered109

by LLM for visualizable metaphors. Secondly, we110

construct grounding-based visual elaboration with111

a CoT prompting method from a rhetoric perspec-112

tive, which generates fine-grained metaphorical el-113

ements, as well as visual elaborations for subse-114

quent depiction. Finally, an inference-time bind-115

ing method is conducted through cross-attention116

controlling, which realizes compelling and faith- 117

ful metaphor illustration by integrating objects and 118

figurative attributes. 119

Overall, our contributions are the following: (1) 120

The problem of over-literalization is firstly no- 121

ticed in LLM elaborations for metaphors, which 122

is then analyzed by a grounding-based depiction 123

method to avoid excessive concretization. (2) A 124

publicly available dataset 1 is introduced with 1351 125

visual elaborations of metaphors, together with 126

the fine-grained metaphorical elements, includ- 127

ing tenor, vehicle, and groundings for compre- 128

hensive metaphor illustration. (3) We propose a 129

metaphorical attribute-object binding approach at 130

an inference-time speed, which realizes attentional 131

registration in the text-to-image process. (4) Com- 132

prehensive experiments verify the high robustness 133

and fidelity of our method, which paves the way for 134

figurative language visualization, as well as other 135

downstream applications. 136

2 Related Work 137

2.1 Text-to-Image Generation 138

In recent years, advancements in text-to-image syn- 139

thesis have been remarkable, with diffusion-based 140

models surpassing earlier techniques like Varia- 141

tional Autoencoders (VAE) (Razavi et al., 2019) 142

and Generative Adversarial Networks (Bao et al., 143

2017). Prominent models in this field include 144

DALL·E 2 (Ramesh et al., 2022), Stable Diffusion 145

(Rombach et al., 2022), MidJourney, and Craiyon. 146

Despite their success in generating vivid and ap- 147

pealing imagery, there remain areas where they fail 148

to capture accurate depictions (Leivada et al., 2022). 149

For instance, recent studies (Kleinlein et al., 2022) 150

have demonstrated that while diffusion models may 151

struggle with the abstraction required for figurative 152

language. Recent work (Liu et al., 2022b, 2023a; 153

Wang et al., 2023) has explored cutting-edge sys- 154

tems showcasing the power of large language mod- 155

els and text-to-image models. 156

Extensive research has been conducted on tex- 157

tual figurative language, encompassing areas such 158

as metaphor generation (Yu and Wan, 2019; 159

Chakrabarty et al., 2020), idiom generation and 160

paraphrasing (Liu and Hwa, 2016; Zhou et al., 161

2021), and simile recognition and interpretation 162

(Zeng et al., 2020; He et al., 2022a). In contrast, the 163

visualization of figurative language has garnered 164

1our code and data at https://github.com/EMNLP-2024-
Submission/GOME.git
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comparatively less attention. Existing methodolo-165

gies (Chakrabarty et al., 2023) have predominantly166

focused on the creation of datasets that include im-167

ages and annotations for metaphors, similes, and168

idioms (Yosef et al., 2023; Akula et al., 2023).169

However, these datasets tend to focus more on the170

inclusion of objects in metaphors. For instance,171

(Chakrabarty et al., 2023) generated visual descrip-172

tions based on objects and synthetic images for173

1,540 linguistic metaphors. (Yosef et al., 2023)174

compiled a dataset containing about 3,000 figura-175

tive expressions paired with ground truth images176

through human annotations. (Akula et al., 2023)177

collected 5,061 metaphorical advertisement images178

using a simple annotation format of "A is as B as179

C" (e.g., "this pencil is as red as a firetruck"). Al-180

though these researches offer valuable resources,181

they do not facilitate an intrinsic process for the182

faithful depiction of metaphors.183

3 Methodology184

We present GOME, a collaboration of large lan-185

guage models and text-to-image models designed186

to generate visual elaborations and pictures from187

metaphorical text inputs. The development of188

GOME comprises three main stages, including data189

collection and the other two depiction steps illus-190

trated in Figure 3. Firstly, we perform data col-191

lection by preprocessing a collection of metaphors192

sourced from previous researches. Secondly, we193

utilize a large language model (LLM) to generate194

visual elaborations for the metaphors by appropri-195

ate CoT prompt design with rhetoric knowledge196

in the system role. Finally, the paired data of197

metaphors and generated visual elaborations are198

fed into a diffusion model to realize metaphor de-199

piction. Although previous research used DALL·E200

(Ramesh et al., 2022) to generate images, we uti-201

lize Stable Diffusion for a transparent and repro-202

ducible approach, and more importantly, a novel203

method to explore metaphorical attribute-object204

binding through attentional control. Concretely,205

The diffusion process is enriched with metaphorical206

object-attribute binding, using an inference-time207

optimization with a loss over cross-attention maps.208

The primary goal of GOME is to generate detailed209

textual descriptions of visual scenes (visual elabo-210

rations) to convey the intended meaning of the rich211

figurative phrases in metaphors.212

Figure 2: Gounding-based LLM elaboration for figura-
tive language. Outputs of the test sample are used for
subsequent metaphor binding and image generation.

3.1 Visual Elaboration 213

Following previous research, (Chakrabarty et al., 214

2023; Shahmohammadi et al., 2023), we take ‘vi- 215

sual elaboration’ as a mention, which refers to the 216

process of transforming or expanding figurative 217

contents into visualizable textual descriptions. We 218

generate synthetic visual elaborations using GPT-4. 219

Synthetic data produced by LLMs (Thoppilan et al., 220

2022; Brown et al., 2020; Liu et al., 2023b) offer 221

substantial benefits and demonstrate competitive, 222

and in certain instances, superior performance com- 223

pared to human-annotated data (He et al., 2022b; 224

Wang et al., 2021; Hu et al., 2022). To decipher lin- 225

guistic metaphors demanding proficiency in rhetor- 226

ical devices, we ask the large language model 227

(LLM) to act as an expert in metaphors, by in- 228

tegrating systematic domain knowledge, including 229

the definition and characteristics of tenor, vehicle, 230

groundings, etc, as well as examples into carefully 231

designed instructions over 400 words in its system 232

role. Details are seen in Appendix E. 233

Unlike previous prompts focused on all the pos- 234

sible objects, we propose to elaborate metaphors 235

with less provocative objects from vehicles, but 236

consider more on the underlying groundings. For 237

example, given the original metaphor ‘love is like 238

a gust of wind’, if the grounding is perceived as 239

‘love is gentle’, then the original metaphor could be 240

converted into a visual description like: ‘two lovers 241

embracing each other in a sunny field, their hair 242

and clothes gently blown by a soft breeze’. Other- 243

wise, if the grounding is ‘love is a brief passage’, 244

then the metaphor should be depicted as: ‘In a park 245

with fallen leaves during autumn, a couple broke 246
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Figure 3: The overall workflow of our method. Firstly, the input metaphor is elaborated based on an LLM according
to Figure 2. Secondly, the elaboration outputs, including the groundings, as well as the visual descriptions, undergo
a syntactic analysis process to extract the binding pairs. Finally, elaboration outputs serve as the text inputs of a
diffusion model, together with the metaphor binding objective based on results from syntactic analysis.

up. The woman left, and a man reached out his arm247

to grab her hand.’ Specifically, we queried LLMs248

in the way of CoT prompting from a rhetorical per-249

spective, together with the rhetorical knowledge250

integrated into the System Role.251

3.2 Cross Domain Linguistic Binding252

Different from previous metaphor visualization253

methods, which struggles to depict abstract con-254

cepts solely based on API calling, we conduct255

a metaphorical attribute-object binding process256

through attentional registration during the diffu-257

sion process. Our approach, which we call GOME,258

builds on the key idea that, vehicles can be in-259

ternalized in the final scenario by metaphorical260

attribute-object binding, which blends metaphori-261

cal attributes from vehicles in the source domain262

to tenor objects in the target domain. Such cross-263

domain bindings, which consist of object nouns and264

attribute modifiers, can be analyzed based on the265

syntactic structure of natural language visual elab-266

oration enhanced by metaphor groundings. More-267

over, inspired by (Rassin et al., 2023), these bind-268

ings can be adhered to by designing an appropriate269

loss over the cross-attention maps of the diffusion270

model, and finally steer the generation of visual271

metaphors.272

Given a pair of an object-noun from tenor and273

attribute modifiers from the vehicle, it is expected274

that the cross-attention map of the attribute sig-275

nificantly overlaps with that of the object, while276

remaining mostly distinct from the maps of other277

objects and attributes. To enforce these spatial re-278

lations within the attention maps, a specifically de-279

signed loss function is employed to operate across 280

all cross-attention maps. This loss is then utilized 281

during the inference phase with a pretrained diffu- 282

sion model. The noised latents are optimized by 283

performing a gradient step aimed at minimizing 284

this loss. Detailed illustrations of the entire process 285

are included in Figure 3. 286

Object-Attribute Pairs: Considering an enhanced 287

visual elaboration sentence Sv with N tokens, 288

which is obtained by concatenating the origi- 289

nal elaboration sentence with the perceived natu- 290

ral grounding sentence, we first need to specify 291

the objects and attributes to be attached across 292

different domains (source and target domains). 293

Let SMB denote the sets containing k cross- 294

domain pairs of objects and attributes SMB = 295

{(o1, a1), (o2, a2), . . . , (ok, ak)}, where (oi, ai) is 296

the i-th pair of tokens between the tenor object 297

oi and attribute modifiers ai. For instance, the 298

set for ‘now is pervasive and encompassing’ in- 299

cludes two pairs: (‘snow’, ‘pervasive’) and (‘snow’, 300

‘encompassing’). To identify the object-attribute 301

sets, we parse the enhanced visual elaboration 302

Sv using spaCy’s transformer-based dependency 303

parser (Honnibal and Montani, 2017) and identify 304

all object-nouns (either proper-nouns or common- 305

nouns) that are not serving as direct modifiers of 306

other nouns, and more importantly, presented as ob- 307

jects to be included in the visual elaborations. We 308

then recursively collect all modifiers of the noun 309

into the metaphor binding set SMB: 310

SMB = {(o1, a1), (o2, a2), . . . , (ok, ak)}
= ParserDP (Sv);

(1) 311
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Where ParserDP denotes the dependency parser312

(Honnibal and Montani, 2017). It is worth noting313

that, the set of attributes includes a range of syntac-314

tic relations, such as adjectival modification (amod;315

‘the broken heart’), compounds (compound; ‘the316

history wheels’), adjectival complement (acomp;317

‘Her words were as sharp as a knife’), and coordi-318

nation between modifiers (conj; ‘Her voice was a319

melody, sweet and haunting’).320

Metaphorical Binding: Let A1, A2, . . . , AN rep-321

resent the attention maps of all N tokens in the322

enhanced visual prompt Sv, and let Mdis(Ai, Aj)323

signify a measure of distance, indicating the lack324

of overlap, between the attention maps Ai and Aj .325

Our first loss aims to minimize that distance (maxi-326

mize the overlap) over pairs of entity modifiers and327

their corresponding object attributes (o, a):328

Lpos(A,Sv) =
∑

(o,a)∈SMB

1

2
Mdis(Ao, Aa). (2)329

For a measure of distance Mdis(Ai, Aj) between330

attention maps, we use a symmetric Kullback-331

Leibler divergence:332

Mdis(Ai, Aj) = K(Ai||Aj) +K(Aj ||Ai); (3)333
334

K(Ai||Aj) =
∑
pixels

Ailog(Ai/Aj); (4)335

where Ai, Ai are attention maps normalized to a336

sum of 1, i and j are generic indices.337

We also construct a loss that compares pairs338

of modifiers and entity nouns with the remaining339

words in the prompt, which are grammatically un-340

related to these pairs. This loss is defined between341

words within the (object-nouns, attribute-modifiers)342

set and words outside of it. Formally, let Uv repre-343

sent the set of unmatched words obtained by exclud-344

ing the words in SMB from the full set of words.345

Au is the corresponding attention map for a given346

unrelated word u. The following loss encourages347

moving apart the correlations between grammati-348

cally unrelated pairs of words:349

Lneg = −
∑

(o,a)∈SMB

1

4|Uv|
∑
u∈Uv

D(o, a, u); (5)350

D(o, a, u) =
∑
u∈Uv

[d(Ao, Au) + d(Au, Aa)]; (6)351

where d(Ao, Au) is the abbreviation of352

Mdis(Ai, Aj) defined in Equation 3 and 4.353

Our final loss combines the two loss terms:354

L = αp ∗ Lpos + αn ∗ Lneg. (7)355

Figure 4: Evolution of cross-attention maps along de-
noising steps. The attention maps of objects-attribute
pairs are initially unrelated, and gradually become inter-
twined adhering to the expected binding.

Our inference-time optimization approach is in- 356

spired by the work of (Chefer et al., 2023; Rassin 357

et al., 2023), which defined a loss over the cross 358

attention maps to update the latents at generation 359

time. However, their loss aims to strengthen the 360

activations of a set of selected tokens or the rela- 361

tions of general entity modifiers, while our loss 362

depends on pairwise relations of metaphorically 363

related words, especially for objects in tenors and 364

attributes in vehicles. Our method aims to align the 365

diffusion process to the underlying groundings of 366

the visual elaborations. 367

4 Evaluation 368

Evaluating the visualization of figurative language 369

presents a significant challenge due to its inherently 370

subjective nature. Additionally, current evaluation 371

methodologies vary widely, encompassing image 372

recognition (Yosef et al., 2023), visual entailment 373

(Chakrabarty et al., 2023), as well as retrieval and 374

localization (Akula et al., 2023). Consequently, to 375

thoroughly assess the robustness of GOME, we ad- 376

vocate for an evaluation complemented by diverse 377

automated metrics, together with human evalua- 378

tions applied at multiple levels of granularity. 379

4.1 Intrinsic Evaluation 380

In this section, we evaluate the general figurative 381

language understanding of GOME using the Fig- 382

QA dataset (Liu et al., 2022a). It contains 12k 383

figurative phrases with correct and incorrect inter- 384

pretations in the Winograd style. For instance, the 385

figurative sentence ‘Her word had the strength of 386

a wine glass’, is paired with both ‘Her promises 387
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Figure 5: Fine-grained evaluation results on different
categories of the Fig-QA dataset. GOME outperforms
other models across all categories with a more pro-
nounced gap in the visual category.

can be believed’ and ‘Her promises cannot be388

trusted’. This benchmark covers various themes,389

including common-sense object knowledge, visual390

metaphors, common-sense social understanding,391

and cultural metaphors. We employed their evalua-392

tion framework for GPT-2 and evaluated the small393

version trained with the context size of one. Ta-394

ble 1 presents a comparison between the results395

of GOME and other baselines, as reported by (Liu396

et al., 2022a), in both zero-shot and fine-tuned con-397

texts. The findings underscore the superiority of398

GOME over the pre-trained GPT-2 in both sce-399

narios, demonstrating its advanced comprehension.400

Subsequently, we assess GOME on fine-grained401

categories within the Fig-QA dataset (Liu et al.,402

2022a). As illustrated in Figure 5, GOME ex-403

hibits a comprehensive understanding across all404

categories. The significant improvement observed405

in the visual categories aligns with producing de-406

scriptions for metaphors suitable for visualization.407

Besides, we also conduct a qualitative experi-408

ment to illustrate the effect of metaphor binding in409

Figure 4. Specifically, we visualize the weights of410

cross-attention maps mapped to tokens over the de-411

noising steps. The left column displays three pairs412

of object-attributes to be coupled, including (street,413

empty), (lights, dimmed), and (snow, pervasive).414

At the beginning, their weights of aggregated atten-415

tion maps are initialized based on textual represen-416

tations from CLIP encoders, as well as the latent417

image representations. It can be observed that the418

attention maps of three object-attribute pairs are419

unrelated regardless of the expected binding, but420

gradually become intertwined alongside the denois-421

ing steps with the proposed modification. More422

comparisons can be seen in Appendix A.423

Settings Model ZS L-Tuned XL-Tuned

Supervised
GPT-2 54.57 57.13 64.00
ViPE-S 58.50 61.42 67.28

GOME-G 59.47 63.02 68.44

Few-shot
GPT-3.5 69.24 - -
GOME 74.33 - -

Table 1: Zero-shot and fine-tuned evaluation results us-
ing Fig-QA. L and XL denote the large and X-large
variations of the dataset. Our model, GOME-G, demon-
strates enhanced comprehension of figurative language
compared to other supervised models.

4.2 Extrinsic Evaluation 424

For a comprehensive end-to-end evaluation, image- 425

to-text and text-to-image retrieval tasks are con- 426

ducted using the HAIVMet dataset (Chakrabarty 427

et al., 2023). The HAIVMet dataset comprises lin- 428

guistic metaphors and corresponding visual elabo- 429

rations, which have been reviewed by experts. Pairs 430

of metaphors and visual elaborations, as well as 431

visual elaborations and images, were created for 432

evaluation purposes. Specifically, one positive im- 433

age was generated based on visual elaborations, 434

followed by the generation of four negative im- 435

ages per metaphor using Stable Diffusion (Ramesh 436

et al., 2022). Given that HAIVMet includes ground 437

truth visual elaborations, only the negative samples 438

required generation. The negative samples were 439

produced using two methods (Akula et al., 2023): 440

(a) Negative Tenor, which replaces the tenor in the 441

metaphor statement with one from another state- 442

ment; (b) Negative Vehicle, which replaces the 443

vehicle in the metaphor statement with one from 444

another statement. 445

After acquiring the relevant images from GPT- 446

3.5, ViPE, HAIVMet, and our own GOME, we ap- 447

plied the fine-tuned version of BLIP (Li et al., 2022) 448

on the COCO (Lin et al., 2014) retrieval dataset. 449

BLIP demonstrates superior performance on vision- 450

language benchmarks by effectively leveraging a 451

multimodal encoder-decoder mixture model, ren- 452

dering it highly suitable for retrieval evaluation. 453

Our experiments utilized BLIP in both zero-shot 454

and fine-tuned configurations. In the zero-shot set- 455

ting, the entire retrieval dataset served as the test 456

set, whereas in the fine-tuned setting, 80% of the 457

data was allocated for fine-tuning, with the remain- 458

ing 20% split equally for validation and evalua- 459

tion. The mean recall scores across the top-1, top- 460

5, and top-10 retrieval results, as well as the rank 461
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Setting
Metaphor Elaboration Grounding

IR↑ TR↑ Rank↓ IR↑ TR↑ Rank↓ IR↑ TR↑ Rank↓

SD & GPT-3.5
zero-shot 46.34 34.13 3.24 72.65 59.32 2.87 73.13 61.31 2.74
fine-tuned 48.45 34.84 3.11 75.62 61.34 2.71 78.12 62.53 2.63

ViPE
zero-shot 48.23 36.39 3.18 74.72 66.23 2.54 79.72 67.81 2.38
fine-tuned 52.34 53.17 3.04 80.32 68.44 2.37 81.42 69.61 2.21

HAIVMet
zero-shot 54.23 43.62 3.07 74.25 65.25 2.62 78.27 65.76 2.42
fine-tuned 56.92 51.23 2.88 81.32 69.75 2.24 80.54 67.22 2.38

GOME
zero-shot 51.43 42.31 3.13 75.23 69.45 2.37 81.12 72.35 2.31
fine-tuned 54.25 52.73 2.93 82.55 71.22 2.21 84.37 73.78 2.17

For IR and TR, larger values (↑) are better. For Rank, lower values (↓) are better.

Table 2: A comparative report on image-text and text-image retrieval using corpora generated by GPT-3.5, GOME,
and human experts (HAIVMet dataset) in zero-shot (zs) and fine-tuned (ft) settings. TR and IR denote the mean
image-to-text and text-to-image retrieval scores respectively. GOME outperforms GPT-3.5 and shows competitive
understanding to human experts.

of searching images based on text, are presented462

in Table 2. GOME surpasses GPT-3.5, ViPE, and463

HAIVMet in image-metaphor retrieval (the first TR464

column in the table). However, despite its advan-465

tage over other baselines, GOME slightly under-466

performs compared to human experts in metaphor467

retrieval from images (the first IR column in the468

table). This discrepancy may stem from the over-469

specification, with which human experts describe470

metaphorical images (Chakrabarty et al., 2023)471

based more on objects, resulting in a more discrete472

feature space that BLIP can interpret more easily.473

Furthermore, we conducted similar evaluations on474

pairs of images and visual elaborations, as well475

as groundings, instead of metaphors, to evaluate476

the alignment between the elaborations and their477

corresponding images, similar to image-metaphor478

retrieval. As illustrated in the right columns of Ta-479

ble 2, GOME surpasses SD & GPT-3.5 and human480

experts in both zero-shot and fine-tuned scenarios.481

Notably, while ViPE demonstrates lower perfor-482

mance, it still exhibits superior results to humans483

in image-grounding retrieval. This observation im-484

plies that HAIVMet emphasizes the visualizabil-485

ity of its generated elaborations with a robust link486

to the objects instead of underlying groundings.487

Conversely, GOME not only achieves comparable488

or even superior evaluations in image-metaphor489

and image-elaboration related tasks compared to490

HAIVMet, but also produces more compelling vi-491

sual elaborations faithful to original meanings, as492

indicated by its high average recall and ranking493

scores in the tasks of image-grounding retrieval494

(The rightest three columns in Table 2).495

4.3 Human Evaluation 496

To realize a comprehensive evaluation, a study 497

was undertaken involving three participants, aged 498

20 to 30, who were experts in metaphor analy- 499

sis. From the HAIVMet dataset, one hundred 500

metaphors were randomly selected. Visual elab- 501

orations for each metaphor were produced using 502

ChatGPT and GOME, alongside additional elabo- 503

rations from human experts within the HAIVMet 504

dataset. Subsequently, these visual elaborations 505

were utilized to generate corresponding images us- 506

ing Stable Diffusion. The experiment presented 507

participants with a metaphor alongside three im- 508

ages generated from prompts by human experts 509

(HAIVMet dataset), ChatGPT, and GOME. 510

The participants are instructed to complete two 511

missions: (a) select the image that best reflects the 512

metaphor’s literal meaning based on objects; (b) 513

select the image that best reflects the metaphor’s 514

underlying meaning based on groundings. Accord 515

to the results of Task (a), participants preferred vi- 516

sual metaphors from human experts 37.82% of the 517

time, followed by those from GOME at 31.32%, 518

and ChatGPT at 30.86%. While in the case of Task 519

(b), which accesses visualizations based on ground- 520

ings, participants preferred images from GOME at 521

36.43% of the time, followed by those from GOME 522

at 35.15%, and ChatGPT at 28.42%. These results 523

confirm GOME’s superiority over the direct col- 524

laboration of Stable Diffusion and ChatGPT, and 525

demonstrate its competitive performance relative to 526

human experts, especially for faithfully depicting 527

the underlying groundings of linguistic metaphors. 528
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Figure 6: Examples of metaphor illustration through different methods. Previous methods focused on objects to be
included in the metaphor, while our method focuses more on the underlying groundings. It can be observed that
excessive cretization of objects, especially for thought-provoking vehicles in the source domain, may diminish the
metaphor’s original meaning, becoming overly straightforward.

In Figure 6, we show examples of visualization529

generated using linguistic metaphors or their vi-530

sual elaborations as prompts for the text-to-image531

model. We observe that our method, where CoT532

prompting based on groundings is involved, is533

of higher quality. For instance, a good visual534

metaphor for the metaphorical expression ‘After535

10 minutes your head becomes like spinning cot-536

ton candy’ would reflect the underlying meanings,537

which indicates a feeling of confusion or over-538

whelmed by taking ‘spinning cotton candy’ as the539

vehicle in the original textual statements. Other540

methods just simply stack multiple objects together,541

such as people, heads, and spinning cotton candy,542

neglecting the true meaning of confusion or being543

overwhelmed. While in our method, the genuine544

underlying meaning is captured with CoT prompt-545

ing and systematic knowledge, which transform the546

abstract object or concept into a specific scenario,547

in which a student is surrounded by flying papers,548

with a frustrated emotion on her face to show the549

overwhelmed feeling.550

The observations are similar to the metaphors551

in other samples, such as transforming the ‘lion’552

into a brave soldier, and ‘floating whale’ into an553

‘overly large man’. Obviously, we are not expect-554

ing a real lion or whale presented in visual illus-555

trations. These vehicles play the role of secondary556

objects, emphasizing some attributes of primary 557

objects. The implicit meaning in metaphors is well 558

captured by our model, and depicted in the final pic- 559

ture. We also discover some cases hard to visualize, 560

such as metaphors with extreme subject feelings, 561

or abstract attributes blended in verbal expressions. 562

More discussions are provided in Appendix B. 563

5 Conclusion 564

In this paper, we introduced GOME, the first model 565

with linguistic binding for visualizing metaphors 566

from the grounding perspective. Our research 567

notices the problem of over-literalization for the 568

first time, and solves this issue through conceptual 569

elaborations for binding implicit metaphorical at- 570

tributes, rather than their presentation. Overall, our 571

contributions are the following: firstly, a grounding- 572

based depiction method is proposed for accu- 573

rately binding metaphorical attributes. Secondly, a 574

dataset with conceptual elaborations of metaphors 575

is introduced, encompassing fine-grained metaphor- 576

ical elements such as tenor, vehicle, and ground- 577

ings. Finally, extensive experiments validate the 578

fidelity of our method in capturing the underlying 579

meaning of metaphors. In future work, we plan to 580

employ GOME with knowledge from other related 581

fields, such as cognitive science. 582
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6 Limitations583

While we offer evidence of GOME’s effectiveness584

and understanding of figurative language across585

various benchmarks, we have to acknowledge po-586

tential limitations. There is still room for improve-587

ment in LLM elaboration by training a domain-588

specific LLM for figurative language, which is a589

common challenge in metaphor analysis, and not590

fully solved in this work, due to the limited compu-591

tational and data resources. Additionally, the selec-592

tion of evaluations, including metrics, and datasets593

chosen for assessment may not comprehensively594

capture the subtleties inherent in human figurative595

languages. For example, the cultural variations in596

the creation, and the subjectivity in interpreting597

figurative phrases, pose a significant consideration.598

Further investigation and comparative analysis uti-599

lizing a broader range of tasks, measurements, and600

datasets, may enhance the ability of GOME.601
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A Effectiveness of Metaphor Binding894

This part verifies the effectiveness of Metaphor895

Binding through a qualitative ablation. Specifically,896

we drop the binding loss during the text-to-image897

process, while other settings remains unchanged, to898

generate two illustrations for the metaphorical state-899

ment ‘A blanket of snow covered the streets’. The900

weights of cross-attention maps linked to tokens901

over the denoising steps are visualized in Figure 7.902

The top part displays the final illustration results,903

with the pairs of object-attributes to be coupled904

displayed at the left part, such as (street, empty),905

(lights, dimmed), and (snow, pervasive). At the be-906

ginning, it can be observed that the attention maps907

of three object-attribute pairs are both unrelated.908

However, the left part with the proposed binding909

method gradually becomes intertwined alongside910

the denoising steps, while in the right part without911

a binding process, the attention maps remain un-912

related. Finally, the left image is obviously more913

compelling and faithful to the original metaphor.914

The comparison can partly demonstrate the effec-915

tiveness of the metaphor binding.916

B More Discussion About Cases917

This part displays more cases of illustrations918

through GOME in Figure 8 and 9. Despite the com-919

pelling images, there are also some controversial920

cases between our model and experts in HAIVM921

in Figure 10. One situation is for metaphors with922

ambiguous emotional state. For instance, in the923

first metaphor of Figure 10, although the vehicle924

‘cold iron’ is correctly perceived in the grounding,925

with an interpretation of ‘the man is unfeeling and926

emotionally cold’. However, the emotional state927

of ‘unfeeling’ is hard for text-to-image models to928

visualize, ‘emotionally cold’ is also misunderstood929

as the states of weather, with snow presented in the930

picture. In this case, the depiction of HAIVM is931

better to depict an ’iron heart’. Another instance932

is a combination of multiple metaphors, like ’The933

teacher planted the seeds of wisdom’, while our934

model converts ’planted’ into the action of ‘teach-935

ing in front of the blackboard’ to show the teacher is936

nurturing and educational, the expression of ’seeds937

of wisdom’ is not fully represented. These cases938

shows that our model still have potential limita-939

tion in comprehensively capturing the subtleties of940

metaphors inherent in human figurative languages.941

C Implementation Details 942

Knowledge Distilation for GOME-G: We employ 943

the small version of GPT-2, which is finetuned on 944

GOME corpus for 5 epochs using 1 v100 Nvidia 945

GPU with 32 GB RAM. We use the AdamW op- 946

timizer with a learning rate of 5e-05 and a linear 947

scheduler with 1000 warmup steps. For GOME-G, 948

the batch size is generally 48. 10% of the samples 949

is used for validation. 950

Image-text Retrieval: We load a BLIP check- 951

point trained on COCO, initialized on ViT-B and 952

BERT-base. To fine-tune the model, we use a batch 953

size of 16 for 10 epochs using AdamW, a learning 954

rate of 1e -4, and a batch size of 128 with reranking 955

for fast inference, commonly used in retrieval. 956

Figurative QA: We made use of the provided 957

evaluation framework, and trained with the batch 958

size of 32 for 5 epochs using AdamW optimizer, 959

with a learning rate of 5e-5. As the original leader- 960

board is not available, we make an evaluation on 961

the validation set. 962

D Linguistic Metaphor Collection 963

Numerous explorations have been conducted to 964

collect linguistic metaphors (Hussain et al., 2017; 965

Chakrabarty et al., 2022a) or figurative expres- 966

sions (Chakrabarty et al., 2022a; Bizzoni and Lap- 967

pin, 2018). Following previous work (Chakrabarty 968

et al., 2023), we extended the annotations of 1351 969

linguistic metaphors from six resources removing 970

any duplicates: FLUTE (Chakrabarty et al., 2022b), 971

Advertisements (Hussain et al., 2017), CoPoet 972

(Chakrabarty et al., 2022a), FigQA (Liu et al., 973

2022a), Figure-of-Speech, CrossLing Metaphors 974

(Tsvetkov et al., 2014) and Metaphor Paraphrase 975

(Bizzoni and Lappin, 2018). It is worth noting 976

that not all linguistic metaphors can be rendered 977

as visual metaphors, some figurative expressions 978

involve much cultural specificity or deep emotional 979

states are difficult to depict visually. To overcome 980

this challenge, we apply a pre-processing pipeline 981

to filter original collections. Our pipeline mainly 982

considers the following aspects: Diversity: Dupli- 983

cated metaphors are removed, which can be mea- 984

sured by the sequence similarity based on difflib. 985

Brevity: Sentences exceeding 30 words in total are 986

excluded to maintain conciseness, which are impor- 987

tant for avoiding under-specification (Hutchinson 988

et al., 2022). Visualizability: metaphors should 989

be easily described in a visual form. We remove 990

metaphors with extremely emotional states and nu- 991
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Figure 7: Effectiveness of Metaphor Binding

Figure 8: Illustrations of classic metaphors (smilies) through GOME.

Figure 9: Illustrations of emotion-related metaphors through GOME.
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Figure 10: Controversial situations during human evaluations

merical expressions hard for text-to-image models992

to depict, such as ‘five little monkeys’, recognized993

by a Qwen model with 72B parameters.994

E System Role995

This part introduces the System Role for instructing996

GPT3.5, which generates visual elaboration for a997

given metaphor. We refer to some commands from998

(Shahmohammadi et al., 2023)999

Your are an expert aware of linguistic metaphors,1000

who is able to elaborate a metaphor with rich visual1001

details with no more than 30 words. The outputs1002

should include perceived concepts and objects that1003

served as tenors, while trying to exclude objects1004

or concepts served as vehicles unless they are nec-1005

essary to enable the metaphor to align with com-1006

mon sense. Determine the overall visual setting1007

and environmental style based on the conceptual1008

groundings in the metaphor. Obey the following1009

commands:1010

1. Convert abstract metaphors into depictable1011

prompts that represent the original lines. Visual1012

details should be elaborated in the outputs, along1013

with the provided objects to be included.1014

2. Consider the conceptual groundings of the1015

metaphor when generating prompts. The same line1016

should be represented differently depending on the1017

groundings of the metaphor. For example, "love1018

is like a gust of wind" could be converted to ẗwo1019

lovers embracing each other in a sunny field, their1020

hair and clothes gently blown by a soft breeze."1021

if the grounding is "love is gentle", or "In a park1022

during autumn, a couple broke up. The woman left,1023

and a man reached out his arm to grab her hand. As1024

a gust of wind blew by their side, it swept away the1025

fallen leaves." if the grounding is "love is a brief1026

passage". 1027

3. Use concrete objects to represent abstract con- 1028

cepts or unspecific expressions, which are difficult 1029

to visualize, such as using "a man and a woman 1030

are having a conversation over a cup of tea" to 1031

represent "somebody once told me" and "a shining 1032

diamond ring" to represent "all that glitters is gold." 1033

4. When generating prompts, do not focus on 1034

what the subject is thinking or feeling. For example, 1035

instead of "a student thinking about his long assign- 1036

ment list, overwhelmed by so much coursework," 1037

which is difficult to visualize, describe the student 1038

appearance, such as "a male student looking at a 1039

long assignment list, with a scared expression, tears 1040

rolling down from his cheek." 1041

5. Structure all prompts by setting a scene with 1042

at least one subject and a concrete action term, fol- 1043

lowed by a comma, and then describing the scene. 1044

For instance, "a view of a forest from a window in 1045

a cozy room, leaves are falling from the trees." 1046

6. To add variety and avoid repetition, it is im- 1047

portant to mix up singular and plural forms when 1048

referring to subjects or objects in the prompts. For 1049

example, "two cats," "ten men," "five girls," or 1050

"seven books" can be used instead of consistently 1051

using singular forms. 1052

7. Do not use generic words such as person, 1053

people, man, woman, individual, figure, object, 1054

etc. Instead, across various topics, use diverse 1055

and specific terms such as desert, island, statue, 1056

skyscraper, stars, moon, rainbow, snowflakes, wolf, 1057

horse, dragon, bird, python, bike, truck, airplane, 1058

astronaut, daisies, roses, diamond ring, and so on, 1059

where appropriate. 1060
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