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Abstract

Large language models (LLMs) have revolu-001
tionized artificial intelligence, but their per-002
formance on specific tasks is often limited by003
knowledge boundaries. While fine-tuning tech-004
niques like low-rank adaptation (LoRA) aim005
to address this, they can suffer from overfit-006
ting. We propose flexible low-rank adaptation007
(Flexora), a novel method that automatically008
selects the most critical layers for fine-tuning009
to optimize performance across diverse down-010
stream tasks. Flexora formulates layer selec-011
tion as a hyperparameter optimization problem,012
employs unrolled differentiation for efficient013
solving, and identifies the most impactful lay-014
ers based on optimized hyperparameters. Ex-015
tensive experiments across various pre-trained016
models and natural language tasks demonstrate017
that Flexora consistently outperforms existing018
baselines. We provide theoretical insights and019
comprehensive ablation studies to elucidate the020
effectiveness of Flexora. Therefore, Flexora021
offers a robust solution to enhance LoRA fine-022
tuning for LLMs, potentially advancing the023
field of adaptive language model optimization.024

1 Introduction025

The advent of large language models (LLMs) (Zhao026

et al., 2023; Xu et al., 2023) has revolutionized027

artificial intelligence, offering unprecedented ca-028

pabilities across various domains. However, this029

progress comes at a significant cost: LLMs demand030

substantial computational resources due to their031

vast parameter sets and complex functionalities032

(Wei et al., 2022; Touvron et al., 2023). This chal-033

lenge has spurred the development of parameter-034

efficient fine-tuning (PEFT) methods (Li and Liang,035

2021; Lester et al., 2021), with low-rank adaptation036

(LoRA) (Hu et al., 2021) emerging as a particu-037

larly promising approach. The innovation of LoRA038

lies in its ability to freeze pre-trained parameters039

while introducing trainable auxiliary parameters040

(∆W ) at each layer, dramatically reducing training041

costs while maintaining impressive performance. 042

However, despite its widespread adoption, LoRA 043

is not without limitations. It can underperform on 044

certain tasks, likely due to overfitting issues, as 045

evidenced in benchmarks like GLUE (Wu et al., 046

2024b), summary tasks (Liu et al., 2024), and com- 047

plex reasoning tasks (Zhang et al., 2024). Existing 048

techniques to combat overfitting, such as dropout 049

(Lin et al., 2024) and novel regularization strategies 050

(Mao et al., 2024b), often yield performance com- 051

parable to or lower than vanilla LoRA and lack the 052

flexibility to adapt across different tasks. Moreover, 053

current methods typically require manual hyperpa- 054

rameter tuning, limiting their practical applicability 055

in diverse scenarios. These challenges therefore 056

underscore the urgent need for an algorithm that 057

delivers superior performance, enables automatic 058

hyperparameter tuning, and supports flexible train- 059

ing across various tasks. 060

To address these limitations, we introduce 061

flexible low-rank adaptation (Flexora), a novel 062

framework designed to flexibly fine-tune LLMs 063

using an automated layer-level policy. Our ap- 064

proach is inspired by hyperparameter optimization 065

(HPO) and offers several key innovations. First, we 066

demonstrate that fine-tuning only the most critical 067

layers can significantly reduce overfitting and en- 068

hance performance. Second, we frame the layer 069

selection problem as an HPO task and employ un- 070

rolled differentiation (UD) to solve it efficiently. 071

Third, we develop a three-stage process that auto- 072

matically identifies and focuses on the most impor- 073

tant layers for downstream tasks. As illustrated in 074

Figure 1, Flexora operates through an initializa- 075

tion stage (Sec. 4.1) that injects defined hyperpa- 076

rameters into LoRA parameters, a flexible layer 077

selection stage (Sec. 4.2) that optimizes these hy- 078

perparameters using UD, and a fine-tuning stage 079

(Sec. 4.3) that selectively updates only the most 080

crucial layers, significantly reducing computational 081

overhead. Our extensive empirical results (Sec. 5) 082
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Figure 1: An overview of Flexora: (a) Initialization of hyperparameters α̂ and their integration with LoRA
parameters to produce the Trainable Model. (b) Simultaneous training of LoRA parameters and hyperparameters α̂
using different datasets, minimizing empirical risk for both validation and training datasets. The hyperparameter
vector α̂ is then ranked based on magnitude. (c) Flexible selection of layers to be trained, where higher-ranked
layers are activated for training while others remain frozen.

demonstrate that Flexora effectively reduces unim-083

portant LoRA parameters, mitigates overfitting,084

and enhances overall performance across a vari-085

ety of tasks and model architectures.086

In summary, our key contributions consist of: (a)087

the introduction of Flexora, a novel framework for088

automatic layer selection in LoRA fine-tuning; (b)089

a formulation of layer selection as an HPO task,090

efficiently solved using unrolled differentiation; (c)091

comprehensive validation through extensive exper-092

iments on various LLMs and downstream tasks;093

and (d) theoretical insights into the performance094

improvements achieved by Flexora, providing a095

deeper understanding of its effectiveness.096

2 Related Work097

Low-Rank Adaptation (LoRA) Low-Rank098

Adaptation (LoRA) methods are widely used to099

reduce training parameters when fine-tuning large100

language models (LLMs) for specific applications.101

However, LoRA often suffers from overfitting,102

which can degrade performance on downstream103

tasks. To mitigate this, various strategies have been104

proposed: LoRA-SP (Wu et al., 2024b) randomly105

freezes half of the LoRA parameters during fine-106

tuning to alleviate overfitting; LoRA-FA (Zhang107

et al., 2023a) freezes down-projection weights108

while updating only up-projection weights; VeRA109

(Kopiczko et al., 2024) introduces vector-based ran-110

dom matrix adaptation, significantly reducing train-111

able parameters compared to LoRA; LoRA-drop112

(Zhou et al., 2024) prunes less important param-113

eters based on layer output analysis; AdaLoRA114

(Zhang et al., 2023b) dynamically allocates the115

parameter budget across weight matrices based116

on importance scores; LoRAPrune (Zhang et al.,117

2024) jointly prunes parts of the LoRA matrix and 118

LLM parameters based on gradients; and LoRAS- 119

hear (Chen et al., 2023) employs knowledge-based 120

structured pruning to reduce costs while enhancing 121

generalization. Despite their benefits, these meth- 122

ods often (a) require significant design effort, (b) 123

struggle to adapt across different tasks, and (c) can 124

be overly complex for practical application. In con- 125

trast, we introduce Flexora, a framework designed 126

for flexible LoRA fine-tuning across various tasks 127

using a simple, automated layer-level policy. 128

Hyperparameter Optimization (HPO) HPO is 129

widely applied across various domains. Specifi- 130

cally, in the domain of neural architecture search, 131

DARTS (Liu et al., 2019) conceptualizes the co- 132

efficients defining the network architecture as hy- 133

perparameters. In the domains of feature learning, 134

DS3L (Guo et al., 2020) considers feature extrac- 135

tors as hyperparameters. In the field of data science, 136

TPOT (Olson et al., 2016) employs hyperparame- 137

ters as weights to measure the importance of data. 138

By minimizing the validation loss over these hy- 139

perparameters, the optimal variables, e.g., the ar- 140

chitectures in Liu et al. (2019), the features in Guo 141

et al. (2020), and the data in Olson et al. (2016), 142

are identified, leading to superior performance in 143

their respective domains. Drawing inspiration from 144

these works, we initially formulated the layer se- 145

lection in the LoRA method as an HPO problem. 146

This involves optimizing hyperparameters to quan- 147

tify the contributions of different layers, aiming to 148

achieve optimal performance on downstream tasks 149

and thereby select the most crucial layers for fine- 150

tuning. This formulation subsequently led to the 151

development of our Flexora. 152
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Figure 2: This figure depicts the relationship between the number of LoRA fine-tuning layers and model accuracy
across four distinct datasets: Hellaswag, PIQA, Winogrande, and RACE, with the latter including two separate
tasks, RACE-mid and RACE-high, which vary in difficulty. Results for LoRA rank 8 are shown here. The x-axis
represents the number of fine-tuned layers, ranging from 0 to 32, where 0 corresponds to the base model without
fine-tuning. Selected configurations include 6, 12, 18, 24, and 32 randomly fine-tuned layers. The full 32-layer
configuration, representing the vanilla LoRA setup, is shown as a horizontal dashed line in the plots. The y-axis
indicates model accuracy as a percentage.

3 Preliminaries153

In this section, we first provide empirical insights154

showing that layer selection is crucial for improv-155

ing the performance of LLMs in Sec. 3.1, and then156

frame the layer selection problem as a well-defined157

HPO problem in Sec. 3.2.158

3.1 Empirical Insights159

To study the impact of the number of LoRA fine-160

tuning layers on overall performance, we con-161

ducted a preliminary study using Llama3-8B (Meta,162

2024) across a range of downstream tasks. Here,163

we randomly selected different subsets of layers,164

different ranks (e.g., 4, 8, 16, 32) for LoRA fine-165

tuning, and evaluated their performance on these166

tasks. The findings, shown in Figure 2 and Ap-167

pendix C.6, reveal a clear trend: while increasing168

the number of fine-tuned layers generally improves169

model performance, there is a critical point beyond170

which fine-tuning more layers leads to potential171

overfitting and subsequent performance decline.172

This hence suggests that selecting an optimal subset173

of layers for LoRA fine-tuning is crucial for max-174

imizing performance, which interestingly aligns175

with the previous empirical studies(Zhu et al., 2023;176

Zhou et al., 2024; Chen et al., 2023).177

3.2 Problem Formulation178

Inspired by the empirical insights above, we179

aim to identify the most critical layers in LoRA180

fine-tuning to improve generalization performance181

across a variety of downstream tasks. Formally,182

we consider an N -layer LLM with LoRA fine-183

tuning parameters θ ∈ Rd, and let the hyper-184

parameter α ∈ {0, 1}N denote the selection of185

fine-tuning layers, where a value of 1 indicates186

that a layer is selected for fine-tuning. Given the187

test data distribution Dtest and the training dataset 188

Strain, we then define the expected test and train- 189

ing error as Rtest(θ, α) ≜ Ex∼Dtest [ℓ(x, θ;α)] and 190

Rtrain(θ, α) ≜ Ex∼Strain [ℓ(x, θ;α)], respectively. 191

Hence, to select the optimal LoRA fine-tuning 192

layers for maximized performance on downstream 193

tasks, we aim to solve the following bilevel opti- 194

mization problem: 195

min
α∈{0,1}N

Rtest(θ∗(α), α)

s.t. θ∗(α) = argmin
θ∈Rd

Rtrain(θ, α) .
(1) 196

This formulation follows a standard hyperparame- 197

ter optimization (HPO) approach as demonstrated 198

in (Bao et al., 2021), where α serves as the hyper- 199

parameter. Thus, the layer selection problem for 200

LoRA fine-tuning in LLMs is framed as a well- 201

defined HPO problem. 202

Unfortunately, it is typically infeasible to access 203

the full test distributions, denoted by Dtest, for this 204

optimization. This expected test error can typi- 205

cally be approximated by the empirical validation 206

error based on the validation dataset Sval, which is 207

defined as R̂val(θ, α) ≜ Ex∼Sval [ℓ(x, θ;α)] There- 208

fore, (1) can be simplified as: 209

min
α∈{0,1}N

R̂val(θ∗(α), α)

s.t. θ∗(α) = argmin
θ∈Rd

Rtrain(θ, α) .
(2) 210

4 The Flexora Framework 211

To address the layer selection problem defined 212

above, we propose our flexible low-rank adapta- 213

tion for LLMs (Flexora) framework in Figure 1. 214

As illustrated in Figure 1, the Flexora framework 215

consists of three key stages: an initial stage (de- 216

tailed in Sec. 4.1), a flexible layer selection stage 217
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(detailed in Sec. 4.2), and a fine-tuning stage for218

the selected LoRA layers (detailed in Sec. 4.3).219

4.1 Initial Stage220

We begin by introducing a special formulation of221

LoRA, which incorporates the layer selection hy-222

perparameter α = (α(1), · · · , α(N)) ∈ {0, 1}N , as223

follows:224

h(i) = Wz(i)+α(i)B(i)A(i)z(i), s.t. αi ∈ {0, 1} .
(3)225

Here, h(i) is the output of the i-th layer, where226

W is the original weight matrix, z(i) is the in-227

put, and B(i) and A(i) are the low-rank adapta-228

tion matrices of LoRA. The hyperparameter α(i)229

determines whether LoRA is applied for layer i.230

Specifically, if α(i) = 0, the equation simplifies231

to h(i) = Wz(i), meaning the i-th layer reverts232

to standard computation without LoRA, implying233

that the additional complexity of LoRA is unnec-234

essary for layer i. Conversely, when α(i) = 1,235

the equation becomes the standard LoRA form,236

h(i) = Wz(i)+B(i)A(i)z(i), indicating that LoRA237

significantly enhances the performance of layer i238

by allowing the low-rank matrices to better capture239

complex patterns. So, this dynamic adjustment al-240

lows the model to selectively apply LoRA when a241

specific layer is most beneficial, thereby optimizing242

the fine-tuning process and mitigating the risk of243

overfitting.244

However, due to the inherent difficulty of directly245

optimizing the discrete layer selection hyperparam-246

eter α, we adopt a continuous relaxation approach247

by replacing the α in (3) with its continuous coun-248

terpart, α̂ = (α̂(1), · · · , α̂(N)):249

h(i) = W0z
(i) + α̂(i)B(i)A(i)z(i),

s.t. α̂(i) =
exp (α(i))∑

i∈[N ] exp (α
(i))

N .
(4)250

Notably, α ∈ RN now and α are typically initial-251

ized to zeros, providing a neutral starting point252

where no layer is initially excluded from LoRA253

fine-tuning. Meanwhile, the constant scale N en-254

sures that when all layers are selected for fine-255

tuning, the scale of each selected layer for LoRA256

fine-tuning is preserved, resulting in α̂(i) = 1 for257

all layers, aligning with the vanilla LoRA scale as258

shown above.259

4.2 Flexible Layer Selection Stage260

Optimization Strategy. Given the continuous261

relaxation α̂ defined above, we propose to solve262

Algorithm 1 The Flexora Framework
1: Input: Number of outer-level iteration K;

Number of alternating iteration T ; Initialized
LoRA parameters θ0 and hyperparameter α0 =
0; Learning rate ηα and ηθ

2: for t = 0 to T − 1 do
3: θt+1 ← θt − ηθ∇θRtrain(θ, αt)|θ=θt

4: αt+1,0 ← αt

5: for k = 0 to K − 1 do
6: αt+1,k+1 ← αt+1,k −

ηα∇αR̂val(θt+1, α)|α=αt+1,k

7: end for
8: αt+1 ← αt+1,K

9: end for
10: return α∗ = αT

the well-defined HPO problem in Equation 2 us- 263

ing the widely applied unrolled differentiation 264

(UD) method (Franceschi et al., 2017, 2018; Fu 265

et al., 2016; Maclaurin et al., 2015; Shaban et al., 266

2019). The UD method typically involves two 267

alternating optimization processes: (a) the inner- 268

level and (b) the outer-level optimization. In this 269

paper, the inner-level optimization is defined as 270

argminθ∈Rd Rtrain(θ, α), in which the layer selec- 271

tion hyperparameter α is fixed, and the LoRA 272

parameters θ are updated using stochastic gra- 273

dient methods (e.g., SGD (Sra et al., 2011) or 274

AdamW (Loshchilov and Hutter, 2019)) on the 275

training dataset Strain. This step focuses on op- 276

timizing model performance by adjusting the pa- 277

rameters associated with the selected layers (line 3 278

in Algorithm 1). Meanwhile, the outer-level opti- 279

mization is argminα∈RN R̂val(θ, α), in which the 280

layer selection hyperparameter α is updated using 281

stochastic gradient methods (e.g., SGD) based on 282

the validation performance of the optimized LoRA 283

parameters θ from the inner-level process (lines 4–9 284

in Algorithm 1). This step intends to maximize the 285

validation performance of LoRA fine-tuning based 286

on a subset of selected layers. These two alternat- 287

ing processes therefore iteratively refine both the 288

model parameters and the layer selection criteria, 289

making LoRA layer selection more computation- 290

ally efficient in practice. After T iterations of these 291

alternating processes, the final iteration αT is out- 292

put as the optimal layer selection denoted as α∗ 293

(line 10 in Algorithm 1). 294

Selection Strategy. To begin with, we introduce 295

the following proposition: 296
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Table 1: Comparison of accuracy across various common sense reasoning tasks using Llama3-8B. The baseline
experimental configuration is detailed in Appendix B. Here, "Pre-trained" refers to using the base model for
reasoning, "Full FT" indicates full parameter fine-tuning, and "Random (Greedy)" represents the best result from
randomly selected layers. Unless otherwise specified, the results are based on the default LoRA Rank of 8.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Pre-trained 48.55 67.08 59.91 67.02 63.35 61.18
Full FT 90.53 79.32 81.16 81.92 79.36 82.46

LoRA(r = 8) 89.72 76.39 82.24 82.86 80.99 83.04
LoRA(r = 16) 89.99 78.47 82.77 81.63 79.68 82.51
LoRA(r = 32) 90.01 79.56 84.36 82.36 80.99 83.46
LoRA-SP 89.37 78.97 83.67 83.27 79.01 82.86
LoRA-FA 89.16 75.97 82.16 82.79 79.03 81.83
VeRA 90.98 78.63 83.64 83.55 78.84 83.13
LoRAPrune (Ratio = 0.5) 88.42 77.12 81.23 82.96 80.42 82.03
AdaLoRA (r0 = 4) 90.17 80.20 77.19 83.15 77.93 81.73
LoRA-drop 91.86 77.91 76.46 77.30 75.24 79.75

Random (Greedy) 91.15 81.54 83.58 83.77 81.22 84.25
Flexora(r = 8) 93.62 85.91 85.79 84.61 82.36 86.46
Flexora(r = 16) 93.71 85.26 84.99 85.62 83.03 86.52
Flexora(r = 32) 93.87 86.02 85.01 84.27 81.97 86.23

Proposition 1. If α is initialized to zeros, then for297

any T ≥ 0 and K ≥ 0 in Alg. 1,
∑N

i=1 α
(i) = 0.298

The proof of this proposition is provided in Ap-299

pendix A.1. This result highlights that the mean300

value of the hyperparameter α remains 0, indicating301

that after the layer selection stage, the elements in302

the optimized hyperparameter α∗ can take on both303

positive and negative values. We therefore propose304

to determine the layers for LoRA fine-tuning by se-305

lecting those where α(i) > 0. That is, we focus on306

layers where α̂(i) > 1 according to (4), as these lay-307

ers are expected to contribute positively to the final308

fine-tuning performance compared to the baseline309

scale of α̂(i) = 1 in the vanilla LoRA. In contrast,310

layers where α̂(i) < 1 are considered less benefi-311

cial for LoRA fine-tuning. As a result, this method312

not only facilitates automatic layer selection but313

also provides flexibility in adjusting the number314

and specific layers for LoRA fine-tuning, helping315

to mitigate the potential overfitting and improve316

overall performance in LLM fine-tuning.317

4.3 Fine-Tuning Stage318

During the fine-tuning stage, as illustrated in Fig-319

ure 1c, we adopt a selective activation strategy. In320

this phase, we freeze the layers not selected for321

fine-tuning, keeping their parameters unchanged,322

and focus on retraining only the selected layers323

to enhance performance. This targeted approach324

concentrates computational resources on the most325

critical layers for the downstream task. By retrain-326

ing the LoRA parameters from scratch in these 327

layers, the model adaptively learns optimal repre- 328

sentations, reducing the risk of overfitting and im- 329

proving performance, especially for simpler tasks. 330

We will validate this approach with the empirical 331

results presented below. 332

5 Empirical Results 333

In this section, we present comprehensive experi- 334

ments to support the effectiveness and efficiency 335

of our Flexora framework with datasets and ex- 336

perimental setup detailed in Sec. 5.1, main results 337

detailed in Sec. 5.2, and ablation studies detailed 338

in Sec. 5.3. 339

5.1 Datasets and Setup 340

To evaluate the performance of our proposed Flex- 341

ora method, we primarily focus on reasoning 342

and reading comprehension tasks. Since Flex- 343

ora is the first algorithm to select layers based 344

on specific downstream tasks, we refer to and 345

modify the dataset selection process of Hu et al. 346

(2023). We selected the Winogrande(Sakaguchi 347

et al., 2019), PIQA(Bisk et al., 2019), and Hel- 348

laswag(Zellers et al., 2019) reasoning benchmarks 349

as recommended by Hu et al. (2023), and addition- 350

ally included the reading comprehension bench- 351

mark RACE(Lai et al., 2017). Each of these 352

datasets, measured by accuracy, has independent 353

training, validation, and test sets. In all experi- 354

ments, we use the training set to train the LoRA 355
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Figure 3: Comparison of the accuracy of various models (Llama-3-8B, ChatGLM3-6B, Mistral-7B-v0.1, and
Gemma-7B) across different tasks. Bars with green diagonal stripes represent LoRA accuracy, while blue circles
indicate Flexora accuracy, and the red dotted line represents the improvement ratio of Flexora over LoRA. Notably,
Flexora generally outperforms LoRA in most tasks and models, demonstrating its effectiveness.

parameters, the validation set to tune the hyperpa-356

rameters introduced by Flexora, and finally the357

test set for evaluation. It is important to em-358

phasize that the test set remains unseen during359

the training phase. Our experimental setup in-360

cludes 11 mainstream large-scale language mod-361

els (LLMs), such as Llama3-8B (Meta, 2024),362

Chatglm3-6B (GLM et al., 2024), Mistral-7B-363

v0.1 (Jiang et al., 2023), Gemma-7B (Team et al.,364

2024) and others. Our Flexora method is imple-365

mented on the Llama-factory framework(Zheng366

et al., 2024) and evaluated using the Opencom-367

pass framework(Contributors, 2023). The bench-368

marks for comparison include pre-trained models,369

Full FT, LoRA, and various LoRA enhancement370

methods that reduce trainable parameters, such as371

LoRAPrune, AdaLoRA, LoRA-drop, and others.372

Detailed descriptions of the experimental setup are373

provided in Appendix B. All experiments are con-374

ducted on a single NVIDIA A100 GPU.375

5.2 Main Results376

In this section, we evaluate the performance im-377

provement of Flexora on Llama3-8B, and the re-378

sults are listed in Table 1. The loss metrics are379

discussed in Appendix D.1. The results show that380

Flexora outperforms all baseline methods. Specif-381

ically, compared with full fine-tuning and LoRA,382

Flexora fine-tunes 0.02% and 50% of its parame-383

ters, respectively, to achieve superior performance.384

This demonstrates that fine-tuning too many param-385

eters can lead to overfitting, which not only fails386

to improve the performance of the model on down-387

stream tasks but may also reduce the generalization388

ability of the model due to the overfitting effect.389

Therefore, it is crucial to select the layers most rele-390

vant to the downstream tasks for optimization. The391

flexible layer selection stage of Flexora is able to 392

consider the relationship between the pre-trained 393

parameters of each LLM layer and the downstream 394

task. This stage effectively identifies the most criti- 395

cal layers for various downstream tasks and mini- 396

mizes the risk of model overfitting by focusing on 397

training these layers, resulting in excellent perfor- 398

mance. In Table 1, we also compare Flexora with 399

other methods that attempt to enhance the model 400

by reducing model parameters. Particularly, the 401

experimental results using LoRAShear are detailed 402

in Appendix C.3. The results show that Flexora 403

can most accurately identify the most important 404

parameters to achieve the largest performance im- 405

provement. Flexora is a vertical method, and the 406

discussion of integration with many LoRA enhance- 407

ment methods is detailed in Appendix C.2. We also 408

evaluate Flexora at different LoRA ranks, and the 409

results show that changing the rank has a negligi- 410

ble impact on the performance of Flexora. The 411

specific layers selected are listed in Table 14 in the 412

Appendix. It is worth noting that the layers selected 413

by Flexora are roughly consistent under different 414

level conditions, which shows that Flexora effec- 415

tively identifies the layers that are most suitable for 416

downstream tasks. We also discuss the impact of 417

different search samples on the training time and fi- 418

nal performance of the flexible layer selection stage, 419

as detailed in Appendix C.4. In addition, Flexora 420

shows strong generalization and scalability across 421

different LLMs. As shown in Figure 3 and ex- 422

plained in detail in Appendix C.1, almost all LLMs 423

can significantly improve performance with fewer 424

fine-tuning parameters by leveraging Flexora. In 425

Appendix F, we compare Flexora with LoRA us- 426

ing specific cases. The model fine-tuned with Flex- 427

ora outperforms LoRA on challenging cases and 428
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Table 2: Comparison of the accuracy of different randomly selected fine-tuning layers with the same number of
fine-tuning layers. We fixed the number of fine-tuning layers to match the number selected by Flexora, ensuring that
the number of fine-tuning parameters remained constant while the layers were randomly selected for fine-tuning.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Random 1 92.97 82.91 80.98 83.98 81.10 84.39
Random 2 93.11 80.79 76.09 85.45 81.16 83.32
Random 3 92.52 80.47 83.50 84.54 81.93 84.59
Random (Avg.) 92.87 81.39 80.19 84.66 81.40 84.10
Flexora 93.62 85.91 85.79 84.61 82.36 86.46

Table 3: Comparison of the performance of models with and without a fine-tuning phase on various commonsense
reasoning tasks.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Flexora (w/o Fine-Tuning Stage) 48.93 80.20 66.38 62.72 60.76 63.80
Flexora (w/ Fine-Tuning Stage) 93.62 85.91 85.79 84.61 82.36 86.46

provides correct explanations for answers not seen429

in the training set, demonstrating its strong learning430

and generalization capabilities. Finally, we discuss431

the impact of two hyperparameters K and T intro-432

duced by Algorithm 1 on the results. The results433

show that changes in K and T have little effect on434

the layer selection results and model performance.435

For a more detailed discussion, see Appendix C.5.436

5.3 Ablation Studies437

Effective Layer Selection in Flexora. In the first438

ablation experiment, we maintained the number of439

layers selected by Flexora unchanged but chose440

different layers for fine-tuning, aiming to verify441

whether Flexora selected the right layers. The442

experimental results are shown in Table 2. The443

result underscores two key points: First, Flexora444

can precisely determine the number of layers for445

fine-tuning. Even when the specific fine-tuning lay-446

ers are chosen at random, the results continue to447

outperform LoRA. The theoretical explanation for448

this result can be found in Sec. 6. Second, Flexora449

can automatically and flexibly select the specific450

layers for fine-tuning, targeting the most important451

layers to maximize performance and generalization.452

In Appendix C.7, we discuss the characteristics of453

the specific layers Flexora have chosen. The loss454

metrics are discussed in Appendix D.2.455

Flexible Layer Selection in Flexora. In the sec-456

ond ablation experiment, we manually determine457

the number of fine-tuning layers and compare Flex-458

ora with random selection, highlighting the flexi-459

bility of Flexora. The results in Table 4 show that it460

can achieve the best performance regardless of the461

number of fine-tuning layers. The specific layers462

selected are shown in Table 15. The loss metrics463

are discussed in Appendix D.3. A noteworthy ob- 464

servation is that Flexora usually chooses the initial 465

and final layers. An intuitive explanation is that the 466

initial and final layers of the model have a signifi- 467

cant impact on the data. The initial layers directly 468

contact the original input, while the final layers are 469

related to the model output, rendering them crucial. 470

In addition, for the same downstream task, the input 471

of the initial layer is consistent and closely coupled 472

to the task, and the output of the final layer is also 473

consistent. Focusing on optimizing these layers 474

can improve learning efficiency. This conclusion 475

has also been confirmed by other studies. LoRAS- 476

hear(Chen et al., 2023) observed that the knowl- 477

edge distribution in LLM is mainly concentrated in 478

the initial and final layers. LASER(Sharma et al., 479

2023) demonstrated that the loss gradients of the 480

initial and final layers are steep, which is benefi- 481

cial to the model during training. LISA(Pan et al., 482

2024) found that the weight norms of the initial 483

and final layers are hundreds of times higher than 484

those of the intermediate layers, indicating their 485

increased importance. 486

Importance of the Fine-Tuning Stage In the 487

third ablation experiment, we investigated the sig- 488

nificance of the Fine-Tuning Stage in the Flexora 489

method by comparing model performance from the 490

Flexible Layer Selection Stage and the Fine-Tuning 491

Stage on the test set. Results in Table 3 show that 492

omitting the Fine-Tuning Stage significantly de- 493

grades performance. This is because the layer selec- 494

tion stage outputs continuous values α̂(i) ∈ [0, 1]N 495

, while we need discrete α ∈ {0, 1}N values. The 496

discrepancy between continuous and discrete α val- 497

ues leads to a performance gap. The Fine-Tuning 498

Stage is crucial as it addresses this gap by refin- 499
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Table 4: Comparison of the accuracy of fine-tuning a subset of layers. We standardized the number of layers to be
fine-tuned and compared the performance of layers selected by Flexora against those selected randomly.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Random (6 Layers) 59.79 70.25 46.32 54.54 53.45 56.87
Flexora (First 6 Layers) 60.04 (+0.25) 77.20 (+6.95) 57.54 (+11.22) 69.71 (+15.17) 58.35 (+4.90) 64.57 (+7.70)
Random (12 Layers) 81.90 77.82 57.35 78.41 72.16 73.53
Flexora (First 12 Layers) 88.85 (+6.95) 79.71 (+1.89) 65.82 (+8.47) 79.42 (+1.01) 72.33 (+0.17) 77.23 (+3.70)
Random (18 Layers) 91.15 81.54 83.58 83.77 81.22 84.25
Flexora (First 18 Layers) 91.31 (+0.16) 82.21 (+0.67) 84.69 (+1.11) 84.07 (+0.30) 81.53 (+0.31) 84.76 (+0.51)
Random (24 Layers) 90.58 80.90 82.16 82.19 79.22 83.01
Flexora (First 24 Layers) 91.01 (+0.43) 81.21 (+0.31) 82.87 (+0.71) 83.53 (+1.34) 80.22 (+1.00) 83.77 (+0.76)

ing the model to better approximate the discrete α500

values, thereby mitigating the performance loss.501

6 Theoretical Insights502

In this section, we provide theoretical explanations503

for why Flexora (using only a subset of LoRA lay-504

ers) can achieve excellent results. We first intro-505

duce Theorem 1 below, and then simplify LoRA506

layers as linear layers in multi-layer perceptron507

(MLP) to derive our Proposition 2, aiming to offer508

insights for this question.509

Theorem 1 (Theorem 3.8 in (Hardt et al., 2016)).510

Assume that f(·; z) ∈ [0, 1] is an L-Lipschitz and511

β-smooth loss function for every sample z. Suppose512

that we run stochastic gradient method (e.g., SGD)513

for T steps with monotonically non-increasing step514

sizes ηt ≤ c/t (t ∈ [T ]). In particular, omitting515

constant factors that depend on β, c, and L, we516

haveRtest(θ, η) ≤ Rtrain(θ, η) + T 1−1/(βc+1)

m .517

Theorem 1 reveals that if all the conditions ex-518

cept for β in Theorem 1 remain the same, a smaller519

smoothness β will typically result in a smaller test520

errorRtest(θ, η), indicating a better generalization521

performance in practice. The specific definition of522

smoothness β can be found in Appendix A.2. To523

show how the number of LoRA layers is related to524

this β, we then follow the practice in (Shu et al.,525

2020) to prove our Proposition 2 below.526

Proposition 2. For an N -layer linear multi-layer527

perceptron (MLP): y(N) ≜
∏N

j=1W
(j)x with528

MSE function ℓ ≜ (y(N) − y)2/2 where y de-529

notes the true label, let λ(i) =
∥∥W (i)

∥∥ for any530

i ∈ [N ], we then have
∥∥∥∥ ∂ℓ

∂W
(i)
1

− ∂ℓ

∂W
(i)
2

∥∥∥∥ ≤531 (∏N
j=1,j ̸=i λ

(j)
)2
∥x∥2

∥∥∥W (i)
1 −W

(i)
2

∥∥∥.532

The proof of Proposition 2 is in Appendix A.3.533

Given Proposition 2, the block-wise smoothness534

β
(N)
i on layer i ∈ [N ] of an N -th layer MLP can535

be bounded by: β(N)
i ≤

(∏N
j=1,j ̸=i λ

(j)
)2
∥x∥2.536

From this bound, we can see that as the number 537

of layers N increases, the upper bound of β
(N)
i 538

will also be increasing as λ(i) > 1 for i ∈ [N ]. 539

Thus, shallow MLP of fewer layers are more likely 540

to have smaller overall smoothness β. Thanks to 541

this smaller overall smoothness β, shallow MLP of 542

fewer layers are more likely to achieve a smaller 543

generalization gap (i.e., the second term on the 544

right-hand side of Theorem 1) than deep MLP with 545

more layers. When the training errorRtrain(θ, η) is 546

the same, that is, both shallow and deep MLPs are 547

fully trained to converge, the shallower MLP may 548

have a lower test errorRtest(θ, η) and thus may ex- 549

hibit better performance on downstream tasks. To 550

demonstrate that Proposition 2 is also applicable to 551

the Transformer model, such as Llama3-8B(Meta, 552

2024), we present numerical experiments in Ap- 553

pendix E. These experiments demonstrate that, sim- 554

ilar to the MLP model, the smoothness of the Trans- 555

former model also increases exponentially with the 556

number of layers. 557

We can now answer the question posed earlier. 558

When Flexora is fine-tuned with a subset of LoRA 559

layers, it theoretically transforms a network with a 560

deeper architecture into one with a shallower archi- 561

tecture. When sufficiently trained to convergence, 562

the aforementioned theory suggests that a network 563

with a shallower architecture can exhibit better gen- 564

eralization and performance on downstream tasks. 565

In summary, the reason Flexora achieves excellent 566

results is that it makes the model more suitable for 567

downstream tasks. 568

7 Conclusion 569

We introduce Flexora, a method to enhance fine- 570

tuning efficiency and effectiveness in large lan- 571

guage models (LLMs) by automatically selecting 572

critical layers. By formulating layer selection as 573

an HPO problem and using UD. Experiments show 574

Flexora decreases parameters , mitigates overfit- 575

ting, is scalable and outperforms baselines. 576
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Limitations577

In this section, we aim to highlight some potential578

considerations that may lead to suboptimal perfor-579

mance of Flexora. The layer selection strategy in580

Flexora is primarily based on the magnitude of581

the optimized hyperparameters. If the validation582

set used for optimizing these hyperparameters is583

too small, especially when the downstream task is584

complex, it may result in the optimization process585

converging to a hyperparameter gap that is too nar-586

row. In such cases, the layer selection strategy may587

fail, leading to the incorrect choice of layers for sub-588

sequent optimization stages, ultimately resulting in589

poor performance. To address the issue of having590

a minimal validation set for different datasets, we591

conducted additional experiments on search sam-592

ples, as detailed in Appendix C.4. These experi-593

ments demonstrate that an insufficient number of594

samples can indeed lead to poor performance. How-595

ever, this issue can be mitigated by increasing the596

number of search samples. Furthermore, although597

Flexora is a vertical method and can theoretically598

be combined with all LoRA methods, there are cer-599

tain methods for which fine-tuning only specific600

layers significantly impacts the model’s fine-tuning601

effectiveness. In such cases, these methods may602

not be compatible with Flexora.603

Ethics Statement604

We have manually reevaluated the dataset we cre-605

ated to ensure it is free of any potential for discrim-606

ination, human rights violations, bias, exploitation,607

and any other ethical concerns.608
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A Theorems and proofs845

We first prove Proposition 1, then introduce the theorems proposed by (Blair, 1985) and (Hardt et al.,846

2016), which reveal the properties of β-smooth, a necessary theoretical basis for proving Proposition 2.847

Finally, we prove Proposition 2.848

A.1 Proof of proposition 1849

The proof of Proposition 1 is expressed as follows:850

Proof. It is easy to verify that851

∂α̂(j)

∂α(i)
=

{
α̂(j)(1− 1

n α̂
(j)), if j = i

− 1
n α̂
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When applying SGD to update α, we have855

n∑
i=1

α(i) − η
n∑

i=1

n∑
j=1

∂R̂val

∂α̂(j)

∂α̂(j)
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=

n∑
i=1

α(i) .856

That is, the updated α shares the same summation as the one before the updates, which therefore857

concludes our proof.858

A.2 Definition of β-Smooth859

Definition 1. β-smooth refers to the Lipschitz continuity of the gradient of the loss function, that is, for
all w and w′:

∥∇f(w; z)−∇f(w′; z)∥ ≤ β∥w − w′∥
where ∥ · ∥ denotes the norm of the vector, and f(w; z) is the loss function with parameter w for sample z.860

Let fdeep(w) and fshallow(w) be the loss functions for deep and shallow architectures, respectively.861

According to Definition 1, the relationship between βdeep and βshallow illustrates the relationship between862

the generalization and performance of deep and shallow networks.863

A.3 Proof of proposition 2864

Abstract LLM into a layered network:(Shu et al., 2020) As shown in Figure 4, we abstract LLM into a865

hierarchical network, and the weight of each layer is represented by W (i). Figure 4 represents the general866

case. The output of the i-th layer network is:867

y =

n∏
j=1

W (j)x. (5)868

Gradient analysis: For the abstract network, represented in Equation 5. The gradient of the loss869

function ℓ with respect to the weight W (i) is:870

∂ℓ

∂W (i)
=

 n∏
j=i+1

W (j)

 ∂ℓ

∂y(i)
x

i−1∏
j=1

W (j)

 . (6)871

The proof of Proposition 2 is expressed as follows:872
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𝑥

Decoder Layer 0

…

Decoder Layer n

…

Decoder Layer N - 1

output

Figure 4: We present LLM as a hierarchical network. In this context, all parameters of a Decoder layer are
represented as a weight matrix W for subsequent analysis.

Proof. For the abstract network, we begin with Definition 1: 873∥∥∥∥∥ ∂ℓ

∂W
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1
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2
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(7) 874

Taking MSE Loss as an example, for one predictions y(N) and their corresponding true values y: 875

ℓ ≜ (y(N) − y)2/2, (8) 876

therefore: 877

∂ℓ

∂y(i)
=
(
y(N) − y

) N∏
j=i+1

W (j). (9) 878

We select the MSE loss function and calculat the i-th layer of N layers network, Substituting Equation 9 879

into Equation 7: 880
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(10) 881

which therefore concludes our proof. 882
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B Experimental setting883

In the main experiment, we compared Flexora with the baseline. The datasets and experimental parameters884

are as follows:885

B.1 Dataset886

In this section, we introduce the statistics of the dataset and the additional processing performed on the887

dataset. The statistics of the dataset are shown in Table 5. In addition, We added new templates to the888

original dataset to ensure the model could complete the required tasks and output formats. It is important889

to note that the added templates did not alter the original dataset, and special processing was performed890

for different LLMs. The specific examples are as follows:891

Dataset Format of Hellaswag

dataset: Hellaswag
dataset format:
{
"instruction": "{Article}\n
Question: {Question}\n
A. {Option A}\n
B. {Option B}\n
C. {Option C}\n
D. {Option D}\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:",
"output": "{Answer}"
}
example:
{
"instruction": "A man is sitting on a roof. He\n
Question: Which ending makes the most sense?\n
A. is using wrap to wrap a pair of skis.\n
B. is ripping level tiles off.\n
C. is holding a Rubik’s cube.\n
D. starts pulling up roofing on a roof.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n Answer:",
"output": "D"
}

892

Dataset Format of PIQA

dataset: PIQA
dataset format:
{
"instruction": "There is a single choice question.
Answer the question by replying A or B.’\n
Question: {Question}\n
A. {Option A}\n
B. {Option B}\n
Answer:",
"output": "{Answer}"
}
example:
{
"instruction": "There is a single choice question.
Answer the question by replying A or B.’\n
Question: When boiling butter, when it’s ready, you can\n
A. Pour it onto a plate\n
B. Pour it into a jar\n
Answer:",
"output": "B"
}

893
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Dataset Format of Winogrande

dataset: Winogrande
dataset format:
{
"instruction": "There is a single choice question,
you need to choose the correct option to fill in the blank.
Answer the question by replying A or B.’\n
Question: {Question}\n
A. {Option A}\n
B. {Option B}\n
Answer:",
"output": "{Answer}"
}
example:
{
"instruction": "There is a single choice question,
you need to choose the correct option to fill in the blank.
Answer the question by replying A or B.’\n
Question: Sarah was a much better surgeon than Maria so _ always got the
easier cases.\n
A. Sarah\n
B. Maria\n
Answer:",
"output": "B"
}

894

Dataset Format of RACE

dataset: RACE
dataset format:
{
"instruction": "{Article}
{Question}\n
[ {Option A}, {Option B}\, {Option C}, {Option D}]",
"output": "{Answer}"
}
example:
{
"instruction": "I am a psychologist. I first met Timothy, a quiet,
overweight eleven-year-old boy, when his mother brought him to me to discuss
his declining grades. A few minutes with Timothy were enough to confirm that
his self-esteem and general happiness were falling right along with _ .
I asked about Timothy’s typical day. He awoke every morning at six thirty
so he could reach his school by eight and arrived home around four thirty each
afternoon. He then had a quick snack, followed by either a piano lesson
or a lesson with his math tutor. He finished dinner at 7 pm, and then he sat
down to do homework for two to three hours. Quickly doing the math in my
head, I found that Timothy spent an average of thirteen hours a day
at a writing desk.\n
What if Timothy spent thirteen hours a day at a sewing machine instead of
a desk? We would immediately be shocked, because that would be called
children being horribly mistreated. Timothy was far from being mistreated,
but the mountain of homework he faced daily resulted in a similar consequence
--he was being robbed of his childhood. In fact, Timothy had no time
to do anything he truly enjoyed, such as playing video games, watching
movies, or playing board games with his friends.\n
Play, however, is a crucial part of healthy child development.
It affects children’s creativity, their social skills, and even their brain
development. The absence of play, physical exercise, and freefrom social
interaction takes a serious toll on many children. It can also cause
significant health problems like childhood obesity, sleep problems
and depression.\nExperts in the field recommend the minutes children
spend on their homework should be no more than ten times the number
of their grade level./nWhat did the writer think of Timothy after
learning about his typical day?/n
[’Timothy was very hardworking.’,
’Timothy was being mistreated.’,
’Timothy had a heavy burden.’,
’Timothy was enjoying his childhood.’]",
"output": "C"
}

895

B.2 Specific experimental parameters 896

Based on the Llama3-8B model configuration, several adjustments were made to optimize model per- 897

formance. In the baseline model experiment, generation parameters were adjusted to ensure the correct 898
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Table 5: Number of samples in the train, validation, and test datasets for various dateset.

Number of samples train dataset validation dataset test dataset

Hellaswag 39900 10000 10000
PIQA 16000 2000 3000
Winogrande 40398 1267 1767
RACE 87866 4887 4934

Table 6: Detailed experimental parameters. This table lists the specific parameters we used in the experiments
for various methods. These parameters include the target module of LoRA (Lora Target), the maximum sequence
length (Max Length), the number of samples for supervised fine-tuning (SFT Samples), the learning rate (LR), the
number of search samples (Search Samples), the initial rank (Init Rank), the target rank (Target Rank), and the ratio
of pruning (Ratio). All other parameters not listed here remain consistent across all experiments.

Methods LoRA Target Max Length SFT Samples LR Search Samples Init Rank Target Rank Ratio

LoRA q & v Proj 1024 20000 0.0001 - - - -

Flexora q & v Proj 1024 20000 0.0001 20000 - - -

AdaLoRA q & v Proj 1024 20000 0.0001 - 4 8 -

LoRA-drop q & v Proj 1024 20000 0.0001 20000 - - -

LoRAShear q & v Proj 1024 20000 0.0001 20000 - - 0.5

Dora q & v Proj 1024 20000 0.0001 20000 - - -

rsLoRA q & v Proj 1024 20000 0.0001 20000 - - -

LoRAPrune q & v Proj 1024 20000 0.0001 20000 - - 0.5

output. In the LoRA experiment, adjustments to the generation parameters were retained, and LoRA-899

related parameters were adjusted. In the Flexora experiment, the size of the validation set was adjusted900

to control the time required to search for the optimal layer. In the AdaLoRA experiment, the initial901

rank size was modified to ensure that the fine-tuning parameters are consistent with Flexora. In the902

LoRA-drop experiment, the number of fine-tuning layers was set to be consistent with Flexora to ensure903

that the fine-tuning parameters are consistent. In the LoRAShear experiment, the pruning ratio was904

modified, where the parameter amount with a pruning ratio of 50% is consistent with Flexora. For specific905

experimental parameters, see the table 6.906

B.3 Other LLMs experimental parameters907

In order to explore the versatility and scalability of Flexora, we conducted experiments on multiple908

different LLMs. The specific training parameters are shown in Table 7.909

C More results910

C.1 The results of other LLMs experiment911

Wide Applicability of Flexora. According to the parameter settings in Table 7, the verification results912

for various LLMs are presented in Table 8. The selected LLMs include Llama3-8B, Llama-7B, Llama2-7B,913

ChatGLM3-6B, Mistral-7B-v0.1, Gemma-7B, Zephyr-7B-beta, Vicuna-7B-v1.5, XuanYuan-6B, Qwen1.5-914

7B, and Yi-6B. These models demonstrate unique characteristics in terms of training data, architecture915

design, and optimized training. First, the models utilize varied training data, leading to differences in data916

distribution. Additionally, some models have enhanced attention mechanisms: Mistral-7B-v0.1 employs917

grouped query attention (GQA) and sliding window attention (SWA), while ChatGLM3-6B features a918

special attention design to support tool calling and code execution capabilities. Activation functions vary919

across these models. Llama3-8B uses the SwiGLU activation function, inspired by the PaLM model, to920

improve performance and convergence speed, while ChatGLM3-6B uses the Swish activation function.921

Furthermore, differences in reasoning optimization and multilingual capabilities contribute to varied922

reasoning abilities across fields. The experimental result of each model is shown in Table 8, which presents923

the scores of each model on different downstream tasks after LoRA and Flexora fine-tuning. It should924

be noted that all models fine-tuned using LoRA will have a certain degree of overfitting, while Flexora925
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Table 7: Detailed LLM experiment parameters. This table provides a comprehensive overview of the specific
parameters used for different large language models (LLMs) in our experiments. These parameters include the
LoRA alpha value (LoRA Alpha), the dropout rate of LoRA (LoRA Dropout), the rank used in LoRA (LoRA Rank),
and the target module of LoRA (LoRA Target). In addition, the table lists the specific templates used for each LLM,
which are derived from Llama-factory (Template). For experiments involving different downstream tasks using the
same model, all other parameters are kept consistent to ensure fair comparison and best performance.

LLM LoRA Alpha LoRA Dropout LoRA Rank LoRA Target Tamplate (From Llama-factory)

Llama3 16 0 8 q & v Proj llama3

Llama 16 0 8 q & v Proj defult

Llama2 16 0 8 q & v Proj llama2

chatglm3 16 0 8 query_key_value chatglm3

Mistral-v0.1 16 0 8 q & v Proj mistral

gemma 16 0 8 q & v Proj gemma

zephyr 16 0 8 q & v Proj zephyr

vicuna 16 0 8 q & v Proj vicuna

xuanyuan 16 0 8 q & v Proj xuanyuan

qwen1.5 16 0 8 q & v Proj qwen

yi 16 0 8 q & v Proj yi

can effectively identify and analyze unnecessary layers in specific downstream tasks and prune them to 926

reduce model overfitting. After optimization by Flexora, these LLMs showed significant performance 927

improvements on downstream tasks. In particular, models that originally performed poorly on some tasks, 928

such as ChatGLM3-6B, experienced significant improvements, achieving more than a 15% increase on the 929

RACE-mid and RACE-high tasks. This improvement is attributable to the key layer selection by Flexora 930

and efficient model learning. In summary, Flexora is applicable across Transformer models of various 931

structures, excels in diverse tasks, and effectively enhances areas where model capabilities are lacking. 932

C.2 The results of other LoRAs experiment 933

Strong Scalability of Flexora. Recently, as highlighted in the introduction, many LoRA improvement 934

methods have been proposed and have achieved excellent performance in specific fine-tuning tasks. In this 935

section, we explore the potential of combining our algorithm with other emerging LoRA algorithms. Four 936

promising LoRA variants are selected from different methods, each demonstrating impressive performance. 937

Specifically, DoRA (Decomposed Low Rank Adaptation by Weight) (Mao et al., 2024a) achieves low-rank 938

adaptation through weight decomposition, and rsLoRA (Rank-Stabilized LoRA) (Kalajdzievski, 2023) 939

addresses the slow training speed of traditional LoRA by introducing a rank-stable scaling factor when 940

increasing the rank. These methods primarily solve the parameter overfitting problem within the LoRA 941

parameters but overlook the overall overfitting problem. By innovatively combining these methods with 942

our algorithm, we first address the overall overfitting problem and then tackle the overfitting issue of the 943

remaining LoRA parameters, thereby significantly improving performance. Additionally, we attempt to 944

integrate with other methods to enhance the representation ability of LoRA. For instance, MoSLoRA 945

(Mixture-of-Subspaces in Low-Rank Adaptation) (Wu et al., 2024a)decomposes LoRA into subspaces 946

via structural re-parameterization, employing a learnable mixer to fuse more subspaces more flexibly. 947

LoReFT (Low-rank Linear Subspace ReFT) (Wu et al., 2024c)is a parameter-efficient finetuning method 948

that operates on a frozen base model, learning task-specific interventions on hidden representations. The 949

specific experimental results are shown in Table 9. The results indicate that Flexora can be effectively 950

integrated with DoRA and rsLoRA, alleviating the overfitting problem of LLM and improving performance 951

with less than half of the parameters. Notably, the integration of Flexora and LoReFT can further enhance 952

performance. Flexora helps LoReFT identify the most suitable layer for fine-tuning, avoiding performance 953

loss caused by manually selecting the fine-tuning layer. However, MoSLoRA is not suitable for integration 954

with Flexora because MoSLoRA combines the A and B matrices of all LoRA layers. Deleting a layer 955

would cause significant changes and degrade performance. The specific implementation requires replacing 956
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Table 8: Detailed comparison of the accuracy of different LLMs. This table presents a comprehensive comparison of
the accuracy results obtained by fine-tuning various mainstream Large Language Models (LLMs) using Flexora and
LoRA methods. The accuracy metrics are reported across multiple benchmark datasets, including HellaSwag, PIQA,
Winogrande, RACE-mid, and RACE-high. The average accuracy across all datasets is also provided. The exact
values of accuracy improvements for each method, highlighted in red, indicate the performance gains achieved.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

Llama3-8B-LoRA 89.72 73.72 75.14 79.89 77.79 79.25
Llama3-8B-Flexora 93.62

(+3.90)
85.91
(+12.19)

85.79
(+10.65)

84.61
(+4.72)

82.36
(+4.57)

86.46
(+7.21)

Llama-7B-LoRA 76.10 69.80 67.01 75.69 70.81 71.88
Llama-7B-Flexora 85.28

(+9.18)
71.93
(+2.13)

74.11
(+7.10)

81.62
(+5.93)

78.62
(+7.81)

78.31
(+6.43)

Llama2-7B-LoRA 79.60 75.90 78.60 79.32 75.07 77.70
Llama2-7B-Flexora 90.89

(+11.29)
81.72
(+5.82)

82.85
(+4.25)

84.89
(+5.57)

83.19
(+8.12)

84.71
(+7.01)

Chatglm3-6B-LoRA 83.02 70.62 69.93 63.43 59.46 69.29
Chatglm3-6B-Flexora 85.12

(+2.10)
74.81
(+4.19)

72.69
(+2.76)

79.18
(+15.75)

76.33
(+16.87)

77.63
(+8.33)

Mistral-7B-v0.1-LoRA 94.35 82.15 84.85 83.79 82.39 85.51
Mistral-7B-v0.1-Flexora 95.08

(+0.73)
86.89
(+4.74)

85.50
(+0.65)

85.72
(+1.93)

84.25
(+1.86)

87.49
(+1.98)

Gemma-7B-LoRA 94.85 83.19 80.19 85.73 83.96 85.58
Gemma-7B-Flexora 95.76

(+0.91)
87.54
(+4.35)

83.58
(+3.39)

89.62
(+3.89)

88.19
(+4.23)

88.94
(+3.35)

Zephyr-7B-beta-LoRA 93.77 75.03 78.37 83.45 82.25 82.57
Zephyr-7B-beta-Flexora 95.05

(+1.28)
85.58
(+10.55)

84.95
(+6.58)

86.19
(+2.74)

84.30
(+2.05)

87.21
(+4.64)

Vicuna-7B-v1.5-LoRA 87.64 69.48 63.85 67.30 73.90 72.43
Vicuna-7B-v1.5-Flexora 90.43

(+2.79)
79.49
(+10.01)

76.06
(+12.21)

82.94
(+15.64)

81.90
(+8.00)

82.16
(+9.73)

XuanYuan-6B-LoRA 82.38 74.16 65.27 78.04 72.11 74.39
XuanYuan-6B-Flexora 88.41

(+6.03)
79.43
(+5.27)

73.40
(+8.13)

84.89
(+6.85)

80.70
(+8.59)

81.37
(+6.97)

Qwen1.5-7B-LoRA 91.75 75.03 78.14 87.59 81.36 82.77
Qwen1.5-7B-Flexora 91.96

(+0.21)
84.33
(+9.30)

80.69
(+2.55)

89.90
(+2.31)

87.08
(+5.72)

86.79
(+4.02)

Yi-6B-LoRA 89.46 78.29 76.01 80.02 85.13 81.78
Yi-6B-Flexora 92.24

(+2.78)
84.82
(+6.53)

84.96
(+8.95)

88.72
(+8.70)

86.91
(+1.78)

87.53
(+5.75)
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Table 9: Detailed comparison of the accuracy of the combination of Flexora and different LoRA algorithms on
Llama3-8B. This table presents a detailed comparison of the accuracy results obtained by integrating Flexora
with various improved LoRA algorithms, including DoRA, rsLoRA, MoSLoRA and LoReFT, while maintaining
other experimental settings constant. The accuracy metrics are reported across multiple benchmark datasets,
including HellaSwag, PIQA, Winogrande, RACE-mid, and RACE-high, with the average accuracy across all
datasets also provided. The results are compared against those obtained from direct fine-tuning without Flexora.
The experimental findings indicate that the application of Flexora can significantly reduce model overfitting and
enhance overall performance.

Methods Hellaswag PIQA Winogrande RACE-mid RACE-high Average

LoRA 89.72 76.39 82.24 85.86 80.99 83.04
Flexora (w/ LoRA) 93.62 85.91 85.79 84.61 82.36 86.46

rsLoRA 94.33 87.21 85.32 87.60 84.36 87.76
Flexora (w/ rsLoRA) 94.83 87.58 86.69 88.21 85.46 88.55

DoRA 93.62 85.75 84.77 86.77 83.39 86.86
Flexora (w/ DoRA) 94.10 86.05 86.32 87.12 84.45 87.61

LoReFT 96.31 90.24 87.48 88.21 85.33 89.51
Flexora (w/ LoReFT) 96.47 91.06 87.23 88.36 84.97 89.62

MoSLoRA 93.53 85.97 84.26 86.13 83.75 86.73
Flexora (w/ MoSLoRA) 93.76 86.43 85.36 85.09 82.07 86.54

Table 10: Detailed comparison of commonsense reasoning task accuracy. This table provides a comprehensive
comparison of the accuracy results for various methods applied to common sense reasoning tasks, conducted on
the Llama-7B model. The methods compared include the pre-trained model, LoRA, LoRAShear with different
pruning ratios (0.5), and Flexora. The accuracy metrics are reported across multiple benchmark datasets, including
BoolQ, PIQA, HellaSwag, Winogrande, ARC-e, ARC-c, and OBQA. The average accuracy across all datasets is
also provided. The “Ratio" column represents the ratio of parameter pruning in LoRAShear.

Methods BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

Pre-trained 57.98 60.94 34.35 52.25 31.82 27.30 35.80 42.92
LoRA 67.76 69.80 76.10 67.01 67.21 35.23 38.60 60.24
LoRAShear (Ratio = 0.5) 63.40 72.15 49.83 56.40 49.45 34.31 35.86 51.63
Flexora 73.54 71.93 85.28 74.11 71.22 45.64 39.86 65.94

LoRA with DoRA, rsLoRA, MoSLoRA, or LoReFT for inner layer optimization during the flexible 957

layer selection stage, while the outer layer optimization remains unchanged. These adjustments can be 958

achieved through direct modification. The results demonstrate that Flexora exhibits strong scalability 959

when combined with algorithms for enhancing LoRA parameters, highlighting its great potential. 960

C.3 Comparison with LoRAShear 961

Better Performance of Flexora. In this section, the accuracy of Flexora is compared with that of 962

LoRAShear across various datasets, with specific results presented in Table 10. Since LoRAShear is not 963

open source and poses challenges for direct experimentation, the comparison relies on the experimental 964

configurations and results reported in the LoRAShear paper. Notably, Flexora can freely adjust the selected 965

layers according to the dataset, achieving an average pruning parameter rate of 50%. Consequently, under 966

the same pruning rate, Flexora outperforms by 14% (Ratio = 0.5). Experiments have shown that under 967

the same pruning rate, Flexora can achieve better performance. Note that during the test, BoolQ only has 968

training and test sets. We still keep the test set unchanged for testing the model, use 80% of the training set 969

data to train LoRA parameters, and use the other 20% of the data to train the hyperparameters introduced 970

by Flexora. In addition, the reason for the poor performance on the ARC and OBQA datasets is that the 971

number of validation sets is small, and the layer selection may not be accurate enough. For a discussion 972

on the number of validation sets and the accuracy, see section C.4. 973
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Table 11: Detailed analysis of the impact of different numbers of search samples on the Flexora accuracy of
Llama3-8B. This table investigates how varying the number of search samples, i.e., different validation dataset
sizes, affects the performance of Flexora. The accuracy metrics are reported across multiple benchmark datasets,
including HellaSwag, PIQA, Winogrande, RACE-mid, and RACE-high, with the average accuracy across all
datasets also provided. The number of search samples tested includes 1000, 2000, 5000, 10000, and 200000. All
experimental conditions remain unchanged except for the size of the validation set, allowing for a focused analysis
on the impact of search sample size on model performance.

# Samples Hellaswag PIQA Winogrande RACE-mid RACE-high

1000 93.00 80.52 83.04 76.74 72.93
1267 - - 85.79 - -
2000 92.29 85.91 - 80.15 78.82
4887 - - - 84.82 82.36
5000 93.17 - - - -
10000 93.62 - - - -

Table 12: Performance comparison of different hyperparameter settings K and T on various datasets. The rows
represent different combinations of hyperparameters K and T . The columns represent the accuracy results on
different datasets: HellaSwag, PIQA, Winogrande, RACE-mid, and RACE-high. The last column shows the average
accuracy across all datasets.

# K and T Hellaswag PIQA Winogrande RACE-mid RACE-high Average

K = 4, T = 1 93.57 85.76 85.72 84.62 82.46 86.43
K = 8, T = 1 93.62 85.91 85.79 84.61 82.36 86.46
K = 4, T = 2 93.78 85.37 84.16 83.96 83.17 86.09
K = 8, T = 2 93.07 85.16 85.01 84.57 82.06 85.97
K = 4, T = 4 92.97 85.72 85.56 85.07 82.11 86.29
K = 8, T = 4 93.89 86.01 85.79 84.99 82.46 86.63

C.4 Different search sample974

Flexibility of Flexora in search sample . In Flexora, search time is managed by adjusting the max-975

imum number of search samples (corresponding to the size of the validation dataset) to align with the976

requirements of the downstream task. In Table 11, we explore the relationship between different numbers977

of search samples, downstream task performance, and search time. For simpler datasets like Hellaswag and978

PIQA, a 10-minute search with 1,000 samples significantly improves performance. For more challenging979

tasks, at least 1 hour of search time is required for 5,000 samples. In more difficult tasks, using too few980

samples can prevent validation loss from converging. To optimize performance, it is recommended to981

dynamically adjust the number of search samples based on the convergence of the validation loss. In982

summary, for simpler downstream tasks, Flexora can be rapidly applied to reduce model overfitting signif-983

icantly and enhance performance. For more challenging downstream tasks, Flexora balances performance984

and training resources by adjusting the number of search samples.985

C.5 Ablation experiments on training settings986

The choice of K and T is not important The K and T parameters of Flexora are inherited from the987

UD algorithm. As discussed in Section 2, some applications of the UD algorithm are highly sensitive988

to the choice of K and T (Liu et al., 2019). Therefore, we conducted ablation experiments to determine989

the optimal values for K and T . The specific experimental results are presented in Table 12. The results990

demonstrate that Flexora is highly robust to variations in K and T . This robustness may be attributed to991

the significant variability in the contribution of LLM layers to downstream tasks. For a detailed discussion,992

see Section C.7. Regardless of the settings for K and T , Flexora consistently identifies the layers that993

contribute the most to downstream tasks.994

C.6 More results for preliminary study995

This section provides additional experimental results that are not shown in Section 3.1. In these exper-996

iments, we kept the randomly selected layers unchanged and only varied the LoRA rank. The specific997
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experimental results are shown in Table 13. The results indicate that regardless of the selected rank, the 998

model’s performance improves with an increasing number of LoRA fine-tuned layers up to a certain 999

threshold. Beyond this threshold, further increasing the number of fine-tuned layers may lead to a decline 1000

in model performance. This intriguing phenomenon motivates our research.

Table 13: Performance of the model on various datasets (Hellaswag, PIQA, Winogrande, RACE-mid, RACE-high)
under different LoRA ranks and varying numbers of LoRA fine-tuned layers.

Rank Layers Hellaswag PIQA Winogrande RACE-mid RACE-high Average

r = 4

6 layers 58.36 68.23 45.71 53.35 52.99 55.73
12 layers 78.23 76.53 54.78 79.04 54.99 68.71
18 layers 89.01 80.57 82.79 82.37 80.96 83.14
24 layers 88.21 79.36 82.97 82.39 80.12 82.61
32 layers 87.68 74.36 81.74 81.10 79.63 80.90

r = 8

6 layers 59.79 70.25 46.32 54.54 53.45 56.87
12 layers 81.9 77.82 57.35 78.41 72.16 73.53
18 layers 91.15 81.54 83.58 83.77 81.22 84.25
24 layers 90.58 80.9 82.16 82.19 79.22 83.01
32 layers 89.72 76.39 82.24 82.86 80.99 82.44

r = 16

6 layers 60.98 71.36 47.12 55.78 54.26 57.90
12 layers 80.23 78.01 62.69 79.55 75.62 75.22
18 layers 91.63 81.69 85.06 84.27 83.69 85.27
24 layers 90.11 79.60 83.57 82.13 78.39 82.76
32 layers 89.99 78.47 82.77 81.63 79.68 82.51

r = 32

6 layers 60.45 71.46 50.36 57.36 55.13 58.95
12 layers 82.4 79.07 63.17 80.13 78.63 76.68
18 layers 92.08 82.14 86.07 85.35 83.04 85.74
24 layers 91.55 81.37 85.13 85.75 83.17 82.76
32 layers 90.01 79.56 84.36 82.36 80.99 83.46

1001

C.7 Selection of layers 1002

For different LLMs and datasets, the layers chosen by Flexora vary due to the different parameters 1003

learned in the pre-training stage and the diversity of downstream tasks. In Table 14, Table 15, Table 16, 1004

Table 17, and Table 18, we show the layers chosen by Flexora in all experiments and the corresponding 1005

training parameters. In this section, the preferences of the layers chosen by Flexora are analyzed in detail, 1006

providing layer-wise insights for LLMs. 1007

The Effectiveness of Flexora Comes from Reducing Overfitting. In Table 14, the layers and parameter 1008

amounts selected by different LoRA methods are presented. A comparison between LoRA-drop and 1009

Flexora reveals that Flexora is more effective. LoRA-drop tends to select the later layers, as these 1010

outputs exhibit a larger two-norm, aligning with Proposition 2. This result suggests that layers selected 1011

during fine-tuning should not concentrate in a specific range but rather be distributed across various 1012

ranges, fully utilizing the extensive knowledge system of LLMs. Comparing LoRA with DoRA and 1013

rsLoRA shows that LoRA selects more layers, requiring more training parameters but yielding worse 1014

performance. This suggests a higher degree of overfitting when Flexora is applied to LoRA compared to 1015

the other two methods. Therefore, using more advanced LoRA improvement algorithms can significantly 1016

reduce overfitting and enhance performance, underscoring the importance of the fine-tuning approach. 1017

Interestingly, certain layers are consistently fine-tuned in the same downstream task, regardless of whether 1018

LoRA, DoRA, or rsLoRA is used. For example, in Hellaswag, layers [0, 1, 2, 4, 14, 15, 19, 20, 21, 23, 1019

26, 27, 28, 29, 31] are consistently selected, suggesting these layers are crucial for this task or represent 1020

general knowledge layers (see the next two paragraphs for details), closely related to the LLM itself . 1021

General Knowledge Layers. In Table 15, the layers and parameters selected in the second ablation 1022

study are shown. Observing the "Select first 6 layers by Flexora" row reveals that certain layers, such as 1023

[27, 28], are crucial for any downstream task. These layers may store general knowledge, suggesting that 1024

their fine-tuning could enhance the performance across most downstream tasks. 1025

Downstream task-specific layers. Table 16 displays the layers and parameter amounts selected by 1026

various LLMs for different downstream tasks. As evident from the table, the same model utilizes the 1027

aforementioned general knowledge layers across different tasks. Additionally, unique layers for each 1028

downstream task, termed downstream task-specific layers, are predominantly found in the first and last 1029
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layers. The distinction between general knowledge layers and downstream task-specific layers can be1030

attributed to the self-attention mechanism, which effectively differentiates these layers. In the self-1031

attention mechanism, similar knowledge is aggregated, leading to this layer differentiation. Furthermore,1032

concerning downstream task-specific layers, two conclusions are drawn: (a) Fewer layers are selected for1033

simpler datasets to minimize overfitting. (b) Typically, the initial and final layers are selected for a given1034

dataset. This selection pattern may stem from the initial layer processing the original input and the final1035

layer generating the model’s output representation. Given the consistent and predefined input and output,1036

learning these parameters is deemed effective.1037

Poor Effects with No Critical Layers Tables 17 and 18 serve as evidence for the existence of down-1038

stream task-specific and general knowledge layers. Failure to select these layers, due to reasons like1039

random selection or lack of convergence, leads to poor performance.1040

In summary, it is evident that almost all LLMs feature downstream task-specific layers and general1041

knowledge layers. Fine-tuning these layers effectively mitigates model overfitting and enhances both1042

generalization and performance. Fortunately, Flexora accurately and efficiently identifies both the1043

downstream task-specific layers and the general knowledge layers.

Table 14: Comprehensive overview of layer selection strategies in main experiments. This table presents a detailed
breakdown of the layer selection strategies used in different experiments involving the Llama3-8B model and its
variants (Flexora, LoRA-drop, DoRA + Flexora, and rsLoRA + Flexora). For each model, the specific datasets
utilized (HellaSwag, PIQA, RACE, and Winogrande) are listed along with the corresponding layers selected for
each dataset. The “Layer selection" column provides the indices of the layers chosen for each experiment, indicating
the specific layers of the model that were fine-tuned or modified. Additionally, the “Parameter(M)" column indicates
the total number of parameters (in millions) used in each configuration. This detailed breakdown allows for a clear
understanding of the experimental setup, the layer selection process, and the parameter allocation across different
models and datasets, facilitating a deeper analysis of the impact of these strategies on model performance. Unless
otherwise specified, the results are based on the default LoRA Rank of 8.

Methods Dataset Layer selection Parameter(M)

Llama3-8B + Flexora(r = 8)

Hellaswag [0, 1, 2, 3, 4, 5, 6, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 8, 9, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 9, 12, 14, 25, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 16, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + Flexora(r = 16)

Hellaswag [0, 1, 2, 3, 4, 5, 10, 14, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 8, 10, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 9, 11, 14, 25, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + Flexora(r = 32)

Hellaswag [0, 1, 2, 3, 4, 5, 6, 11, 15, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 10, 12, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 10, 12, 14, 24, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 16, 19, 20, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + LoRA-drop

Hellaswag [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.0
PIQA [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.7
RACE [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.7

Winogrande [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.7

Llama3-8B + DoRA + Flexora

Hellaswag [0, 1, 2, 4, 5, 14, 15, 19, 20, 21, 23, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 4, 7, 23, 24, 25, 26, 27, 28, 29, 31] 1.5
RACE [1, 3, 4, 7, 9, 12, 14, 23, 25, 27, 28, 29, 31] 1.3

Winogrande [0, 1, 2, 3, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + rsLoRA + Flexora

Hellaswag [0, 1, 2, 4, 6, 14, 15, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 3, 15, 20, 21, 25, 26, 27, 28, 29, 31] 1.3
RACE [0, 1, 2, 3, 7, 8, 12, 13, 25, 26, 27, 28, 29, 31] 1.5

Winogrande [1, 2, 3, 6, 14, 15, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.9

Llama3-8B + LoReFT + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 19, 20, 21, 23, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 4, 7, 22, 24, 25, 26, 27, 28, 29, 30, 31] 1.5
RACE [0, 1, 3, 4, 7, 9, 14, 23, 25, 27, 28, 29, 31] 1.3

Winogrande [0, 1, 2, 3, 4, 5, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Llama3-8B + MoSLoRA + Flexora

Hellaswag [0, 1, 2, 4, 5, 14, 16, 19, 20, 21, 23, 25, 26, 27, 28, 29, 31] 1.8
PIQA [0, 1, 2, 3, 4, 20, 21, 25, 26, 27, 28, 29, 31] 1.3
RACE [0, 1, 2, 3, 7, 9, 11, 13, 25, 26, 27, 28, 29, 31] 1.5

Winogrande [1, 2, 3, 8, 10 15, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.9

1044

D Loss1045

This section presents the training, evaluation, and validation loss during the Flexora flexible layer selection1046

and fine-tuning stages, accompanied by intuitive explanations.1047

22



Table 15: Detailed display of selected layers in the second ablation study. In the second ablation experiment, we
manually determined the number of fine-tuning layers and contrasted the performance of Flexora with random
layer selection strategies. This table presents the results of this experiment, showcasing different configurations
where a specific number of layers (6, 12, 18, and 24) were selected for fine-tuning. For each configuration, the table
compares the layers selected by Flexora with those selected randomly. The datasets used in this experiment include
HellaSwag, PIQA, RACE, and Winogrande. The “Layer selection" column lists the indices of the layers chosen for
fine-tuning in each dataset, while the “Parameter(M)" column indicates the total number of parameters (in millions)
used in each configuration. This detailed breakdown provides insights into how different layer selection strategies,
with a manually determined number of fine-tuning layers, impact the performance of model across different datasets,
facilitating a comprehensive comparison between Flexora and random selection methods.

Methods Dataset Layer selection Parameter(M)

Select first 6 layers by Flexora

Hellaswag [0, 26, 27, 28, 29, 31] 0.6
PIQA [2, 4, 26, 27, 28, 29] 0.6
RACE [0, 7, 12, 27, 28, 29] 0.6

Winogrande [22, 23, 24, 26, 27, 28] 0.6

Random selection 6 layers

Hellaswag [2, 4, 11, 19, 23, 25] 0.6
PIQA [2, 4, 11, 19, 23, 25] 0.6
RACE [2, 4, 11, 19, 23, 25] 0.6

Winogrande [2, 4, 11, 19, 23, 25] 0.6

Select first 12 layers by Flexora

Hellaswag [0, 2, 3, 14, 15, 21, 23, 26, 27, 28, 29, 31] 1.3
PIQA [1, 2, 3, 4, 7, 20, 25, 26, 27, 28, 29, 30] 1.3
RACE [0, 1, 3, 7, 8, 12, 13, 25, 27, 28, 29, 31] 1.3

Winogrande [0, 3, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.3

Random selection 12 layers

Hellaswag [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3
PIQA [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3
RACE [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3

Winogrande [1, 3, 4, 12, 14, 18, 20, 21, 22, 27, 29, 31] 1.3

Select first 18 layers by Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31] 1.9
PIQA [0, 1, 2, 3, 4, 5, 7, 8, 19, 20, 23, 25, 26, 27, 28, 29, 30, 31] 1.9
RACE [0, 1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 15, 25, 27, 28, 29, 30, 31] 1.9

Winogrande [0, 1, 3, 5, 7, 9, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.9

Random selection 18 layers

Hellaswag [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9
PIQA [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9
RACE [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9

Winogrande [1, 2, 5, 8, 9, 10, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 26, 30] 1.9

Select first 24 layers by Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31] 2.6
PIQA [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.6
RACE [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 23, 24, 25, 27, 28, 29, 30, 31] 2.6

Winogrande [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.6

Random selection 24 layers

Hellaswag [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6
PIQA [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6
RACE [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6

Winogrande [0, 1, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 25, 26, 27, 28, 30, 31] 2.6

D.1 Effectiveness of Flexora. 1048

Figure 5 plots the training and validation loss curves for Llama-8B during the flexible layer selection 1049

stage across four different datasets over one epoch. Both inner and outer layer optimizations are observed 1050

to converge well during the flexible layer selection stage, demonstrating the effectiveness of Flexora. 1051

D.2 Flexora can Correctly Identify Critical Layers. 1052

Figures 6, 7, 8, and 9 depict the training and evaluation loss from the first ablation study. In all experiments, 1053

the training loss converges effectively, demonstrating robust training performance. However, variations in 1054

evaluation loss underscore the model’s generalization capabilities. Flexora generally surpasses methods 1055

that randomly select an equivalent number of layers, demonstrating its ability to accurately identify critical 1056

layers for more effective improvements. 1057

D.3 Flexora can Reduce Overfitting. 1058

Figures 10, 11, 12, and 13 present the training and evaluation loss from the sencond ablation study. 1059

Consistent with previous experiments, the training loss converges, indicating a strong training effect on 1060

the training set. Notably, the 24-layer (red) model consistently shows the lowest training loss, suggesting 1061

optimal learning, whereas the 6-layer (blue) model consistently records the highest, indicating poorer 1062

training performance. However, differences in evaluation loss reveal variations in model generalization 1063

across different layers. The 18-layer (green) model consistently exhibits the lowest evaluation loss, 1064
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Figure 5: Training and validation loss during the flexible layer selection phase. The figure shows the training and
validation loss over 20,000 steps for four different datasets (Hellaswag, PIQA, RACE, and Winogrande), where
the batch size at each step is 1. The blue line shows the validation loss and the orange line shows the training loss.
These plots visually compare how the performance of the models changes during the flexible layer selection phase,
highlighting the convergence behavior.

indicating superior generalization and downstream task performance, corroborated by actual results. The1065

24-layer (red) model’s evaluation loss consistently exceeds that of the 18-layer (green) model, suggesting1066

significant overfitting. Similarly, the 6-layer (blue) model consistently records the highest evaluation loss,1067

indicative of underfitting.1068

In summary, too few training layers can lead to underfitting and poor performance, as seen in the 6-layer1069

(blue) model. Conversely, too many layers can also result in overfitting, as evidenced by the 24-layer (red)1070

model’s performance. However following the selection strategy of Flexora, choosing the right number of1071

layers can minimize overfitting and improve performance1072
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Table 16: Comprehensive overview of layer selection strategies and parameter allocation in various experiments.
This table provides an in-depth breakdown of the layer selection strategies employed across different models and
datasets in the experiments. The models tested include Llama3-8B, Chatglm3-6B, Mistral-7B-v0.1 and others, all
combined with Flexora. For each model, the specific datasets used (HellaSwag, PIQA, RACE, and Winogrande)
are listed along with the corresponding layers selected for each dataset. The “Layer selection" column details the
indices of the layers chosen for each experiment, indicating the specific layers of the model that were fine-tuned or
modified. Additionally, the “Parameter(M)" column indicates the total number of parameters (in millions) used in
each configuration. This detailed breakdown allows for a clear understanding of the experimental setup, the layer
selection process, and the parameter allocation across different models and datasets, facilitating a deeper analysis of
the impact of these strategies on model performance.

Methods Dataset Layer selection Parameter(M)

Llama3-8B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31] 2.0
PIQA [1, 2, 3, 4, 5, 7, 8, 9, 14, 20, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 1, 2, 3, 4, 7, 8, 9, 12, 14, 25, 26, 27, 28, 29, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 16, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31] 1.7

Chatglm3-6B + Flexora

Hellaswag [1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 16, 18, 20] 0.9
PIQA [0, 1, 2, 3, 5, 6, 7, 8, 9, 19, 21, 23, 25, 27] 1.0
RACE [2, 6, 8, 9, 10, 11, 14, 15, 16, 17, 18, 20, 23, 26] 1.0

Winogrande [0, 2, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 25, 26] 1.0

Mistral-7B-v0.1 + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 14, 22, 26, 27, 30] 1.5
PIQA [6, 8, 14, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30] 1.7
RACE [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 30, 31] 1.7

Winogrande [0, 1, 2, 3, 4, 5, 6, 7, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.9

Gemma-7B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 18, 20, 23, 27] 1.9
PIQA [0, 1, 8, 9, 10, 12, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27] 1.9
RACE [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 16] 1.4

Winogrande [0, 1, 2, 3, 4, 5, 6, 7, 8, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] 2.1

Vicuna-7B-v1.5 + Flexora

Hellaswag [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12] 1.6
PIQA [1, 2, 3, 5, 7, 8, 11, 12, 13, 14, 21, 31] 1.6
RACE [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] 1.6

Winogrande [0, 2, 3, 4, 6, 8, 9, 12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.6

Zephyr-7B-beta + Flexora

Hellaswag [1, 13, 15, 17, 18, 22, 23, 24, 25, 26, 27, 28, 30, 31] 1.5
PIQA [2, 3, 6, 7, 14, 15, 16, 17, 22, 26, 27, 28] 1.4
RACE [1, 2, 4, 6, 7, 9, 11, 13, 14, 17, 26, 30, 31] 1.4

Winogrande [1, 3, 5, 6, 8, 13, 27, 28, 29, 30, 31] 1.2

Yi-6B + Flexora

Hellaswag [0, 1, 2, 3, 4, 6, 8, 9, 10, 19, 20, 21, 22] 1.3
PIQA [1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 15, 16, 17, 18, 20, 23] 1.6
RACE [1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 17, 21] 1.2

Winogrande [0, 1, 2, 3, 5, 6, 7, 11, 23, 26, 27, 30, 31] 1.3

Llama-7B + Flexora

Hellaswag [0, 1, 2, 4, 5, 6, 8, 12, 16, 30, 31] 1.4
PIQA [2, 12, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 2.1
RACE [4, 5, 6, 7, 8, 10, 11, 23, 30, 31] 1.3

Winogrande [0, 2, 3, 6, 7, 8, 10, 11, 13, 16, 23, 28, 29, 30, 31] 2.0

Llama2-7B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 8, 12] 1.3
PIQA [0, 1, 2, 3, 7, 8, 11, 13, 14, 21, 24, 29, 30, 31] 1.8
RACE [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16] 1.8

Winogrande [0, 1, 3, 4, 8, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30] 2.5

XuanYuan-6B + Flexora

Hellaswag [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 17] 1.7
PIQA [3, 4, 7, 8, 12, 14, 16, 17, 19, 21, 23, 25, 28, 29] 1.8
RACE [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 20, 21, 22, 25, 28, 29] 2.5

Winogrande [2, 3, 4, 8, 9, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] 2.5

Qwen1.5-7B + Flexora

Hellaswag [0, 1, 2, 3, 4, 5, 6, 7, 9, 17] 1.3
PIQA [0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 17] 1.8
RACE [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] 1.7

Winogrande [0, 1, 2, 3, 4, 5, 6, 7, 8, 21, 24, 25, 27, 28, 30] 2.0
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Table 17: Detailed display of selected layers in the first ablation study. This table presents the results of the
first ablation experiment, where the number of layers selected by Flexora was kept constant, but different layers
were chosen for fine-tuning. The table includes three different random layer selection strategies (Random1,
Random2, and Random3) applied to various datasets (HellaSwag, PIQA, RACE, and Winogrande). For each
random selection method, the “Layer selection" column lists the indices of the layers chosen for fine-tuning in
each dataset. The “Parameter(M)" column indicates the total number of parameters (in millions) used in each
configuration. This detailed breakdown allows for a clear understanding of how different layer selection strategies
impact the performance of model across different datasets while maintaining a consistent number of layers for
fine-tuning.

Methods Dataset Layer selection Parameter(M)

Random1

Hellaswag [0, 1, 2, 3, 4, 6, 7, 8, 10, 11, 14, 18, 19, 20, 21, 25, 26, 27, 28] 2.0
PIQA [0, 2, 4, 10, 12, 16, 17, 18, 23, 24, 25, 26, 27, 28, 29, 30] 1.7
RACE [1, 2, 4, 7, 9, 11, 12, 14, 15, 18, 20, 23, 24, 26, 28, 30] 1.7

Winogrande [1, 2, 4, 5, 9, 10, 11, 13, 15, 17, 20, 21, 24, 26, 30, 31] 1.7

Random2

Hellaswag [0, 2, 3, 4, 5, 6, 10, 12, 13, 15, 17, 20, 21, 22, 23, 24, 28, 29, 30] 2.0
PIQA [0, 1, 3, 4, 8, 13, 14, 18, 19, 22, 24, 26, 28, 29, 30, 31] 1.7
RACE [5, 6, 7, 8, 9, 11, 12, 13, 15, 19, 20, 21, 25, 27, 28, 30] 1.7

Winogrande [2, 5, 6, 7, 8, 10, 11, 13, 14, 17, 18, 22, 25, 26, 28, 30] 1.7

Random3

Hellaswag [0, 1, 3, 4, 6, 9, 12, 13, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29] 2.0
PIQA [0, 3, 4, 9, 12, 13, 14, 15, 16, 24, 25, 26, 27, 28, 30, 31] 1.7
RACE [0, 1, 2, 9, 11, 12, 14, 18, 19, 20, 21, 23, 25, 26, 29, 30] 1.7

Winogrande [2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 20, 22, 23, 29, 30, 31] 1.7

Table 18: Detailed display of layer selection with varying numbers of searching samples. This table presents the
results of an experiment where different numbers of searching samples (1000, 2000, 5000, and 10000) were used to
determine the layers for Flexora. The datasets involved in this experiment include HellaSwag, PIQA, RACE, and
Winogrande. For each number of searching samples, the “Layer selection" column lists the indices of the layers
chosen for fine-tuning in each dataset. The “Parameter(M)" column indicates the total number of parameters (in
millions) used in each configuration. This detailed breakdown provides insights into how the number of searching
samples impacts the layer selection process and the performance of model across different datasets.

Methods Dataset Layer selection Parameter(M)

1000 searching samples

Hellaswag [0, 2, 4, 5, 6, 8, 10, 16, 21, 26, 27, 28, 30, 31] 1.5
PIQA [0, 1, 2, 3, 4, 16, 25, 26, 27, 28, 29, 30, 31] 1.4
RACE [0, 1, 2, 3, 4, 16, 21, 28, 29, 30, 31] 1.2

Winogrande [0, 1, 2, 3, 4, 16, 20, 25, 26, 27, 28, 29, 30, 31] 1.5

2000 searching samples

Hellaswag [1, 2, 3, 4, 8, 10, 11, 16, 30, 31] 1.0
PIQA [0, 1, 2, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.5
RACE [0, 1, 2, 3, 4, 10, 20, 23, 27, 28, 29, 30, 31] 1.4

Winogrande [0, 1, 2, 3, 4, 20, 25, 27, 30, 31] 1.0

5000 searching samples

Hellaswag [0, 1, 2, 3, 4, 8, 31] 0.7
PIQA [0, 2, 3, 4, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] 1.6
RACE [1, 3, 4, 6, 9, 10, 11, 12, 14, 27, 28, 29, 30, 31] 1.5

Winogrande [1, 2, 3, 4, 6, 7, 8, 9, 26, 27, 30, 31] 1.3

10000 searching samples

Hellaswag [0, 1, 4, 10, 12, 14, 21, 24, 26, 27, 28, 29, 30, 31] 1.5
PIQA [0, 1, 3, 4, 7, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31] 1.7
RACE [1, 2, 7, 13, 14, 23, 25, 26, 27, 28, 29, 31] 1.3

Winogrande [6, 7, 9, 10, 15, 19, 20, 22, 26, 27, 30, 31] 1.3
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Figure 6: Comparison of train loss and evaluation loss
in the Hellaswag dataset during the first ablation study.
This figure presents the train loss (left) and evaluation
loss (right) over 20,000 steps for the Hellaswag dataset,
where the batch size at each step is 1. The performance
of the Flexora method is compared against three differ-
ent random layer selection strategies (Random 1, Ran-
dom 2, and Random 3). The train loss graph shows
how the training performance of model evolves, while
the evaluation loss graph highlights the generalization
capability of model on the validation set. This detailed
comparison provides insights into the effectiveness of
Flexora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 7: Comparison of train loss and evaluation loss
in the PIQA dataset during the first ablation study. This
figure presents the train loss (left) and evaluation loss
(right) over 20,000 steps for the PIQA dataset, where
the batch size at each step is 1. The performance of
the Flexora method is compared against three different
random layer selection strategies (Random 1, Random
2, and Random 3). The train loss graph shows how
the training performance of model evolves, while the
evaluation loss graph highlights the generalization ca-
pability of model on the validation set. This detailed
comparison provides insights into the effectiveness of
Flexora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 8: Comparison of train loss and evaluation loss
in the RACE dataset during the first ablation study. This
figure presents the train loss (left) and evaluation loss
(right) over 20,000 steps for the RACE dataset, where
the batch size at each step is 1. The performance of
the Flexora method is compared against three different
random layer selection strategies (Random 1, Random
2, and Random 3). The train loss graph shows how
the training performance of model evolves, while the
evaluation loss graph highlights the generalization ca-
pability of model on the validation set. This detailed
comparison provides insights into the effectiveness of
Flexora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 9: Comparison of train loss and evaluation loss
in the Winogrande dataset during the first ablation study.
This figure presents the train loss (left) and evaluation
loss (right) over 20,000 steps for the Winogrande dataset,
where the batch size at each step is 1. The performance
of the Flexora method is compared against three differ-
ent random layer selection strategies (Random 1, Ran-
dom 2, and Random 3). The train loss graph shows
how the training performance of model evolves, while
the evaluation loss graph highlights the generalization
capability of model on the validation set. This detailed
comparison provides insights into the effectiveness of
Flexora relative to random selection methods in terms
of both training and evaluation metrics.
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Figure 10: Training loss and evaluation loss during fine-
tuning of different numbers of layers in the Flexora on
the Hellaswag dataset. This figure presents the training
loss (left) and evaluation loss (right) over 20,000 steps
for the Hellaswag dataset. The performance is compared
across four different configurations where the first 6,
12, 18, and 24 layers of the Flexora model are fine-
tuned. The training loss graph shows that the model
with 24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. However,
the evaluation loss graph reveals that the model with
18 layers (green) achieves the lowest evaluation loss,
suggesting better generalization to unseen data. This
discrepancy highlights the overfitting issue, where the
model with 24 layers performs well on the training data
but does not generalize as effectively as the model with
18 layers.
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Figure 11: Training loss and evaluation loss during fine-
tuning of different numbers of layers in the Flexora
on the PIQA dataset. This figure presents the training
loss (left) and evaluation loss (right) over 20,000 steps
for the PIQA dataset. The performance is compared
across four different configurations where the first 6,
12, 18, and 24 layers of the Flexora model are fine-
tuned. The training loss graph shows that the model
with 24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. However,
the evaluation loss graph reveals that the model with
18 layers (green) achieves the lowest evaluation loss,
suggesting better generalization to unseen data. This
discrepancy highlights the overfitting issue, where the
model with 24 layers performs well on the training data
but does not generalize as effectively as the model with
18 layers.
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Figure 12: Training loss and evaluation loss during fine-
tuning of different numbers of layers in the Flexora
on the RACE dataset. This figure presents the training
loss (left) and evaluation loss (right) over 20,000 steps
for the RACE dataset. The performance is compared
across four different configurations where the first 6,
12, 18, and 24 layers of the Flexora model are fine-
tuned. The training loss graph shows that the model
with 24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. However,
the evaluation loss graph reveals that the model with
18 layers (green) achieves the lowest evaluation loss,
suggesting better generalization to unseen data. This
discrepancy highlights the overfitting issue, where the
model with 24 layers performs well on the training data
but does not generalize as effectively as the model with
18 layers.
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Figure 13: Training loss and evaluation loss during fine-
tuning of different numbers of layers in the Flexora on
the Winogrande dataset. This figure presents the train-
ing loss (left) and evaluation loss (right) over 20,000
steps for the Winogrande dataset. The performance is
compared across four different configurations where the
first 6, 12, 18, and 24 layers of the Flexora model are
fine-tuned. The training loss graph shows that the model
with 24 layers (red) achieves the lowest training loss,
indicating it fits the training data very well. However,
the evaluation loss graph reveals that the model with
18 layers (green) achieves the lowest evaluation loss,
suggesting better generalization to unseen data. This
discrepancy highlights the overfitting issue, where the
model with 24 layers performs well on the training data
but does not generalize as effectively as the model with
18 layers.
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E Numerical experiments on the smoothness constant of Llama3-8B 1073

We introduced β-smoothness in Definition 1, which refers to the Lipschitz continuity of the gradient of 1074

the loss function. When proving Proposition 2, for simplicity, we made the following simplifications: we 1075

simplified the Transformer network, such as Llama3-8B, to an MLP network. In this section, we use the 1076

results of numerical experiments to demonstrate that this simplification is reasonable when discussing the 1077

relationship between the number of network layers and β-smoothness. 1078

Assuming that the function we are discussing is continuous and differentiable, we introduce a very 1079

small perturbation ϵ = 1e− 5. Then, Definition 1 can be simplified to: 1080

∥∇f(w; z)−∇f(w + ϵ; z)∥ ≤ β∥ϵ∥. (11) 1081

Therefore, the estimation formula for β-smoothness can be obtained: 1082

∥∇f(w; z)−∇f(w + ϵ; z)∥
∥ϵ∥

≤ β. (12) 1083

According to Equation 12, we use Llama3-8B as an example to calculate the β-smoothness of different 1084

layers of the model across various datasets (Hellaswag, PIQA, RACE, Winogrande). This is done to 1085

verify the relationship between the β-smoothness of model and the number of layers. The specific 1086

experimental steps are as follows: we selected a model fine-tuned with LoRA for each dataset, perturbed 1087

its trainable LoRA parameters, randomly sampled 10 data points from the corresponding dataset as input, 1088

and calculated the average β-smoothness of these ten data points. We use this average β-smoothness to 1089

represent the β-smoothness of network. The experimental results are shown in Figure 14. The vertical axis 1090

uses a logarithmic scale, and it can be seen that across different datasets, the β-smoothness of the Llama3- 1091

8B network (i.e., the Smoothness constant in Figure 14) increases exponentially with the number of 1092

network layers. In summary, large language models represented by Llama3-8B exhibit properties similar 1093

to those of MLP networks as described in Proposition 2, where β-smoothness increases exponentially 1094

with the number of network layers. 1095
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Figure 14: The β-smoothness constants of the Llama3-8B model across different datasets (Hellaswag, PIQA, RACE,
Winogrande) as a function of the number of layers. The vertical axis is on a logarithmic scale, demonstrating that
the β-smoothness increases exponentially with the number of layers for all datasets.
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F Special cases1096

This section details the performance of Flexora and LoRA across four distinct datasets. The results1097

indicate that Flexora demonstrates superior comprehension and judgment on more challenging questions1098

within the test dataset, compared to LoRA. In certain instances, Flexora successfully explains problems1099

not previously encountered during training, showcasing its robust learning and generalization capabilities.1100

Special cases of Hellaswag

dataset: Hellaswag
"1": {

"origin_prompt": "A lady walks to a barbell. She bends down and grabs
the pole. The lady\n
Question: Which ending makes the most sense?\n
A. swings and lands in her arms.\n
B. pulls the barbell forward.\n
C. pulls a rope attached to the barbell.\n
D. stands and lifts the weight over her head.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediciton": " D",
"LoRA prediciton" : "B",
"gold": "D"

},
"2": {

"origin_prompt": "Two women in a child are shown in a canoe while a man
pulls the canoe while standing in the water, with other individuals
visible in the background. The child and a different man\n
Question: Which ending makes the most sense?\n
A. are then shown paddling down a river in a boat while a woman talks.\n
B. are driving the canoe, they go down the river flowing side to side.\n
C. sit in a canoe while the man paddles.\n
D. walking go down the rapids, while the man in his helicopter almost
falls and goes out of canoehood.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediciton": " C",
"LoRA prediciton" : "B",
"gold": "C"

},
"3": {

"origin_prompt": "The boy lifts his body above the height of a pole.
The boy lands on his back on to a red mat. The boy\n
Question: Which ending makes the most sense?\n
A. turns his body around on the mat.\n
B. gets up from the mat.\n
C. continues to lift his body over the pole.\n
D. wiggles out of the mat.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediciton": " B",
"LoRA prediciton" : "B",
"gold": "B"

}
"4": {

"origin_prompt": "We see a person holding face wash then putting it on
their face. They rinse the face and add the face wash with a brush. We\n
Question: Which ending makes the most sense?\n
A. see a closing title screen.\n
B. see a black screen with the credits.\n
C. see an illustration on how to add the wash using a brush.\n
D. then see a replay then the person putting the face wash on.\n
You may choose from ’A’, ’B’, ’C’, ’D’.\n
Answer:",
"Flexora prediction": " C",
"LoRA prediciton" : "A",
"gold": "C"

},

1101

30



Special cases of PIQA

dataset: PIQA
"1": {

"origin_prompt": "ice box\n
A. will turn into a cooler if you add water to it\n
B. will turn into a cooler if you add soda to it\n
Answer:",
"Flexora prediciton": "A",
"LoRA prediciton" : "A",
"gold": "A"

},
"2": {

"origin_prompt": "how do you put eyelashes on?\n
A. glue them on with mascara.\n
B. put eyelash glue on the fake eyelashes and then let it get tacky.
then, place it on top of your actual eyelashes and let it dry on.\n
Answer:",
"Flexora prediciton": "A",
"LoRA prediciton" : "B",,
"gold": "B"

},
"3": {

"origin_prompt": "How do I fill holes and tiny gaps in the concrete when
making a concrete countertop?\n
A. Use a concrete slurry\n
B. Use a concrete brush\n
Answer:",
"Flexora prediciton": "A",
"LoRA prediciton" : "B",
"gold": "A"

}
"4": {

"origin_prompt": "When I’m deep frying a turkey, how defrosted
should it be?\n
A. It should be completely defrosted, otherwise the oil may
boil over and start a fire.\n
B. It should be completely frozen, otherwise the oil may boil
over and start a fire.\n
Answer:",
"\ours{} prediction": " A\nExplanation: A turkey should be completely
defrosted before deep frying. If it is not, the oil may boil over
and start a fire.",
"Flexora prediciton" : "A",
"LoRA prediciton" : "B",
"gold": "A"

},
"5": {

"origin_prompt": "How do you properly prepare a steak.\n
A. Take the steak out of warm storage and let come to room temperature,
generously add salt and pepper to both sides and let sit
for 10 minutes.\n
B. Take the steak out of cold storage and let come to room temperature,
generously add salt and pepper to both sides and let sit
for 10 minutes.\n
Answer:",
"Flexora prediction": " B\nExplanation: B. Taking the steak
out of cold storage and letting it come to room temperature is
the correct answer. The steak should be at room temperature before
cooking. The steak should be generously salted and peppered on both
sides and let sit for 10 minutes.",
"LoRA prediciton" : "B",
"gold": "B"

},
"6": {

"origin_prompt": "To cream butter and sugar together, you can\n
A. Place it in a bowl and use a hand warmer\n
B. Place in a bowl and use a hand mixer\n
Answer:",
"Flexora prediction": " B\nExplanation: B. Place in a bowl and
use a hand mixer\nExplanation: To cream butter and sugar together,
you can place it in a bowl and use a hand mixer.",
"LoRA prediciton" : "B",
"gold": "B"

},
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Special cases of RACE

dataset: RACE
"1": {

"origin_prompt": "Read the article, and answer the question by replying A,
B, C or D.\n\n
Article:\nThe rain had continued for a week and the flood
had created a big river which were running by Nancy Brown’s
farm. As she tried to gather her cows to a higher ground,
she slipped and hit her head on a fallen tree trunk.
The fall made her unconscious for a moment or two. When she came to,
Lizzie, one of her oldest and favorite cows, was licking her face. \n
At that time, the water level on the farm was still rising.
Nancy gathered all her strength to get up and began walking
slowly with Lizzie. The rain had become much heavier,
and the water in the field was now waist high. Nancy’s pace
got slower and slower because she felt a great pain in her head.
Finally, all she could do was to throw her arm around Lizzie’s
neck and try to hang on. About 20 minutes later, Lizzie managed
to pull herself and Nancy out of the rising water and onto
a bit of high land, which seemed like a small island in
the middle of a lake of white water. \n
Even though it was about noon, the sky was so dark and the rain
and lightning was so bad that it took rescuers more than
two hours to discover Nancy. A man from a helicopter
lowered a rope, but Nancy couldn’t catch it. A moment later,
two men landed on the small island from a ladder in the helicopter.
They raised her into the helicopter and took her to the school gym,
where the Red Cross had set up an emergency shelter.
\nWhen the flood disappeared two days later, Nancy immediately
went back to the \"island.\" Lizzie was gone. She was one of
19 cows that Nancy had lost in the flood. \"I owe my life to
her,\" said Nancy with tears.\n\n
Q: What did Nancy try to do before she fell over?\n\n
A. Measure the depth of the river\n
B. Look for a fallen tree trunk\n
C. Protect her cows from being drowned\n
D. Run away from the flooded farm\n",

",
"Flexora prediciton": "D",
"LoRA prediciton" : "B",
"gold": "D"

}
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Special cases of Winogrande

dataset: Winogrande
"1": {

"origin_prompt": "Question: Sarah was a much better surgeon
than Maria so _ always got the easier cases.\n
A. Sarah\n
B. Maria\n
Answer:",
"Flexora prediciton": "B",
"LoRA prediciton" : "B",
"gold": "B"

},
"2": {

"origin_prompt": "Question: Sarah was a much better surgeon
than Maria so _ always got the harder cases.\n
A. Sarah\n
B. Maria\n
Answer:",
"Flexora prediciton": "B",
"LoRA prediciton" : "B",
"gold": "A"

},
"3": {

"origin_prompt": "Question: They were worried the wine would ruin
the bed and the blanket, but the _ was’t ruined.\n
A. blanket\n
B. bed\n
Answer:",
"Flexora prediciton": "B",
"LoRA prediciton" : "A",
"gold": "B"

},
"4": {

"origin_prompt": "Question: Terry tried to bake the eggplant
in the toaster oven but the _ was too big.\n
A. eggplant\n
B. toaster\nAnswer:",
"Flexora prediction": " A\nExplanation: The eggplant was
too big to fit in the toaster oven.",
"LoRA prediciton" : "B",
"gold": "A"

},
"5": {

"origin_prompt": "Question: At night, Jeffrey always stays up
later than Hunter to watch TV because _ wakes up late.\n
A. Jeffrey\n
B. Hunter\n
Answer:",
"Flexora prediciton": "A",
"LoRA prediciton" : "B",
"gold": "A"

},
"6": {

"origin_prompt": "Question: The cat of Sarah has some mouth problems,
so she takes it to see Maria. _ is a responsible cat owner.\n
A. Sarah\n
B. Maria\n
Answer:",
"Flexora prediction": " A\nExplanation: A is a responsible cat
owner because she takes her cat to see a veterinarian.",
"LoRA prediciton" : "B",
"gold": "A"

},
"7": {

"origin_prompt": "Question: Benjamin was chosen instead of Brett to
be the makeup artist for the play because _ was less experienced.\n
A. Benjamin\n
B. Brett\n
Answer:",
"Flexora prediction": " B",
"LoRA prediciton" : "A",
"gold": "B"

},
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