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ABSTRACT

Ensemble methods which average over multiple neural network predictions are a
simple approach to improve a model’s calibration and robustness. Similarly, data
augmentation techniques, which encode prior information in the form of invariant
feature transformations, are effective for improving calibration and robustness.
In this paper, we show a surprising pathology: combining ensembles and data
augmentation can harm model calibration. This leads to a trade-off in practice,
whereby improved accuracy by combining the two techniques comes at the expense
of calibration. On the other hand, selecting only one of the techniques ensures good
uncertainty estimates at the expense of accuracy. We investigate this pathology
and identify a compounding under-confidence among methods which marginalize
over sets of weights and data augmentation techniques which soften labels. Finally,
we propose a simple correction, achieving the best of both worlds with significant
accuracy and calibration gains over using only ensembles or data augmentation
individually. Applying the correction produces new state-of-the art in uncertainty
calibration across CIFAR-10, CIFAR-100, and ImageNet.1

1 INTRODUCTION

Many success stories in deep learning (Krizhevsky et al., 2012; Sutskever et al., 2014) are in restricted
settings where predictions are only made for inputs similar to the training distribution. In real-world
scenarios, neural networks can face truly novel data points during inference, and in these settings
it can be valuable to have good estimates of the model’s uncertainty. For example, in healthcare,
reliable uncertainty estimates can prevent over-confident decisions for rare or novel patient conditions
(Dusenberry et al., 2019). We highlight two recent trends obtaining state-of-the-art in uncertainty and
robustness benchmarks.

Ensemble methods are a simple approach to improve a model’s calibration and robustness (Lakshmi-
narayanan et al., 2017). The same network architecture but optimized with different initializations
can converge to different functional solutions, leading to decorrelated prediction errors. By averaging
predictions, ensembles can rule out individual mistakes (Lakshminarayanan et al., 2017; Ovadia et al.,
2019). Additional work has gone into efficient ensembles such as MC-dropout (Gal and Ghahramani,
2016), BatchEnsemble, and its variants (Wen et al., 2020; Dusenberry et al., 2020; Wenzel et al.,
2020). These methods significantly improve calibration and robustness while adding few parameters
to the original model.

Data augmentation is an approach which is orthogonal to ensembles in principle, encoding additional
priors in the form of invariant feature transformations. Intuitively, data augmentation enables the
model to train on more data, encouraging the model to capture certain invariances with respect to
its inputs and outputs; data augmentation may also produce data that may be closer to an out-of-
distribution target task. It has been a key factor driving state-of-the-art: for example, Mixup (Zhang
et al., 2018; Thulasidasan et al., 2019a), AugMix (Hendrycks et al., 2020), and test-time data
augmentation (Ashukha et al., 2020).

A common wisdom in the community suggests that ensembles and data augmentation should naturally
combine. For example, the majority of uncertainty models in vision with strong performance are

1Contact: ywen@utexas.edu. Code: https://github.com/google/edward2/tree/master/
experimental/marginalization_mixup.
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built upon baselines leveraging standard data augmentation (He et al., 2016; Hendrycks et al., 2020)
(e.g., random flips, cropping); Hafner et al. (2018) cast data augmentation as an explicit prior for
Bayesian neural networks, treating it as beneficial when ensembling; and Hendrycks et al. (2020)
highlights further improved results in AugMix when combined with Deep Ensembles (Hansen and
Salamon, 1990; Krogh and Vedelsby, 1995). However, we find the complementary benefits between
data augmentations and ensembels are not universally true. Section 3.1 illustrates the poor calibration
of combining ensembles (MC-dropout, BatchEnsemble and Deep Ensembles) and Mixup on CIFAR:
the model outputs excessive low confidence. Motivated by this pathology, in this paper, we investigate
in more detail why this happens and propose a method to resolve it.

Contributions. In contrast to prior work, which finds individually that ensembles and Mixup improve
calibration, we find that combining ensembles and Mixup consistently degrades calibration perfor-
mance across three ensembling techniques. From a detailed analysis, we identify a compounding
under-confidence, where the soft labels in Mixup introduce a negative confidence bias that hinders
its combination with ensembles. We further find this to be true for other label-based strategies such
as label smoothing. Finally, we propose CAMixup to correct this bias, pairing well with ensembles.
CAMixup produces new state-of-the-art calibration on both CIFAR-10/100 (e.g., 0.4% and 2.3% on
CIFAR-10 and CIFAR-10C), building on Wide ResNet 28-10 for competitive accuracy (e.g., 97.5%
and 89.8%) and on ImageNet (1.5%), building on ResNet-50 for competitive accuracy (77.4%).

2 BACKGROUND ON CALIBRATION, ENSEMBLES AND DATA AUGMENTATION

2.1 CALIBRATION

Uncertainty estimation is critical but ground truth is difficult to obtain for measuring performance.
Fortunately, calibration error, which assesses how well a model reliably forecasts its predictions over
a population, helps address this. Let (Ŷ , P̂ ) denote the class prediction and associated confidence
(predicted probability) of a classifier.

Expected Calibration Error(ECE): One notion of miscalibration is the expected difference between
confidence and accuracy (Naeini et al., 2015): EP̂ [|P(Ŷ = Y |P̂ = p)− p|]. ECE approximates this
by binning the predictions in [0, 1] under M equally-spaced intervals, and then taking a weighted
average of each bins’ accuracy/confidence difference. Let Bm be the set of examples in the mth bin
whose predicted confidence falls into interval (m−1

M , m
M ]. The bin Bm’s accuracy and confidence are:

Acc(Bm) =
1

|Bm|
∑

xi∈Bm

1(ŷi = yi), Conf(Bm) =
1

|Bm|
∑

xi∈Bm

p̂i, (1)

where ŷi and yi are the predicted and true labels and p̂i is the confidence for example xi. Given n
examples, ECE is

∑M
m=1

|Bm|
n

∣∣∣Acc(Bm)− Conf(Bm)
∣∣∣.

2.2 ENSEMBLES

Aggregating the predictions of multiple models into an ensemble is a well-established strategy to
improve generalization (Hansen and Salamon, 1990; Perrone and Cooper, 1992; Dietterich, 2000).

BatchEnsemble: BatchEnsemble takes a network architecture and shares its parameters across
ensemble members, adding only a rank-1 perturbation for each layer in order to decorrelate member
predictions (Wen et al., 2020). For a given layer, define the shared weight matrix among K ensemble
members as W ∈ Rm×d. A tuple of trainable vectors rk ∈ Rm and sk ∈ Rn are associated with
each ensemble member k. The new weight matrix for each ensemble member in BatchEnsemble is

W′
k = W ◦ Fk, where Fk = rks

>
k ∈ Rm×d, (2)

where ◦ denotes the element-wise product. Applying rank-1 perturbations via r and s adds few
additional parameters to the overall model. We use an ensemble size of 4 in all experiments.

MC-Dropout: Gal and Ghahramani (2016) interpret Dropout (Srivastava et al., 2014) as an ensemble
model, leading to its application for uncertainty estimates by sampling multiple dropout masks at test
time in order to ensemble its predictions. We use an ensemble size of 20 in all experiments.

Deep Ensembles: Composing an ensemble of models, each trained with a different random initial-
ization, provides diverse predictions (Fort et al., 2019) which have been shown to outperform strong
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baselines on uncertainty estimation tasks (Lakshminarayanan et al., 2017). We use an ensemble size
of 4 in all experiments.

In this work, we focus on the interaction between data augmentation strategies and BatchEnsemble,
MC-Dropout, and deep ensembles. Other popular ensembling approaches leverage weight averaging
such as Polyak-Ruppert (Ruppert, 1988), checkpointing (Huang et al., 2017), and stochastic weight
averaging (Izmailov et al., 2018) to collect multiple sets of weights during training and aggregate
them to make predictions with only a single set.

2.3 DATA AUGMENTATION

Data augmentation encourages a model to make invariant predictions under desired transformations
which can greatly improve generalization performance. For example, in computer vision, random left-
right flipping and cropping are de-facto approaches (He et al., 2016). We highlight two state-of-the-art
techniques which we study.

Mixup: Mixup (Zhang et al., 2018) manipulates both the features and the labels in order to encourage
linearly interpolating predictions. Given an example (xi, yi), Mixup applies

x̃i = λxi + (1− λ)xj , ỹi = λyi + (1− λ)yj . (3)

Here, xj is sampled from the training dataset (taken from the minibatch), and λ ∼ Beta(a, a) for a
fixed hyperparameter a > 0.

Mixup was shown to be effective for generalization and calibration of deep neural networks (Zhang
et al., 2018; Thulasidasan et al., 2019b). Recent work has investigated why Mixup improves
generalization (Guo et al., 2018; Shimada et al., 2019) and adversarial robustness (Beckham et al.,
2019; Pang et al., 2020; Mangla et al., 2020). Given Mixup’s simplicity, many extensions have been
proposed with further improvements (Yun et al., 2019; Berthelot et al., 2019; Verma et al., 2019;
Roady et al., 2020; Chou et al., 2020).

AugMix: Searching or sampling over a set of data augmentation operations can lead to significant im-
provement on both generalization error and calibration (Cubuk et al., 2019b;a). AugMix (Hendrycks
et al., 2020) applies a sum of augmentations, each with random weighting, with a Jensen-Shannon
consistency loss to encourage similarity across the augmentations. AugMix achieves state-of-the-art
calibration across in- and out-of-distribution tasks. Let O be the set of data augmentation operations
and k be the number of AugMix iterations. AugMix samples w1, . . . , wk ∼ Dirichlet(a, . . . , a) for a
fixed hyperparameter a > 0 and op1, . . . , opk from O. Given an interpolation parameter m, sampled
from Beta(a, a), the augmented input x̃augmix is:

x̃augmix = mxorig + (1−m)xaug, xaug =

k∑
i=1

wiopi(xorig). (4)

3 MIXUP-ENSEMBLE PATHOLOGY

We seek to understand the effect of data augmentations on ensembles. In particular, we hope to verify
the hypothesis of compounding improvements when combining the seemingly orthogonal techniques
of data augmentation and ensembles. To our surprise, we find that augmentation techniques can be
detrimental to ensemble calibration.

3.1 THE SURPRISING MISCALIBRATION OF ENSEMBLES WITH MIXUP

Ensembles are the most known and simple approaches to improving calibration (Ovadia et al., 2019;
Lakshminarayanan et al., 2017), and Thulasidasan et al. (2019b) showed that Mixup improves
calibration in a single network. Motivated by this, Fig. 1 applies Mixup to each ensemble member
on CIFAR-10/CIFAR-100 with WideResNet 28-10 (Zagoruyko and Komodakis, 2016). Here, we
searched over Mixup’s optimal hyperparameter α (Eq. 3) and found that α = 1 gives the best result,
which corroborates the finding in Zhang et al. (2018). All data points in Fig. 1 are averaged over 5
random seeds.

Figs. 1a and 1b demonstrate improved test accuracy (Red (ensembles without Mixup) to Blue
(ensembles with Mixup)). However, if we shift focus to Figs. 1c and 1d’s calibration error, it is evident
that combining Mixup with ensembles leads to worse calibration (Red to Blue). This is counter-
intuitive as we would expect Mixup, which improves calibration of individual models (Thulasidasan
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Figure 1: WideResNet 28-10 on CIFAR-10/CIFAR-100. Red: Ensembles without Mixup; Blue:
Ensembles with Mixup; Orange: Individual models in ensembles without Mixup. (a) & (b): Applying
Mixup to different ensemble methods leads to consistent improvement on test accuracy. (c) & (d):
Applying Mixup to different ensemble methods harms calibration. Averaged over 5 random seeds.

et al., 2019a), to also improve the calibration of their ensemble. Fig. 1 confirms this pattern across
BatchEnsemble (BE), MC-dropout (MC), and deep ensembles (DE). This pathology also occurs on
ImageNet, as seen in Table 1.
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Figure 2: Reliability diagrams on CIFAR-
100 with a WideResNet 28-10.

Why do Mixup ensembles degrade calibration? To
investigate this in more detail, Fig. 2 plots a variant of
reliability diagrams (DeGroot and Fienberg, 1983) on
BatchEnsemble. We bin the predictions into M = 15
equally spaced intervals based on their confidence (soft-
max probabilities) and compute the difference between
the average confidence and the average accuracy as in
Eq. 1 for each bin. Fig. 2 tracks this difference over vary-
ing confidence levels. A positive difference (Acc−Conf)
implies under-confidence with respect to the true fre-
quencies; negative implies over-confidence; and zero
implies perfect calibration.

The backbone model in Fig. 2 is BatchEnsemble with
an ensemble size of 4 (we also found this consistent for
MC-Dropout and Deep-Ensemble). The figure presents
4 methods: Single: vanilla WideResNet 28-10; Mix-
upSingle: WideResNet 28-10 model trained with Mixup; BatchEnsemble: vanilla BatchEnsemble
WideResNet 28-10 model; MixupBE: BatchEnsemble WideResNet 28-10 model trained with Mixup.
Fig. 2 shows that only models trained with Mixup have positive (Acc− Conf) values on the test set,
which suggests that Mixup encourages under-confidence. Mixup ensemble’s under-confidence is also
greater in magnitude than that of the individual Mixup models. This suggests that Mixup ensembles
suffer from compounding under-confidence, leading to a worse calibration for the ensemble than
the individual Mixup models’ calibration. This is contrary to our intuition that ensembles always
improves calibration.

To further visualize this issue, Appendix C’s Fig. 8 investigates the confidence (softmax probabilities)
surface of deep ensembles and Mixup when trained on a toy dataset consisting of 5 clusters, each
with a different radius. We ensemble over 4 independently trained copies of 3-layer MLPs. Deep
ensemble’s predictive confidence is plotted over the entire input data space in Fig. 8c. The resulting
predictions are extremely confident except at the decision boundaries. Deep Ensemble still displays
high confidence in the area nearest to the origin which is expected to have lower confidence level.
On the other hand, Fig. 8d shows that Mixup-Ensemble is only confident in a very constrained
area around the training clusters, leading to an overall under-confident classifier which confirms our
postulation of compounding under-confidence.
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3.2 IS THE PATHOLOGY SPECIFIC TO MIXUP?

At the core of the issue is that Mixup conflates data uncertainty (uncertainty inherent to the data
generating process) with model uncertainty. Soft labels can correct for over-confidence in single
models which have no other recourse to improve uncertainty estimates. However, when combined
with ensembles, which incorporate model uncertainty, this correction may be unnecessary. Because
image classification benchmarks tend to be deterministic, soft labels encourage predictions on training
data to be less confident about their true targets even if they are correct. We validate this hypothesis
by showing it also applies to label smoothing.

Label Smoothing: Like Mixup, label smoothing applies soft labels: it smoothens decision boundaries
by multiplying a data point’s true class by (1− α), with probability α spread equally across other
classes. Using the same experimental setup as before, we apply increasing levels of label smoothing to
ensembles of WideResNet 28-10 models trained on CIFAR-10. Fig. 3 demonstrates the harmful effect
of label smoothing on CIFAR-10 ECE, particularly when aggressive (coeff ≥ 0.2). In the concurrent
work, Qin et al. (2020) found that label smoothing plus ensemble leads to worse calibration. They
showed that adjusting model confidence successfully corrects the compounding underconfidence.

Figure 3: ECE and Error on CIFAR-10 with label smoothing on MC Dropout, Deep Ensembles, and
BatchEnsemble. ECE degrades with label smoothing, particularly when it is more aggressive (≥ 0.2).

4 CONFIDENCE ADJUSTED MIXUP ENSEMBLES (CAMIXUP)
In this section, we aim to fix the compounding under-confidence issue when combining Mixup and
ensembles without sacrificing its improved accuracy on both in- and out-of-distribution data.

4.1 CLASS BASED CAMIXUP

Mixup encourages model under-confidence as shown in Fig. 2. Notice that Mixup assigns a uniform
hyperparameter α to all examples in the training set. To improve Mixup, we start from the intuition
that in classification, some classes are prone to be more difficult than others to predict. This can be
confirmed by Fig. 4a, which provides examples of per-class test accuracy. Ideally, we prefer our
model to be confident when it is predicting over easy classes such as cars and ships. For harder
classes like cats and dogs, the model is encouraged to be less confident to achieve better calibration.

Therefore, instead of a uniform Mixup hyperparameter for all classes, we propose to adjust the Mixup
hyperparameter of each class by the difference between its accuracy and confidence. CAMixup’s
intuition is that we want to apply Mixup on hard classes on which models tend to be over-confident.
On easy examples, we impose the standard data-augmentation without Mixup. This partially prevents
Mixup models from being over-confident on difficult classes while maintaining its good calibration
on out-of-distribution inputs.2

Denote the accuracy and confidence of class i as Acc(Ci) and Conf(Ci). We adjust Mixup’s λ in
Eqn. 3 by the sign of Acc(Ci)− Conf(Ci), which are defined as Acc(Ci) = 1

|Ci|
∑

xj∈Ci
1(ŷj = i)

and Conf(Ci) = 1
|Ci|

∑
xj∈Ci

p̂i.

λi =

{
0 Acc(Ci) > Conf(Ci)

λ Acc(Ci) ≤ Conf(Ci).
(5)

2We focus on classification, where classes form a natural grouping of easy to hard examples. However, the
same idea can be used on metadata that we’d like to balance uncertainty estimates, e.g., gender and age groups.
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Figure 4: Left: An illustration of the proposed CAMixup data augmentation. Selected per-class
test accuracies are showed in brown. Overall test accuracy is 96.2% on CIFAR-10; Right: Number
of epochs (out of 250) where CAMixup enables Mixup for selected classes in BatchEnsemble.
CAMixup tends to assign Mixup to hard classes. Counts are accumulated individually for each
ensemble member (ensemble size 4).

If the model is already under-confident on class i (Acc(Ci) > Conf(Ci)), Mixup is not applied to
examples in the class, and λi = 0. However, if Acc(Ci) ≤ Conf(Ci), the model is over-confident
on this class, and Mixup is applied to reduce model confidence. We compute the accuracy and
confidence on a validation dataset after each training epoch.
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Figure 5: WideResNet 28-10 on CIFAR-10/CIFAR-100. Red: Ensembles without Mixup; Blue: En-
sembles with Mixup; Green: Our proposed CAMixup improves both accuracy & ECE of ensembles.

Notice that λi is dynamically updated at the end of each epoch. To understand which classes are
more often assigned Mixup operation, Fig. 4 calculates the number of times that λi > 0 throughout
training. The maximum number of times is the number of total training epochs, which is 250 in the
BatchEnsemble model. We find that CAMixup rarely enables Mixup to easy classes such as cars
and ships: the number of times is less than 10% of the total epochs. For harder classes like cats and
dogs, CAMixup assigns Mixup operation almost every epoch, accounting for more than 80% of total
epochs. In summary, Fig. 4 shows that CAMixup reduces model confidence on difficult classes and
encourages model confidence on easy classes, leading to better overall calibration. Appendix D.1’s
Fig. 9a also shows that CAMixup effectively shifts the confidence to the lower region.

Fig. 5 presents results of CAMixup on CIFAR-10 and CIFAR-100 test set, where we compare the
effect of Mixup and CAMixup on different ensembling strategies (BatchEnsemble, MC Dropout,
DeepEnsemble). Adding Mixup to ensembles improves accuracy but worsens ECE. Adding CAMixup
to ensembles significantly improves accuracy of ensembles in all cases. More importantly, the
calibration results in Figs. 5c and 5d show that CAMixup ensembles are significantly better calibrated
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than Mixup ensembles, for instance, CAMixup reduces ECE by more than 5X for BatchEnsemble
over Mixup. We observe a minor decrease in test accuracy (at most 0.2%) when comparing CAMixup
ensembles with Mixup ensembles, but we believe that this is a worthwhile trade-off given the
significant improvement in test ECE.

Table 1: BatchEnsemble with en-
semble size 4 on ImageNet.

ACC ECE

BatchEnsemble 77.0 2.0%
MixupBE 77.5 2.1%
CAMixupBE 77.4 1.5%

Table 1 presents similar experiments applied to ResNet-50
on ImageNet, using BatchEnsemble as the base ensembling
strategy. These results are state of the art to the best of our
knowledge: Dusenberry et al. (2020) report 1.7% ECE with
Rank-1 Bayesian neural nets and 3.0% with Deep Ensembles;
Thulasidasan et al. (2019a) report 3.2% for ResNet-50 with
Mixup, 2.9% for ResNet-50 with an entropy-regularized loss,
and 1.8% for ResNet-50 with label smoothing.

4.2 PERFORMANCE UNDER DISTRIBUTION SHIFT
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Figure 6: WideResNet 28-10 on CIFAR-10-C.
Red: Ensembles without Mixup; Blue: En-
sembles with Mixup; Green: Ensembles with
CAMixup (ours).

Here, we assess model resilience to covariate shift
by evaluating on the CIFAR-10-C and CIFAR-100-C
benchmarks (C stands for corruptions) proposed by
Hendrycks and Dietterich (2019a), which apply 15
types of corruptions each with 5 levels of intensity.
We evaluate the performance of CAMixup vs Mixup
when applied to different ensembles, and report aver-
age error on ECE across different types of corruptions
and intensities.

Fig. 6a shows that Mixup improves accuracy on the
corrupted dataset because of its strong regularization
effect. However, the models tend to be over-confident
as one moves further from the original distribution
(higher corruption intensities), so encouraging under-
confidence is not an issue. This explains why Mixup
ensembles maintain low ECE on out-of-distribution
test data in Fig. 6b.

Fig. 6b also shows that CAMixup’s calibration on out-of-distribution data (CIFAR-10-C) is also on
par with Mixup ensembles. We observe the same result on CIFAR-100-C (Appendix D.1’s Fig. 9).
Thus, we successfully improve model calibration on in-distribution datasets without sacrificing its
calibration on out-of-distribution datasets.

5 COMPOUNDING THE BENEFITS OF CAMIXUP WITH AUGMIX ENSEMBLES

We have investigated why certain data augmentation schemes may not provide complementary
benefits to ensembling. We proposed class-adjusted Mixup (CAMixup) which compounds both
accuracy and ECE over vanilla ensembles. We believe that the insights from our work will allow the
community and practitioners to compound SOTA performance. We provide two concrete examples.

5.1 AUGMIX

We show how CAMixup can compound performance over ensembles of models trained with AugMix,
which were shown by Hendrycks et al. (2020) to achieve state-of-the-art accuracy and calibration
on both clean and corrupted benchmarks. We primarily focus on improving BatchEnsemble and
we investigate if adding better data augmentation schemes closes the gap between memory-efficient
ensembles (BatchEnsemble) and independent deep ensembles.

As discussed in Section 2.3, AugMix only uses label-preserving transformations. Therefore AugMix
provides complementary benefits to ensembles (and CAMixup). This is consistent with calibration
improvements in the literature with ensemble methods, which apply standard data augmentation such
as random flips, which also do not smoothen labels.

We consider a combination of AugMix and Mixup as it allows the model to encounter both diverse
label-preserving augmentations and soft labels under a linearly interpolating regime. The combination
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Figure 7: Performance on BatchEnsemble under dataset shift. Mixup and AugMixup improve
accuracy and calibration under shift but significantly worsen in-distribution calibration. Our proposed
CAMixup and AugCAMixup improve accuracy and calibration.

Method/Metric CIFAR-10 CIFAR-100
Acc(↑) ECE(↓) cA/cECE Acc(↑) ECE(↓) cA/cECE

AugMix BE 97.36 1.02% 89.49/2.6% 83.57 2.96% 67.12/7.1%

AugMixup BE 97.52 1.71% 90.05/2.8% 83.77 4.19% 69.26/4.8%

AugCAMixup BE 97.47 0.45% 89.81/2.4% 83.74 2.35% 68.71/4.4%

Table 2: Results for Wide ResNet-28-10 BatchEnsemble on in- and out-of-distribution CIFAR-10/100
with various data augmentations, averaged over 3 seeds. AugMix: AugMix + BatchEnsemble;
AugMixup: AugMix + Mixup BatchEnsemble; AugCAMixup: AugMix + CAMixup BatchEnsem-
ble. Adding Mixup to AugMix model increases test accuracy and corrupt accuracy at the cost of
calibration decay on testset. CAMixup bridges this gap with only a minor drop in accuracy.

AugMixup (AugMix + Mixup) can be written as

x = λ ∗AugMix(x1) + (1− λ) AugMix(x2), y = λ ∗ y1 + (1− λ) ∗ y2. (6)

Consistent with earlier results on Mixup, Table 2 shows combining AugMixup with BatchEnsemble
improves accuracy but worsens ECE, leading to under-confidence on in-distribution data. (Ap-
pendix D.2’s Fig. 10). With our proposed fix CAMixup, the combination AugCAMixup (AugMix +
CAMixup) improves calibration while retaining the highest accuracy for ensembles. Fig. 7 shows
detailed results on CIFAR-10-C and CIFAR-100-C. Similar to Mixup, AugMixup improves calibra-
tion under shift but worsens calibration on in-distribution. However, our proposed AugCAMixup
improves accuracy and calibration of ensembles on both clean and corrupted data.

To the best of our knowledge, these results are state-of-the-art in the literature: Dusenberry et al.
(2020) report 0.8% ECE and 1.8% ECE for CIFAR-10 and CIFAR-100 along with 8% and 11.7%
ECE for corruptions; Guo et al. (2017) report 0.54% and 2.3% ECE for the smaller Wide ResNet 32
on CIFAR-10 and CIFAR-100 with temperature scaling (93% and 72% accuracy), and Ovadia et al.
(2019) demonstrated that temperature scaling does not extend to distribution shift.

5.2 TEMPERATURE SCALING

In concurrent work, Rahaman and Thiery (2020) consider the interplay between data augmentation
and ensembling on calibration. They also find that Mixup ensembles can be under-confident, and
propose temperature scaling as a solution. Their core contribution is the same but differ in slight ways:
we further this analysis by showing the compounding under-confidence extends to other techniques
applying soft labels such as label smoothing, and we propose CAMixup as a solution. Post-hoc
calibration techniques like temperature scaling are complementary to our proposal and do not address
the core conflation issue with Mixup. Corroborating findings of Ovadia et al. (2019), Appendix G
shows combining CAMixup and temperature scaling can further improve test calibration error; it
does not improve out-of-distribution calibration. Another concurrent work showed that calibrated
ensemble members do not always lead to calibrated ensemble predictions (Anonymous, 2021).

6 CONCLUSION

Contrary to existing wisdom in the literature, we find that combining ensembles and Mixup con-
sistently degrades calibration performance across three ensembling techniques. From a detailed

8



Published as a conference paper at ICLR 2021

analysis, we identify a compounding under-confidence, where Mixup’s soft labels (and more broadly,
label-based augmentation strategies) introduce a negative confidence bias that hinders its combination
with ensembles. To correct this, we propose CAMixup, which applies Mixup to only those classes
on which the model tends to be over-confident, modulated throughout training. CAMixup combines
well with state-of-the-art methods. It produces new state-of-the-art calibration across CIFAR-10,
CIFAR-100, and ImageNet while obtaining competitive accuracy. Appendix H points out potential
future work and limitations of CAMixup.
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A DATASET DETAILS

CIFAR & CIFAR-C: We consider two CIFAR datasets, CIFAR-10 and CIFAR-100 (Krizhevsky,
2009). Each consists of a training set of size 50K and a test set of size 10K. They are natural images
with 32x32 pixels. Each class has 5,000 training images and 500 training images on CIFAR-10 and
CIFAR-100 respectively. In our experiments, we follow the standard data pre-processing schemes
including zero-padding with 4 pixels on each sise, random crop and horizon flip (Romero et al., 2015;
Huang et al., 2016; Srivastava et al., 2015). If a training method requires validation dataset such as
CAMixup, we use separate 2, 500 images from 50K training images as the validation set.

It’s important to test whether models are well calibrated under distribution shift. CIFAR-10 corruption
dataset (Hendrycks and Dietterich, 2019a) is designed to accomplish this. The dataset consists of
15 types of corruptions to the images. Each corruption types have 5 intensities. Thus, in total
CIFAR-10C has 75 corrupted datasets. Notice that the corrupted dataset is used as a testset without
training on it. Ovadia et al. (2019) benchmarked a number of methods on CIFAR-10 corruption.
Similarly, we can apply the same corruptions to CIFAR-100 dataset to obtain CIFAR-100C.

ImageNet & ImageNet-C: We used the ILSVRC 2012 classification dataset (Deng et al., 2009)
which consists of a total of 1.2 million training images, 50,000 validation images and 150,000 testing
images. Images span over 1,000 classes. We follow the data augmentation scheme in He et al. (2016),
such as random crop and random flip, to preprocess the training images. During testing time, we
apply a 224x224 center crop to images. Similarly to CIFAR-C, we apply 15 corruption types with 5
intensities each to obtain ImageNet-C (Hendrycks and Dietterich, 2019b).

B HYPERPARAMETERS IN SECTION 3
We kept the same set of hyperparameters as the BatchEnsemble model in Wen et al. (2020). All
hyperparameters can be found in Table 3. The most sensitive hyperparameter we found is whether
to use ensemble batch norm, which applies a separate batch norm layer for each ensemble member;
and the value of random_sign_init, which controls the standard deviation of Gaussian distributed
initialization of s and r. We kept BatchEnsemble CIFAR-10 the same as Wen et al. (2020), which
does not deploy ensemble batch norm. We enable ensemble batch norm on CIFAR-100 and ImageNet.
This allows us to use larger standard deviation in the initialization. The random_sign_init is −0.5
on CIFAR-10 and −0.75 on CIFAR-100 and -0.75 on ImageNet. In the code, we use negative value
to denote the standard deviation of Gaussian distribution (positive value instead initializes with a
Bernoulli distribution under that probability). In our case, we only use negative random_sign_init,
which means we only consider Gaussian distributed initialization in this work.

Dataset CIFAR-10 CIFAR-100

ensemble_size 4
base_learning_rate 0.1

per_core_batch_size 64
num_cores 8

lr_decay_ratio 0.1
train_epochs 250

lr_decay_epochs [80, 160, 200]

l2 0.0001 0.0003

random_sign_init 0.5 0.75
SyncEnsemble_BN False True

Table 3: Hyperparameters we used in Section 3 regarding to BatchEnsemble. The difference between
CIFAR-10 and CIFAR-100 is l2, random_sign_init and whether to use SyncEnsemble_BN.

C EXCESSIVE UNDER-CONFIDENCE ON SYNTHETIC DATA

To further understand the confidence surface of Mixup + Ensembles, we provided a visualization in
Fig. 8. We trained on a synthetic dataset consisting of 5 clusters, each with a different radius. We
ensemble over 4 independently trained copies of 3-layer MLPs. We plotted the softmax probabilities
surface of Mixup-Single model, Deep-Ensemble and Mixup-Ensemble. The softmax probabilities
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Figure 8: Softmax probabilities surface of different ensemble methods (ensemble size 4) in the input
space after training on synthetic data. Deep ensemble is over-confident in the area around origin.
Mixup-Ensemble leads to gloabl under-confidence.
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Figure 9: Left: Reliability diagrams on CIFAR-100 with a WideResNet 28-10. Our proposed
CAMixup successfully fixes the under-confidence of Mixup BatchEnsemble, leading to better calibra-
tion. (b) & (c): Red: Ensembles without Mixup; Blue: Ensembles with Mixup; Green: Our proposed
CAMixup does not harm the out-of-distribution performance.

represent the model confidence. Fig. 8c shows that Deep-Ensemble predictions are extremely
confident except at the decision boundaries. Fig. 8b displays a lower confidence than Deep-Ensemble.
This is beneficial in the single model context because single deep neural networks tend to be
over-confident and Mixup can partially correct this bias. On the other hand, Fig. 8d shows that Mixup-
Ensemble is only confident in a very constrained area around the training clusters, leading to an
overall under-confident classifier which confirms our postulation of compounding under-confidence.

D MORE CALIBRATION RESULTS OF MIXUP-BATCHENSEMBLE

In Section 3.1, we demonstrated that combining Mixup and ensembles leads to worse calibration on
testset. In this appendix section, we complement the above conclusion with the analysis on corrupted
datasets and with data-augmentation techniques like AugMix.

D.1 SUPPLEMENTARY RESULTS ON CAMIXUP

In this section, we provided supplementary results on CAMixup. Fig. 2 shows that combining Mixup
and BatchEnsemble leads to excessive under-confidence. In Fig. 9a, we showed that our proposed
CAMixup fixes this issue by correcting the confidence bias. This explains why CAMixup achieves
better calibration on in-distribution testset. As demonstrated in Section 4.2, Mixup improves model
out-of-distribution performance because of its strong regularization effect. We showed that our
proposed CAMixup inherits Mixup’s improvement on CIFAR-10-C. Fig. 9b and Fig. 9c show that
this conclusion seamlessly transfers to CIFAR-100-C. We also supplement Fig. 5 with Table 4 and
Table 5, illusrating detailed numbers.
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Figure 10: Reliability diagrams on CIFAR-10 and CIFAR-100. Both plots show that AugMix does
not lead to under-confidence when combined with ensembles. However, if we combine AugMix
with Mixup (AugMixup), the compounding under-confidence issue still exists, leading to suboptimal
calibration. Our proposed AugCAMixup corrects this underconfidence bias.

D.2 SUPPLEMENTARY RESULTS ON AUGMIX

We show that Mixup does not combine with ensembles without sacrificing in-distribution calibration
in Section 3.1. As discussed in Section 2.3, AugMix only uses label-preserving transformations and
does not modify the labels. Intuitively, it does not reduce model confidence. We support this intuition
with Fig. 10. It shows that AugMix does not lead to under-confidence. Therefore it can be combined
with ensembles without any calibration issue.

In Table 2, we showed that combining AugMix and Mixup leads to worse calibration due to the
under-confidence although AugMix itself does not. To better understand the insights beyond staring at
scalars, we provided the reliability diagram analysis as well. In Figure 10, we showed that the under-
confidence issue of AugMixup (Augmix + Mixup) still exists. It suggests that applying CAMixup
to Augmix can correct the under-confidence bias as what we showed in Fig. 10a and Fig. 10b. Our
proposed CAMixup allows to compound performance of ensembles and data augmentation to achieve
the best possible performance.

Method/Metric CIFAR-10
Acc(↑) ECE(↓) cA/cE

BatchEnsemble 96.22 ±0.07 1.8 ±0.2 % 77.5±0.3 /12.9 ±1.2 %

Mixup BE 96.98±0.08 6.4 ±0.4 % 80.0±0.4 /9.3±0.3 %
CAMixup BE 96.94 ±0.10 1.2 ±0.2 % 81.1±0.4 /9.7±0.35%

Table 4: CIFAR-10 results for Wide ResNet-28-10 BatchEnsemble (Wen et al., 2020) (BE), averaged
over 5 seeds. This table is used to supplement Fig. 5.

Method/Metric CIFAR-100
Acc(↑) ECE(↓) cA/cE

BatchEnsemble 81.85±0.09 2.8±0.1% 54.1±0.3/19.1±0.8%

Mixup BE 83.12±0.08 9.7±0.5 % 59.3±0.3/8.8±0.4%
CAMixup BE 83.02±0.10 2.3±0.1% 59.7±0.3/8.9±0.4%

Table 5: CIFAR-100 results for Wide ResNet-28-10 BatchEnsemble (Wen et al., 2020) (BE), averaged
over 5 seeds. This table is used to supplement Fig. 5.
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Dataset CIFAR-10 CIFAR-100

Metric Acc(↑) ECE(↓) cA/cE Acc(↑) ECE(↓) cA/cE

Deep Ensembles 96.66 0.78% 76.80/9.8% 82.7 2.1% 54.1/13.8%

Mixup DE 97.11 6.15% 83.33/8.0% 83.90 9.42% 61.02/8.9%

CAMixup DE 96.95 1.92% 83.01/4.4% 83.68 5.22% 59.18/8.6%

AugMix DE 97.39 0.59% 89.50/3.3% 84.15 5.13% 68.21/6.7%

AugMixup DE 97.56 2.71% 90.03/4.3% 84.85 6.86% 69.31/7.6%

AugCAMixup DE 97.48 1.89% 89.94/4.7% 84.64 5.29% 69.19/5.9%

Table 6: Mixup/AugMix/AugMixup/AugCAMixup on deep ensembles. We can conclude that Mixup
worsens ensemble predictions in deep ensembles as well as in BatchEnsemble. This suggests we can
use CAMixup on deep ensembles as well. However, the improvement is not as obvious as it is on
BatchEnsemble, leading to the fact that AugMix is the most calibrated (in- and out-of-distribution)
data augmentation strategy on deep ensembles.

E DEEP ENSEMBLES WITH MIXUP

We showed that CAMixup improves Mixup BatchEnsemble calibration on testset without undermining
its calibration under distribution shift in Section 4. In this section, we show that the improvement can
also be observed on deep ensembles. In Fig. 11, we showed the under-confidence bias we observed
on Mixup + BatchEnsemble also exists on Mixup + deep ensembles, with an even more obvious trend.
Beyond commonly used ECE measure, we also explore other calibration measures. They further
confirmed our under-confidence intuition. We provide some brief explanation on how to calculate
ACE, SCE and TACE.

ACE measure is the same as ECE except for the binning scheme. Rather than equally divide the
confidence evenly into several bins, ACE choses an adaptive scheme which spaces the bin intervals
so that each contains an equal number of predictions. SCE is the same as ECE except that it accounts
for all classes into calibration measure rather than just looking at the class with maximum probability.
The softmax predictions induce infinitesimal probabilities. These tiny predictions can wash out
the calibration score. TACE is proposed to set a threshold to only include predictions with large
predictive probability, to address the above issue.

We present the results of Mixup, CAMixup, AugMix, AugMixup and AugCAMixup on deep
ensembles in Table 6. We notice that the improvement of CAMixup on deep ensembles is smaller
than its improvement on BatchEnsemble. We postulate that this is because Mixup + deep ensembles
is much badly calibrated than Mixup + BatchEnsemble. For example, AugMixup + deep ensembles
achieve 2.71% and 6.86% ECE on CIFAR-10 and CIFAR-100. In the meanwhile, AugMixup +
BatchEnsemble achieve 1.71% and 4.19%. Thus, even if CAMixup can improve the calibration
of Mixup + deep ensembles, it still cannot beat AugMix + deep ensembles. As a result, when we
say we close the calibration gap between BatchEnsemble and deep ensembles, we are comparing
AugCAMixup BatchEnsemble (BatchEnsemble + CAMixup + Augmix) to AugMix deep ensembles.
This is because AugMix deep ensembles achieve the best calibration among all variants we tried.
How to completely fix the under-confidence in deep ensembles is a natural extension of this work.
Since we focus on bridging the calibration gap between BatchEnsemble and deep ensembles, we
delegate the complete fix in deep ensembles to the future work.

F METRICS OTHER THAN ECE
ECE is the standard metric in calibration, but it is a biased estimate of true calibration (Vaicenavicius
et al., 2019). Heavily relying on ECE metric might lead to inconsistent conclusion. In this section,
we computed the calibration error with recently proposed calibration estimator which reduces bias
in ECE, including debiased calibration estimator (Kumar et al., 2019) (DCE) and SKCE (Widmann
et al., 2019). fig. 12 shows that our conclusion in the main section are also supported by these two
recently proposed calibration estimators. In particular, the improvement of proposed CAMixup over
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(a) Reliability on testset.

(b) Reliability on corrupt level 3.

(c) Reliability on corrupt level 3.

(d) Reliability on corrupt level 5.

Figure 11: WideResNet-28-10 Deep Ensembles with Mixup on CIFAR-10. We plotted the reliability
diagram of ensemble and individual predictions. Besides ECE, we also plotted other calibration
metrics such as ACE, SCE and TACE proposed in Nixon et al. (2019). All metrics verify the
conclusion that Mixup + Ensembles leads to under-confidence on testset.
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Method/Metric BatchEnsemble Deep-Ensembles
Acc(↑) SKCE(↓) cA/cSKCE Acc(↑) SKCE(↓) cA/cSKCE

Vanilla 96.22 3.4e−4 77.5/0.026 96.66 3.4e−5 54.1/0.018

Mixup 96.98 4e−3 80.0/0.024 97.11 4.4e−3 59.3/0.0068

CAMixup 96.94 1.3e−4 81.1/0.019 96.95 4.3e−4 59.7/0.0032

Table 7: Results for Wide ResNet-28-10 BatchEnsemble (Wen et al., 2020) and Deep Ensembles on
CIFAR-10 and CIFAR-10-C, averaged over 3 seeds. This table is used to supplement Fig. 12

Mixup on testset is even larger than what ECE reflects in Fig. 5. Table 7 demonstrates the specific
numbers used in Fig. 12.
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Figure 12: WideResNet 28-10 on CIFAR-10 and CIFAR-10-C, averaged over 3 random seeds. SKCE:
Squared kernel calibration error computed in Widmann et al. (2019). DCE: Debiased calibration
error in Kumar et al. (2019). Red: Ensembles without Mixup; Blue: Ensembles with Mixup; Green:
Ensembles with CAMixup (ours). Both SKCE and DCE give consistent rankings on calibration
error to the ranking in Fig. 5 and Fig. 6. This plot shows that our proposed CAMixup is effective in
reducing Mixup calibration error when combined with ensembles.

G CAMIXUP WITH TEMPERATURE SCALING

See Fig. 13.
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H LIMITATIONS AND FUTURE WORK

We describe limitations of our work, signalling areas for future research. One limitation of CAMixup
is that all examples in the same class still share the same Mixup coefficient. This leaves room for
developing more fine-grained adaptive Mixup mechanisms, such as adapting the Mixup coefficient per
example. This relates to an open research question: how do you measure the training difficulty of a
data point given a deep network? (Toneva et al., 2018; Agarwal and Hooker, 2020) Another limitation
is we showed that CAMixup still cannot fully fix the miscalibration of Mixup + deep ensembles in
Appendix E, due to the fact that Mixup + deep ensembles leads to even worse calibration than Mixup
+ BatchEnsemble. This raises a harder question which CAMixup cannot completely solve but also
leaves more research room to further understand why Mixup is worse on deep ensembles and how to
address it. Thus, we leave the question on how to address the above issues to future work. Next, we
determine whether to use Mixup based on the reliability (Mean Accuracy - Mean Confidence) of each
class on validation set. One concern is that CAMixup does not scale well to a large number of classes.
Fortunately, we showed that this works on problems up to 1000 classes (ImageNet). Additionally,
Mixup has been most successful in the vision domain, hence our focus; and with preliminary success
on tabular data and natural language processing (Zhang et al., 2018; Guo et al., 2019). Assessing
whether CAMixup and ensembling techniques translate to text is an interesting area.

Algorithm 1 Forgetting Count Based
CAMixup

initialize prevacci = 0, i ∈ D
initialize forgetting T [i] = 0, i ∈ D
initialize MixupCoeff[i] = 0
while training do

B ∼ D # sample a minibatch
Apply Mixup on B based on

MixupCoeff
for examplei ∈ B do

compute acci
if prevacci > acci then

T [i] = T [i] + 1
prevacci = acci

end if
end for
gradient update classifier on B
rank = sort(T )
threshold = rank[|D|//2]
for examplei ∈ B do

if T [i] > threshold then
MixupCoeff[i] = a

else
MixupCoeff[i] = 0

end if
end for

end while

We took a first step in developing a more fine-grained
adaptive Mixup mechanism. Recall that class based
CAMixup calculates the reliability (Accuracy - Con-
fidence) at the end of each epoch, then it decided
whether to apply Mixup in each class (illustrated in
Fig. 4). This requires extra computation on valida-
tion dataset and it assigns uniform Mixup coefficient
within one class. By leveraging recently developed
forgetting count (Toneva et al., 2018), we can ad-
just Mixup coefficient for each example based on its
forgetting counts. The intuition is if an examples is
associated with high forgetting counts, it indicates the
model tends to forget this example. To achieve better
calibration, we should place low confidence on this
example. The algorithm of forgetting counts based
CAMixup is presented in Algorithm 1. In summary,
we first calculate the forgetting counts for each train-
ing example and obtain the median of these counts as
the threshold. Then, CAMixup applies Mixup to the
training example whose forgetting counts are higher
than the median.

We provided a preliminary results on CIFAR-10 in
Fig. 14. It demonstrates that forgetting counts based
CAMixup outperforms class based CAMixup on
most metrics across BatchEnsemble and MC-dropout.
One exception is that it underperforms on test calibra-
tion on MC-dropout. We could not observe the same
improvement on CIFAR-100. We postulate that the
reliability of forgetting count on CIFAR-100 is not as
good as it is on CIFAR-10, leading to the inconsistent
results. We leave the question on how to improve
forgeting count based CAMixup on CIFAR-100 into future work.
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Figure 13: Combining CAMixup and Temperature Scaling further improves test ECE. It does not
make further improvements on out-of-distribution calibration however.
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Figure 14: WideResNet 28-10 on CIFAR-10 and CIFAR-10-C. Green: Class based CAMixup. Purple:
Forgetting count based CAMixup. Forgetting count based CAMixup outperforms class based Mixup
in most metrics across BatchEnsemble and MC-dropout.
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