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ABSTRACT

Direct Preference Optimization (DPO) has been widely used for aligning language
models with human preferences in a supervised manner. However, several key
questions remain unresolved: the rationale behind its log-ratio reward, how the
statistical structure of preference datasets shapes its training dynamics, and how
those dynamics impact downstream capabilities. We approach these questions
from a Bayesian perspective, interpreting the goal of preference optimization as
learning the differential information required to update a reference policy into a
target policy. To formalize this view, we introduce the DIFFERENTIAL INFORMA-
TION DISTRIBUTION (DID), defined as the distribution over samples that carry
the Bayesian evidence required to update policies. We introduce three comple-
mentary insights by viewing preference optimization through the DID. First, we
find that DPO’s log-ratio reward is uniquely justified when preferences encode the
Differential Information needed to update a reference policy into the target policy.
Second, we discuss how commonly observed training dynamics in DPO, includ-
ing changes in log-likelihood and policy exploration, stem from a power-law DID
relationship. Finally, we analyze how training dynamics influence downstream
performance using the entropy of DID, a principled measure of uncertainty in the
learned information. We observe that learning high-entropy DID improves open-
ended instruction-following, while low-entropy DID benefits knowledge-intensive
QA. Taken together, our results show that DPO’s reward design, training dynam-
ics, and downstream capabilities all emerge as natural consequences of learning
Differential Information, offering both a principled theoretical foundation and
practical guidance for preference-based alignment.1

1 INTRODUCTION

Aligning language models to human preferences is essential for both safety and usefulness (Ouyang
et al., 2022; Bai et al., 2022). Among various alignment methods, Direct Preference Optimization
(DPO) (Rafailov et al., 2023) has gained popularity for its strong empirical performance, training
stability, and computational efficiency (Xiao et al., 2024b; Liu et al., 2025). Despite its widespread
use, several fundamental questions remain: what justifies the log-ratio reward beyond its derivation
from a KL-regularized RL objective, what statistical structure in preference datasets underlie DPO’s
training dynamics, and how these dynamics impact downstream capabilities.

To address these gaps, we propose a Bayesian perspective that interprets the goal of preference op-
timization as learning the information needed to update a reference policy into a target policy. We
call this information “Differential Information” as it represents the difference in the information
encoded by the two policies. To formalize this, we introduce the DIFFERENTIAL INFORMATION
DISTRIBUTION (DID), defined as the distribution of samples containing the Bayesian evidence2 for
this policy update. The DID can be expressed as the normalized ratio of the two policy distribu-
tions (Theorem 2.2). By analyzing the DID in preference optimization, we show that DPO’s key

1Model checkpoints and training/evaluation code will be released upon acceptance.
2We consider Bayesian evidence that is conditionally independent of the prior given a sample, ensuring that

this evidence reflects a sample’s intrinsic content rather than the distribution it was drawn from. This aligns
with Shannon information being additive for independent events. See Section 2 and Appendix D for details.
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components–reward parameterization, training dynamics, and learned capabilities–emerge naturally
from this Bayesian perspective.

In Section 3, we present a Bayesian interpretation of the optimality of DPO’s log-ratio reward pa-
rameterization. We first show how a preference data generation process naturally yields a preference
distribution that encodes the Differential Information required to update a reference policy into a tar-
get policy. We then prove that the log-ratio reward is the unique Bradley-Terry reward that learns this
target policy, revealing that DPO’s design follows directly from Bayesian principles. We validate
these findings through controlled Energy-Based Model experiments, where we simulate a preference
dataset encoding Differential Information and demonstrate that only the log-ratio reward converges
to the target policy while other objectives (e.g., SimPO (Meng et al., 2024)) fail to do so.

In Section 4, we analyze the training dynamics of DPO based on a power-law relationship in the
DID imposed by DPO. This DID relationship links the DPO-converged policy to the preference
sampling distribution. Because the normalized ratio form of the DID is algebraically tied to the
KL-divergence, it explains the consistent changes in the log-likelihood observed during DPO train-
ing. The DID power-law further clarifies how policy exploration is jointly influenced by the KL-
penalty term and the sharpness of preference data, where sharpness reflects the sparsity (reciprocal
of sampling temperature) of distributions over chosen and rejected responses. Using Energy-Based
Models, we confirm these predictions and show that the identified properties of DPO persist under
gradient-based stochastic optimization.

In Section 5, we investigate the empirical link between training dynamics and downstream capabili-
ties by analyzing the Shannon entropy of the DID. Recent work finds that preventing log-likelihood
displacement (LLD) improves factual accuracy (e.g., MMLU (Hendrycks et al., 2021)) at the cost
of open-ended tasks (e.g., Wild-Bench (Lin et al., 2024a)) (Shi et al., 2024; Chen et al., 2024; Xiao
et al., 2024a). We hypothesize that this trade-off reflects differences in the DID entropy. To test this,
we compare standard DPO against a variant that prevents LLD. We train Mistral7B-v0.3 (Jiang
et al., 2024) and Qwen3-4B (Team, 2025) on Magpie-Pro and Magpie-G27 datasets (Xu et al.,
2024b). Across all settings, preventing LLD consistently learns a low-entropy DID that improves
factual QA, while allowing LLD learns a high-entropy DID that enhances open-ended generation.
These results suggest that DID entropy could serve as a useful factor in characterizing whether a
model’s learned capabilities align with factual precision or open-ended generation.

Taken together, our Bayesian perspective unifies reward design, training dynamics, and learned ca-
pabilities of DPO. By explicitly linking preference data to the Differential Information they convey,
our approach provides both theoretical grounding and practical guidance for designing and under-
standing preference-based alignment.

2 PRELIMINARIES

Let Y denote the sample space of all possible sentences. A policy (i.e., language model) π defines a
probability distribution over Y , and we assume full support, i.e., π(y) > 0 for all y ∈ Y . Let π∗ be
the target policy we wish to learn and πref be a fixed reference policy.

Preferences are ordered pairs (yw, yℓ), where yw is preferred to yℓ, written as yw ≻ yℓ. The Bradley-
Terry (BT) model (Bradley & Terry, 1952; Luce et al., 1959) assigns the probability of such a
preference under an implicit distribution p∗ as

p∗(yw ≻ yℓ) :=
p∗(yw)

p∗(yw) + p∗(yℓ)
.

If a latent reward r : Y → R induces a Boltzmann distribution P (Y = y | r) ∝ exp(r(y)), then the
BT preference probability can be expressed via the logistic sigmoid σ(x) = 1/(1 + exp(−x)) as

p(yw ≻ yℓ | r) := σ
(
r(yw)− r(yℓ)

)
.

DPO objective and log-ratio reward. Direct Preference Optimization (DPO) (Rafailov et al.,
2023) parameterizes a BT reward derived from the KL-regularized RL objective, the log-ratio be-
tween the learned policy and the reference: rDPO(y) := β log(π(y)/πref(y)), where β > 0 corre-
sponds to the KL-penalty strength. Under this parameterization, the preference probability becomes

p(yw ≻ yℓ | rDPO) := σ
(
β log π(yw)

πref (yw) − β log π(yℓ)
πref (yℓ)

)
.
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Preference generation assumption. We assume preferences (yw, yℓ) are sampled independently
from two distributions πw and πℓ respectively. Given an unordered pair of distinct responses (y1, y2),
the ground-truth probability that y1 is preferred over y2 is

p(y1 ≻ y2) := P (y1 ∼ πw, y2 ∼ πℓ | sampled pair is (y1, y2))

=
πw(y1)πℓ(y2)

πw(y1)πℓ(y2) + πw(y2)πℓ(y1)
.

We denote by D = {(yw, yℓ) | yw ∼ πw, yℓ ∼ πℓ} a preference dataset consisting of such pairs.
We assume πw ̸= πℓ and πref ̸= π∗ in the following discussions.

Preference optimization as distribution matching. Preference optimization maximizes the em-
pirical likelihood of observed preferences under a BT model parameterized by a reward r. Under
standard identifiability and coverage assumptions, maximizing the preference likelihood is equiva-
lent to fitting the reward-induced Boltzmann distribution to the implicit preference distribution. We
cite the following standard result from Dumoulin et al. (2023) (Proof in Appendix H.1).
Theorem 2.1 (Preference vs. Distribution Matching (Dumoulin et al., 2023)). Let D = {(yw, yℓ)}
be a sufficiently large preference dataset where the sets of yw and yℓ cover Y . Then preference
optimization on D is equivalent to fitting the reward-induced distribution P (Y = y | r) to the
implicit preference distribution p∗(y):

max
r

E(yw,yℓ)∼D [log σ(r(yw)− r(yℓ))] ⇐⇒ min
r

DKL [p
∗(y)∥P (Y = y | r)] .

Differential Information Distribution. We now introduce the DIFFERENTIAL INFORMATION
DISTRIBUTION (DID) to formalize the information that drives the update from a prior belief πref

into a posterior π∗, which we later use to interpret preference optimization. The term differential
highlights that the difference in the information contained in π∗ and πref is precisely the additional
Bayesian evidence required to update πref into π∗.

Suppose we start from a prior πref over sentences and then observe new Bayesian evidence X that
updates πref to π∗. We define the DID as the distribution over sentences that carry this incremental
evidence. A central postulate is that X is conditionally independent of the prior distribution given
some sentence y. In other words, the probability that y exhibits X does not depend on whether
y was sampled from πref . This ensures that the information X attributed to each sentence reflects
its intrinsic features. This also parallels how the difference in Shannon information, − logPA −
(− logPB) = − log PB

PA
, equals the Shannon information of an independent event X that updates

PA into PB via Bayes’ rule: PA,X = PAPX = PB . See Appendix D for details.
Definition 2.2 (Differential Information Distribution). Let π∗ and πref be two probability distribu-
tions over Y with full support. Let X be an event that satisfies the following:{

P (X | Y = y, πref) = P (X | Y = y) (Conditional Independence)
π∗(y) = P (Y = y | πref , X) (Bayesian Update)

Then, P (Y = y | X) is defined as the Differential Information Distribution (DID) from πref to π∗.

Intuitively, if our initial belief regarding which sentence y is the correct sentence follows the dis-
tribution πref(y), and then learn that “all sentences satisfying X are correct”, our updated belief
becomes π∗(y). The following theorem shows that the DID can be computed directly from the
normalized likelihood ratio.
Theorem 2.3 (Likelihood Ratio Representation of Differential Information Distribution). For poli-
cies π∗, πref over Y with full support, the Differential Information Distribution (DID) from πref to
π∗ is equivalent to the normalized ratio distribution:

P (Y = y | X) =
π∗(y)/πref(y)

Z
:= qπ∗/πref

(y),

where Z =
∑

y′∈Y
π∗(y′)
πref (y′) is the partition function.

(Proof in Appendix D.3) Therefore, the normalized ratio distribution qπ∗/πref
can be understood as

the Differential Information Distribution responsible for the update from πref to π∗.

3
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3 OPTIMALITY OF DPO’S LOG-RATIO REWARD

In this section, we begin our analysis of preference optimization through the lens of DIFFEREN-
TIAL INFORMATION. We reframe the goal of preference optimization as learning the Differential
Information that updates a reference policy πref into a target policy π∗. We first show how a prefer-
ence dataset naturally encodes that Differential Information (Theorem 3.1), then prove that DPO’s
log-ratio reward is the unique Bradley-Terry reward that learns π∗ from such data (Theorem 3.2).
Finally, we validate these claims in a controlled Energy-Based Model experiment (Section 3.3).

3.1 HOW PREFERENCES ENCODE DIFFERENTIAL INFORMATION

Since policy updates in preference optimization are driven by the preference distribution p∗ of a
dataset, it is essential to characterize precisely when p∗ contains the Differential Information re-
quired to transform πref into π∗. We find this condition is met when the Differential Information
Distributions (DIDs) of the underlying policies are related by a power-law.
Theorem 3.1 (Preferences Encoding Differential Information). Consider a preference dataset
D = {(yw, yℓ) | yw ∼ πw, yℓ ∼ πℓ}. Let π∗ be the target policy. If the Differential Informa-
tion Distribution between policies match up to an exponent β > 0:

qπw/πℓ
(y) ∝ qπ∗/πref

(y)β , ∀y ∈ Y,

then the preference probability p∗(yw ≻ yℓ) can be expressed as preferences induced by the DID:

p∗(yw ≻ yℓ) = σ
(
β log qπ∗/πref

(yw)− β log qπ∗/πref
(yℓ)

)
.

(Proof in Appendix H.2) The condition requires that the Differential Information that updates the
rejected response distribution πℓ into the chosen one πw should align with the DID from πref to π∗,
up to an exponent β > 0. When this holds, the dataset’s preference distribution carries the Bayesian
evidence needed to update πref into π∗.

3.2 BRADLEY-TERRY REWARD FOR LEARNING DIFFERENTIAL INFORMATION

As we have characterized when a preference dataset encodes the Differential Information necessary
for learning π∗, we now ask which functional form of the reward parameterization r(y) recovers π∗.
We find that the log-ratio form used by DPO is the unique functional form (up to a constant) that
makes π∗ the global optimizer of the training objective.
Theorem 3.2 (Optimal Reward for Learning Differential Information). Let D be a preference
dataset satisfying Theorem 3.1, encoding the Differential Information required to learn the target
policy π∗. Then, for some constant C, we have

π∗ = argmax
π

E(yw,yℓ)∼D [log σ(r(yw)− r(yℓ))] ⇐⇒ r(y) = β log
π(y)

πref(y)
+ C.

(Proof in Appendix H.3) This justifies DPO’s log-ratio structure: if preference captures the Differ-
ential Information needed to improve πref toward π∗, then using the log-ratio reward is not merely a
heuristic choice, but the only functional form that ensures preference optimization recovers π∗. Our
derivation recovers the result of Rafailov et al. (2023), originally motivated by the KL-regularized
RL objective. This highlights the Bayesian structure of DPO in learning Differential Information.

The key results of Theorems 3.1 and 3.2 can be summarized into the following relationship.
Corollary 3.2.1 (DID Power-Law of DPO). Consider a preference dataset D = {(yw, yℓ) | yw ∼
πw, yℓ ∼ πℓ} and a policy π∗ obtained as a stationary point of preference optimization using the
log-ratio reward r = β log(π/πref) on D. Then, a power-law relationship between the DID of
policies must hold:

qπw/πℓ
(y) ∝ qπ∗/πref

(y)β , ∀y ∈ Y.

(Proof in Appendix H.4) Corollary 3.2.1 can be read two ways: either datasets that satisfy the DID
power-law lead DPO to recover π∗; conversely, if DPO has converged to some π∗ then the dataset’s
sampling distributions must satisfy this power-law relation.3

3Corollary 3.2.1 directly yields a closed-form expression of the optimal DPO dataset (Appendix E).
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3.3 EXPERIMENTS

We validate our theoretical findings in a controlled setup using Energy-Based Models.

Setup. We define policies πθ(i) = exp(θi)/
∑

j exp(θj) for class i ∈ {1, . . . ,K} and θ ∈ RK .
The logits of the reference policy πref are sampled from a normal distribution: θref ∼ N (0, I).
Next, to construct the target policy π∗, we set the target logits θ∗ = θref/τ with 0 < τ < 1 for
reinforcing and τ > 1 for smoothing. The logits of πℓ are set as θℓ = 2θref − θ∗, which aligns the
DID between policies: qπref/πℓ

= qπ∗/πref
. Finally, preference pairs (yw, yℓ) are constructed by

sampling yw ∼ πref and yℓ ∼ πℓ, and labeled as yw ≻ yℓ (Hyper-parameters in Appendix K.1).
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Figure 1: Left: Optimization using r = log π on preference data satisfying the DID power-law.
The Jensen-Shannon Divergence DJS[qπ∗/πref

∥π] converges to 0, confirming Theorem 3.1 that the
preference encodes Differential Information. Right: Comparison of DJS[π

∗∥π] using different ob-
jectives on the same data with τ = 4. Standard DPO (r = log(π/πref), purple) uniquely converges
to π∗, consistent with Theorem 3.2.

Do preferences encode Differential Information? Theorem 3.1 predicts that the preference dis-
tribution encodes the Differential Information required to learn the target policy: p∗ = qπ∗/πref

. Ac-
cording to Theorem 2.1, a policy optimized using r = log π converges to the underlying preference
distribution p∗ (Dumoulin et al., 2023; Xu et al., 2024a; Liu et al., 2024b). Therefore, we optimize
a policy π with r = log π and measure the Jensen-Shannon (JS) divergence between qπ∗/πref

and π.

Figure 1 shows that the JS divergence consistently converges to zero, meaning that the policy trained
to directly fit p∗ converges to the DID qπ∗/πref

. This confirms Theorem 3.1 in that sampling chosen
and rejected samples each from a distribution satisfying the DID power-law yields a preference
distribution encoding the Differential Information required to learn the target policy.

Is the log-ratio reward optimal? To test Theorem 3.2, we compare optimization with the log-
ratio reward r = log(π/πref) against several alternative objectives: SLiC (Zhao et al., 2023b),
ORPO (Hong et al., 2024), SimPO (Meng et al., 2024), and Cal-DPO (Xiao et al., 2024a). All
methods are trained on the same synthetic dataset and we compare DJS[π

∗∥π] for each method.

Figure 7 shows that the DPO log-ratio objective is the only method that consistently minimizes
DJS[π

∗∥π] across various τ values, converging to π∗. This empirical result supports Theorem 3.2,
highlighting that when preferences encode Differential Information, the log-ratio reward suc-
ceeds in recovering the target policy while other objectives fail to do so.

4 TRAINING DYNAMICS OF DPO

The power-law structure of the Differential Information Distribution (DID) identified in the previ-
ous section (Corollary 3.2.1) determines how DPO updates policies during training. This provides

5
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a unified lens through which we can understand the training dynamics of DPO. We discuss how the
power-law DID relationship proves general guarantees on the log-likelihood change in DPO (Theo-
rem 4.1). Next, we analyze which factors impact policy exploration during DPO training, based on
the power-law DID relationship (Theorem 4.2).

4.1 LOG-LIKELIHOOD CHANGE

Corollary 3.2.1 explains the characteristic log-likelihood shifts observed during DPO training. The
DID power-law, which DPO must satisfy at convergence, clarifies how the preference sampling
distributions and the converged policy are linked together. Combined with Jensen’s and Gibbs’
inequalities, this relationship predicts the asymmetric shifts in the log-likelihoods of chosen and re-
jected responses. Unlike prior analyses (Feng et al., 2024; Razin et al., 2024; Cho et al., 2025), our
statements derived from this principle place no restrictions on step sizes, gradients, or parameteri-
zation methods. We further extend beyond the in-distribution regime (i.e., samples πref was trained
on) considered in some previous work (Rafailov et al., 2024).

Theorem 4.1 (Log-Likelihood Change of DPO). Consider a preference dataset D = {(yw, yℓ) |
yw ∼ πref , yℓ ∼ πℓ}, and π∗ obtained by preference optimization on D using the log-ratio reward
r = β log π/πref . Then, for any β > 0, π∗ must decrease the average log-likelihood of yℓ:

Eyℓ∼πℓ
[log π∗(yℓ)] < Eyℓ∼πℓ

[log πref(yℓ)] .

Conversely, if πref was fine-tuned on yℓ (i.e., πref = πℓ), then, for any β ≥ 1, π∗ must increase the
average log-likelihood of yw:

Eyw∼πw
[log π∗(yw)] > Eyw∼πw

[log πref(yw)] .

See Appendix H.5 for proof. The theorem captures a basic asymmetric effect of DPO: when yw
is sampled from πref , the converged policy π∗ must decrease log π(yℓ), and when yℓ ∼ πref , π∗

must increase log π(yw) for β ≥ 1. The theorem therefore connects the power-law DID to concrete,
observable training dynamics and clarifies how and why likelihoods change during DPO training.4

4.2 POLICY EXPLORATION

The characteristics of policy exploration in DPO can also be explained using the power-law DID re-
lationship. In particular, this DID structure allows DPO to adaptively adjust its KL-divergence from
the reference policy πref based on the sharpness of the preference data. Intuitively, when preference
labels are weak (i.e., p∗(y1 ≻ y2) being close to 0.5), the power-law DID relationship constrains
the DPO-converged policy π∗ to remain close to πref . Conversely, when preference probabilities are
stronger (i.e., p∗(y1 ≻ y2) being close to 0 or 1), the same DID relationship drives the converged
policy farther away from πref , under the same KL-penalty β. This trade-off is formalized below
(proof in Appendix H.6).

Theorem 4.2 (Adaptive Policy Exploration of DPO). Let D = {(yw, yℓ) | yw ∼ πref , yℓ ∼ πℓ} be
a preference dataset with an implicit Bradley-Terry preference distribution p∗D. Consider another
dataset D′ = {(yw, yℓ)} whose implicit Bradley-Terry distribution p∗D′ is a “sharpened” version of
p∗D, in the sense that there exists α > 1 such that for all pairs (yw, yℓ) ∈ Y × Y ,

p∗D′(yw ≻ yℓ) =

(
p∗D(yw)

)α(
p∗D(yw)

)α
+

(
p∗D(yℓ)

)α = σ
(
α log p∗D(yw)− α log p∗D(yℓ)

)
.

For the same reference policy πref and any β > 0, let π∗
D and π∗

D′ denote the policies obtained
by preference optimization on D and D′, respectively, using the log-ratio reward r = β log π/πref .
Then the strengthened dataset D′ induces a strictly larger divergence from the reference:

DKL [πref∥π∗
D′ ] > DKL [πref∥π∗

D] .

Remark 1. By Theorem 3.1, decreasing the data sampling temperature by a factor of α > 1, i.e.,
drawing yw and yℓ from πw(y)

α and πℓ(y)
α, amplifies preference strength by the same factor α.

4See Appendix F for a discussion on how the log-margin log π(yℓ)−log π(yℓ) evolves during DPO training,
and how it implies an information-theoretic triangle inequality that must hold at convergence.
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Remark 2. To recover π∗
D by optimizing a stronger dataset D′ using the log-ratio reward r′ =

β′ log π
πref

, one must increase the KL-penalty strength such that β′ = β · α for α > 1.

Thus, the effective KL-budget of DPO depends not only on β, but also on the strength of the prefer-
ence data. Datasets with weak or noisy preference labels (i.e., p∗(y1 ≻ y2) ≈ 0.5) constrain DPO
to remain near πref , where large deviations cannot be justified by the evidence. In contrast, stronger
preference labels act as a divisor on the log-ratio reward (Remark 2), enabling larger departures
from πref . Therefore, the DID power-law allows DPO to balance conservatism and exploration, by
linking policy deviation directly to the strength or quality of preference data.

4.3 EXPERIMENTS

We validate Theorems 4.1 and 4.2 using the Energy-Based Model (EBM) experiment from Sec-
tion 3.3. All policies (reference, rejected, chosen) are parameterized by independent logits drawn
from a normal distribution. The dataset is constructed from preference pairs sampled as in Sec-
tion 3.3, and we train policies using the DPO objective with varying β values.

Training Steps

Figure 2: Log-likelihood change during DPO training. When chosen responses yw are sampled
from πref , the log-likelihood of rejected responses yℓ decreases relative to πref (left plot). When
rejected samples yℓ are sampled from πref , the log-likelihood of chosen responses increases for
β ≥ 1 (right plot). This confirms the predicted change in log-likelihood of DPO (Theorem 4.1).

Verifying log-likelihood change. To test Theorem 4.1, we consider two cases: (1) chosen re-
sponses sampled from the reference (yw ∼ πref ), and (2) rejected responses sampled from the
reference (yℓ ∼ πref ). We then track the change in average log-likelihoods under DPO training.

Figure 2 confirms the predictions of Theorem 4.1. When yw ∼ πref , the converged policy π∗

decreases E[log π(yℓ)] relative to πref . Conversely, when yℓ ∼ πref , DPO increases E[log π(yw)]
for β ≥ 1. These results show that the consistent log-likelihood shifts observed in DPO can be
rigorously explained and precisely predicted based on the power-law DID relationship.

Verifying policy exploration. To test Theorem 4.2, we generate preference datasets with varying
sharpness. Specifically, we compare a fixed dataset D with a sharpened version D′ that halves the
sampling temperature of preference pairs (Remark 1), increasing the preference strength to α = 2.
We train policies on both datasets using the DPO objective with various β values, and track the
KL-divergence DKL [πref∥π] throughout the training process.

Figure 3 shows that a stronger preference signal (D′, α = 2) consistently yields larger divergence
from πref than a weaker one (D, α = 1), for the same β. Moreover, increasing the KL-penalty to
β′ = 2β for the sharpened dataset D′ results in a converged policy that matches the KL-divergence
of the original dataset D, consistent with Remark 2. This confirms that policy exploration in DPO
is jointly governed by the KL-penalty weight β and the implicit strength of preference data.
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Figure 3: Policy exploration of DPO. Compared to the original dataset D, halving the sampling
temperature to form D′ strengthens preferences (α = 2) and increases the KL-divergence from πref

under the same KL-penalty β, consistent with Theorem 4.2. Increasing the KL-penalty to 2β when
training on D′ restores the divergence to the level obtained with D using β, in line with Remark 2.

5 TRAINING DYNAMICS AND LEARNED CAPABILITIES

In this section, we examine how log-likelihood dynamics shape downstream performance by analyz-
ing the properties of the learned Differential Information. We first study the empirical link between
the log-likelihood displacement (LLD) phenomenon and downstream capabilities (Section 5.1). We
then show how the Shannon entropy of the Differential Information Distribution can help explain
the observed trade-off, where different training dynamics lead to distinct capabilities (Section 5.2).

5.1 A CASE STUDY ON LOG-LIKELIHOOD DISPLACEMENT

Log-likelihood displacement (LLD) refers to the phenomenon where the log-likelihood of chosen
response decreases during DPO training, even as alignment improves (Rafailov et al., 2024; Razin
et al., 2024; Shi et al., 2024). Preventing LLD has been shown to improve performance on bench-
marks such as MMLU (Hendrycks et al., 2021), which requires verifiable, ground-truth answers
(Shi et al., 2024; Chen et al., 2024; Xiao et al., 2024a). While prior work investigates the cause of
LLD through sample similarity or gradient dynamics (Pal et al., 2024; Razin et al., 2024; Feng et al.,
2024), it doesn’t fully explain why preventing LLD results in learning different capabilities.

To investigate this gap, we conduct a case study on how LLD affects downstream performance. We
compare standard DPO with an another method utilizing projected gradient descent to prevent LLD
while still optimizing the DPO objective, which we term DPO-PG (Appendix I). All runs start from
the same πref fine-tuned on chosen responses. We train Mistral7B-v0.3 (Jiang et al., 2024) and
Qwen3-4B (Team, 2025) on two instruction-following datasets (Magpie-Pro and Magpie-G27),
and evaluate on open-ended instruction-following (Arena-Hard (Li* et al., 2024), Wild-Bench (Lin
et al., 2024a)) and a suite of eight knowledge-intensive QA tasks (details in Appendix K.2).

As shown in Table 1, across both model architectures, preventing LLD (DPO-PG) consistently yields
the strongest performance on knowledge-intensive QA, at the expense of open-ended instruction-
following. Standard DPO shows the opposite pattern, excelling on open-ended tasks but under-
performing on factual QA. The same trend appears on Magpie-G27 (Table 2, Figure 12). This raises
the question: why is LLD associated with a trade-off between factual QA and open-ended tasks?

5.2 CONNECTING POLICY DYNAMICS WITH LEARNED CAPABILITIES

We hypothesize that this trade-off reflects the properties of the information learned from training.
To measure this, we use the Shannon entropy of the DID which quantifies the uncertainty or con-
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Table 1: Impact of log-likelihood displacement (LLD) on downstream capabilities using the Magpie-
Pro dataset. For open-ended instruction-following, we report Arena-Hard-v0.1 win-rate (AH, [%])
and Wild-Bench-v2 ELO score (WB). For knowledge-intensive QA, we report mean reciprocal rank
across 8 QA benchmarks (QA). DID entropy (Ent., [nats]) is estimated via importance sampling
(Appendix D.5). Compared to standard DPO, preventing LLD (DPO-PG) learns a low-entropy
DID, which enhances factual accuracy but reduces performance on open-ended tasks.

Mistral7B-v0.3 Qwen3-4B

Method β Ent. AH (↑) WB (↑) QA (↑) Ent. AH (↑) WB (↑) QA (↑)

DPO

0.1 1123.2 19.1 1141.5 0.53 9158.4 30.7 1134.4 0.49
0.2 1303.4 18.5 1145.3 0.26 4765.9 28.1 1146.2 0.34
0.1 1253.9 23.4 1146.6 0.28 7663.3 27.5 1148.2 0.27

0.05 970.2 22.4 1145.3 0.30 6801.2 43.7 1164.5 0.24
DPO-PG 495.1 19.6 1129.9 0.92 388.2 37.4 1148.5 0.94

centration of Differential Information that drives policy updates. The DID entropy is defined as

H(qπ∗/πref
) = −

∑
y∈Y

qπ∗/πref
(y) log qπ∗/πref

(y).

Intuitively, low DID entropy indicates that Differential Information is concentrated on a narrow
subset of samples, while high entropy suggests it is distributed more broadly. Appendices D.4 and
D.5 detail how DID entropy reflects the properties of Differential Information and how it can be
estimated using importance sampling.

As shown in Table 1, the DID entropy (column “Ent.”) is observed to be significantly lower when
preventing LLD (DPO-PG) compared to standard DPO. We hypothesize that LLD reflects changes
in the output distribution that increase the entropy of the learned DID. Since chosen responses yw
typically lie in high-probability regions of the reference policy, decreasing log π(yw) would smooth
these probability peaks, yielding a more high-entropy DID. Conversely, increasing log π(yw) sharp-
ens these peaks, concentrating probability mass and reducing DID entropy (Appendix G).

Comparing the DID entropy and downstream performance in Table 1, we observe that factual QA
performance is associated with low-entropy DID, while open-ended task performance is associated
with high-entropy DID. This aligns with intuition: factual queries (e.g., “What is the capital of
France?”) admit only a narrow set of correct answers (Lee et al., 2023; Xiang et al., 2025), concen-
trating Bayesian evidence on a small subset of Y . In contrast, open-ended prompts (e.g., “Write a
story about a dragon.”) admit a wide variety of valid responses (Li et al., 2025; Gu et al., 2024), dis-
persing Bayesian evidence more broadly across Y . These results suggest that learning low-entropy
DID enhances factual precision, while learning high-entropy DID improves open-ended tasks.

In summary, we observe that preventing LLD induces the model to learn a low-entropy DID, which
improves accuracy on factual QA tasks. In contrast, allowing LLD results in learning a high-entropy
DID that enhances open-ended tasks. These observations suggest that log-likelihood dynamics re-
flect the type of information learned during alignment.

6 CONCLUSION

We introduced a Bayesian perspective on Direct Preference Optimization (DPO) through the lens of
DIFFERENTIAL INFORMATION DISTRIBUTION (DID). We showed that DPO’s log-ratio reward is
the unique Bradley-Terry reward that learns the target policy when preferences encode Differential
Information. We further demonstrated that DPO’s characteristic training dynamics (log-likelihood
shifts and adaptive policy exploration) stem from a power-law DID relationship. We finally intro-
duced DID entropy as a principled measure of uncertainty in the learned information, clarifying
the trade-off between log-likelihood displacement and downstream performance: high-entropy DID
smooths the output distribution and aids open-ended instruction-following, while low-entropy DID
concentrates probability mass and benefits knowledge-intensive QA. Together, our findings provide
both a principled theoretical foundation and practical guidance for preference-based alignment.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive details on our theoretical and
empirical findings. For our theoretical results, detailed proofs for all theorems and corollaries are
available in Appendix H. For our empirical validation, Appendix K contains a full description of our
experimental setups. Specifically, Appendix K.1 details the setup and hyper-parameters for our con-
trolled experiments using Energy-Based Models. Appendix K.2 describes the details for preparing
the Magpie-G27 dataset, the training configurations for both DPO and our DPO-PG method, and
the evaluation protocols for the real-data experiments in Section 5.2. In the supplementary material,
we include the training code for the EBM experiments, raw evaluation results for the real-data ex-
periments, and a reference Pytorch implementation of the DPO-PG method (Appendix I). We plan
to release all model checkpoints and the complete code for training and evaluation upon acceptance
to ensure direct replication of our findings.
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A LLM USAGE DISCLOSURE

In accordance with the ICLR 2026 policy,5 we disclose that large language models were used for mi-
nor writing assistance and polishing. All research ideations, technical derivations, and experiments
were planned and carried out by the human authors.

B LIMITATIONS

While our perspective offers novel insights, we acknowledge limitations for future work. First, The-
orem 2.1, established from prior work (Dumoulin et al., 2023), assumes sufficient data coverage
and train-test generalization. Second, the connection between DID entropy and policy dynamics
(Claim G.1) is qualitative and based on information-theoretic intuition (Appendix G); despite exper-
imental support (Section 5.2), a formal treatment would strengthen this aspect of our work.

C RELATED WORK

Direct Preference Optimization. Direct Preference Optimization (DPO) (Rafailov et al., 2023)
is widely used to align LMs with human preferences in a supervised manner (Xiao et al., 2024b;
Liu et al., 2025). Recent research investigates the theoretical foundations of preference optimiza-
tion, connecting it to distribution matching (Korbak et al., 2022a; Dumoulin et al., 2023; Xu et al.,
2024a; Liu et al., 2024b; Ji et al., 2024), and analyzing the optimization dynamics of log-likelihood
displacement (Pal et al., 2024; Feng et al., 2024; Mao et al., 2024). While Chen et al. (2024) reinter-
pret the DPO objective from a noise contrastive estimation perspective, their approach relies on the
optimal policy of the KL-regularized RL objective and leaves its justification open for discussion.

We complement prior work by offering a Bayesian perspective on the justification for the reward
parameterization of DPO, linking its optimality to the Differential Information captured by the pref-
erence data. This perspective explains the training properties of DPO, and also yields a novel inter-
pretation of log-likelihood displacement, relating it to the entropy of the learned DID.

Bayesian perspective of KL-regularized RL. A prior work done by Korbak et al. (2022b) inter-
prets the optimal policy of the KL-regularized RL objective π∗(y) ∝ πref(y) exp(r(y)/β) from a
Bayesian perspective, showing how the reward-induced distribution P (Y = y | r) ∝ exp(r(y)) can
be viewed as carrying the Bayesian-evidence towards a target policy. Because DPO learns the same
optimal policy using supervised learning, there exists an inherent connection between this view and
our DID perspective. Our work builds on that connection but provides a Bayesian account of DPO,
characterizing the statistical structure of preference datasets, the optimality of the DPO log-ratio
reward, and the resulting policy-dynamics phenomena.

D INTERPRETATION OF DIFFERENTIAL INFORMATION DISTRIBUTION

This section provides a probabilistic interpretation of the DIFFERENTIAL INFORMATION DISTRI-
BUTION (DID). Our goal is to illustrate the intuition that the DID qπ∗/πref

represents the distribution
over samples y that carry the Differential Information needed to update the reference policy πref into
the target policy π∗ through Bayesian conditioning.

D.1 INFORMATION AS AN ABSTRACT EVENT

We begin by establishing a Bayesian framework to reason about information associated with sen-
tences. Consider the sample space Y of all possible sentences, assuming a uniform prior distribution
P (Y = y) = 1/|Y|.
Now, consider an abstract “event” or “property” X that can be associated with sentences. This event
X represents some specific characteristic or information content. We can quantify the association
between a sentence y and the property X using the conditional probability P (X | Y = y). This
term represents the likelihood that a given sentence y possesses the property X . For instance:

5https://iclr.cc/Conferences/2026/AuthorGuide
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1. If P (X | Y = y) measures the probability of “y being a mathematically correct sentence”,
then the probabilities will be either 0 or 1.

• P (X | Y =“1+1=2”) = 1

• P (X | Y =“1+0=1”) = 1

• P (X | Y =“2+2=5”) = 0

2. If P (X | Y = y) measures the probability of “y being a safe sentence”, then the probabil-
ities can be in the range of 0 ≤ P (X | Y = y) ≤ 1.

• P (X | Y =“Apples are red.”) = 0.99

• P (X | Y =“Alcohol is good for relaxation.”) = 0.3

• P (X | Y =“Let’s promote violence!”) = 0

A crucial assumption in our analysis is that the property X is inherent to the sentence y itself,
regardless of which language model might have generated it. For instance, the mathematical cor-
rectness or safeness of a sentence should not depend on whether it came from Mistral7B-v0.3
or Qwen3-4B; it’s a property of the content in y itself.

Formally, this means we assume that the event X is conditionally independent of the generating
model (e.g., πref ) given the sentence Y = y:

P (X | Y = y, πref) = P (X | Y = y).

This is equivalent to stating that the joint probability factors as

P (X,πref | Y = y) = P (X | Y = y)P (πref | Y = y).

This assumption allows us to treat P (X | Y = y) as a property purely of the sentence y and the
abstract information X .

D.2 INTERPRETING P (Y = y | X)

Given the likelihood P (X | Y = y) that a sentence y possesses property X , what does the distri-
bution P (Y = y | X) represent? This is the distribution over sentences for which the property X
holds. If X represents “mathematical correctness”, then sampling from P (Y = y | X) would yield
mathematically correct statements.

We can derive this distribution using Bayes’ theorem and our uniform prior P (Y = y) = 1/|Y|.

P (Y = y | X) =
P (X | Y = y)P (Y = y)

P (X)

=
P (X | Y = y)P (Y = y)∑

y′∈Y P (X | Y = y′)P (Y = y′)

=
P (X | Y = y)(1/|Y|)∑

y′∈Y P (X | Y = y′)(1/|Y|)

=
P (X | Y = y)∑

y′∈Y P (X | Y = y′)

∝ P (X | Y = y).

This confirms the intuition: the probability of sampling a sentence y that holds X is directly pro-
portional to the likelihood that sentence y possesses the property X . Sentences that strongly exhibit
property X (i.e., high P (X | Y = y)) are more likely to be sampled from P (Y = y | X).

D.3 INFORMATION DIFFERENCE BETWEEN POLICIES

We now focus on comparing two language models, π∗ and πref , both assumed to have full support
over Y . We are interested in the difference in the information contained in these two models. We
characterize this information difference as the Bayesian evidence required to update πref into π∗.
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We represent such information by an abstract event X which we will call the DIFFERENTIAL IN-
FORMATION that updates πref into π∗. We seek an X such that conditioning πref(y) on X yields
π∗(y). Formally, given πref(y) = P (Y = y | πref), we want X to satisfy

π∗(y) = P (Y = y | πref , X).

Furthermore, we maintain our key assumption that this information X is intrinsic to the sentences,
meaning it is conditionally independent of the prior πref given the sentence y:

P (X | Y = y, πref) = P (X | Y = y).

In other words, the probability that a sentence y holds the information X does not depend on whether
it was sampled from πref .

Before proceeding, we should confirm that such an event X can always be constructed. The follow-
ing lemma guarantees its existence.
Lemma D.1 (Existence of Differential Information). For any two probability distributions π∗, πref

with full support on Y , there exists an event X such that{
P (X | Y = y, πref) = P (X | Y = y) (Conditional Independence)
π∗(y) = P (Y = y | πref , X) (Bayesian Update)

Proof. Define X as a random variable that satisfies the conditional independence property P (X |
Y = y, πref) = P (X | Y = y). We need to show that we can define P (X | Y = y) such that the
Bayesian update rule holds.

First, choose a base probability P (X | πref) such that 0 < P (X | πref) < 1/maxy′

[
π∗(y′)
πref (y′)

]
.

This ensures that the resulting conditional probability P (X | Y = y) defined below is valid (i.e.,
0 ≤ P (X | Y = y) ≤ 1). Now, define the likelihood of X given y as

P (X | Y = y) :=
P (X | πref)π

∗(y)
πref(y)

.

Note that since πref has full support, we have πref(y) > 0. We must check if P (X | Y = y) ≤ 1.
This holds because by our choice of P (X | πref), we have

P (X | Y = y) = P (X | πref)
π∗(y)
πref(y)

≤ P (X | πref)max
y′

[
π∗(y′)
πref(y′)

]
< 1.

Now, using Bayes’ rule we verify the Bayesian update condition:

P (Y = y | X,πref) =
P (X | Y = y, πref)P (Y = y | πref)

P (X | πref)
(Bayes’ Rule)

=
P (X | Y = y)πref(y)

P (X | πref)
(Conditional Independence)

=

(
P (X|πref )π

∗(y)
πref (y)

)
πref(y)

P (X | πref)
(Definition of P (X | Y = y))

=
P (X | πref)π

∗(y)
P (X | πref)

= π∗(y).

Thus, we have constructed an event X satisfying both conditions.

This lemma confirms that it is always possible to conceptualize the transformation from πref to
π∗ as a Bayesian update based on some underlying information X that satisfies our conditional
independence assumption. We defined such X as the Differential Information that updates πref to
π∗. Now, we connect this concept directly to the Differential Information Distribution (DID). The
following theorem demonstrates that the distribution over samples conditioned on this Differential
Information X is precisely the normalized ratio distribution qπ∗/πref

.
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Theorem (Likelihood Ratio Representation of Differential Information Distribution). For policies
π∗, πref over Y with full support, the Differential Information Distribution (DID) from πref to π∗ is
equivalent to the normalized ratio distribution:

P (Y = y | X) =
π∗(y)/πref(y)

Z
:= qπ∗/πref

(y),

where Z =
∑

y′∈Y
π∗(y′)
πref (y′) is the partition function.

Proof. Let X be the event that satisfies Lemma D.1. The Bayes’ Theorem states that

π∗(y) = P (Y = y | πref , X)

=
P (X | Y = y, πref)P (Y = y | πref)

P (X | πref)

=
P (X | Y = y)P (Y = y | πref)

P (X | πref)
.

We thus have π∗(y)
πref (y)

= P (X|Y=y)
P (X|πref )

. Now, consider the following relationship:

π∗(y)
πref(y)Z

=
π∗(y)/πref(y)∑

y′∈Y π∗(y′)/πref(y′)

=
P (X | Y = y)/P (X | πref)∑

y′∈Y P (X | Y = y′)/P (X | πref)

=
P (X | Y = y)∑

y′∈Y P (X | Y = y′)
.

Since P (Y = y) is a uniform distribution, we arrive at the relationship:

P (Y = y | X) =
P (X | Y = y)P (Y = y)∑

y′∈Y P (X | Y = y′)P (Y = y′)

=
P (X | Y = y)∑

y′∈Y P (X | Y = y′)

=
π∗(y)

πref(y)Z

= qπ∗/πref
(y).

Therefore, sampling a sentence from the normalized ratio distribution qπ∗/πref
is equivalent to

sampling a sentence that carries the Differential Information required to update πref into π∗

via Bayes’ rule.

D.4 UNCERTAINTY OF DIFFERENTIAL INFORMATION

The normalized ratio form of the DID qπ∗/πref
naturally admits an information-theoretic characteri-

zation. In particular, we can measure the uncertainty of the Differential Information by the Shannon
entropy:

H(qπ∗/πref
) = −

∑
y

qπ∗/πref
(y) log qπ∗/πref

(y).

This entropy quantifies how broadly the Bayesian evidence required to update πref into π∗ is dis-
tributed across the sample space Y .

A low-entropy DID H(qπ∗/πref
) describes a deterministic Bayesian evidence that drives the update

from πref to π∗. Intuitively, if only a few samples hold that Bayesian evidence, then the DID qπ∗/πref

will be highly concentrated on a few samples that have a large enough value of P (X | Y = y) (i.e.,
the probability of y having X , Appendix D.2). Therefore, the policy update from πref to π∗ can
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effectively be explained by a few characteristic samples. This corresponds to information that is
specific and localized, such as factual knowledge (e.g., the birthplace of George Washington) where
only a narrow subset of Y strongly supports the relevant property.

Conversely, a high-entropy DID H(qπ∗/πref
) describes an uncertain Bayesian evidence that drives

the update from πref to π∗. If the evidence is spread across many possible samples, then the DID
qπ∗/πref

will also be more spread-out and flatter. No single sample dominantly holds a high enough
value of P (X | Y = y), and the policy update requires a Bayesian evidence from a wide variety
of samples. This corresponds to information that is general and broadly distributed, such as open-
ended instruction-following (e.g., writing a story about dragons) where many different completions
may plausibly express the property.

Therefore, the DID entropy provides a principled measure of how uncertain or spread-out the
Differential Information is across the sample space.

D.5 ESTIMATION OF DID ENTROPY

To measure the Shannon entropy of the Differential Information Distribution (DID):

H(qπ/πref
) = −

∑
y

qπ/πref
(y) log qπ/πref

(y)

= −Ey∼qπ/πref

[
log

π(y)

πref(y)Z

]
= logZ − Ey∼qπ/πref

[log
π(y)

πref(y)
],

we can first estimate the log-partition function logZ = log
∑

y∈Y
π(y)

πref (y)
= logEy∼π[

1
πref (y)

], and
then estimate the remainder term via self-normalized importance sampling. For Tables 1 and 2, we
estimate the two terms in the following steps:

• To estimate logZ, we sample K = 32 completions from π and use the log-sum-exp trick
to directly estimate logZ ≈ log

∑K
i=1 exp(− log πref(yi))− logK.

• To estimate Ey∼qπ/πref
[log π(y)

πref (y)
], we draw 32 samples from π and re-weight them by

1/πref(y), which is proportional to the importance weight qπ/πref
(y)/π(y).

Note that naive auto-regressive sampling from the token-level ratio distribution is ineffective due to
out-of-distribution prefixes, leading to degenerate outputs. While this method is sound for tractable
output spaces, it does not scale to LLMs. This is the very reason behind our importance-sampling
based approach for estimating the DID which is proportional to the sequence-level probability ratio.

E OPTIMAL DATASET FOR DPO

A central design choice when building DPO datasets is how to sample the chosen and rejected
responses. Prior work has advocated opposing strategies: strong contrasts that maximize quality
gaps (Meng et al., 2024; Xu et al., 2024b) versus fine-grained distinctions with minimal differences
(Lin et al., 2024b; Tunstall et al., 2023; Guo et al., 2024). We resolve this tension by showing that
what matters is not absolute gap size but the Differential Information encoded by the pair (yw, yℓ).
In particular, the optimal rejection distribution should make the dataset’s Differential Information
distribution reflect the Differential Information between the reference and target policies. Using
Corollary 3.2.1 we obtain the following closed-form characterization:
Theorem E.1 (Optimal Distribution of Chosen and Rejected Responses). Given a preference
dataset D = {(yw, yℓ) | yw ∼ πw, yℓ ∼ πℓ}, if πref = πw, then preference optimization on
D using the log-ratio reward r = β log π/πref converges to π∗ if and only if the rejected sample
distribution πℓ satisfies

πℓ(y) ∝ πref(y)

(
πref(y)

π∗(y)

)β

, ∀y ∈ Y.
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Likewise, if πref = πℓ, then optimizing D using the log-ratio reward converges to π∗ if and only if
the chosen sample distribution πw satisfies

πw(y) ∝ πref(y)

(
π∗(y)
πref(y)

)β

, ∀y ∈ Y.

Intuitively, Theorem E.1 states that the correct construction of preference data depends on matching
the dataset’s DID to the log-ratio reward used in DPO. Thus both “strong” and “fine-grained” con-
structions can be optimal, given that the DID from πℓ to πw aligns with the DID from πref to π∗, up
to the exponent β > 0.

Proof. This directly follows from Corollary 3.2.1. For any general preference dataset D =
{(yw, yℓ) | yw ∼ πw, yℓ ∼ πℓ}, the Bradley-Terry preference distribution p∗ must exactly fol-
low qπw/πℓ

. Corollary 3.2.1 states that a power-law DID structure involving the converged policy
π∗ must hold:

qπw/πℓ
(y) ∝ qπ∗/πref

(y)β , ∀y ∈ Y.

When πref = πw, for all y ∈ Y , we have

qπref/πℓ
(y) ∝ qπ∗/πref

(y)β ⇐⇒ πℓ(y) ∝ πref(y)

(
πref(y)

π∗(y)

)β

.

Conversely, when πref = πℓ, for all y ∈ Y , we have

qπw/πref
(y) ∝ qπ∗/πref

(y)β ⇐⇒ πw(y) ∝ πref(y)

(
π∗(y)
πref(y)

)β

.
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Comparison of Converged DJS[π∗ ‖ π]

Figure 4: Convergence quality (Jensen-Shannon divergence) between the target π∗ and the con-
verged policy π under varying dataset exponents βℓ and βw (controlling πℓ and πw respectively),
and reward scale βr. Consistent with Theorem E.1, the best convergence occurs near the diagonal
βℓ = βr and βw = βr.

We can validate Theorem E.1 using the EBM experiments described in Section 3.3. To test The-
orem E.1 we disentangle the exponent used to construct rejected samples from the scaling factor
used in the DPO reward. We sample chosen responses yw from πref and draw rejected responses yℓ

from πℓ(y) ∝ πref(y)
(

πref (y)
π∗(y)

)βℓ

, while training with reward r(y) = βr log
π(y)

πref (y)
. We also test
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the setup where yℓ comes from πref and yw is drawn from πw(y) ∝ πref(y)
(

π∗(y)
πref (y)

)βw

. Sweeping
β ∈ [0.02, 5], we measure DJS[π

∗∥π] for the converged policy. Figure 4 shows the minimum diver-
gence concentrated along βℓ = βr and βw = βr, showing that the optimal DPO dataset requires the
DID from πℓ to πw to align with that from πref to π∗, up to a positive exponent β.

F LOG-MARGIN DYNAMICS OF DPO

Based on the power-law DID relationship in DPO (Corollary 3.2.1), we can prove how a policy
ordering π∗ ≻ πref ≻ πℓ must exist based on increasing log-margins:

Theorem F.1 (Log-Margin Ordered Policies of DPO). Under the same setup as Theorem E.1, if
πref = πw, then the following ordering of policies based on increasing log-margins must hold:

Eyw∼πref
[log π∗(yw)]− Eyℓ∼πℓ

[log π∗(yℓ)] > Eyw∼πref
[log πref(yw)]− Eyℓ∼πℓ

[log πref(yℓ)]

> Eyw∼πref
[log πℓ(yw)]− Eyℓ∼πℓ

[log πℓ(yℓ)] .

Proof. Since we assume that πref = πw, we have π∗(y) ∝ πref(y) · (qπref/πℓ
(y))

1
β . Therefore, it

follows that

Eyw∼πref
[log π∗(yw)]− Eyℓ∼πℓ

[log π∗(yℓ)]−
(
Eyw∼πref

[log πref(yw)]− Eyℓ∼πℓ
[log πref(yℓ)]

)
=

1

β
Eyw∼πref

[log πref(yw)− log πℓ(yw)]−
1

β
Eyℓ∼πℓ

[log πref(yℓ)− log πℓ(yℓ)]

=
1

β
DKL [πref∥πℓ] +

1

β
DKL [πℓ∥πref ] > 0.

Thus we have proven the top inequality (1). Next, the bottom inequality (2) can be shown by the
following fact:

DKL [πref∥πℓ] > 0 > −DKL [πℓ∥πref ]

⇒
Eyw∼πref

[log πref(yw)− log πℓ(yw)] > Eyℓ∼πℓ
[log πref(yℓ)− log πℓ(yℓ)] .

This directly yields an information-theoretic triangle inequality within the DPO framework.

Corollary F.1.1 (Information-Theoretic Triangle Inequality of DPO). Under the conditions of The-
orem E.1, the following inequality holds:

DKL [πref∥πℓ] + DKL [πℓ∥π∗] > DKL [πref∥π∗] .

Proof. From Theorem F.1, it directly follows that

Eyw∼πref
[log π∗(yw)]− Eyℓ∼πℓ

[log π∗(yℓ)] > Eyw∼πref
[log πℓ(yw)]− Eyℓ∼πℓ

[log πℓ(yℓ)]

⇐⇒
DKL [πref∥πℓ]− DKL [πref∥π∗] > −DKL [πℓ∥π∗]

⇐⇒
DKL [πref∥πℓ] + DKL [πℓ∥π∗] > DKL [πref∥π∗] .

Although the KL-divergence does not generally satisfy a triangle inequality, Corollary F.1.1 shows
that DPO enforces this specific triangle inequality for the trio (πref , πℓ, π

∗).

Corollary F.1.1 establishes a fundamental lower bound in the information “cost” (KL-divergence) of
learning π∗ by contrasting πref against πℓ. It shows that the cost of updating π∗ back into πref via
πℓ must be larger than that of directly updating π∗ into πref .
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G LOG-LIKELIHOOD DISPLACEMENT AND DID ENTROPY

In this section, we provide a qualitative argument regarding the relationship between log-likelihood
displacement (LLD) and DID entropy discussed in Section 5.2. In particular, we present the follow-
ing informal claim.
Informal Claim G.1. Consider a policy π derived from πref such that DKL [π∥πref ] is bounded.
Assume that for any y′ ∈ {y ∈ Y | πref(y) ≈ 0}, we also have π(y′) ≈ 0 ≈ qπ/πref

(y′).

• If π is obtained by reinforcing πref (concentrating probability mass on modes of πref ), we
expect the DID to be deterministic, corresponding to learning a lower-entropy Differential
Information Distribution: H(qπ/πref

) < H(πref).

• If π is obtained by smoothing πref (spreading probability mass more broadly), we expect
the DID to be stochastic, corresponding to learning a higher-entropy Differential Informa-
tion Distribution: H(qπ/πref

) > H(πref).

Our assumptions is as follows:

1. For any y′ ∈ {y ∈ Y | πref(y) ≈ 0}, we have π(y′) ≈ 0 ≈ qπ/πref
(y′).

2. There is some reasonable upper-bound c > 0 such that DKL [πref∥π] < c.

The first condition assumes that πref is “reasonably” trained, in that for “meaningless” y′ such that
πref(y

′) ≈ 0, we also have π(y′) ≈ 0 ≈ qπ/πref
(y′). The second condition states that πref and π

should not differ significantly, such that DKL [πref∥π] is bounded.

We now consider each cases of policy reinforcing and smoothing, and infer the relationship between
H(qπ/πref

) and H(πref).

P
(Y

=
y
) πref

π

qπ/πref

Y−
{π < πref}

Figure 5: Illustration of policy reinforcement (left) and smoothing (right). The gray region corre-
sponds to Y− = {y′ ∈ Y | πref(y

′) ≈ 0}, and the light-blue region {π < πref} corresponds to
{ỹ ∈ Y | π(ỹ) < πref(ỹ)}. This plot serves only as an illustrative example and does not represent
the true DID qπ∗/πref

.

Case 1: Policy reinforcing. We first consider the case when the policy π reinforces its distribution
with respect to the reference policy πref . If π reinforces the distribution of πref , then under the
assumption of π(y′) ≈ 0 ≈ qπ/πref

(y′), samples with π(ỹ) < πref(ỹ) should satisfy π(ỹ)
πref (ỹ)

< 1 ≈
π(y′)

πref (y′) . Since qπ/πref
(ỹ) < qπ/πref

(y′) ≈ 0, we expect qπ/πref
(y) to concentrate its probability

mass towards samples with π(y) > πref(y) and sufficient probability of πref(y) > 0. Thus, the
number of samples y with sufficiently large qπ/πref

(y) is expected to be far less than the number
of samples with sufficiently large πref(y). As a result, we expect the relationship: H(qπ/πref

) <
H(πref). We visualize this intuition as the left plot in Figure 5.
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Case 2: Policy smoothing. Now, consider the case when the policy π smooths its distribution with
respect to πref . A key relation between H(qπ/πref

) and H(πref) is the following:

H(qπ/πref
)−H(πref) =

DKL

[
qπ/πref

∥π
]
− DKL

[
qπ/πref

∥πref

]
+ DKL

[
πref∥qπ/πref

]
− DKL [πref∥π] .

Since we have assumed that π and πref do not diverge significantly, we mainly expect the last two
terms to dominate:∣∣DKL

[
qπ/πref

∥π
]
− DKL

[
qπ/πref

∥πref

]∣∣ < ∣∣DKL

[
πref∥qπ/πref

]
− DKL [πref∥π]

∣∣ .
See the right plot in Figure 5 for a visual intuition. When π smooths its distribution with re-
spect to πref , we can expect DKL

[
πref∥qπ/πref

]
> DKL [πref∥π]. This results in the relationship:

H(qπ/πref
) > H(πref).

H DERIVATIONS AND PROOFS

In this section we provide the detailed proofs supporting our theoretical findings.

H.1 PROOF FOR EQUIVALENCE OF PREFERENCE OPTIMIZATION

Theorem (Preference vs. Distribution Matching (Dumoulin et al., 2023)). Let D = {(yw, yℓ)}
be a sufficiently large preference dataset where the sets of yw and yℓ cover Y . Then preference
optimization on D is equivalent to fitting the reward-induced distribution P (Y = y | r) to the
implicit preference distribution p∗(y):

max
r

E(yw,yℓ)∼D [log σ(r(yw)− r(yℓ))] ⇐⇒ min
r

DKL [p
∗(y)∥P (Y = y | r)] .

We restate the proof in Dumoulin et al. (2023) for reference.

Proof. Recall from Section 2 that we model the ground truth probability of y1 being preferred over
y2 as

p∗(y1 ≻ y2) =
πw(y1)πℓ(y2)

πw(y1)πℓ(y2) + πw(y2)πℓ(y1)
.

Now, for a sufficiently large preference dataset D, we can show that preference optimization is
equivalent to minimizing the KL-divergence between the preference distributions. First, observe the
following relationship:

E(yw,yℓ)∼D [log σ(r(yw)− r(yℓ))] =
∑

(yw,yℓ)∈Y×Y
πw(yw)πℓ(yℓ) log σ(r(yw)− r(yℓ))

=
∑

(yw,yℓ)∈I

(
πw(yw)πℓ(yℓ) + πw(yℓ)πℓ(yw)

)[ πw(yw)πℓ(yℓ)

πw(yw)πℓ(yℓ) + πw(yℓ)πℓ(yw)
log σ(r(yw)− r(yℓ))

+
πw(yℓ)πℓ(yw)

πw(yw)πℓ(yℓ) + πw(yℓ)πℓ(yw)
log σ(r(yℓ)− r(yw))

]
= −1

2
E(yw,yℓ)∼D

[
− p∗(yw ≻ yℓ) log p(yw ≻ yℓ | r)− p∗(yℓ ≻ yw) log p(yℓ ≻ yw | r)

]
= −1

2
E(yw,yℓ)∼D

[
DKL [p

∗(yw ≻ yℓ)∥p(yw ≻ yℓ | r)]
]
+ C,

where I = {(yi, yj) ∈ Y × Y : i > j} is the set of ordered distinct pairs (yi, yj), and C is a
constant term independent of r. Therefore, preference optimization is equivalent to minimizing the
KL-divergence between preference distributions:

argmax
r

E(yw,yℓ)∼D [log σ(r(yw)− r(yℓ))]

= argmin
r

E(yw,yℓ)∼D
[
DKL [p

∗(yw ≻ yℓ)∥p(yw ≻ yℓ | r)]
]
.
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Now, for any two reward parameterizations r1 and r2, DKL [p(yw ≻ yℓ | r1)∥p(yw ≻ yℓ | r2)] is
minimized to 0 if and only if r1(y) = r2(y) + C for all y ∈ Y and for some constant C. If we
let r1(y) = log p∗(y), we have p(yw ≻ yℓ | r1) = p∗(yw ≻ yℓ). Next, set r(y) = r2(y) and the
following holds:

E(yw,yℓ)∼D [DKL [p(yw ≻ yℓ | r1)∥p(yw ≻ yℓ | r2)]] = 0 ⇐⇒
E(yw,yℓ)∼D [DKL [p

∗(yw ≻ yℓ)∥p(yw ≻ yℓ | r)]] = 0 ⇐⇒
∀y ∈ Y : log p∗(y) = r(y) + C ⇐⇒

∀y ∈ Y : p∗(y) ∝ exp(r(y)) ⇐⇒
∀y ∈ Y : p∗(y) = P (Y = y | r) ⇐⇒
DKL [p

∗(y)∥P (Y = y | r)] = 0.

Therefore, for any reward parameterization r : Y → R, the preference optimization objective is
optimized only when the reward induced distribution P (Y = y | r) := exp(r(y))∑

y′∈Y exp(r(y′)) is exactly

the same as the ground truth preference distribution p∗(y).

H.2 PROOF FOR PREFERENCES ENCODING DIFFERENTIAL INFORMATION

Theorem (Preferences Encoding Differential Information). Consider a preference dataset D =
{(yw, yℓ) | yw ∼ πw, yℓ ∼ πℓ}. Let π∗ be the target policy. If the Differential Information Distribu-
tion between policies match up to an exponent β > 0:

qπw/πℓ
(y) ∝ qπ∗/πref

(y)β , ∀y ∈ Y,

then the preference probability p∗(yw ≻ yℓ) can be expressed as preferences induced by the DID:

p∗(yw ≻ yℓ) = σ
(
β log qπ∗/πref

(yw)− β log qπ∗/πref
(yℓ)

)
.

Proof. The relationship follows by directly applying the power-law DID relationship to the ground-
truth preference probability.

p∗(y1 ≻ y2) =
πw(y1)πℓ(y2)

πw(y1)πℓ(y2) + πw(y2)πℓ(y1)

=

πw(y1)
πℓ(y1)

πw(y1)
πℓ(y1)

+ πw(y2)
πℓ(y2)

= σ

(
log

πw(y1)

πℓ(y1)
− log

πw(y2)

πℓ(y2)

)
= σ

(
log qπw/πℓ

(y1)− log qπw/πℓ
(y2)

)
= σ

(
β log qπ∗/πref

(y1)− β log qπ∗/πref
(y2)

)
.

H.3 PROOF FOR OPTIMAL REWARD FOR LEARNING DIFFERENTIAL INFORMATION

Theorem (Optimal Reward for Learning Differential Information). Let D be a preference dataset
satisfying Theorem 3.1, encoding the Differential Information required to learn the target policy π∗.
Then, for some constant C, we have

π∗ = argmax
π

E(yw,yℓ)∼D [log σ(r(yw)− r(yℓ))] ⇐⇒ r(y) = β log
π(y)

πref(y)
+ C.

for some constant C.

Proof. The equivalence between preference optimization and distribution matching (Theorem 2.1)
yields the following relationship:

E(yw,yℓ)∼D [DKL [p
∗(yw ≻ yℓ)∥p(yw ≻ yℓ | r)]] = 0 ⇐⇒

E(yw,yℓ)∼D [DKL [p(yw ≻ yℓ | r∗)∥p(yw ≻ yℓ | r)]] = 0 ⇐⇒
DKL [P (Y = y | r∗)∥P (Y = y | r)] = 0,
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where r∗ = β log π∗

πref
. Now, observe the following relationship:

∀y ∈ Y, π∗(y) = π(y) ⇐⇒
∀y ∈ Y, qπ∗/πref

(y) = qπ/πref
(y) ⇐⇒

∀y ∈ Y, qπ∗/πref
(y)β = qπ/πref

(y)β ⇐⇒
DKL

[
qπ∗/πref

(y)β∥qπ/πref
(y)β

]
= 0 ⇐⇒

DKL

[
P (Y = y | r∗)∥qπ/πref

(y)β
]
= 0,

where the last line follows from the fact that r∗ = β log π∗

πref
.

Therefore, in order to have the following equivalence:

E(yw,yℓ)∼D [p∗(yw ≻ yℓ)∥p(yw ≻ yℓ | r)] = 0 ⇐⇒ π∗ = π,

we must have DKL

[
P (Y = y | r)∥qπ/πref

(y)β
]
= 0. In other words, we require

DKL

[
P (Y = y | r)∥qπ/πref

(y)β
]
= 0 ⇐⇒

∀y ∈ Y, P (Y = y | r) = qπ/πref
(y)β ⇐⇒

∀y ∈ Y, exp(r(y)) ∝ (
π(y)

πref(y)
)β ⇐⇒

∀y ∈ Y, r(y) = β log
π(y)

πref(y)
+ C,

for some constant C.

H.4 PROOF FOR POWER-LAW STRUCTURE OF DPO

Corollary (DID Power-Law of DPO). Consider a preference dataset D = {(yw, yℓ) | yw ∼
πw, yℓ ∼ πℓ} and a policy π∗ obtained as a stationary point of preference optimization using
the log-ratio reward r = β log(π/πref) on D. Then, a power-law relationship between the DID
of policies must hold:

qπw/πℓ
(y) ∝ qπ∗/πref

(y)β , ∀y ∈ Y.

Proof. According to Theorem 2.1, the converged policy π∗ obtained by optimizing D with rDPO =

β log π/πref must follow π∗(y) ∝ πref(y) · (p∗(y))
1
β due to the following:

p∗(y) = P (Y = y | rDPO) ∝ qπ∗/πref
(y)β , ∀y ∈ Y

⇐⇒ (p∗(y))
1
β ∝ qπ∗/πref

(y), ∀y ∈ Y
⇐⇒ π∗(y) ∝ πref(y) · (p∗(y))

1
β . ∀y ∈ Y

Meanwhile, it can also be shown that p∗ = qπw/πℓ
. This because the reward r′ = log πw/πℓ

perfectly fits the ground-truth preference distribution. For all y1, y2 ∈ Y × Y ,

p∗(y1 ≻ y2) =
πw(y1)πℓ(y2)

πw(y1)πℓ(y2) + πw(y2)πℓ(y1)

= σ

(
log

πw(y1)

πℓ(y1)
− log

πw(y2)

πℓ(y2)

)
= σ (r′(y1)− r′(y2))

⇒ p∗(y) = P (Y = y | r′) = qπw/πℓ
(y), ∀y ∈ Y (Theorem 2.1).

Since π∗(y) ∝ πref(y) · (p∗(y))
1
β and p∗ = qπw/πℓ

, the power-law DID relationship qπw/πℓ
(y) ∝

qπ∗/πref
(y)β follows directly.

Note that this result recovers the findings of Pan et al. (2025), where the authors derive the power-
law DID relationship from the functional derivative of the DPO loss. In contrast, our proof takes an
alternative approach by leveraging the distribution matching result of Theorem 2.1 (Dumoulin et al.,
2023).
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H.5 PROOF FOR LOG-LIKELIHOOD CHANGES IN DPO

Theorem (Log-Likelihood Change of DPO). Consider a preference dataset D = {(yw, yℓ) | yw ∼
πref , yℓ ∼ πℓ}, and π∗ obtained by preference optimization on D using the log-ratio reward r =
β log π/πref . Then, for any β > 0, π∗ must decrease the average log-likelihood of yℓ:

Eyℓ∼πℓ
[log π∗(yℓ)] < Eyℓ∼πℓ

[log πref(yℓ)] .

Conversely, if πref was fine-tuned on yℓ (i.e., yℓ ∼ πref ), then, for any β ≥ 1, π∗ must increase the
average log-likelihood of yw:

Eyw∼πw
[log π∗(yw)] > Eyw∼πw

[log πref(yw)] .

Proof.

Case πref = πw: Assume β > 0. Let Z =
∑

y∈Y πref(y) · (πref (y)
πℓ(y)

)
1
β . It can be shown that

logZ > 0 due to the following:

logZ = log
∑
y∈Y

πref(y) · (
πref(y)

πℓ(y)
)

1
β

= log
∑
y∈Y

πℓ(y) · (
πref(y)

πℓ(y)
)1+

1
β

= logEy∼πℓ

[
(
πref(y)

πℓ(y)
)1+

1
β

]
> log

(
Ey∼πℓ

[
πref(y)

πℓ(y)

])1+ 1
β

(Jensen’s Inequality)

= (1 +
1

β
) log 1 = 0.

Since π∗(y) ∝ πref(y) · p∗(y)
1
β and p∗ = qπw/πℓ

= qπref/πℓ
, it follows that π∗(y) ∝

πref(y) · (qπref/πℓ
(y))

1
β . Therefore, we have

Eyℓ∼πℓ
[log π∗(yℓ)− log πref(yℓ)]

=
1

β

∑
y∈Y

πℓ(y) log
πref(y)

πℓ(y)Z

= − 1

β
DKL [πℓ∥πref ]− logZ < 0 ∵ DKL [πℓ∥πref ] > 0 and logZ > 0.

Case πref = πℓ: Assume β ≥ 1 and πref ̸= πw. Let Z =
∑

y∈Y πref(y) · ( πw(y)
πref (y)

)
1
β . It can be

shown that logZ < 0 due to the following:

logZ = log
∑
y∈Y

πref(y) · (
πw(y)

πref(y)
)

1
β

= log
∑
y∈Y

πw(y)
1
β · (πref(y))

1− 1
β

< log


∑

y∈Y
πw(y)

 1
β

·

∑
y∈Y

πref(y)

1− 1
β

 (Hölder’s Inequality)

= log (1 · 1) = 0.
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Since π∗(y) ∝ πref(y) · p∗(y)
1
β and p∗ = qπw/πℓ

= qπw/πref
, it follows that π∗(y) ∝

πref(y) · (qπw/πref
(y))

1
β . Therefore, we have

Eyw∼πw [log π
∗(yℓ)− log πref(yℓ)]

=
1

β

∑
y∈Y

πw(y) log
πw(y)

πref(y)Z

=
1

β
DKL [πw∥πref ]− logZ > 0 ∵ DKL [πw∥πref ] > 0 and logZ < 0.

H.6 PROOF FOR PREFERENCE DATA STRENGTH

Theorem (Adaptive Policy Exploration of DPO). Let D = {(yw, yℓ) | yw ∼ πref , yℓ ∼ πℓ} be
a preference dataset with an implicit Bradley-Terry preference distribution p∗D. Consider another
dataset D′ = {(yw, yℓ)} whose implicit Bradley-Terry distribution p∗D′ is a “sharpened” version of
p∗D, in the sense that there exists α > 1 such that for all pairs (yw, yℓ) ∈ Y × Y ,

p∗D′(yw ≻ yℓ) =

(
p∗D(yw)

)α(
p∗D(yw)

)α
+
(
p∗D(yℓ)

)α = exp
(
α log p∗D(yw)− α log p∗D(yℓ)

)
.

For the same reference policy πref and any β > 0, let π∗
D and π∗

D′ denote the policies obtained
by preference optimization on D and D′, respectively, using the log-ratio reward r = β log π/πref .
Then the strengthened dataset D′ induces a strictly larger divergence from the reference:

DKL [πref∥π∗
D′ ] > DKL [πref∥π∗

D] .

Proof. Let us denote ZD =
∑

y πref(y)(
πref (y)
πℓ(y)

)
1
β and ZD′ =

∑
y πref(y)(

πref (y)
πℓ(y)

)
α
β . Observe the

following:

π∗
D(y) =

πref(y) · (πref (y)
πℓ(y)

)
1
β

ZD
, π∗

D(y) =
πref(y) · (πref (y)

πℓ(y)
)

α
β

ZD′
.

Therefore, we can express the difference in the KL-divergence as

DKL [πref∥π∗
D′ ]− DKL [πref∥π∗

D] =
∑
y∈Y

πref(y) log
πref(y)

π∗
D′(y)

−
∑
y∈Y

πref(y) log
πref(y)

π∗
D(y)

=
∑
y∈Y

πref(y) log
π∗
D(y)

π∗
D′(y)

= log
ZD′

ZD′
+

1− α

β
DKL [πref∥πℓ] .

Now, let r(y) = πref (y)
πℓ(y)

and X = log r(y). Also, define the cumulant-generating function K(t):

K(t) = logEπref
[etX ] = log

∑
y∈Y

πref(y)r(y)
t.

Then, we have the following:

log
ZD′

ZD
= K(

α

β
)−K(

1

β
), DKL [πref∥πℓ] = Eπref

[X] = K ′(0),

where K ′(t) = d
dtK(t).

Therefore, we obtain the following expression:

DKL [πref∥π∗
D′ ]− DKL [πref∥π∗

D] = K(
α

β
)−K(

1

β
) +

1− α

β
K ′(0).
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Since the cumulant-generating function K(t) is convex and twice differentiable, we have

K(
α

β
) ≥ K(

1

β
) +

(
α

β
− 1

β

)
K ′(

1

β
)

⇐⇒ K(
α

β
)−K(

1

β
) ≥

(
α

β
− 1

β

)
K ′(

1

β
).

Meanwhile, since K ′(t) is non-decreasing due to convexity, we have K ′( 1β ) > K ′(0). Therefore,
we arrive at the final relationship:

DKL [πref∥π∗
D′ ]− DKL [πref∥π∗

D] ≥
α− 1

β

(
K ′(

1

β
)−K ′(0)

)
> 0,

where the strict inequality comes from πref ̸= πℓ.

I DPO-PROJECTED GRADIENT (DPO-PG)

While several variants of DPO have been proposed to address log-likelihood displacement (Pal et al.,
2024; Xiao et al., 2024a), we observed that these methods exhibit instability when scaled to large
datasets (approximately 100,000 samples) and trained over multiple epochs (e.g., 5 epochs in our
experiments of Section 5.2). A proper alternative that prevents LLD should increase log π(yw)
while reducing the DPO loss to a comparable extent. Without achieving a comparable reduction
in the DPO loss, it becomes difficult to argue that this method has properly learned the underlying
preference distribution.

Training Steps

Figure 6: Testing DPOP (Pal et al., 2024) and Cal-DPO (Xiao et al., 2024a) on Magpie dataset.
We found that DPOP fails to optimize the log-margin as effectively as vanilla DPO. Meanwhile, we
found that Cal-DPO is unstable at preventing log-likelihood displacement.

Despite extensive experiments with various hyper-parameters, we failed to find a setting for both
DPOP (Pal et al., 2024) and Cal-DPO (Xiao et al., 2024a) which met this criterion reliably (Figure 6).
This motivated us to design a new method that reliably prevents log-likelihood displacement while
ensuring optimization of the DPO loss. The result is DPO-PG, a method grounded in projected
gradient descent.

As its name implies, DPO-Projected Gradient (DPO-PG) leverages projected gradient descent (Boyd
& Vandenberghe, 2014) to reinforce the policy distribution while optimizing the DPO objective.
Specifically, it increases log π(yw) while maintaining or decreasing log π(yℓ). Due to the log-margin
term in the DPO loss, DPO-PG is guaranteed to reduce the DPO loss under sufficiently small step
sizes (Corollary I.5.1).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The primary advantage of using DPO-PG over other DPO variants (e.g., DPOP (Pal et al., 2024),
Cal-DPO (Xiao et al., 2024a)) is that DPO-PG can reliably optimize the DPO loss while increasing
both log π(yw) and the log-margin log π(yw) − log π(yℓ), all without introducing any additional
hyper-parameters. We empirically confirm that DPO-PG prevents LLD from Figure 8, and that it
also optimizes the DPO loss to a comparable extent in Figure 9.
Definition I.1. DPO-Projected Gradient (DPO-PG): θk+1 = θk−η(∇L(yw)− α

||∇L(yℓ)||22
∇L(yℓ)),

where θk denotes the parameter at training step k, η > 0 is the step size, and α = max(0,∇L(yw) ·
∇L(yℓ)).

Here, L(y) is the negative log-likelihood loss: − 1
M

∑M
i=1 log π(y

(i)), where M is the batch size,
and y(i) is the i-th element in the batch. In practice, when using any non-SGD optimizer (e.g., Adam
(Kingma & Ba, 2015), RMSprop (Tieleman & Hinton, 2012)), we set the parameters’ gradient as
∇L(yw) − α

||∇L(yℓ)||22
∇L(yℓ) and update its parameters following the optimizer’s algorithm. For

gradient-clipping, we clip the L2 norm of ∇L(yw)− α
||∇L(yℓ)||22

∇L(yℓ).

We now show that DPO-PG decreases L(yw) while maintaining or increasing L(yℓ), for sufficiently
small step sizes. We begin with the definition of descent direction (Boyd & Vandenberghe, 2014):
Definition I.2. For some function f : RD → R, and a point θ ∈ RD, a direction ∆θ ∈ RD is called
a descent direction if there exists ᾱ > 0 such that f(θ + α∆θ) < f(θ),∀α ∈ (0, ᾱ).

The following well-known lemma allows one to verify whether a direction is a descent direction of
some differentiable objective function f (Boyd & Vandenberghe, 2014).
Lemma I.3. Consider a point θ ∈ RD. Any direction ∆θ ∈ RD satisfying ∆θ · ∇f(θ) < 0 is a
descent direction.

We now analyze the properties of the update direction of DPO-PG: ∆θ = θk+1 − θk =

−η{∇L(yw)−max(0,∇L(yw)·∇L(yℓ))
||∇L(yℓ)||22

∇L(yℓ)}. The following theorem states that DPO-PG increases
the log-likelihood of yw.
Theorem I.4. ∆θ is a descent direction of the negative log-likelihood of the chosen responses
− 1

MΣM
i=1 log π(y

(i)
w ) = L(yw).

Proof. Regardless of the sign value of ∇L(yw) · ∇L(yℓ), we can show that ∆θ · ∇L(yw) < 0.

Case 1: If we have ∇L(yw) · ∇L(yℓ) > 0, it follows that

∆θ · ∇L(yw) = −η{||∇L(yw)||22 −
∇L(yw) · ∇L(yℓ)

||∇L(yℓ)||22
∇L(yℓ) · ∇L(yw)}

= − η

||∇L(yℓ)||22
{||∇L(yw)||22 · ||∇L(yℓ)||22 − (∇L(yℓ) · ∇L(yw))

2} < 0,

where the last inequality follows from the Cauchy-Schwarz inequality: ||∇L(yw)||22 · ||∇L(yℓ)||22 >
||∇L(yw) · ∇L(yℓ)||22 > 0.

Case 2: Otherwise, we have ∇L(yw) · ∇L(yℓ) ≤ 0 and it follows that ∆θ · ∇L(yw) =
−η||∇L(yw)||22 < 0.

Conversely, we can show that DPO-PG decreases or maintains the log-likelihood of yℓ.
Theorem I.5. ∆θ is not a descent direction of the negative log-likelihood of the rejected responses
− 1

MΣM
i=1 log π(y

(i)
ℓ ) = L(yℓ).

Proof. We have ∆θ ·∇L(yℓ) = −η{∇L(yw) ·∇L(yℓ)−max(0,∇L(yw) ·∇L(yℓ))} ≥ 0. In other
words, ∆θ is either orthogonal or an ascent direction to the negative log-likelihood of the rejected
responses yℓ.

Meanwhile, various offline preference optimization methods can be characterized as solving the
following objective (Tang et al., 2024):

argmin
θ

E(yw,yℓ)∈D

[
f(β log

πθ(yw)

πref(yw)
− β log

πθ(yℓ)

πref(yℓ)
)

]
,
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where f denotes any valid supervised binary classification loss function (Hastie, 2009). As a conse-
quence of Theorems I.4 and I.5, DPO-PG is able to optimize a wide variety of preference optimiza-
tion objectives including DPO (Tang et al., 2024).
Corollary I.5.1. For any valid supervised binary classification loss function f with f ′(·) < 0, ∆θ

is a descent direction to the loss f(β · (log πθ(yw)
πref(yw) − log πθ(yℓ)

πref(yℓ)
)) where β > 0.

Proof.

∆θ · ∇f(β log
πθ(yw)

πref(yw)
− β log

πθ(yℓ)

πref(yℓ)
)

= ∆θ · βf ′
(
β log

πθ(yw)

πref(yw)
− β log

πθ(yℓ)

πref(yℓ)

)
(∇L(yw)−∇L(yℓ))

= β f ′
(
β log

πθ(yw)

πref(yw)
− β log

πθ(yℓ)

πref(yℓ)

)
︸ ︷︷ ︸

f ′(·)<0

(∆θ · ∇L(yw)︸ ︷︷ ︸
>0

−∆θ · ∇L(yℓ)︸ ︷︷ ︸
≤0

).

From Lemma I.4, we have ∆θ · ∇L(yw) > 0, and from Lemma I.5, we have ∆θ · ∇L(yℓ) ≤ 0.
Thus, we have (∆θ · ∇L(yw) − ∆θ · ∇L(yℓ)) > 0. Since β > 0 and βf ′(·) < 0, it follows that
∆θ · ∇f(β log πθ(yw)

πref(yw) − β log πθ(yℓ)
πref(yℓ)

) < 0.

To summarize, Lemma I.4 ensures that only log π(yw) (and not log π(yℓ)) increases during training,
for sufficiently small step sizes. This ensures policy reinforcement with respect to πref . Corol-
lary I.5.1 further ensures that DPO-PG optimizes the DPO loss, too. We empirically validate that
DPO prevents LLD in Figure 8, and also confirm that DPO-PG successfully optimizes the DPO loss
in Figure 9.
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J ADDITIONAL EXPERIMENTAL RESULTS
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Figure 7: Validation of Theorem 3.2: Comparison of the Jensen-Shannon Divergence DJS[π
∗∥π]

during training using different objectives on the synthetic dataset of Section 3.3. Standard DPO
(r = log(π/πref), purple) consistently minimizes the divergence to the target policy π∗. This
demonstrates its optimality when preferences encode the Differential Information required to up-
date the reference policy πref into the target policy π∗.
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lo
g
π

(y
)

Training Steps

Figure 8: Log-likelihood change for DPO-PG across all experimental configurations. Overall,
DPO-PG consistently increases the log-likelihood of yw, while decreasing or maintaining the log-
likelihood of yℓ.
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Figure 9: DPO loss for DPO-PG across all experimental configurations. The DPO loss is computed
using β = 0.1. DPO-PG is able to optimize the DPO loss regardless of the model architecture or
dataset, validating Corollary I.5.1. In conjunction with Figure 8, DPO-PG is able to prevent log-
likelihood displacement while still optimizing the DPO objective.
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Figure 10: Log-likelihood change of yw for DPO across all experimental configurations. The log-
likelihood of chosen responses decreases throughout the training process, indicating log-likelihood
displacement.
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Figure 11: Log-likelihood change of yℓ for DPO across all experimental configurations.
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Table 2: Evaluation results for open-ended instruction-following. We report the win-rate [%] for
Arena-Hard-v0.1 and ELO score for Wild-Bench-v2, with the 95% confidence interval. We also
specify the selected best epoch following the procedure in Appendix K.2, and highlight the model
with the best Arena-Hard win-rate in bold. The DID entropy (H(qπ∗/πref

), [nats]) is estimated by
importance sampling (Appendix D.5). Standard DPO, which exhibits LLD and learns a high-entropy
DID, outperforms DPO-PG, which prevents LLD and learns a lower-entropy DID. This suggests that
knowledge required for such open-ended tasks is associated with high-entropy DID.

(a) Mistral7B-v0.3 trained on Magpie-Pro

Method Best Epoch H(qπ∗/πref
) Arena-Hard-v0.1 Wild-Bench-v2

DPO β = 1.0 3 1123.23 19.1 (-1.4, 2.0) 1141.47 (-10.17, 10.36)
DPO β = 0.2 4 1303.44 18.5 (-1.4, 1.6) 1145.34 (-9.79, 11.10)
DPO β = 0.1 1 1253.89 23.4 (-1.9, 2.0) 1146.63 (-11.99, 9.52)

DPO β = 0.05 1 970.21 22.4 (-1.7, 1.9) 1145.32 (-14.83, 12.52)
DPO-PG 5 495.12 19.6 (-1.9, 1.6) 1129.92 (-12.92, 11.83)

(b) Mistral7B-v0.3 trained on Magpie-G27

Method Best Epoch H(qπ∗/πref
) Arena-Hard-v0.1 Wild-Bench-v2

DPO β = 1.0 4 836.56 30.4 (-2.2, 2.0) 1140.56 (-12.72, 12.72)
DPO β = 0.2 2 576.85 30.0 (-2.6, 1.9) 1145.25 (-13.79, 13.36)
DPO β = 0.1 2 509.92 27.7 (-2.0, 2.4) 1146.87 (-13.20, 10.76)

DPO β = 0.05 1 694.96 27.0 (-2.3, 2.0) 1149.51 (-14.38, 14.72)
DPO-PG 5 378.07 24.0 (-1.9, 1.4) 1130.62 (-15.76, 15.07)

(c) Qwen3-4B trained on Magpie-Pro

Method Best Epoch H(qπ∗/πref
) Arena-Hard-v0.1 Wild-Bench-v2

DPO β = 1.0 2 9158.43 30.7 (-1.4, 2.0) 1134.39 (-15.73, 12.99)
DPO β = 0.2 3 4765.94 28.1 (-2.2, 2.1) 1146.17 (-11.92, 11.28)
DPO β = 0.1 4 7663.28 27.5 (-1.9, 1.9) 1148.22 (-8.99, 9.43)

DPO β = 0.05 4 6801.18 43.7 (-2.9, 2.2) 1164.49 (-9.68, 13.13)
DPO-PG 5 388.24 37.4 (-2.2, 2.4) 1148.50 (-15.64, 11.74)

(d) Qwen3-4B trained on Magpie-G27

Method Best Epoch H(qπ∗/πref
) Arena-Hard-v0.1 Wild-Bench-v2

DPO β = 1.0 2 6606.27 43.1 (-2.9, 2.5) 1157.95 (-14.05, 16.92)
DPO β = 0.2 5 14744.58 48.8 (-2.5, 2.8) 1165.78 (-11.16, 11.72)
DPO β = 0.1 3 3048.57 53.1 (-2.5, 2.3) 1173.52 (-15.24, 13.22)

DPO β = 0.05 4 11705.65 54.0 (-2.7, 2.4) 1177.44 (-12.57, 13.84)
DPO-PG 4 400.75 40.0 (-2.8, 2.1) 1160.97 (-11.34, 12.47)
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Figure 12: Mean reciprocal rank (MRR) across 8 knowledge-intensive QA benchmarks during train-
ing. The MRR is computed following the procedure in Appendix K.2. Preventing LLD (DPO-PG)
outperforms standard DPO which exhibits LLD. As DPO-PG learns a low-entropy DID compared to
standard DPO (Table 2), this suggests that the knowledge for factual QA is mainly associated with
low-entropy DID.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

K EXPERIMENTAL SETUP

K.1 CONTROLLED SETTING

We conduct controlled experiments involving Energy Based Models (EBMs) in a free-tier Google
Colaboratory6 CPU environment, using PyTorch (Paszke et al., 2019). We use torch.float32 as
the default data type. We set the total class size as 32, and use a batch size of 512 and fix the training
seed to 42 for reproducibility. We utilize the RMSprop (Tieleman & Hinton, 2012) optimizer with
gradient clipping at maximum norm of 1.0. We use a constant learning rate of 0.001.

Figures 1 and 7. For fair comparison, we follow Meng et al. (2024) in extensively searching the
hyper-parameters for the following baseline methods:

• SLiC (Zhao et al., 2023b): β ∈ {0.1, 0.5, 1.0, 2.0}, λ ∈ {0.1, 0.5, 1.0, 10.0}.

• ORPO (Hong et al., 2024): β ∈ {0.1, 0.5, 1.0, 2.0}.

• SimPO (Meng et al., 2024): β ∈ {2.0, 2.5}, γ ∈ {0.3, 0.5, 1.0, 1.2, 1.4, 1.6}.

• Cal-DPO (Xiao et al., 2024a): β ∈ {0.001, 0.002, 0.003, 0.01, 0.1}.

The best hyper-parameter is chosen based on the minimum value of DJS[π
∗∥π] achieved through-out

the training process.

For Figure 1 (left) we train for a total of 10,000 steps. For Figure 1 (right) and 7, we train for a total
of 7,500 steps due to the large number of training configurations as listed above.

Figure 2. We train for a total of 7,500 training steps. The left plot tests β ∈ {0.05, 0.1, 0.5, 1, 2, 5},
and the right plot tests β ∈ {1, 2, 4, 8, 16, 32} following the β conditions in Theorem 4.1.

Figure 3. We train for a total of 20,000 training steps. For the baseline dataset D (α = 1), we test
β ∈ {0.25, 0.5, 1, 2, 4}, and for the strengthened dataset D′ (α = 2), we test β ∈ {0.5, 1, 2, 4, 8}.

Figure 4. We train for a total of 5,000 training steps, averaging over five training seeds: [42, 43,
44, 45, 46]. We measure the converged JS-divergence by averaging the DJS[π

∗∥π] of the last 50
training steps.

K.2 REAL-WORLD SETTING

Magpie-G27 dataset. Magpie-G27 is an instruction-following preference dataset built from
the prompts of Magpie-Air7 and completed with responses generated by a stronger model
(google/gemma-2-27b-it) (Team, 2024). Prompts in Magpie-G27 are disjoint from those
in the Magpie-Pro dataset8. For each prompt, we sample five completions via vLLM (Kwon et al.,
2023) using the following sampling configuration:

{n=5, temperature=0.9, top p=1, max tokens=4096, seed=42}.

We then score these completions with a strong off-the-shelf reward model
Skywork/Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024a) and select the
highest- and lowest-scoring responses as yw and yℓ, respectively.

Training setup. To isolate the impact of alignment methods, we use pre-trained base models (i.e.,
not instruction-tuned) paired with the official chat templates of their instruction-tuned counterparts.
Specifically, we utilize the chat-template of mistralai/Mistral-7B-Instruct-v0.3
for Mistral7B-v0.3, and the chat-template of Qwen/Qwen3-4B-Instruct-2507 for
Qwen3-4B with its thinking-tags removed.

6https://colab.google/
7https://huggingface.co/datasets/Magpie-Align/Magpie-Air-DPO-100K-v0.1
8https://huggingface.co/datasets/Magpie-Align/Magpie-Llama-3.

1-Pro-DPO-100K-v0.1
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Reference policy setup. To prepare the reference policy, we fine-tune the base model on the chosen
responses, following standard practice (Rafailov et al., 2023; 2024). We train for one epoch with an
effective batch size of 256, using the Adam optimizer (Kingma & Ba, 2015) (default β0, β1; weight
decay = 0). Training proceeds with a constant learning-rate of 5× 10−6 and a linear warm-up over
the first 10% of steps. The objective is standard cross-entropy loss applied to the full token sequence
(including prompts and chat-template tokens). We fix the random seed to 0.

Preference optimization. During the alignment phase, we train for five epochs with an effective
batch size of 64 using RMSprop (Tieleman & Hinton, 2012) with no weight decay. We adopt
a constant learning rate of 1 × 10−6, with 150-step linear warm-up and compute loss only over
generated completions. For Qwen3-4B under DPO-PG, we increase the learning rate to 1× 10−5,
as this setting leads to more effective optimization, preventing LLD while optimizing the DPO loss
(Appendix I). We fix the random seed to 1. Models checkpoints are saved after each epoch and
trained in bfloat16 precision. For DPO trained models, we test β ∈ {0.05, 0.1, 0.2, 1.0}.

Infrastructure and throughput. All experiments use PyTorch FSDP (Zhao et al., 2023a) on
NVIDIA A100 GPUs, with prompt lengths capped at 2,048 tokens and total sequence lengths at
4,096 tokens. Training Mistral7B-v0.3 with DPO on 8 A100 GPUs takes approximately 3
hours for 1 Epoch on Magpie-Pro/G27, while Qwen3-4B on 4 A100 GPUs requires about the same
time for the same data size.

Evaluation. We select the best checkpoint by absolute win-rate on Arena-Hard-v0.1 using
gpt-4.1-nano-2025-04-14 as the judge. Final performance on the Arena-Hard benchmark
is reported using the judge gpt-4.1-2025-04-14 to reduce evaluation costs, following Mao
et al. (2024). For Wild-Bench-v2, we use gpt-4o-2024-08-06 as recommended in the official
repository.9 During inference, we greedy-decode up to 4,096 tokens with vLLM. QA benchmarks
are evaluated via the lm-evaluation-harness (Gao et al., 2024). The QA benchmarks con-
sist of the following: PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,
2019), ARC-Easy/Challenge (Clark et al., 2018), MMLU (Hendrycks et al., 2021), GSM8k (Cobbe
et al., 2021), and BoolQ (Clark et al., 2019).

The mean reciprocal rank (MRR) in Table 1 and Figure 12 provides a single aggregated metric for
performance across the 8 QA benchmarks, each with its own primary metric. The procedure for
measuring MRR is as follows.

1. For each of the 8 benchmarks, we evaluate all models using a pre-defined standard perfor-
mance metric:

• ARC-Easy/Challenge, BoolQ, MMLU, PIQA, SIQA: Accuracy.
• HellaSwag: Normalized Accuracy.
• GSM8K: Exact Match (flexible-extract).

2. Based on these scores, we rank the models for each benchmark.
3. We then calculate the reciprocal of each model’s rank and average these reciprocal ranks

across all 8 benchmarks to obtain the final MRR score.

9https://github.com/allenai/WildBench
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