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ABSTRACT

Training generative models to produce synthetic data is meant to provide a
privacy-friendly approach to data release. However, we get robust guarantees only
when models are trained to satisfy Differential Privacy (DP). Alas, this is not the
standard in industry as many companies use ad-hoc strategies to empirically eval-
uate privacy based on the statistical similarity between synthetic and real data.

In this paper, we review the privacy metrics offered by leading companies in this
space and shed light on a few critical flaws in reasoning about privacy entirely via
empirical evaluations. We analyze the undesirable properties of the most popular
metrics and filters and demonstrate their unreliability and inconsistency through
counter-examples. We then present a reconstruction attack, ReconSyn, which suc-
cessfully recovers (i.e., leaks all attributes of) at least 78% of the low-density train
records (or outliers) with only black-box access to a single fitted generative model
and the privacy metrics. Finally, we show that applying DP only to the model
or using low-utility generators does not mitigate ReconSyn as the privacy leakage
predominantly comes from the metrics. Overall, our work serves as a warning to
practitioners not to deviate from established privacy-preserving mechanisms.

1 INTRODUCTION

Synthetic data – i.e., artificially generated data produced by machine learning algorithms – has
attracted growing interest not only from the research community (Jordon et al., 2022), but also
regulatory bodies (Information Commissioner’s Office, 2022; Financial Conduct Authority, 2023),
non-profits (UN, 2023; OECD, 2023), and government agencies (Benedetto et al., 2018; NIST,
2018; 2020). It promises a drop-in replacement for sensitive data in various use cases, e.g., private
data release, de-biasing, augmentation, etc. Numerous providers of synthetic data solutions have
entered a flourishing market attracting considerable investments (Crunchbase, 2022; TechCrunch,
2022; Forbes, 2022), with products serving large corporations in various sectors.

The basic idea behind synthetic data is to rely on generative machine learning models, learning the
probability distribution of the real data and creating new (synthetic) records by sampling from the
trained model. However, models trained without robust privacy guarantees can overfit and memo-
rize individual data points (Carlini et al., 2019b; Webster et al., 2019), which enables attacks like
membership and property inference (Hayes et al., 2019; Hilprecht et al., 2019; Chen et al., 2020;
Stadler et al., 2022; Annamalai et al., 2023). This, in turn, could lead to disastrous breaches and
leakage of individuals’ health, financial, and other sensitive data.

Main Motivation. The established framework to bound information leakage and defend against
privacy attacks is Differential Privacy (DP) (Dwork et al., 2006; Dwork & Roth, 2014). Specifically,
for synthetic data, one needs to train generative models while satisfying DP (Zhang et al., 2017;
Jordon et al., 2018; McKenna et al., 2021). While almost all companies in this space claim their
synthetic data products meet regulatory requirements such as GDPR, HIPAA, or CCPA, we find that
they rarely use DP, as shown in App. A. This is worrisome, as models are often trained on sensitive
data in highly regulated environments (e.g., medical applications (Hradec et al., 2022)).
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Rather than relying on well-established privacy notions, many companies use ad-hoc heuristics to
guarantee privacy empirically; see, e.g., (Platzer & Reutterer, 2021; Mobey Forum, 2022). Some
combine unperturbed heuristics with DP, breaking the end-to-end DP pipeline, which ultimately
negates its privacy protections, as our evaluation will demonstrate. In fact, even research papers,
e.g., in the medical domain, have proposed models that exclusively rely on similar empirical privacy
heuristics (Park et al., 2018; Lu et al., 2019; Yale et al., 2019; Zhao et al., 2021; Guillaudeux et al.,
2023; Liu et al., 2023; Yoon et al., 2023).

Problem Statement. The heuristics used in industry mainly consist of privacy metrics and filters
based on similarity (see Sec. 2), i.e., how close synthetic records are to their nearest neighbor in
the train data. If enough synthetic points are too close, according to pre-configured statistical tests
vs. holdout test data, they are filtered out, or the whole sample is discarded; otherwise, the data is
considered safe. The idea is that synthetic data should be similar and representative of the train data
but not too close, which intuitively makes sense. However, the meaningfulness of these heuristics
has not been rigorously studied. This motivates assessing the validity of entirely relying on empirical
evaluation based on distances and whether this approach risks providing false protection claims.

Technical Roadmap. We explore, characterize, and analyze the major disadvantages of the most
commonly used privacy metrics/filters in industry. (In App. E, we also show counter-examples
whereby, even if all privacy tests pass, privacy violations and inconsistencies can still occur.)

Then, we propose ReconSyn, a proof of concept black-box attack designed to highlight the in-
herent weaknesses of the privacy metrics in synthetic data generation. The attack recovers train
data from low-density regions (where the most at-risk records reside) with realistic assumptions.
Besides the privacy metrics, the adversary can only access a single fitted generative model. In
fact, the attack is agnostic to the generative approach, the type of dataset, and use case, etc.

PrivBayes MST DPGAN PATE-GAN CTGAN
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Figure 1: ReconSyn perfomance.

Experimental Evaluation. In addition to the counter-examples,
we present experiments demonstrating the effectiveness of Re-
conSys vis-à-vis five state-of-the-art tabular models (PrivBayes,
MST, DPGAN, PATE-GAN, CTGAN) and five commonly used
datasets, including Adult, Census, and MNIST. The attack re-
constructs at least 78% of the underrepresented train data records
(or outliers) with perfect precision in all settings (see Fig. 1).
Some models are more vulnerable: attacking graphical models
(PrivBayes, MST) requires fewer rounds to achieve similar re-
sults than GANs. In fact, ReconSyn is successful even when at-
tacking low-utility generators such as Random and Independent.

Main Contributions:

1. We are the first to analyze the undesirable properties of the most common privacy metrics
and filters used in industry to empirically “guarantee” the privacy of synthetic data.

2. We propose a novel reconstruction attack, ReconSyn, with minimal and realistic assump-
tions – black-box access to a single trained generative model and the privacy metrics.

3. We demonstrate that applying DP to the generative model does not mitigate ReconSyn
when combined with unperturbed heuristics, as leakage persists through the metrics.

4. We show that using similarity-based privacy metrics does not provide GDPR compliance.
5. We discuss how, assuming a similar threat model, ReconSyn can be adapted to other attacks

like membership and attribute inference.

Overall, our work prompts the need to move away from attempts to guarantee privacy in an ad-hoc,
empirical way. We believe our findings will be useful to practitioners when deploying solutions
requiring the processing of sensitive data, as well as policymakers when creating standards and best
practices for privacy-preserving synthetic data adoption.

NB: We have shared our work with the relevant synthetic data companies in the spirit of responsible
disclosure and are working with them on the next steps – see Ethics Statement.
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2 PRIVACY METRICS AND FILTERS

In this section, we present the three privacy metrics and two filters broadly used by synthetic data
companies to guarantee privacy (see App. A). The former are used to measure the privacy of the
synthetic data and run pass/fail statistical tests, while the latter remove records from the generated
data points based on their similarity to train records or outliers.

A common implementation pre-processing step, which, unless stated otherwise, we also follow, is
to discretize the data. The input to all metrics is train, synthetic, and holdout test dataset, Dn

test (with
the same size, n, as the train data, Dn

train) – which comes from the same distribution as Dn
train) but

was not used to train the generative model – to serve as a reference.

Intuition. The overall idea behind similarity-based privacy metrics is that synthetic records should
be as close as possible to train ones, but not too close, i.e., not closer than what would be expected
from the holdout records (Platzer & Reutterer, 2021). More precisely, we compute the closest pair-
wise distances (for discrete data, we use Hamming distance, for continuous – Euclidean) for (Dn

train,
Dn′

synth) and (Dn
train, Dn

test), and run a pass/fail test.

The passing criterion is a comparison between simple statistics calculated from the two distributions
– the average or the 5th percentile, while the output of the metrics is the pass/fail flag alongside
the actual statistics as per (MOSTLY AI, 2022b). If all three tests pass, the data becomes “truly
anonymous synthetic data” (MOSTLY AI, 2020) and could be freely shared alongside the privacy
scores. Otherwise, the synthetic data is not considered safe enough to be released.

Identical Match Share (IMS) is a privacy metric that captures the proportion of identical copies
between train and synthetic records. The test passes if that proportion is smaller or equal to the
one between train and test datasets. In practice, IMS is used or advocated by (MOSTLY AI, 2020;
Syntegra, 2021; DataCebo, 2022), and others (Lu et al., 2019; ONS DSC, 2022; AWS, 2022).

Distance to Closest Records (DCR) also compares the two sets of distances. It looks at the overall
distribution of the distances to the nearest neighbors or closest records. The test passes if (Dn

train,
Dn′

synth)-5th percentile is larger or equal than the other pair. DCR is supposed to protect against
settings where the train data was just slightly perturbed or noised and presented as synthetic. Tonic
(2023a); MOSTLY AI (2020); Hazy (2023b); Syntegra (2021); Statice (2023a), and several scientific
studies/blogposts (Park et al., 2018; Lu et al., 2019; Yale et al., 2019; Zhao et al., 2021; ONS DSC,
2022; AWS, 2022; Guillaudeux et al., 2023; Liu et al., 2023; Yoon et al., 2023) use DCR.

Nearest Neighbor Distance Ratio (NNDR) is very similar to DCR, but the nearest neighbors’
distances are divided by the distance to the second nearest neighbor. The idea is to add further
protection for outliers by computing relative rather than absolute distances. NNDR, too, compares
the 5th percentile between the two sets of distributions, and is used by (MOSTLY AI, 2020) and in
academic papers (Zhao et al., 2021; Guillaudeux et al., 2023).

Similarity Filter (SF) is similar in spirit to the privacy metrics, but rather than just measuring
similarity, it excludes or filters out individual synthetic data points if they are identical or too close
to train ones. Essentially, SF aims to ensure that no synthetic record is overly similar to a train one.
It is used by (Replica Analytics, 2020; Gretel, 2021; Synthesized, 2023a).

Outlier Filter (OF) focuses on the outliers; it removes synthetic records that could be considered
outliers with respect to the train data, and is used by (Gretel, 2021).

Passing Criteria. Throughout our experiments, we adopt the criteria from (MOSTLY AI, 2020),
unless stated otherwise, i.e., a synthetic dataset (for whose generation none of the filters were used)
is considered private if all three privacy tests—coming from IMS, DCR, and NNDR—pass.

Additional Background Information. We defer the related work on reconstruction in databases
and machine learning to App. B. In App. C, we outline common notation on synthetic data and de-
tails about the generative models, datasets, and the criteria for defining outliers in our evaluation.
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3 FUNDAMENTAL LIMITATIONS OF SIMILARITY-BASED PRIVACY METRICS

In this section, we identify and discuss several issues with using similarity-based privacy metrics
(SBPMs) to guarantee privacy through pass/fail tests. We later exploit these properties to build a
successful reconstruction attack.

Issue 1: No Theoretical Guarantees. First and foremost, SBPMs do not provide any theoretical or
analytical guarantees. They do not define a threat model or a strategic adversary, thus ignoring some
of the most fundamental security principles (Anderson, 2020). Instead, SBPMs rely on a number of
arbitrarily chosen statistical tests.

This prompts a few questions, e.g., why choose these specific tests instead of others? What exactly
do they protect against? How were the passing criteria selected? Furthermore, SBPMs do not rule
out vulnerabilities to current or future adversarial attacks, including ReconSyn (see Sec. 4).

Issue 2: Privacy as Binary Property. SBPMs treat privacy leakage as a binary property, i.e., the
synthetic data is either “truly” private or not. This is despite the fact that SBPMs do not rely on, e.g.,
an adversarial advantage that can be proven asymptotically small under certain assumptions, e.g., as
done in Cryptography. In fact, using pass/fail tests removes analysts’ sense of direction and ability
to measure privacy leakage across a continuous interval.

This has two consequences. First, it is hard to know what choices (e.g., models, hyperparameters,
etc.) contribute to making the synthetic data private. Second, releasing a single private synthetic
dataset is deemed as safe as releasing many (as long as they pass the tests), even though this increases
leakage since the provider needs to call the train/test data every time new data is generated. Arguably,
this is related to the “Fundamental Law of Information Reconstruction” (Dwork & Roth, 2014),
stating that overly accurate answers to too many questions will destroy privacy in a spectacular way.

Issue 3: Non-Contrastive Process. SBPMs are computed in a non-contrastive way. That is, they
do not compare the computations when an individual is included or not. Since there is no noise or
randomness ingested into the process, plausible deniability is ruled out. Thus, calculating the privacy
metrics leads to a variety of attacks, including simple ones like differencing attacks. For example,
if an adversary makes two calls to the metrics, one with and one without a particular individual,
they can deduce some information (e.g., whether the individual is an exact match or closer than 5th
percentile) with 100% confidence since the computations will carry no uncertainty.

Issue 4: Lack of Worst-Case Analysis. All SBPMs use simple statistics (average or 5th percentile)
as passing criteria. This leaves room for maliciously crafted synthetic datasets that might pass the
tests but still reveal sensitive data. Also, this does not protect against worst-case scenarios, i.e.,
memorization and replication of outliers, which, combined with the lack of plausible deniability
(from Issue 3), increases the adversary’s chance of launching a successful attack.

Unfortunately, using a held-out dataset for comparison does not alleviate the problem due to what
is commonly and informally defined as the “Generalization Implies Privacy” fallacy, i.e., privacy is
a worst-case problem while generalization is an average-case. Put simply, even if all tests pass, i.e.,
the model generalizes, memorization cannot be ruled out (Song et al., 2017).

Issue 5: Privacy as Data Property. SBPMs expect a single synthetic dataset as input, which has
several implications. First, it means we measure the privacy of a specific dataset and not the gener-
ative model/process. Therefore, privacy becomes a property of the data rather than the generating
process. Also, SBPMs require running the metrics on each and every generated synthetic data in or-
der to guarantee privacy which, unfortunately, actually leaks more privacy (as discussed in Issue 2).
Second, the specific synthetic dataset may or may not be representative of the distribution captured
by the model, which could lead to inconsistent results across generation runs. Typically, privacy is
defined as a statistical property over many such instances.

Due to space limitation, we present the remaining three limitations in App. D – incorrect interpreta-
tion, risk underestimation, and implementation challenges. We also illustrate the inconsistency and
untrustworthiness of the metrics through counter-examples in App. E.

Take-Aways. In summary, relying entirely on empirical evaluations to “guarantee” privacy present
several critical weaknesses that may lead to an artificially high sense of security. Unfortunately, this
approach is ineffective and embeds severe vulnerabilities to privacy attacks.
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Figure 2: Overview of ReconSyn. The provider 1. splits the real data into train/test, 2. fits a generative model
on the train data, 3. generates synthetic data (privacy filters are applied), 4. runs the privacy metrics on the
synthetic data. The adversary can make API calls (they have black-box access) to the fitted generative model
and privacy metrics. They a. generate synthetic datasets, b. run them through the privacy metrics to observe
the pass/fail tests and scores (if tests pass), c. reconstruct underrepresented train records (outliers) through
SampleAttack and SearchAttack (introduced in Algorithm 1).

4 THE ReconSyn RECONSTRUCTION ATTACK

We now introduce a novel attack, ReconSyn, aimed at recovering the outliers in the train data with
minimal assumptions. An overview of the attack is reported in Fig. 2.

Adversarial Model. A synthetic data provider has access to train and test datasets (Dn
train and

Dn
test), trains a generative model (Gθ(D

n
train)), generates synthetic datasets (Dn′

synth), and deems
them private if they pass all privacy tests (a combination of privacy metrics and/or filters).

We assume a strategic reconstruction adversary with black-box access to the trained generative
model (Gθ(D

n
train)) and the privacy metrics. The adversary has the capability to sample from

the trained model to generate synthetic datasets. They can add or remove data points to/from the
synthetic data and make calls to the metrics APIs to observe the outcome of the tests and, in case all
tests pass, the scores. Their goal is to reconstruct, or completely violate the privacy of, the train data
outliers (Dout

train) by building a collection of synthetic datasets considered private by the provider.

Algorithm Steps. ReconSyn (pseudocode in Algorithm 1 in App. F) comprises two subattacks:
1) SampleAttack, which generates and evaluates samples drawn from the generative model,
and 2) SearchAttack, which strategically examines the history of records generated in the first
phase. Next, we offer an overview of the strategies and present more details in App. F.

As a first step, the adversary uses OutliersLocator to identify regions with underrepresented
records or outliers. This involves generating a large synthetic data sample, fitting a Gaussian
Mixture model, and selecting the smallest isolated clusters.

SampleAttack follows a simple procedure. In each round, it generates synthetic data, then iden-
tifies potential outliers using OutliersLocator. It removes data already examined in previous
rounds, as recorded in its history. The attack then queries the metrics API to check for exact
matches (if all tests pass) and adds all queried data to the history.

Informally, the idea behind SearchAttack involves selecting close records from the history and
‘shaking’ or ‘fixing’ them one column at a time until an exact match is found. For a specific
record, two steps are taken. We first identify columns that have not yet been reconstructed
using its neighboring dataset, which is a square matrix where each row differs in a single
column value. We then iteratively test possible values for these columns, filtering out records
through OutliersLocator and the history. Ultimately, this leads to another match.

Plausibility of the Attack. ReconSyn relies on three realistic assumptions, in that the adversary can:

1. Generate an unlimited amount of synthetic datasets, which is one of the main selling points
for adopting synthetic data (Gretel, 2023a; MOSTLY AI, 2022a; Hazy, 2022).

2. Add or remove records – data augmentation is a popular use case advertised by synthetic
data companies (Tonic, 2022; Gretel, 2023a; MOSTLY AI, 2023c).

3. Access the privacy tests and scores for every generation run (if all tests pass); again, this is
explicitly offered by the main companies (MOSTLY AI, 2022b; 2023a).

Note that the adversary does not have any side knowledge: no access to the train/test data or even
possession of data from the same distribution, no background information of the used generative
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Model 2d Gauss Adult Small Adult Census MNIST
Sample Sample Sample Search Sample Search Sample Search

Oracle 0.95
PrivBayes 1.00 0.44 0.95 0.54 0.98 0.00 0.99
MST 1.00 0.05 0.90 0.84 0.99 0.00 0.97
DPGAN 0.96 0.02 0.78 0.15 0.82 0.00 0.97
PATE-GAN 1.00 0.02 0.81 0.37 0.83 0.00 0.97
CTGAN 0.99 0.00 0.80 0.74 0.90 0.00 0.80

Table 1: Overview of the performance of the ReconSyn attack against different models (ε =∞) and datasets.

approach, model, hyperparameters, nor model updates or gradients. They are also agnostic to the
dataset type and the specific use case/downstream task.

Why Outliers. Our motivation for targeting the underrepresented regions in the train data is their
potential correspondence with the most vulnerable individuals. They are inherently more difficult
to model accurately, which makes their reconstruction more challenging (see Sec. G). Further-
more. outliers are at a higher risk of being memorized by models (Feldman, 2020) and are more
susceptible to membership inference attacks (Stadler et al., 2022). Regulators, such as Information
Commissioner’s Office (2022), have explicitly highlighted the increased sensitivity of outliers.

Why Reconstruction. We choose to build a reconstruction attack as this is one of the most powerful
attacks – it exposes all (sensitive) attributes – thus unequivocally demonstrating the untrustworthi-
ness of similarity-based approaches to reason about privacy. If the attack is successful in recon-
structing even a handful of train outliers with high precision, this will constitute a serious privacy
violation (Carlini et al., 2022).

In fact, reconstruction implies the ability to single individuals out and enable their identification or
link them to the real data. This, in turn, means that the process of generating synthetic data and
guaranteeing its privacy has failed at least two of the three privacy guarantees outlined by Euro-
pean Commission Article 29 Working Party (A29WP, 2014), namely, singling out and linkability.
Therefore, the process cannot be considered anonymous as per GDPR.

Take-Aways. ReconSyn is powerful and generalizable since it achieves both high recall and preci-
sion (see Sec. 5.1). Precision is perfect as we reconstruct outliers with 100% confidence (i.e., there
are no false positives). Furthermore, assuming the same setup, other attacks such as membership
and attribute inference could be considered specific subcases of ReconSyn (see App. H).

5 EVALUATION

In this section, we demonstrate that ReconSyn successfully recovers the train outliers in different
settings. Our experiments are conducted against the models and datasets reviewed in App. C.

5.1 RECONSTRUCTION OF TRAIN OUTLIERS

We measure the performance of ReconSyn (SampleAttack and SearchAttack) against PrivBayes,
MST, DPGAN, PATE-GAN, and CTGAN on increasingly more complex datasets (2d Gauss, Adult
Small, Adult, Census, MNIST). Our experiments are summarized in Table 1. Since ReconSyn is
highly successful in all settings, we do not report the utility of the generated synthetic data.

5.1.1 ReconSyn, SampleAttack

We launch SampleAttack on all five datasets. We run it for 1,000 rounds for the first three datasets
and for 5,000 rounds for the last two. The attack exhibits mixed results: regardless of the target
model, it is very successful on 2d Gauss and Adult Small, reconstructing at least 95% of train out-
liers, but struggles for the remaining three (see Table 1).

2d Gauss. Starting with 2d Gauss, we attack the oracle and display the results in Fig. 10. Even
though i) no generative model has been exposed to train data, and ii) the oracle has no memory of
the synthetic data it has generated, SampleAttack manages to perfectly reconstruct 95% train outliers
due to the privacy metrics’ leakage. In other words, if the adversary had no access to the metrics,
they would not be able to gain information about the train data by generating new data.

6



Under review as a conference paper at ICLR 2024

200 400 600 800 1000

number of rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Adult Small:

Adult:

Census:

PrivBayes

PrivBayes

PrivBayes

MST

MST

MST

DPGAN

DPGAN

DPGAN

PATE-GAN

PATE-GAN

PATE-GAN

CTGAN

CTGAN

CTGAN
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Adult Small. For Adult Small, we use SampleAttack against all five generative models and report
the number of reconstructed outliers in Fig. 3 (top five lines). For PrivBayes, MST, and PATE-GAN,
the attack quickly reconstructs around 90% outliers after just 10 rounds and eventually reaches
100%. For DPGAN and CTGAN, the attack plateaus at around 85% after 40 rounds, but by round
1,000, it slowly improves and achieves 96% and 99%, respectively. We believe that SampleAttack is
extremely successful on this dataset because its domain is relatively small (105).

Adult. On Adult, which has twice the number of columns and cardinality of 1015, the models are
much less likely to memorize and reproduce individual data points. Indeed, apart from PrivBayes,
SampleAttack only recovers 5% of the outliers – see Table 1 and Fig. 3 (bottom five lines).

Census. Even though Census has roughly twice the columns/rows and much higher cardinality, Sam-
pleAttack is more successful (excluding PrivBayes on Adult), recovering on average 53% outliers
(see middle lines in Fig. 3). Interestingly, attacking CTGAN yields better results than PrivBayes.
Also, the recovery rate follows a linear trend (vs. logarithmic for Adult Small).

MNIST. Finally, looking at MNIST which has even higher dimensionality/cardinality, SampleAttack
fails completely and does not reconstruct even a single outlier. In fact, in Fig. 4 we see that CTGAN
and PrivBayes generate images with the highest similarity to the real ones but still at a Hamming
distance of at least 6 (i.e., number of different pixels). All models, however, create outliers further
away from the train data compared to the distances between test and train. This is a confirmation
that all privacy tests pass and test/synthetic datasets do not contain copies of the train data.

5.1.2 ReconSyn, SearchAttack

We run the follow-up SearchAttack on all models where SampleAttack achieves less than 95% recon-
struction success, i.e., we attack all five models on Adult, Census, and MNIST. We run SearchAttack
for up to 1/4 of the distances; in other words, we go through the history and try to “fix” at most 4
columns of Adult/Census and 16 of MNIST. While widening the search to broader distances could
lead to better results, we put the efficiency of our attack to the test by limiting the computations. In
all cases, we manage to successfully reconstruct over 78% of all train outliers; see Table 1.
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Figure 5: Reconstructed train out-
liers by SearchAttack, MNIST.

Adult. For Adult, SearchAttack easily recovers the majority of
train outliers, between 78%-95%. The attack is both more ef-
fective and efficient on the graphical models since it does not
need to go back far in history—only a couple of distances (or
columns). Most likely, this is due to: 1) SampleAttack was al-
ready more successful for these two models, generating more
diverse data history, and 2) graphical models tend to over-
perform GANs on low-dimensional datasets like Adult and
simple downstream tasks like marginal preservation (Ganev
et al., 2023). Nonetheless, SampleAttack reconstructs most
outliers against the GAN models, too, even though it requires
searching further back (distance of 4).

Census. SearchAttack’s performance on Census is similar –
it reconstructs more outliers vs. the graphical models (99%)
than the GANs (85% on average). Even though attacking
PrivBayes starts at a disadvantage compared to CTGAN,
SearchAttack manages to recover more outliers. As before,
this could be because PrivBayes generates richer history and
potential overfitting of CTGAN.
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MNIST. As for MNIST, despite the large data cardinality, SearchAttack reconstructs more than 80%
of the train outliers. To reduce the search space, the adversary can be strategic, e.g., excluding
some pixels (i.e., the ones on the sides of the image or the “frame”) by setting their value to 0
after observing the common pattern after generating a collection of potential outliers. This way,
the adversary is restricted and cannot fully reconstruct 21 out of the 488 outliers. Nonetheless, this
could be considered a good trade-off vis-à-vis the number of saved computations – specifically, a
factor of ≈ 480 = 30 · 16 (30 fixed pixels, 16 combinations per bin) per search. We report the
number of exactly reconstructed train outliers and those within 1 pixel (even though the adversary
can easily get an exact train data match by running the attack for one step without any restrictions).
A subset of the recovered digits for all models is shown in Fig. 5.

Overall, SearchAttack is very successful, despite SampleAttack’s failure to recover any outliers –
aside from CTGAN, attacking all other models results in reconstructing at least 97% of outliers.
This might be because the generators manage to create diverse synthetic images not too dissimilar
from the outliers (as already shown in Fig. 4). Conversely, even though CTGAN generates the
closest images, that does not result in recovering more outliers. Potentially, this could be due to
a mode collapse or the model’s specific strategy of embedding categorical columns (both DPGAN
and PATE-GAN use simple one-hot encoding). Unsurprisingly, out of the restricted 21 outliers, the
adversary attacking CTGAN manages to recover only 6 compared to at least 16 for the other models.

5.1.3 TAKE-AWAYS

Our novel attack, ReconSyn, successfully reconstructs at least 78% of the train outliers with all tested
models and datasets. SearchAttack performs better on lower-dimensional datasets but fails to recover
any records for MNIST. However, the follow-up SearchAttack achieves an average of 90% success
on the wider datasets and is slightly more successful when launched against graphical models.

5.2 DP AND LOW UTILITY GENERATIVE MODELS

5.2.1 DP GENERATIVE MODELS
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Figure 6: Synth data utility vs. proportion of recon-
structed train outliers by ReconSyn, Adult Small.

We now assess whether training the gener-
ative models with DP guarantees can pre-
vent or minimize the performance of Recon-
Syn. We simulate company product deploy-
ments which combine DP training with un-
restricted metric access to the train data
(see App. A). We experiment with the 4 mod-
els relying on different mechanisms – namely,
Laplace, Gaussian, DP-SGD, and PATE – while
varying the privacy budget in the range {∞, 1,
0.1} on Adult Small. We keep δ constant to
1/n. Again, we launch SampleAttack (1,000
rounds) on all models and SearchAttack (up to
1 column) in the cases where the former fails to
achieve at least 95% reconstruction success.

We report the privacy-utility trade-off in Fig. 6.
Regardless of the attacked model, applied privacy budget, or achieved utility, ReconSyn is successful
at recovering more than 95% of its targets (note the dashed vertical line).

Utility Evaluation. Utility is measured through the lenses of similarity, aiming to be consistent with
other studies (Tao et al., 2022). More precisely, we report a single similarity score between train and
synthetic data by calculating all 1-way marginals and 2-way mutual information scores (normalized
between 0 and 1) and averaging them. As expected, applying DP generally reduces utility. Breaking
down the effect on the models of the same type, we see that MST’s drop is much lower than for
PrivBayes. The same occurs for PATE-GAN compared to DPGAN. This is due to the specific DP
mechanisms used by the different models, as studied by (Ganev et al., 2023).

Privacy Evaluation. Privacy is expressed as the performance of ReconSyn in terms of the proportion
of reconstructed train outliers. Applying DP to the models with higher utility (MST and PATE-
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GAN) does not even defend against SampleAttack. Although applying DP does protect against
SampleAttack for PrivBayes and DPGAN, this comes with a big drop in utility (as discussed above).
Nonetheless, SearchAttack recovers all train outliers against these two models too.

Even though DP does not help, this does not mean that DP does not work. In fact, in this context, the
leakage comes from the privacy metrics; as they require access to the train data and are deterministic
(as discussed in Issue 3 in Sec. 3), they break the end-to-end DP pipeline. No matter what other
privacy mechanism is added on top of the metrics, it is unlikely to mitigate the problem.

5.2.2 LOW UTILITY GENERATIVE MODELS

Next, we demonstrate that ReconSyn is successful even when attacking generative models with
severely restricted capabilities, such as Independent and Random, on Adult Small.

Since neither model has the ability to model the data well, the adversary would not be able to locate
the clusters with outliers through OutliersLocator. Instead, we set their goal to reconstruct any train
data points. Keeping the same settings, we launch SampleAttack for 1,000 rounds.

Evaluation. The adversary manages to recover around 79% of the train data against both models.
Unsurprisingly, the recovery rate on Random is much slower than Independent, i.e., the adversary
needs more rounds to achieve comparable results. Incidentally, in both cases, the adversary recon-
structs all 192 train outliers. This could be due to the small data support and randomness component,
as both models have a higher chance of generating data points with low probability compared to the
five main models, which learn to generate realistic data better.

If the adversary successfully reconstructs a large proportion of the train data points, they could use
them to fit OutliersLocator and locate the outliers as a last step.

5.2.3 TAKE-AWAYS

Attacking models trained with DP guarantees (even with ε = 0.1) or models with low utility (In-
dependent and Random) does not mitigate ReconSyn. In fact, in all cases, the attack manages to
reconstruct more than 95% of the train outliers due to access to the privacy metrics.

6 DISCUSSION AND CONCLUSION

This paper presents the first in-depth analysis of the most common similarity-based privacy metrics
(SBPMs) used in the synthetic data industry. We empirically demonstrate their shortcomings by
building ReconSyn, a novel reconstruction attack that successfully reconstructs most train outliers.

Our work proves that reasoning about privacy in the context of synthetic data purely through em-
pirical evaluation and SBPMs is inadequate. Worse yet, we show that the privacy metrics/filters
commonly used by leading commercial actors are unreliable and inconsistent. The effectiveness of
ReconSyn, consistently demonstrates that meaningful privacy protections are often inexistent even if
all privacy tests pass. In particular, ReconSyn is successful even when attacking low-utility genera-
tors and models with DP guarantees due to the severe information leakage coming from the access to
the metrics. In all cases, we can completely reconstruct and thus single out and link to most outliers,
failing two of the required GDPR privacy guarantees. As a result, synthetic data whose privacy is
guaranteed through SBPMs cannot be considered anonymous.

Broadly, we can compare providing privacy through SBPMs to the privacy guarantees of the Diffix
system, which are often insufficient (Pyrgelis et al., 2018; Gadotti et al., 2019; Cohen & Nissim,
2020a). Even though the functionalities are different – the former return synthetic data and statistical
pass/fail tests and scores, the latter answers to queries – both allow for an unlimited number of
queries while not implementing robust privacy mechanisms like DP, ultimately leading to severe
privacy violations.

We argue that it is crucial for practitioners to prioritize privacy concerns and rely on established
notions of privacy from the academic community to avoid potential catastrophic outcomes. (In
App. I, we include further discussion on DP and future research directions.)
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Ethics Statement. Our goal is not to undermine companies’ products but to demonstrate how es-
sential it is to emphasize privacy considerations and rely on established academic notions of privacy
when deploying real-world systems. Even though we are not directly attacking deployed systems
or accessing/processing any personal data, we shared our work with the two main synthetic data
companies using SBPMs (Gretel and MOSTLY AI) in the spirit of responsible disclosure. We have
provided them with more than 90 days for a response per Google Project Zero’s recommendations
and offered to keep the paper confidential until submission. As of September 28, 2023, they have
responded to our notice, and we are currently working with them on the next steps.

Reproducibility Statement. We make considerable efforts to make our work reproducible. First,
we clearly state all of our assumptions throughout the paper. Second, we provide references and
step-by-step explanations of how we accessed and prepared the datasets and generative models used
in our evaluation. Third, we include a detailed description and pseudocode of our new attack. Last,
we intend to share the code with the reviewers/ACs during the discussion period and eventually
publicly (once the paper is published).
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Company Funding Compliance DP Metrics/Filters

Gretel (Gretel, 2023b) $67.7M X X SF, OF (Gretel, 2021)
Tonic (Tonic, 2023b) $45.0M X X DCR (Tonic, 2023a)
MOSTLY AI (MOSTLY AI, 2023b) $31.1M X 8 IMS, DCR, NNDR (MOSTLY AI, 2022b)
Hazy (Hazy, 2023a) $14.8M X X DCR (Hazy, 2023b)
Syntegra (Syntegra, 2023) $5.6M X 8 IMS, DCR (Syntegra, 2021)
DataCebo (DataCebo, 2023) $3.0M – 8 IMS (DataCebo, 2022)
Synthesized (Synthesized, 2023b) $2.8M X X SF (Synthesized, 2023a)
Replica Analytics1 (Replica, 2023) $1.0M X 8 SF (Replica Analytics, 2020)
Statice2 (Statice, 2023b) – X X DCR3 (Statice, 2023a)

1 Acquired by Aetion in Jan 2022.
2 Acquired by Anonos in Nov 2022; integrated into Anonos Data Embassy.
3 Used by linkability and inference risk metrics (Giomi et al., 2023).

Table 2: Synthetic data companies, along with funding (as of publicly available information) and whether
they claim to be offering fully regulatory-compliant synthetic data as well as the privacy metrics they use.
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A COMMERCIAL SOLUTIONS FOR SYNTHETIC DATA

In Q2 2023, we conducted a systematic review of the companies in this space, finding that the main
players include: Gretel, Tonic, MOSTLY AI, Hazy, Syntegra, DataCebo, Synthesized, Replica Ana-
lytics, and Statice. We then looked for publicly available information about their investment funding,
whether they claim to produce regulatory-compliant synthetic data, and their approach to privacy –
whether they support DP training and what privacy metrics and/or filters they use. Our findings
are summarized in Table 2, while the metrics (Identical Match Share (IMS), Distance to Closest
Records (DCR), Nearest Neighbor Distance Ratio (NNDR)) and filters (Similarity Filter (SF), Out-
lier Filter (OF)) are discussed in detail in Sec. 2.

Almost all companies claim their synthetic data products comply with regulations like GDPR,
HIPAA, CCPA, etc., even though there are no established standards for providing privacy in the con-
text of synthetic data. However, we observe some emerging trends in their approach – deploying DP
and relying on privacy metrics/filters. Companies with funding above $10M, except for one, report
adopting DP. Incidentally, it is not surprising that better-funded companies do so, as integrating DP
in production requires specialized technical knowledge. Four of the nine companies we reviewed do
not support DP but claim to guarantee privacy through one or more of the metrics, while two com-
bine it with privacy filters. For companies relying solely on privacy metrics, providing access to
these metrics for each synthetic data sample becomes essential for attempting to demonstrate
privacy to end users. We observe that even when companies implement DP during the train-
ing of generative models, the privacy metrics and filters still access the sensitive data without
perturbation or proper privacy budget accounting.

B RELATED WORK

(DP) Generative Models. Several techniques use generative approaches (and DP) to produce syn-
thetic tabular data, including copulas (Li et al., 2014; Patki et al., 2016), graphical models (Zhang
et al., 2017; McKenna et al., 2021; Cai et al., 2021), workload/query based (Vietri et al., 2020;
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Aydore et al., 2021; Liu et al., 2021), deep generative models such as Variational Autoencoders
(VAEs) (Acs et al., 2018; Abay et al., 2018) and Generative Adversarial Networks (GANs) (Xie
et al., 2018; Zhang et al., 2018; Jordon et al., 2018; Xu et al., 2019; Frigerio et al., 2019; Long
et al., 2021), and so on (Zhang et al., 2021; Ge et al., 2021). As we discuss later in App. C.1, our
evaluation focuses on the best-performing models with public and reliable implementations.

Reconstruction in Databases. Dinur & Nissim (2003) present the first reconstruction attack where
the adversary can theoretically reconstruct records from a database consisting of n entries by sending
count queries and solving a linear program. The adversary can make at most n queries, while the
answers must be highly accurate. Follow-up studies (Dwork et al., 2007; Dwork & Yekhanin, 2008)
generalize and improve on the results by relaxing some of the assumptions and achieving better
reconstruction rates. While these attacks are of theoretical nature, they have contributed to the
rigorous privacy definition of DP (Dwork et al., 2006). Also, reconstruction attacks on aggregate
statistics contributed to the US Census Bureau’s deployment of DP for the 2020 Census (Garfinkel
et al., 2019). More recently, Dick et al. (2023) reconstruct private records based on aggregate query
statistics and publicly known distributions while also reliably ranking them. Overall, prior work
on databases does not involve training machine learning models as the adversary has access to either
(true) aggregate statistics or the ability to query a private database.

Reconstruction Attacks in Machine Learning. These are often seen as an extension of attribute
inference attacks and are sometimes referred to as model inversion attacks (Fredrikson et al., 2014;
2015; Yeom et al., 2018). Broadly, attribute inference attacks assume (black-box or white-box)
access to a trained model and partial knowledge about a data point, while their goal is to infer the
missing attribute(s). On the contrary, our attack, ReconSyn, has no access to partial records; we
discuss attribute and membership inference attacks (Stadler et al., 2022) and how they could be
thought of as subcases of ReconSyn in App. H.

Model inversion attacks have been presented in a variety of settings. Zhu et al. (2019) demonstrate
how an adversary with access to model gradients can efficiently use them to reconstruct train records;
the recovery is pixel-wise accurate for images and token-wise matching for texts. In online and
federated learning settings, attackers can infer train data points or their labels from inspecting the
intermediate gradients during training (Wang et al., 2019; Geiping et al., 2020; Salem et al., 2020;
Zanella-Béguelin et al., 2020). This assumes observing the gradient updates of the target model
multiple times, whereas we have black-box access to a single trained model.

Train data extraction attacks, which could also be considered reconstruction, have been proposed in
the context of (generative) large language models (Carlini et al., 2019b; 2021) and diffusion mod-
els (Carlini et al., 2023). These usually assume some auxiliary knowledge (e.g., the presence of
the target in the train data or, similarly to attribute inference, a subset of the target’s attributes) and
query the model multiple times in order to exploit their memorization vulnerability. In other words,
they exploit the tendency of large models to memorize and reproduce the train data at generation.
Finally, Balle et al. (2022) and Haim et al. (2022) propose reconstruction attacks against discrim-
inative models in which the adversary either has access to all data points but one or to the trained
weights and reconstruct the remaining one/several train records. In contrast, our attack does not
assume any knowledge about the train data or the model parameters and also works when the model
has no memorization capability.

C ADDITIONAL BACKGROUND

C.1 SYNTHETIC DATA AND DP GENERATIVE MODELS

Synthetic Data. We focus on synthetic data produced by generative machine learning models. A
sample dataset Dn

train ∈ Z (consisting of n iid records drawn from domain Z) is used as input
to the generative model training algorithm G(Dn

train) during the fitting step. Next, G(Dn
train)

updates its parameters θ to capture a representation of P (Dn
train) and outputs the trained model

Gθ(D
n
train). Then, Gθ(D

n
train) can be used to repeatedly sample a synthetic dataset (of arbitrary

size n′) Dn′

synth∼Gθ(Dn
train). Finally, we use Dout

train ∈ Dn
train to denote the outliers or train

records with low density.
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Differential Privacy (DP) is a mathematical definition that formally bounds the probability of dis-
tinguishing whether any given individual’s data was included in the input dataset by looking at the
output of a computation (e.g., a trained model).

More formally, a randomized algorithm A satisfies (ε, δ)-DP if, for all possible outputs S, and all
neighboring datasetsD andD′ (D andD′ are identical except for a single individual’s data), it holds
that (Dwork et al., 2006; Dwork & Roth, 2014):

P [A(D) ∈ S] ≤ exp (ε) · P [A(D′) ∈ S] + δ (1)

Note that ε (aka the privacy budget) is a positive, real number quantifying the information leakage,
while δ, usually an asymptotically small real number, allows for a probability of failure. DP is gen-
erally achieved through noisy/random mechanisms that could be combined together, as the overall
privacy budget can be tracked due to DP’s composition property. Also, through the post-processing
property, DP-trained models can be re-used without further privacy leakage.

(DP) Generative Models. We focus on two types of generative approaches, graphical models
(PrivBayes and MST) and GANs (DPGAN, PATE-GAN, and CTGAN), as they are generally con-
sidered to perform best in practice in the tabular domain (NIST, 2018). All algorithms have open-
source implementations and rely on different modeling techniques and, when applicable, DP mech-
anisms. We also present two baseline models, Independent and Random. Except for CTGAN,
all support DP training.

Essentially, graphical models break down the joint distribution of the dataset to explicit lower-
dimensional marginals, while GANs approximate the distribution implicitly by training two neu-
ral networks with opposing goals – a generator, creating realistic synthetic data from noise, and a
discriminator, distinguishing real from synthetic data points.

PrivBayes (Zhang et al., 2017) follows a two-step process – finding an optimal Bayesian network
and estimating the resulting conditional distributions. First, it builds the network by iteratively
selecting a node that maximizes the mutual information between the already chosen parent nodes
and one of the remaining candidate child nodes. Second, it computes noisy distributions using the
Laplace mechanism (Dwork et al., 2006).

MST (McKenna et al., 2021) uses a similar approach. First, it utilizes Private-PGM (McKenna
et al., 2019) (method inferring data distribution from noisy measurements) to form a maximum
spanning tree of the underlying correlation graph by selecting all one-way and subset of two-way
marginals (attribute pairs). Then, the marginals are measured privately using the Gaussian mecha-
nism (McSherry & Talwar, 2007).

DPGAN (Xie et al., 2018) modifies the GAN training procedure to satisfy DP. It uses DP-
SGD (Abadi et al., 2016) to sanitize the discriminator’s gradients (by clipping the norm of indi-
vidual ones and applying the Gaussian mechanism to the sum), which guarantees the privacy of the
generator by the post-processing property.

PATE-GAN (Jordon et al., 2018) combines an adapted PATE framework (Papernot et al., 2017;
2018) with a GAN to train a generator, t teacher-discriminators, and a student-discriminator. The
teacher-discriminators are presented with disjoint partitions of the data and are optimized to mini-
mize their loss with respect to the generator. The student-discriminator is trained on noisily aggre-
gated labels provided by the teacher-discriminators while its gradients are sent to train the generator.

CTGAN (Xu et al., 2019) is one of the most widely used non-DP generative models. It uses
mode-specific normalization to overcome the non-Gaussian and multimodal distribution of mixed-
type tabular datasets. It relies on a conditional generator and training-by-sampling to capture data
imbalances.

Independent & Random are used as baseline models. The former (Ping et al., 2017; Tao et al.,
2022; Mahiou et al., 2022) is commonly used as a baseline for (DP) synthetic data generation. It
models all columns independently, thus attempting to preserve the marginal distributions but omit-
ting higher-order correlations. The latter has even lower utility as it randomly samples from the
distinct values from all columns.
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Dataset Cardinality #Columns #Records #Train
Outliers

2d Gauss 105 2 2,000 108
25d Gauss 1031 25 2,000
Adult Small 105 6 6,000 192
Adult 1015 14 6,000 116
Census 1043 41 10,000 193
MNIST 1078 65 10,000 488

Table 3: Summary of datasets.
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(b) 2d UMAP, Adult Small

-5.0 0.0 5.0 10.0 15.0
UMAP dimension 0

-5.0

0.0

5.0

10.0

15.0

UM
AP

 d
im

en
sio

n 
1

train
train outliers

test
test outliers

(c) 2d UMAP, Adult

-10.0 -5.0 0.0 5.0 10.0 15.0
UMAP dimension 0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

UM
AP

 d
im

en
sio

n 
1

train
train outliers

test
test outliers

(d) 2d UMAP, Census
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Figure 7: Train and test data, 2d Gauss and 2d UMAP reduced, Adult Small, Adult, Census, MNIST

C.2 DATASETS

We outline the datasets used for our evaluation and our criteria for defining outliers. A sum-
mary of the datasets is provided in Table 3, with visual representations in Fig. 7. We construct
two controllable datasets based on the normal distribution and choose three “standard” datasets.
Our experiments show that ReconSyn can effectively reconstruct train outliers, which are diversely
characterized and situated across the datasets.

2d Gauss. We sample 2,000 points from a standard bivariate normal distribution with zero correla-
tion. We consider all train points beyond the blue circle displayed in Fig. 7a (centered at 0, radius
2.15) outliers, or about 10%.

25d Gauss. This is similar to 2d Gauss but extended to 25 dimensions (again, standard normal
distribution). We do not reconstruct outliers for this dataset.

Adult. We use two versions of the Adult dataset (Dua & Graff, 2017). We randomly sample 6,000
data points and refer to this dataset as Adult. For Adult Small, we further simplify it by selecting
six columns (“age,” “education,” “marital status,” “relationship,” “sex,” and “income”). For both
datasets, we fit Gaussian Mixture model with 10 clusters, for the former we select the smallest
cluster to be outliers, while for the latter the smallest two (2d UMAP reduction shown in Fig. 7b–
7c).
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Census. We randomly sample 10,000 data points from the Census dataset (Dua & Graff, 2017). In
order to determine the outliers, we fit Gaussian Mixture model with 4 clusters and select the smallest
one (2d UMAP reduction is plotted in Fig. 7d).

MNIST. We sample 9,000 data points from the digits “3,” “5,” “8,” and “9” from the MNIST (LeCun
et al., 2010) dataset as well as 1,000 from “0” and treat them as outliers (2d UMAP reduction
displayed in Fig. 7e). In order to simplify the dataset, we downscale the images to 8x8 pixels and
discretize all pixels to 16 bins.

Outliers Definition. While various definitions of outliers exist in literature (Carlini et al.,
2019a; Meeus et al., 2023), we define underrepresented data regions and outliers in a way
that captures various scenarios, aiming for an intuitive selection of roughly 10% of the train
data (to serve as our targets as noted in Table 3). For the 2d Gauss dataset, we identify outliers
as points lying beyond a certain distance from the center. In the Adult Small, Adult, and Cen-
sus datasets, outliers are the smallest clusters determined by a Gaussian Mixture model. For
MNIST, the digit ’0’ is deliberately underrepresented. We apply the same strategy or fitted
model to the test data. UMAP’s distance-preserving feature allows these outlier identification
strategies to be visually verified in Fig. 7.

D FURTHER LIMITATIONS OF SIMILARITY-BASED PRIVACY METRICS

We present further limitations of SBPMs in addition to the ones discussed in Sec. 3.

Issue 6: Incorrect Interpretation. From a statistical theory point of view, the results of the pri-
vacy metrics pass/fail tests can be misinterpreted. Assuming we have a good statistical test, the
null hypothesis (H0) or the statement we hope not to find enough evidence to reject is “privacy is
preserved,” while the alternative hypothesis (HA) becomes “privacy is not preserved.” When the
observed data supports HA, we can reject H0 and claim that we have detected privacy violations.
However, when the observed data does not allow us to reject H0, this simply means that we fail to
reject H0. We cannot claim that H0 is accepted or “privacy is preserved/guaranteed.”

Issue 7: Risk Underestimation. Most implementations of the privacy metrics require discretizing
numerical columns and using Hamming distance to compute the similarity between data points. Un-
fortunately, the calculations become imprecise, and the privacy protections are overstated compared
to relying on, for example, continuous data and Euclidean distance.

Issue 8: Practical Limitations. Last but not least, there often are important implementation chal-
lenges. Due to the sensitive nature of the data, it is imperative to train the generative model within
the secure environment the data resides. Once trained, the model cannot be exported since the pri-
vacy metrics require access to the train data for each generation run. This prompts a challenge where
accessing the secure environment becomes necessary for every synthesized data.

Furthermore, the metrics need a 50/50% split between train and test data. This could hurt the perfor-
mance of the model and, consequently, the quality of the synthetic data, particularly when dealing
with limited data.

E PRIVACY METRICS COUNTER-EXAMPLES

In this section, we present six counter-examples highlighting the untrustworthiness and inconsis-
tency of the privacy metrics/filters. For the first five, we use 2d Gauss (shown in Fig. 7a). Since all
attributes are continuous, we use the Euclidean distance to make the computations more accurate.

1. Leaking All Test Data. Assume a synthetic dataset that is an exact replica of the test data.
All privacy tests pass as the two distributions of distances ((Dn

train, Dn′

synth) and (Dn
train, Dn

test))
are identical. Following the supposed guarantees provided by the metrics, we would be free to
release this dataset. Naturally, publishing half of the sensitive records cannot be considered privacy-
preserving.

2. Leaking All Train Outliers. Next, assume that the synthetic data contains all train outliers (with
an indistinguishably small perturbation) and the value (0, 0) repeated five times the size of the
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Figure 8: Synthetic data reproduc-
ing all train outliers, 2d Gauss.
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Figure 9: Applying SF resulting in
“Swiss cheese,” 2d Gauss.
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Figure 10: Reconstructed outliers
by SampleAttack, 2d Gauss.
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Figure 11: Examples of privacy metrics unreliability and inconsistency before and after applying OF, 2d Gauss.

train data, as displayed in Fig. 8. Again, all privacy tests pass: there are no exact matches, and
even though the synthetic outliers are extremely close to the train ones, the large sample size of
zeros skews the distances enough to fool both DCR and NNDR. If this synthetic dataset is released,
individuals whose data corresponds to the outliers and whose sensitive attributes are leaked would
be unconvinced that their privacy is actually preserved (ONS, 2018).
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Figure 12: Discretization effect on privacy metrics, 25d Gauss.

3. Metrics Inconsistency. We assume access to an oracle possessing knowledge of the train/test
data generative process. Suppose we rely on the oracle to sample 1,000 new datasets, act as if they
are synthetic datasets, and use them as input to the privacy metrics. Since no generative model was
trained (i.e., the train data was never exposed to a model), any data directly sampled from the oracle
perfectly preserves the privacy of the train data. A good privacy metric should, therefore, reflect that
by reporting a high privacy score.

Only on 274 occasions (out of 1,000) did all the privacy tests pass. This demonstrates that the met-
rics, and in general empirical approaches measuring privacy of a single synthetic dataset, completely
fail to capture the generating process.

Moreover, the proportion of times when the individual metrics IMS, DCR, and NNDR pass is,
respectively, 1, 0.48, and 0.38, which is widely inconsistent. Even though the synthetic datasets
were sampled from a fixed distribution, which can be thought of as a generator, DCR and NNDR
report random results which are not close to 0 or 1. In practice, this means that even if the generative
model captures the underlying generating process well, without overfitting or memorizing the train
data, the pass/fail decision depends on a specific sample, is noisy, and cannot be trusted.

Alternatively, if we fix a synthetic dataset, randomly split the available sensitive data into 50/50%
train/test datasets, and feed them into the metrics, we again run into inconsistencies. Out of 1,000
repetitions, only 380 instances pass all three tests. This highlights the inherent randomness in the
train/test split, which incorporates instability into the evaluation process.

4. OF & Metrics Inconsistency. We also examine how applying the OF, which is supposed to
always improve privacy, affects it according to the metrics. We again rely on the oracle to draw a
few synthetic data samples.

On the left plot of Fig. 11a, we see that the synthetic data passes all 3 tests, while on the right plot,
when the outliers are filtered out, both DCR and NNDR fail. Even more surprisingly, Fig. 11b shows
that removing the outliers can cause a previously failing test to pass (NNDR) and vice versa (DCR).
These examples serve as further evidence of the untrustworthiness and inconsistency of the privacy
metrics and filters.

Fig. 11c–11h present additional inconsistent results when applying OF. We observe all possible
combinations of DCR and NNDR, from passing to failing (in most cases independently from each
other) and the other way around.

5. SF & Reconstruction. We can reconstruct all outliers if SF is applied. Once again, we use the
oracle. We sample 100,000 synthetic datasets (we apply SF at generation and select only datasets
that pass all privacy tests) and plot them all in Fig. 9.

Clearly, all train outliers can immediately be detected and reconstructed from the “holes” in the
data. We refer to this emerging pattern as “Swiss Cheese.” This simple experiment shows that,
even though SF could naively be considered an additional privacy layer, filtering data out actually
exposes data points. Furthermore, outliers could uniquely be identified since they are typically
in low-density regions. This phenomenon is also discussed in (Jordon et al., 2022), although not
demonstrated through any actual experiment, measurement, or visualization.

6. Discretization Effect. Finally, in Fig. 12, we measure the effect of discretizing data. We test
two discretization strategies, i.e., uniform and quantile while varying the number of bins from 2
to 1,000. For discrete data, we use Hamming distance, while for continuous data, Euclidean. For
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Model Any Train Records Train Outliers
Sample Search Search

PrivBayes 0.20 0.98 (0.95)
MST 0.33 0.91 (0.74)
DPGAN 0.04 0.85 (0.51)
PATE-GAN 0.07 0.85 (0.50)
CTGAN 0.06 0.84 (0.48)

Table 4: Reconstruction of any train records by ReconSyn, Adult.

this example, we test on 25d Gauss, use an oracle to sample 1,000 synthetic datasets, and report
averages.

The continuous results show that both DCR and NNDR report average values roughly around 0.65
(again failing to capture the generating process, similarly to previous examples). Second, discretiz-
ing the data and using Hamming distance greatly overestimates privacy – DCR and NNDR have
scores of around 1, except for some randomly looking drops. Incidentally, the metrics report approx-
imately correct results, but for the wrong reasons, i.e., they overestimate privacy due to discretization
but fail to capture the generating process. Last, varying the discretization strategy and the number
of bins does not help any metrics become more accurate (closer to the continuous baseline).

Take-Aways. The privacy metrics/filters appear inconsistent and untrustworthy as one could trick
them into labeling clearly non-private scenarios as private.

F ReconSyn ALGORITHM STEPS

Here, we provide more details about the algorithmic steps of ReconSyn, as shown in Algorithm 1.

OutliersLocator. We implement two strategies for selecting outliers in order to cover a wide set
of scenarios: they could lie outside the cluster(s) (2d Gauss) or within the clusters (Adult Small,
Adult, Census, and MNIST).

SampleAttack. As previously mentioned, responses from the metrics API are limited to cases
where all three tests pass (line 13). However, our second counter-example in App. E demon-
strates that these tests can be easily tricked to expose exact distances. Specifically, by manipu-
lating or augmenting the input synthetic data, we can precisely determine the distance between
a target synthetic record and the nearest train data counterpart. One effective method involves
submitting the target point alongside about 100 copies of a frequently appearing record. This
approach essentially simulates a scenario where the metrics API reveals individual distances
to all submitted data (which we adopt for lines 13, 24, and 31), allowing for the detection of
matches with 100% confidence.

SearchAttack. First, we expand on the definition of record’s neighboring dataset and its role
in identifying the unreconstructed columns for that record (lines 22–26). The neighboring
could be build as follows: we create a square matrix by duplicating the record d times (d is
the number of columns), then we alter the values along the diagonal by some amount. When
this dataset is fed into the metrics API, the distances to the columns that have been accurately
reconstructed will most likely increase, since their values have been moved away from an exact
match. Consequently, this indicates that the unchanged/closer columns need to be corrected.

Second, we take a closer look at how we determine the correct values for these columns (lines
27–33). To reduce the number of calls to the metrics API, which could be excessive if all pos-
sible combinations were enumerated, we implement a greedy strategy. This involves iterating
over the columns one at a time and building all potentially closer candidates by going over the
possible values for the current column. Additionally, to further minimize the number of API
calls, we use OutliersLocator and recorded history to filter out unsuitable candidates.

One could argue that SampleAttack and SearchAttack are brute-force approaches. Using the Ham-
ming distance greatly limits the efficiency of the adversary, as it does not provide any sense of
direction (at all times, any value is either an exact match or not). Therefore, the attack could pos-
sibly be improved further; nonetheless, it achieves strong performance in reconstructing the train
outliers (see Sec. 5.1) and is computationally practical—for all settings in our experiments, both
phases run in less than 24 hours on an m4.4xlarge (16 CPUs, 64GB RAM) AWS instance.
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Algorithm 1 ReconSyn Attack
Require:

Trained Generative Model, Gθ
Privacy Metrics, M (namely, IMS, DCR, NNDR)
Size of train data, ntrain
Size of train outliers, nout
SampleAttack rounds, rsma
SearchAttack target distances, dsra

1: procedure OUTLIERSLOCATOR(Gθ , ntrain, nout)
2: Generate S ← Gθ.sample(3 · ntrain) . generate new synthetic data
3: Initialize, fit, and predict cout ← GM.fit predict(S) . fit and predict Gaussian Mixture model
4: Select cout ← max{c ⊆ cout :

∑
c′∈c |c

′| ≤ nout} . select clusters containing outliers
return cout, GM

5: end procedure
6: procedure SAMPLEATTACK(Gθ , M , GM , rsma, cout)
7: Initialize Rsma ← ∅ . initialize SMA reconstructed outliers to the empty set
8: Initialize Hout ← ∅ . initialize history to the empty set
9: for r in rsma do . iterate over number of rounds

10: Generate S ← Gθ.sample(ntrain) . generate new synthetic data
11: Select S ← {S[i] | GM.predict(S)[i] ∈ cout} . select outliers candidates
12: Filter S ← S \ Hout . filter candidates out from history
13: Query dists←M(S) . query metrics (augment if necessary)
14: Update Rsma ← Rsma ∪ {S[i] | dists[i] = 0} . update reconstructed outliers
15: Update Hout ← Hout ∪ {Zip(S, dists)} . update history
16: end for

return Rsma, Hout

17: end procedure
18: procedure SEARCHATTACK(M , GM , dsra, cout, , Hout)
19: Initialize Rsra ← ∅ . initialize SRA reconstructed outliers to the empty set
20: Select and sort H ′

out ← {Hout[i] | dists[i] ≤ dsra} . trim history
21: for s, dists in H ′

out do . iterate over history
22: Build Ns ← {s with s[i] modified, ∀i ∈ [1, length(s)]} . build record neighboring dataset
23: Filter Ns ← Ns \ Hout . filter candidates out from history
24: Query dists←M(Ns) . query metrics (augment if necessary)
25: Update Hout ← Hout ∪ {Zip(Ns, dists)} . update history
26: Select cs ← {i | dists[i] ≤ dists} . find columns yet to be reconstructed
27: for csi in cs do . iterate over columns yet to be reconstructed
28: Build CCs ← {si | ∀ val ∈ Support(csi)} . build column closer candidates
29: Select CCs ← {CCs[j] | GM.predict(CCs)[j] ∈ cout} . select outliers candidates
30: Filter CCs ← CCs \ Hout . filter candidates out from history
31: Query dists←M(CCs) . query metrics (augment if necessary)
32: Update Rsra ← Rsra ∪ {CCs[j] | dists[j] = 0} . update reconstructed outliers
33: Update Hout ← Hout ∪ {Zip(CCs, dists)} . update history
34: end for
35: end for

return Rsra
36: end procedure

G RECONSTRUCTION OF ALL TRAIN DATA

To validate the hypothesis that reconstructing outliers is inherently more difficult (stated in
Sec. 4), we conduct an experiment aimed at recovering any train records from Adult. We
impose stricter constraints than those in Sec. 5.1: we limit SampleAttack to only 250 rounds,
down from 1,000, and allow SearchAttack to trace just 3 distances, instead of 4. The results are
summarized in Table 4.

We observe that even under these limited settings, ReconSyn manages to reconstruct a signifi-
cant proportion of the train data. The performance exceeds this when the goal was to recover
only the outliers and was allowed more computations. The outcome should not come as a
surprise, given that outliers are less likely to be generated. This is further supported by the
last column of the table, which illustrates a substantial drop in recovering the outliers for all
models, PrivBayes being the only exception.
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H RELATION TO OTHER PRIVACY ATTACKS

ReconSyn is a powerful and general reconstruction attack. With similar setups, other attacks like
membership and attribute inference could be considered specific subcases of ReconSyn, in fact,
using considerably less computation. In the rest of this section, we discuss this in more detail,
starting with the changes required in the threat model.

Membership Inference (Shokri et al., 2017; Stadler et al., 2022; Hayes et al., 2019). In a typical
setup, a membership inference adversary has access to a target record, rt (entire record, i.e., all
attributes), representative data, and the model’s training algorithm. Usually, they fit several shadow
models – i.e., models aiming to mimic the behavior of the model under attack – to infer whether rt
was part of the train data. To adapt ReconSyn to this setting, we start with the same assumptions
discussed in Sec. 4, i.e., the adversary only has black-box access to a single trained generative model
and the privacy metrics. Besides rt, the adversary does not need any other side information (i.e.,
representative data or the model’s training algorithm).

The attack becomes relatively simple: the adversary: i) generates a synthetic dataset, ii) sends two
calls to the privacy metrics (Dn′

synth∪rt andDn′

synth, i.e., one with and one without the target record),
and iii) observes the outputs. If the outputs are the same – in particular, if IMS is unchanged – then
the target is not a member. Otherwise, the attacker can confidently infer that the target was part of
the train data.

Attribute Inference (Yeom et al., 2018; Stadler et al., 2022). Here, the adversary has access to a
partial target record, rt (i.e., all attributes but one), which was part of the train data, and the goal is to
infer the missing attribute. Adapting ReconSyn, the attacker does not need any other side knowledge
beyond rt, the trained generator, and privacy metrics.

To mount the attack, the adversary: i) generates a synthetic dataset, ii) sends k calls with different
values of the unknown attribute (distinct categories or the number of bins if the attribute needs
discretization) to the privacy metrics (Dn′

synth∪rt1 , Dn′

synth∪rt2 . . . Dn′

synth∪rtk ), and iii) observes
the outputs. We can now identify the value of the unknown attribute by observing the output whose
IMS is higher. It is reasonable to assume that the missing attribute corresponds to a unique data
record, as this was true in our empirical evaluations and, in fact, is highly likely, especially in high
dimensional data (Rocher et al., 2019).

The attack could be extended to t unknowns attributes, similar to the attack in (Oprisanu et al.,
2022). The chance of multiple reconstructed records increases, however, leading to potentially
reduced precision.

Take-Aways. ReconSyn could easily be adapted to accommodate membership and attribute in-
ference scenarios. Assessing a target record’s presence in the train data and/or recovering their
unknown attribute(s) could be achieved confidently with a handful of computations.

I DISCUSSION AND FUTURE WORK

I.1 REMARKS ON DIFFERENTIAL PRIVACY (DP)

Benefits of DP. Our analysis highlights several undesirable weaknesses stemming from SBPMs,
which we exploit to build our reconstruction attack. Training generative models while satisfying
DP does address SBPM’s drawbacks. In particular, privacy becomes an attribute of the process (as
also advocated in (Trask et al., 2020)); by virtue of DP’s post-processing property, any synthetic
data sample becomes differentially private too. Also, using DP provably prevents singling out pred-
icates (Cohen & Nissim, 2020b) and empirically decreases singling out, linkability, and inference
attacks, which are closely related to the privacy risks outlined in the EU’s Article 29 Data Protec-
tion Working Party (Giomi et al., 2023). Regulators (Information Commissioner’s Office, 2022)
and researchers (López & Elbi, 2022; Ganev, 2023) also advise using DP to protect the privacy of
outliers.

Challenges of DP. However, our review of the product offerings shows that DP is not the standard;
alas, companies in this space rarely use it and, in some cases, seem to argue against it (MOSTLY
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AI, 2021). This motivates the need for a systematic review and a formal evaluation of the sector’s
alternative heuristics that are the de facto standard. Our work does so through an analytical review of
the metrics, a series of counter-examples, and the instantiation of an attack (ReconSyn) with minimal
assumptions and high success.

Also note that there also are limitations in using DP with generative models, which may possibly
explain why leading companies opt for heuristics instead. First, since there is no one-model-fits-
all for all use cases (Jordon et al., 2022), it must be determined whether DP addresses the right
threat. For some instances, DP guarantees (assuming a worst-case scenario) could be too conserva-
tive, as a practical adversary may not be capable of launching an attack that reaches the theoretical
bounds (Nasr et al., 2021). Also, DP does not safeguard broader confidential information beyond
privacy: if the dataset contains proprietary secrets, e.g., company-specific terms/names/locations,
they may be exposed in the synthetic data combined with additional PETs like anonymization, san-
itization, masking, etc. (NHS England, 2021).

Moreover, selecting the optimal combination of the generative model and DP mechanism is chal-
lenging, as it depends on factors such as the privacy budget, downstream task complexity, dataset
dimensionality, imbalance, and domain (Ganev et al., 2023). Determining the right privacy budget is
highly context-specific and not straightforward (Hsu et al., 2014). Additionally, DP often leads to a
decrease in utility due to the introduction of noise or randomness, which affects data records dispro-
portionately, particularly outliers (Stadler et al., 2022; Kulynych et al., 2023) and underrepresented
classes/subgroups (Bagdasaryan et al., 2019; Ganev et al., 2022). Combining generative models
and DP mechanisms, unfortunately, could result in inherently unpredictable synthetic data; that is,
it is not clear what signals/trends will be preserved (Stadler et al., 2022), which is a fundamental
property of usable privacy mechanisms (EDPS, 2018). Implementing DP in practice and effectively
communicating its properties is also non-trivial (Cummings et al., 2021; Houssiau et al., 2022c).

I.2 FUTURE WORK

ReconSyn successfully reconstructs the majority of outliers in various settings, yet, it could still
be optimized. In future work, we plan to relax two assumptions: 1) giving the adversary limited
access to the generator, perhaps generating only a certain amount of records, and 2) preventing the
adversary from augmenting the generated synthetic data.

Also, if the privacy metrics used a continuous distance (e.g., Euclidean) to measure similarity, apart
from making the calculations more precise, it would also open other interesting research avenues,
such as better search algorithms.

Finally, while our work demonstrates that SBPMs should not be used to guarantee privacy, empirical
evaluations and privacy attacks should not be entirely disregarded. They can be valuable tools to
detect flaws, errors, or bugs in algorithms and implementations, aiding in model auditing (Jagielski
et al., 2020; Tramer et al., 2022; Nasr et al., 2023), and can enhance the interpretability of theoretical
privacy protections (Houssiau et al., 2022a;b). We believe that future work could shed more light on
their real-world contributions.
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