
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEP LINEAR HAWKES PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Marked temporal point processes (MTPPs) are used to model sequences of dif-
ferent types of events with irregular arrival times, with broad applications rang-
ing from healthcare and social networks to finance. We address shortcomings
in existing point process models by drawing connections between modern deep
state-space models (SSMs) and linear Hawkes processes (LHPs), culminating in
an MTPP that we call the deep linear Hawkes process (DLHP). The DLHP mod-
ifies the linear differential equations in deep SSMs to be stochastic jump differ-
ential equations, akin to LHPs. After discretizing, the resulting recurrence can
be implemented efficiently using a parallel scan. This brings parallelism and lin-
ear scaling to MTPP models. This contrasts with attention-based MTPPs, which
scale quadratically, and RNN-based MTPPs, which do not parallelize across the
sequence length. We show empirically that DLHPs match or outperform existing
models across a broad range of metrics on eight real-world datasets. Our proposed
DLHP model is the first instance of the unique architectural capabilities of SSMs
being leveraged to construct a new class of MTPP models.

1 INTRODUCTION

Figure 1: Intensity estimates from trained
models when conditioned on an empty se-
quence Ht = ∅ for NHP (Mei & Eisner, 2017)
and DLHP, our method. Shown in dotted lines
are the ground truth, inhomogeneous Poisson
process intensity. Our DLHP is able to accu-
rately capture the background intensity. See
Section 5.1 for more details.

Marked temporal point processes (MTPPs) are
used to model irregular sequences of events
in continuous-time, where each event has an
associated type, often referred to as a mark.
MTPPs model the joint distribution of marked
event sequences. They have been successfully
applied to modeling purchasing patterns in e-
commerce (Türkmen et al., 2019; Vassøy et al.,
2019; Yang et al., 2018), patient-specific medi-
cal events (Hua et al., 2022), disease propaga-
tion (Gajardo & Müller, 2023), and many other
domains (Williams et al., 2020; Sharma et al.,
2018; Wang et al., 2024).

An MTPP is fully characterized by a marked in-
tensity process which specifies the expected in-
stantaneous rate of occurrence of events of each
mark conditioned on the event history. State-of-
the-art methods use neural networks to compute
hidden states that summarize the event history,
which are then used to compute marked intensi-
ties across future values of time. However, many
models are limited by inexpressive temporal dynamics, lack of support for long-range dependencies,
and serial computation (Du et al., 2016; Mei & Eisner, 2017). Recent advances in transformer-based
MTPPs have improved performance and gained parallelism, but scale quadratically with sequence
lengths (Zhang et al., 2020; Zuo et al., 2020; Yang et al., 2022).

Recently, deep state-space models (often abbreviated as SSMs) have emerged as a challenger to
transformer-based models for discrete sequence modeling (Gu et al., 2022b; Smith et al., 2022; Gu
& Dao, 2023). SSMs interleave a stack of linear state-space recurrences with position-wise non-
linearities (Gu et al., 2021). This architecture has been found to be not only highly performant on a

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: Three different schematics of the deep linear Hawkes process (DLHP) and latent linear
Hawkes (LLH) layer we propose. With increasing granularity: Left (a): On a high level, the DLHP
can simply be viewed as a deep stack of neural network layers that transform an event sequence into
an intensity function. Middle (b): On a more granular level, individual LLH layers can be viewed
as discrete-time recurrences (see Eq. (16)), directly defining an intensity evaluated at select times:
t∗ using xt∗ , right limits ti+ using xti , and left values ti using xti−. Right (c): Finally, the same
recurrences can be viewed as a set of non-linearly coupled stochastic jump differential equations in
continuous-time. Events are embedded and impart impulses to the differential equation. [Added]
Note that when decoding intermediate intensities we use a zero-input vector (for both u input and
impulse α). We omit the mark-specific impulse for layers 2 to L in this diagram for visual clarity.

wide range of tasks (e.g. Goel et al., 2022; Deng et al., 2024), but retains linear scaling, can be par-
allelized across the length of a sequence, and can gracefully handle irregularly-spaced observations.

Inspired by this, we revisit a foundational point process model, the linear Hawkes process (LHP
Hawkes, 1971), and draw connections between LHPs and deep SSMs. We combine the parameteri-
zation and parallelization strategy of SSMs with the functional form of LHPs to create what we call
the deep linear Hawkes process (DLHP). More formally, the DLHP is a fully-recurrent neural MTPP
parameterized by a stack of stochastic jump differential equations on the complex plane (serving as
the recurrence) interleaved with position-wise non-linearities (to improve expressivity). This design
yields an MTPP with two main advantages over existing neural MTPPs: (i) parallelism across the
length of the sequence through the use of parallel scans, and (ii) highly flexible intensity functions.
This is achieved not only through the expressivity of the SSM-style architecture, but also by tying
the output intensity at time t to the model’s continuously-evolved hidden state xt (extending ideas
from Mei & Eisner (2017) and Yang et al. (2022), see Figs. 1 and 2), and by going beyond the
classical LHP form with input-dependent recurrent dynamics (akin to Mamba (Gu & Dao, 2023)).

The contributions of this paper are as follows: We introduce a new family of marked point process
models, deep linear Hawkes processes—the first MTPP model that fully leverages the architectural
features of deep SSMs. [Edited] We demonstrate that DLHPs match or exceed the performance of
existing models across eight real-world datasets, with an average per-event likelihood improvement
of 38% across datasets, over the individually best-performing existing method on each dataset. We
also verify that DLHP scales more effectively to longer sequences, a crucial capability for a wide
range of modern machine learning applications. We release our models, datasets and pipelines as
part of the existing EasyTPP library (Xue et al., 2023).1 We conclude by discussing the relative
advantages and disadvantages of the DLHP over existing methods, and opportunities for extending
this work.

1As per ICLR guidelines, we will include anonymised source code, integrated in the EasyTPP library (Xue
et al., 2023), during the private discussion phase. To avoid de-anonymization, we have not yet submitted the
pull request to the public EasyTPP repository.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

2.1 MARKED TEMPORAL POINT PROCESSES

Let t1, t2, · · · ∈ R≥0 be a strictly increasing sequence of positive random variables, each represent-
ing the time of occurrence for an event of interest.2 For each ti, let ki ∈ M be a random variable rep-
resenting accompanying side-information, commonly referred to as an event’s mark, with M being
the mark-space. In this paper, we focus on discrete and finite mark spaces, i.e. M := {1, . . . ,K};
however, in general M can be continuous or even a mixture of continuous and discrete. Together ti
and ki fully define a given event. The joint distribution over a sequence of continuous event times
and mark types is described as a marked temporal point process. We use Ht to represent the se-
quence, or history, of events up to some time t: Ht := {(ti, ki) | ti ≤ t for i ∈ N}, with Ht−
defined similarly except that it does not include events that occur at time t.

One way of characterizing an MTPP is through a marked intensity process, which describes the in-
stantaneous expected rate of occurrence for events of specific marks. Let Nt := [N1

t , . . . , N
K
t ]⊤ ∈

ZK
≥0 be the marked counting process which represents the number of occurrences of events of each

type of mark in the time span [0, t]. The marked intensity process λt := [λ1
t , . . . , λ

K
t ]⊤ ∈ RK

≥0
characterizes an MTPP by describing how the counting process changes via:

λk
t dt := E [event of type k occurs in [t, t+ dt] | Ht−] = E

[
Nk

t+dt −Nk
t | Ht−

]
, (1)

with the total intensity λt :=
∑K

k=1 λ
k
t being the rate that any event occurs. Note that the intensity

conditions on the left limit of the history Ht− to ensure that the intensity is modeling future events.

Parameterized forms of λ are often trained by optimizing the log-likelihood over observed data. The
log-likelihood for a single sequence HT is defined as (Daley & Vere-Jones, 2003, ch. 7.3):

L(HT ) :=
∑|HT |

i=1
log λki

ti −
∫ T

0

λsds. (2)

Linear Hawkes Processes An (unmarked) Hawkes process (Hawkes, 1971), or more generally a
self-exciting process, is a temporal point process where event occurrences increase the rate at which
subsequent events occur soon thereafter. Of particular interest to us are linear Hawkes processes
(LHPs), which are characterized by the following intensity process:

λt := ν +

∫ t−

s=0

h(t− s)dNs := ν +
∑Nt−

i=1
h(t− ti), (3)

where ν > 0 is the background intensity, h : R≥0 → R≥0 is the excitation function (or kernel), and
Nt is the associated counting process characterized by intensity λt. Nt− is used as the upper limit
in Eq. (3) to ensure the intensity at time t does not take into account an event that occurs at time t.

Should h correspond to the exponential decay kernel, h(z) = α exp (−βz), then the LHP intensity
process is Markov (Law & Viens, 2016) and admits the following stochastic differential form:

dλt = β(ν − λt−)dt+ αdNt ⇐⇒ λt = ν +

∫ t−

0

α exp (−β(t− s)) dNs (4)

= ν +
∑Nt−

i=1
α exp (−β(t− ti)) . (5)

LHPs can be extended to the marked setting, with K possible discrete marks, by replacing ν with
a vector of K background rates ν := [ν1, . . . , νK ]⊤, and the excitation effect h(t − s)dNs with
h(t − s)dNs. Here, hij of h : R≥0 → RK×K

≥0 describes the excitation that events of type i exerts
on future events of type j. The counting process, dNt, is then either a K-dimensional zero-vector if
no event occurs at time t, or a one-hot vector indicating which mark is associated with the occurring
event. Generalizing the exponential kernel to handle marks results in the following differential form:

dλt = −β(λt− − ν)dt+αdNt, (6)

where β,α ∈ RK×K
≥0 are restricted to be non-negative to ensure non-negative marked intensities.

2Please refer to Tables 2 and 3 in Appendix A for a list of notation and acronym definitions, respectively.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 STATE-SPACE MODELS

Deep state-space models (SSMs) are a recent innovation in recurrent models that have found success
in long-range sequence modeling tasks (Gu et al., 2022b) and language modeling tasks (Gu & Dao,
2023), while also having favorable computational properties. The backbone of deep SSMs is the
linear state-space equations, which define a continuous-time dynamical system with input and output
signals u(t),y(t) ∈ RH , respectively, through linear differential equations:

d

dt
x(t) = Ax(t) +Bu(t) (7)

y(t) = Cx(t) +Du(t), (8)

where x(t) ∈ RP is the (hidden) state of the system, and A ∈ RP×P ,B ∈ RP×H ,C ∈ RH×P , and
D ∈ RH×H are the parameters that control the system’s dynamics.

Deep SSMs then stack these recurrences interleaved with non-linear position-wise functions, σ. The
function σ can contain activation functions, residual connections and normalization layers, and trans-
forms the output y of the previous recurrence into the input u of the next, i.e. u(l)(t) := σ(y(l−1)(t))
for layer l. This combination yields a sequence model where each recurrence is conditionally linear
in time given the input, but is ultimately non-linear in depth due to the function σ.

To evaluate the SSM, we first discretize the continuous-time system at the desired times, and then
evaluate as though it were a conventional discrete-time RNN architecture. Crucially, the linearity of
the resulting discrete-time recurrence allows it to be evaluated using parallel scans (Blelloch, 1990;
Smith et al., 2022; Gu & Dao, 2023), leading to linear work scaling (i.e. number of operations),
and, importantly, sublinear scaling of the computation time with respect to sequence length given
sufficient parallel compute. Note this contrasts with conventional sequential RNNs (e.g. LSTMs),
which process sequences serially; and attention-based methods, which can be parallelized over a
sequence, but have quadratic work scaling with respect to sequence length. This allows SSMs to
fully and efficiently leverage modern massively parallel hardware while also a being highly expres-
sive and performant model class. Importantly for our purposes, evaluating a linear recurrence with
a parallel scan natively admits evaluations with varying observation intervals. We will leverage this
to parsimoniously handle the variable inter-event times observed in MTPP settings.

3 DEEP LINEAR HAWKES PROCESSES

In this section, we introduce our deep linear Hawkes process (DLHP), a neural MTPP that draws a
novel connection between LHPs and deep SSMs. Stochastic jump differential equations, akin to the
LHP intensity, form the basis of the conditionally linear recurrent layer, which we refer to as a latent
linear Hawkes (LLH) layer. The LLH layer can be viewed as a modified SSM recurrence, while
still admitting parallel computation. Taking further inspiration from deep SSMs, the DLHP is then
made up of a stack of LLH layers, each interleaved with non-linear, position-wise transformations
to increase the overall expressivity of the model (see Fig. 2a). In this section, we formalize this
approach and outline implementation details.

3.1 CONTINUOUS-TIME LATENT LINEAR HAWKES LAYER

We first start by generalizing the intensity of the linear Hawkes process, Eq. (6):

dλt = −β(λt− − νt)dt+αdNt = −βλt−dt+ βνtdt+αdNt, (9)

whereby the background intensity νt is allowed to vary over time. If we compare this to the recur-
rence in Eq. (7), we see that the intensity in the LHP, λt controlled by decay rates β, is analogous
the state in the linear SSM, x(t) controlled by state matrix A. Additionally, the time-varying base-
line intensity in the LHP, νt, is analogous to the SSM input signal, u(t). What is unique to the
LHP is the (mark-specific) impulse αdNt. This impulse is important because it allows the model
to instantaneously incorporate information from events as they occur, introducing discontinuities in
the output signals of the otherwise continuously-integrated system, unlike conventional SSMs.

With this in mind, we adapt Eq. (9) such that it can replace the typical state-space recurrence in an
SSM, Eq. (7). To do so, we replace the non-negative β with an unrestricted state matrix A ∈ RP×P .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Next, given an input signal ut ∈ RH we project it to P dimensions with an input matrix B ∈ RP×H

to replace νt.3 What was originally the intensity λt is now relabeled to be the state of the layer
xt. Finally, we allow the impulses to be low-rank by having a shared set of mark embeddings
α ∈ RR×K with rank R that are brought into P dimensions with a layer-specific embedding matrix
E ∈ RP×R. For simplicity, we set R = H for all our experiments. The equation for the output
signal yt is left unchanged from Eq. (8), where C ∈ RH×P and D ∈ RH×H . All of this results in
the set of equations that makes up what we call the latent linear Hawkes layer:

dxt = −Axt−dt+ABut−dt+EαdNt (10)
yt = Cxt +Dut, (11)

where the initial state x0 ∈ RP is learned. Realizations of this layer can be seen in Fig. 2c.

3.2 CONTINUOUS-TIME DEEP LINEAR HAWKES PROCESS ARCHITECTURE

Inspired by deep SSMs, our MTPP is formed by stacking LLH layers, chaining the output signal y
of one layer to the input u of another with non-linear transforms in between. The final layer’s output
is then transformed into the intensity λ. An illustration of the DLHP architecture is shown in Fig. 2.

Let L be the number of desired LLH layers that comprise a DLHP with input and output signals
u(l) and y(l) respectively for layers l = 1, . . . , L. For the very first layer, the only input available to
condition on are the event occurrences themselves. As such, we set u(1)

t = 0 for all t ≥ 0.

In general, a layer’s output y(l) := LLH(l)(u(l),H) is passed into a non-linear activation function
f (we use f(z) := GELU(z) (Hendrycks & Gimpel, 2016)), summed with the residual stream u(l),
and normalized with LayerNorm (Ba, 2016) to compute the next layer’s input. More formally,

u
(l+1)
t := LayerNorm(l)(f(y

(l)
t ) + u

(l)
t ) (12)

for t ≥ 0 and l = 1, . . . , L. We use the same strategies for initialization as S5 (Smith et al.,
2022), based off the performant HiPPO initialization scheme (Gu et al., 2020). [Added] Due to
the transformations, unlike the original LHP, we cannot guarantee the output of the final layer is
positive. Therefore, similar to Mei & Eisner (2017), we apply an affine projection followed by a
[Added] rectifying transformation to enforce non-negative intensity:

λt := s⊙ softplus((Wu
(L+1)
t− + b)⊙ s−1) (13)

for t ≥ 0 and where W ∈ RK×H , b, log(s) ∈ RK , and ⊙ is an element-wise product. Eq. (13)
implements the “Proj. & Softplus” layer in Fig. 2. The intensity at time t always uses the left-limit of
u(L+1), which in turn uses the left-limit of y(l) and u(l) for all l to ensure that it has no information
of any events that may or may not have occurred at time t is used.

The DLHP is trained by maximizing the sequence log-likelihood, Eq. (2). Similar to other neural
MTPPs, we opt to approximate the integral term in the log-likelihood,

∫ T

0
λsdNs, with a Monte-

Carlo approximation (Mei & Eisner, 2017). As such, training the model requires the computation of
intensity values at event times t1:N and at sampled times t∼U(0, T ).

3.3 DISCRETIZING & DIAGONALIZING THE LLH LAYER

Unlike the LHP intensity, the recurrence in the LLH layer does not permit an analytic solution.
As such, we must discretize the continuous-time process to compute values of the layer at specified
time points. If we approximate the input signal by treating it as constant over an update interval, also
known as a zero-order hold (ZOH) assumption (Iserles, 2009), then we can achieve a closed-form
exact update to the recurrence relation. However, unfortunately, this involves a computationally-
expensive matrix exponential in the update rule. To circumvent this, we first diagonalize the system
and then impose the zero-order hold restriction on it. Doing so converts the matrix exponential into
an element-wise exponential operation. This is done for all LLH layers that compose the DLHP.
Note that this is same general approach taken by Smith et al. (2022) for deep SSMs.

3Here, we index time t via subscripts (e.g. ut) rather than an argument (u(t)) to emphasize that these are
stochastic (jump) processes rather than deterministic functions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Diagonalization Let −A be diagonalizable with a factorization of VΛV−1, where V,Λ ∈
CP×P and Λ is a diagonal matrix of eigenvalues. An equivalent, diagonalized LLH is then

dx̃t := Λx̃t−dt+ΛB̃ut−dt+ ẼαdNt (14)

yt := C̃x̃t +Dut (15)

where x̃t = V−1xt, B̃ = −V−1B, Ẽ = V−1E, and C̃ = CV. Note that in practice we directly
parameterize B̃, C̃, and Ẽ to avoid having to learn and invert V. The eigenvalues Λ are also directly
parameterized and constrained with negative real-components for stability (Davis, 2013). [Added]
While the dynamics are diagonalized, we note this does not mean that we are modeling the intensities
of different mark types independently. This can be seen two ways: First, the diagonalized dynamics
are equivalent to the original dynamics (see Eq. (10), given the system can be diagonalized on the
complex plane). Alternatively, the marks interact through the dense input and output matrices, the
position-wise non-linearity, the mark embeddings, and the final intensity rectification layer.

Discretization We then employ a ZOH discretization to create a closed-form update from the
diagonalized continuous-time system. The ZOH assumption holds the input u constant over the
integration period. This results in the following update rule that transitions from xt to xt′ , where,
by construction, no events occur in (t, t′):

x̃t′ :=

{
Λ̄x̃t + (Λ̄− I)B̃ut′− if no event at t′

Λ̄x̃t + (Λ̄− I)B̃ut′− + Ẽαk if event of type k at t′
(16)

where Λ̄ := exp(Λ(t′ − t)) (derivation in Appendix B.1). Please refer to Fig. 2b for an illustration.

Note that the ZOH is an exact update when u is constant over the window [t, t′). While we choose
the constant value to set u to be as ut′−, it is worth noting that technically any value us for s ∈ [t, t′)
is valid. We explore this design decision and the impact it has on performance in more detail in
Appendices B.3 and D.3. It is important that ut′ is not used as the ZOH value to avoid data leakage.

3.4 INPUT-DEPENDENT DYNAMICS

Inspired by recent developments in modern SSMs (e.g. Mamba (Gu & Dao, 2023)), we also con-
sider allowing the dynamics of the system to vary depending on the input and history of previous
events. This can allow for more expressive intensities. For instance, dynamically adjusting the real
components of Λ to be smaller will result in longer staying power of the recent impulses. Alterna-
tively, larger values will result in more quickly “forgetting” the influence of previous events for a
given hidden state channel. This is formalized with the following recurrence relation:

dx̃t := Λix̃t−dt+ΛiB̃ut−dt+ ẼαdNt (17)

for t ∈ (ti, ti+1] where Λi := diag (softplus(W′uti + b′))Λ with W′ ∈ RP×H and b′ ∈ RP .
Note that this is still conditionally linear in time as even though Λi changes it is entirely input-
dependent based on u and not dependent on previous values of x.

3.5 COMPUTING LLH RECURRENCE

Thus far, we have created the LLH layer by diagonalizing and discretizing a modified SSM. As
discussed earlier, we would like to take advantage of the efficient parallel scans leveraged by many
SSM-based models (Smith et al., 2022; Gu & Dao, 2023; Dao & Gu, 2024). Below we explain how
we can still use the parallel scan, despite the modified recurrence.

Parallel scans admit efficient inference over linear recurrences of the form zi+1 = Aizi + bi (Blel-
loch, 1990). Although we have added an impulse to the recurrence, this is still intrinsically of this
form, where zi := xti , Ai := exp(Λi(ti+1 − ti)), and bi := (Ai − I)B̃uti+1− + Ẽαki+1

. As a re-
sult, we can leverage efficient parallel scans to compute the sequence of right-limits xt1:N in parallel
across the sequence length. The corresponding left-limits xt1:N− can then be efficiently computed
after by subtracting off Ẽαk1:N

from xt1:N . In Algorithms 1 to 3 we compactly detail how to use a
parallel scan to compute the sequence of right limits given events; how to evolve those right limits
to compute left limits; and then how to subsequently compute the log-likelihood of the sequence.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.6 [ADDED] ON THE RELATIONSHIP WITH THE LINEAR HAWKES PROCESS

Before we move onto evaluate the DLHP, we briefly reflect on the relationship between the DLHP
and LHP. We presented the derivation above showing the steps to modify an LHP to be a deep
SSM. The connection, parameterization and equivalence we explore does not materially affect the
implementation; this was intended to concretely define how our model differs from a classical model,
and to retain as much of the intuition from the simpler LHP (even if the direct interpretability of the
LHP parameters is somewhat lost). One could have alternatively asked what it takes to convert
a deep SSM into an MTPP model. The steps and result are similar; but the relationship to other
models is markedly less clear (requiring additional, arbitrary constraints to recover a known model).
We hope our choice of exposition makes it clear how the DLHP is a natural extension of a known,
understood and well-used model; instead of an arbitrary modification to a recent architecture.

4 RELATED WORKS

Neural MTPPs Marked temporal point processes (MTPPs) are generative models that jointly
model the time and type of continuous-time sequential events, typically characterized by mark-
specific intensity functions (Daley & Vere-Jones, 2003). Early approaches, such as self-exciting
Hawkes processes (Hawkes, 1971; Liniger, 2009), used simple parametric forms for the inten-
sity. More recently, neural architectures such as RNNs (Du et al., 2016; Mei & Eisner, 2017),
CNNs (Zhuzhel et al., 2023), and transformers (Zhang et al., 2020; Zuo et al., 2020; Yang et al.,
2022) have been used to more flexibly model the conditional intensity. For intensity-free MTPPs, ap-
proaches include normalizing flows (Shchur et al., 2020a; Zagatti et al., 2024), neural processes (Bae
et al., 2023), and diffusion models (Zeng et al., 2023; Zhang et al., 2024); however, the most com-
mon approach is to model intensities as it requires fewer modeling restrictions.

Efficient MTPPs Due to their recurrent nature, RNN-based MTPP models incur O(N) complex-
ity for sequences of length N as events must be processed sequentially. Attention-based MTPP
models can be applied in parallel across the sequence, but the computational work scales as O(N2).
Türkmen et al. (2020) proposed modeling events as conditionally independent so long as they oc-
curred within the same time bin of a specified size. This resulted in parallel computation within bins,
but still scales overall as O(N). Shchur et al. (2020b) proposed an unmarked, intensity-free TPP
which uses triangular maps and the time-change theorem (Daley & Vere-Jones, 2003). This was
extended by Zagatti et al. (2024) to the marked setting, but in doing so, lost many of the benefits of
the original model and scales linearly in the mark dimension—which can rapidly become untenable
with O(NK) work. To the best of our knowledge, our proposed model is the first that efficiently
scales with sequence length and mark space, while also being the first to fully leverage SSMs and
parallel scans.

SSMs for Sequential Modeling SSMs have found recent success as alternatives to RNNs, CNNs,
and transformers, enjoying reduced training cost and comparable modelling power (Gu et al.,
2022b). A range of variants have been developed (Gu et al., 2021; Gupta et al., 2022; Gu et al.,
2022a; Smith et al., 2022), and have been applied in language modeling (Gu & Dao, 2023),
speech (Goel et al., 2022), and vision (Wang et al., 2023; Zhu et al., 2024). The linear recurrence
allows for parallelism, as well as accessible long contexts which would be prohibitive for transform-
ers due to their quadratic scaling. However, SSMs have not previously been applied to MTPPs, in
part due to the irregular inter-event times and the input being a stochastic counting process rather
than a given fixed function.

[Edited] Concurrent work by Gao et al. (2024) used Mamba (Gu & Dao, 2023), a recent deep SSM
architecture, in an MTPP setting, in what they call the Mamda Hawkes Process (MHP). The MHP
uses a mamba SSM as the encoder in an encoder-decoder architecture, also leveraging the variable
interval capabilities. Crucially, however, they use a separate parametric decoder for intermediate
intensities (similar to, for instance, the THP). This misses the opportunity to “fully” leverage the
SSM architecture, re-using the same variable interval evaluation to evaluate the the intensity with a
zero input.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Per event log-likelihood (↑ is better) results on the held-out test set; OOM indicates insuf-
ficient memory. We bold the best and underline the runner-up per dataset. We also report the mean
rank of models across datasets as a summary metric (↓ is better). DLHP is consistently the best or
second best-performing model. Extended results and discussion are presented in Appendix D.1.

Model Per-Event Log-Likelihood, LTotal Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP -2.137 -7.169 0.347 1.006 -2.403 -1.776 -0.480 -8.035 6.4
NHP 0.205 -6.346 0.516 1.163 -2.243 -0.578 0.076 -3.907 3.1
SAHP -2.040 -6.704 0.372 1.201 -2.283 -1.500 -0.773 -6.845 5.1
THP -2.098 -6.652 0.374 0.791 -2.331 -1.716 -0.587 -7.183 5.6
AttNHP 0.608 -6.459 0.499 1.278 -2.179 -0.558 -0.244 OOM 2.9
IFTPP 0.493 -10.339 0.454 1.335 -2.224 -0.472 0.299 -6.424 3.0
DLHP (Ours) 0.765 -6.367 0.528 1.332 -2.165 -0.496 1.231 -2.189 1.4

5 EXPERIMENTS

We now evaluate our deep linear Hawkes process model. Our core objectives in using SSMs for
MTPP modeling were to define an architecture that is both (a) highly performant in its forecasting
ability, and (b) able to leverage efficient parallel compute methods to accelerate inference. To this
end, we first present a simple exploration of the ability of different models to represent a periodic
intensity function. Then we present the main experiments in this paper, where we evaluate our model
against a suite of common MTPP models on a range of datasets of different sizes. We conclude by
testing the runtime of our model against a variety of baselines. We find that DLHP systematically
outperforms baseline methods both in terms of log-likelihood on held-out test data and runtime
across a range of sequence lengths. More results and details are included in Appendices C and D.

Metrics Daley & Vere-Jones (2003, p. 276) state that “testing the model on the basis of its fore-
casting performance amounts to testing the model on the basis of its likelihood” (emphasis added).
As such, our primary metric of interest to assess model performance is the per-event log-likelihood,
LTotal. We also investigate time- and mark-prediction performance through their own log-likelihood
values, LTime =

∑N
i=1 log λti −

∫ T

0
λsds and LMark =

∑N
i=1 log(λ

ki
ti /λti), respectively, where

LTotal = LTime + LMark. The log-likelihood of the arrival time characterizes the ability of the model
to predict when the next event will arrive. The log-likelihood of the mark is effectively the negative
cross-entropy classification loss and measures the ability of the model to predict what types of event
will occur given their arrival times. We discuss additional metrics in Appendices D.1 and D.4.

Models We compare our model (DLHP) with six of the most common MTPP models: two RNN-
based models (RMTPP (Du et al., 2016), NHP (Mei & Eisner, 2017)), three transformer/attention-
based models (THP (Zuo et al., 2020), SAHP (Zhang et al., 2020), AttNHP (Yang et al., 2022)), and
one intensity-free model (IFTPP (Shchur et al., 2020a)). In all real-world experiments, extensive grid
searches were conducted for hyperparameter tuning with configurations chosen based on validation
log-likelihood. Specifics for training, hyperparameters, and architectures are given in Appendix C.

Libraries and Compute Environment We implement our DLHP in the EasyTPP library (Xue
et al., 2023) and use their implementations of the baseline models. We also use the five standard
datasets that EasyTPP immediately supports (see Appendix C.2 for more details). We then further
include three larger datasets to stress-test the MTPP models (see Section 5.2). Unless otherwise
stated, all models were trained using a single NVIDIA A10 GPU with 24GB of onboard memory.

5.1 SYNTHETIC POISSON EXPERIMENTS

We start by performing a simple investigation into the expressivity of the DLHP intensity function
and the ability to capture background intensities. We train our model and baselines on 5,000 se-
quences over the time period [0, 7.5] drawn from an unmarked, inhomogeneous Poisson process
with a square-wave intensity function, λt := 1(t ∈ (1, 2) ∪ (3, 4) ∪ (5, 6)) (see Fig. 1). We plot the
estimated intensity functions conditioned on no events occurring, i.e. Ht := ∅ ∀t.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Per event log-likelihood on the held-out test data in Table 1 decomposed into time and
mark components (i.e. LTotal = LTime+LMark). Models are ordered by their average ranking. Model
results are adjusted by subtracting the log-likelihood achieved by RMTPP for readability.

Intensity estimates are shown for NHP and DLHP specifically in Fig. 1 (and for all models in Fig. 6
in Appendix D.2). We can see that our model successfully captures the true, underlying background
intensity process almost perfectly. This is largely attributed to the expressivity of the linear recur-
rences and non-linear depth of the model. Other models have various failure modes: struggling to
capture the multi-modality of the ground truth (RMTPP, NHP, SAHP, and THP), not matching the
square shape (previous four and IFTPP), or not being able to stop the pattern from repeating a fourth
time (AttNHP). [Added] It is worth noting that we also perform a similar experiment with randomly
instantiated parametric Hawkes processes and find that DLHP is able to successfully recover the
ground truth intensity. These simple experiments confirm that the DLHP is sufficiently expressive
to be able to represent more complicated intensity functions while other methods break down.

5.2 LOG-LIKELIHOOD RESULTS ON REAL-WORLD DATASETS

We empirically investigate the performance of our proposed model against baseline methods by
comparing the held-out log-likelihood per event. We evaluate our model on eight real-world datasets.
Five of which are taken directly from EasyTPP (Xue et al., 2023). We also include two MTPP
datasets that have been widely used throughout the literature: Last.fm, which includes data on users’
music listening patterns from Celma Herrada et al. (2009), and MIMIC-II, a subset of de-identified
patient hospital visits processed from (Saeed et al., 2002). Finally, we introduce a third dataset from
the recently released, publicly available electronic health record (EHR) dataset EHRShot (Wornow
et al., 2023). To construct the dataset, we first establish the most used Current Procedural Terminol-
ogy (CPT-4) codes that identify medical services and procedures as events. The processed dataset
comprises sequences of CPT-4 codes issued to individual patients during their care. This dataset has
a maximum sequence length 10× longer than the longest in the EasyTPP datasets (and 100× that
of MIMIC-II), providing a challenging testbed (in terms of scale) beyond existing datasets. Data
statistics and other details including pre-processing are provided in Table 6 and Appendix C.3.

From results shown in Table 1, DLHP consistently achieves the best or the second-best log-
likelihood across all datasets. Compared to the best baseline model per-dataset, DLHP produces
a (geometric) mean likelihood ratio of 1.4 (corresponding to 40% higher likelihood on true events).
We decompose this improvements in Fig. 3, where we see the improvements in log-likelihood are
mainly driven by better modeling of time. Extended plots included in Appendix D.1. Given the clear
improvement in temporal modeling, we posit that DLHPs are particularly well suited in applications
that contain more complex patterns over time. All of these results for DLHP utilize input-dependent
dynamics (see Section 3.4). This was found to reliably improve forecasting performance in ablation
studies (see Appendix D.3).

[Edited] We also report and discuss additional metrics in the Appendix. We report next-mark classi-
fication accuracy and RMSE of next mark arrival time, finding that DLHP matches or outperforms
all baselines. We also report model calibration with respect to next event time and mark prediction.
Calibration aims to grade the predictive uncertainty of the model (Bosser & Taieb, 2023), which is
not captured by other metrics such as mark classification accuracy and time RMSE. On the whole,
our model (as well as the baselines) tend to produce well-calibrated time and mark predictions across
the datasets. We also include full tables for the likelihood decomposition in Table 7.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

101 102 103 104 105 106

Sequence Length

10−4

10−2

100

C
o
n

d
it

io
n

in
g

w
al

lc
lo

ck
(s

)

101 102 103 104 105 106

Sequence Length

10−4

10−2

100

L
og

-L
ik

el
ih

o
o
d

w
al

lc
lo

ck
(s

)

DLHP (JAX) NHP (JAX) DLHP (Torch) NHP (Torch) THP (Torch) IFTPP (Torch)

Figure 4: Median runtime, over 10 random seeds, for various models against increasing sequence
lengths. We show runtimes for both conditioning on a sequence (Algorithm 1) and likelihood eval-
uation (Algorithm 3). We see that DLHP is faster across a wide range of sequence lengths.

5.3 SPEED TESTING

A key motivation for DLHP was to leverage the properties of SSMs to accelerate inference. To test
this, we measure the wallclock time for a full forward pass and log-likelihood evaluation on random
input sequences with lengths ranging from ten events to one million events. The architectures and
mark spaces are the same as the StackOverflow experiments (see Tables 5a and 6). We compare the
baselines to our PyTorch EasyTPP DLHP implementation, which uses an uncompiled loop, and a
standalone JAX DLHP implementation, which uses a parallel scan. Results are shown in Fig. 4.
The DLHP is faster than all baseline methods for both forward and log-likelihood evaluation (for
all but the shortest sequences). The runtime of NHP always scales linearly. THP scales well before
reverting to superlinear scaling (and then running out of memory). Interestingly, IFTPP has very fast
and fairly constant runtime for short sequences. We believe this is due to the highly optimized GRU
implementation from PyTorch. As expected, the JAX parallel scan implementation achieves sub-
linear scaling in sequence length, and is an order of magnitude faster for conditioning on N = 104

sequences. Above this, the GPU saturates and reverts to linear scaling. These results confirm that
our DLHP can exploit parallel scans to scale to long sequences more effectively than other methods.

6 CONCLUSION

We present the deep linear Hawkes process (DLHP)—a novel combination of ideas from LHPs
and SSMs. Our DLHP leverages the unique properties of deep SSM architectures to achieve a
flexible and performant model, without additional and restrictive intensity decoding heads. We then
demonstrated that our DLHP outperforms existing methods across a range of standard and new
benchmark tasks over various metrics, such as log-likelihood and runtime across sequence lengths.
One limitation of our method is the increased complexity of the implementation [Added] (as we
require a parallel scan), compared to, for instance, the NHP [Added] (which only requires a basic
for loop). Following from this, a second limitation is that we have lost the interpretability of the
latent dynamics and parameters enjoyed by the LHP. Future research directions therefore include
improving on these aspects, as well as developing additional theory around the use of deep SSMs in
this novel MTPP setting, and developing heuristics and best-practices for setting hyperparameters.
[Added] Specifically, exploring the relative benefits of the forward and backward discretization is a
unique research direction arising from the DLHP. However, we believe the robustness, performance,
computational efficiency, and extensibility of DLHPs make them a very competitive model out-of-
the-box for a wide range of applications.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Algorithm 1 Deep Linear Hawkes Process: Get Right State Limits

Input: DLHP layer parameters Θ =
{
Λ(l), B̃(l), C̃(l),D(l), Ẽ(l), x̃

(l)
0

}L

l=1
, event intervals ∆t1:N , nonlinearity σ, shared mark

embeddings α1:N .

Output: Right state limits x(1:L)
t1:N

1: ut1:N− = 0 ▷ Left input limits

2: for l in 1 : L do
3: Λ̄

(l)
1:N = Discretize

(
Λ(l),∆t1:N

)
▷ Zero-order hold, see Eq. (22)

4: x̃
(l)
t1:N

= ParallelScan
(
Λ̄

(l)
1:N , (Λ̄

(l)
1:N − I)B̃(l)ut1:N− + Ẽ(l)α1:N

)
▷ Compute right x limits

5: x̃
(l)
t1:N− = x̃

(l)
t1:N

− Ẽ(l)α1:N ▷ Compute left x limits

6: ut1:N− = LayerNorm
(
σ
(
C̃(l)x̃t1:N− + D(l)ut1:N−

)
+ ut1:N−

)
▷ Compute next layer’s left u limits

7: end for

8: return x
(1:L)
t1:N

Algorithm 2 Deep Linear Hawkes Process: Get Intensity From Right Limit

Input: DLHP layer parameters Θ =
{
Λ(l), B̃(l), C̃(l),D(l), Ẽ(l), x̃

(l)
0

}L

l=1
, Previous state right limits x(1:L)

t , Integration period δt,

nonlinearity σ, Intensity function IntensityFn.

Output: Intensity left limit λt+δt

1: ut+δt− = 0 ▷ Left input limit

2: for l in 1 : L do
3: Λ̄(l) = Discretize

(
Λ(l), δt

)
▷ Zero-order hold, see Eq. (22)

4: x̃
(l)
t+δt− = Λ̄(l)x

(l)
t + (Λ̄(l) − I)B̃(l)ut+δt− ▷ Evolve state

5: ut+δt− = LayerNorm
(
σ
(
C̃(l)x̃

(l)
t+δt− + D(l)ut+δt−

)
+ ut+δt−

)
▷ Compute event left u limits

6: end for

7: λt+δt = IntensityFn(ut+δt−) ▷ Rectify intensity, see Eq. (13)
8: return λt+δt

Algorithm 3 Deep Linear Hawkes Process: Compute Log-Likelihood

Input: DLHP layer parameters Θ =
{
Λ(l), B̃(l), C̃(l),D(l), Ẽ(l), x̃

(l)
0

}L

l=1
, Event times t1:N , mark types k1:N , nonlinearity σ,

shared mark embedding function EmbedMarks, number of integration points per event M , Intensity function IntensityFn.

Output: Log-ikelihood L

1: α1:N = EmbedMarks(k1:N ) ▷ Shared embeddings
2: t0 := 0
3: ∆t1:N = t1:N − t0:N−1

4: s1:N,1:M ∼ U(0,∆t1:N ) ▷ Sample M integration points per interval (non-inclusive)

5: x̃
(1:L)
t1:N

= GetRightStateLimits(Θ,∆t1:N , σ,α1:N ) ▷ Algorithm 1, O(logN) parallel time

6: for n in 1 : N do ▷ This is embarrassingly parallelizable with vmap, O(1) parallel time

7: λtn = GetIntensityFromRightLimit
(
Θ, x̃

(1:L)
tn

,∆tn, σ, IntensityFn
)

▷ Algorithm 2, O(1) parallel time

8: for m in 1 : M do ▷ This is embarrassingly parallelizable with vmap, O(1) parallel time

9: λsn,m = GetIntensityFromRightLimit
(
Θ, x̃

(1:L)
tn

, sn,m, σ, IntensityFn
)

▷ Algorithm 2, O(1) parallel time

10: end for
11: end for

12: L =
∑N

n=1 log λkn
tn

+
∑N

n=1
∆tn
M

∑M
m=1

∑K
k=1 λk

sn,m
▷ Eq. (2) with Monte-Carlo approximation of integral

13: return L

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Wonho Bae, Mohamed Osama Ahmed, Frederick Tung, and Gabriel L Oliveira. Meta temporal
point processes. arXiv preprint arXiv:2301.12023, 2023.

Guy Blelloch. Prefix sums and their applications. Technical report, Tech. rept. CMU-CS-90-190.
School of Computer Science, Carnegie Mellon, 1990.

Tanguy Bosser and Souhaib Ben Taieb. On the predictive accuracy of neural temporal point process
models for continuous-time event data. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. Survey Certification.

Alex Boyd, Robert Bamler, Stephan Mandt, and Padhraic Smyth. User-dependent neural sequence
models for continuous-time event data. Advances in Neural Information Processing Systems, 33:
21488–21499, 2020.

Òscar Celma Herrada et al. Music recommendation and discovery in the long tail. Universitat
Pompeu Fabra, 2009.

Yuxin Chang, Alex J Boyd, and Padhraic Smyth. Probabilistic modeling for sequences of sets in
continuous-time. In International Conference on Artificial Intelligence and Statistics, pp. 4357–
4365. PMLR, 2024.

Daryl J Daley and David Vere-Jones. An Introduction to the Theory of Point Processes: Volume I:
Elementary Theory and Methods. Springer, 2003.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In Forty-first International Conference on Machine Learn-
ing, 2024.

Mark Davis. Stochastic modelling and control. Springer Science & Business Media, 2013.

Fei Deng, Junyeong Park, and Sungjin Ahn. Facing off world model backbones: RNNs, Transform-
ers, and S4. Advances in Neural Information Processing Systems, 36, 2024.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 1555–1564, 2016.

Álvaro Gajardo and Hans-Georg Müller. Point process models for COVID-19 cases and deaths.
Journal of Applied Statistics, 50(11-12):2294–2309, 2023.

Anningzhe Gao, Shan Dai, and Yan Hu. Mamba Hawkes process. arXiv preprint arXiv:2407.05302,
2024.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. In International Conference on Machine Learning, pp. 7616–7633. PMLR, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572–585, 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022b.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces. Advances in Neural Information Processing Systems, 35:22982–22994, 2022.

Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika,
58(1):83–90, 1971.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

William Hua, Hongyuan Mei, Sarah Zohar, Magali Giral, and Yanxun Xu. Personalized dynamic
treatment regimes in continuous time: a Bayesian approach for optimizing clinical decisions with
timing. Bayesian Analysis, 17(3):849–878, 2022.

Arieh Iserles. A first course in the numerical analysis of differential equations. 44. Cambridge
university press, 2009.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in tem-
poral interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1269–1278, 2019.

Baron Law and Frederi Viens. Hawkes processes and their applications to high-frequency data
modeling. Handbook of High-Frequency Trading and Modeling in Finance, pp. 183–219, 2016.

Thomas Josef Liniger. Multivariate Hawkes processes. PhD thesis, ETH Zurich, 2009.

Brian McFee, Thierry Bertin-Mahieux, Daniel PW Ellis, and Gert RG Lanckriet. The million song
dataset challenge. In Proceedings of the 21st International Conference on World Wide Web, pp.
909–916, 2012.

Hongyuan Mei and Jason M Eisner. The neural Hawkes process: A neurally self-modulating multi-
variate point process. Advances in Neural Information Processing Systems, 30:6757–6767, 2017.

Hongyuan Mei, Guanghui Qin, and Jason Eisner. Imputing missing events in continuous-time event
streams. In International Conference on Machine Learning, pp. 4475–4485. PMLR, 2019.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188–197, 2019.

Mohammed Saeed, Christine Lieu, Greg Raber, and Roger G Mark. MIMIC II: a massive tempo-
ral icu patient database to support research in intelligent patient monitoring. In Computers in
cardiology, pp. 641–644. IEEE, 2002.

Anuj Sharma, Robert Johnson, Florian Engert, and Scott Linderman. Point process latent variable
models of larval zebrafish behavior. Advances in Neural Information Processing Systems, 31,
2018.

Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point
processes. In International Conference on Learning Representations, 2020a.

Oleksandr Shchur, Nicholas Gao, Marin Biloš, and Stephan Günnemann. Fast and flexible temporal
point processes with triangular maps. Advances in neural information processing systems, 33:
73–84, 2020b.

Jimmy TH Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ali Caner Türkmen, Yuyang Wang, and Tim Januschowski. Intermittent demand forecasting with
deep renewal processes. arXiv preprint arXiv:1911.10416, 2019.

Ali Caner Türkmen, Yuyang Wang, and Alexander J Smola. Fastpoint: Scalable deep point pro-
cesses. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019, Proceedings, Part II, pp. 465–
480. Springer, 2020.

Bjørnar Vassøy, Massimiliano Ruocco, Eliezer de Souza da Silva, and Erlend Aune. Time is of
the essence: a joint hierarchical RNN and point process model for time and item predictions. In
Proceedings of the twelfth ACM international conference on Web search and data mining, pp.
591–599, 2019.

Jianlong Wang, Xiaoqi Duan, Peixiao Wang, A-Gen Qiu, and Zeqiang Chen. Predicting urban
signal-controlled intersection congestion events using spatio-temporal neural point process. In-
ternational Journal of Digital Earth, 17(1):2376270, 2024.

Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda Liu, Mohamed Omar, and Raffay Hamid.
Selective structured state-spaces for long-form video understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6387–6397, 2023.

Chris Whong. FOILing NYC’s taxi trip data. https://chriswhong.com/open-data/
foil_nyc_taxi/, 2014. [Online; accessed Oct 15, 2024].

Alex Williams, Anthony Degleris, Yixin Wang, and Scott Linderman. Point process models for
sequence detection in high-dimensional neural spike trains. Advances in neural information pro-
cessing systems, 33:14350–14361, 2020.

Michael Wornow, Rahul Thapa, Ethan Steinberg, Jason Fries, and Nigam Shah. EHRSHOT: An
ehr benchmark for few-shot evaluation of foundation models. Advances in Neural Information
Processing Systems, 36:67125–67137, 2023.

Siqiao Xue, Xiaoming Shi, James Zhang, and Hongyuan Mei. HYPRO: A hybridly normalized
probabilistic model for long-horizon prediction of event sequences. Advances in Neural Informa-
tion Processing Systems, 35:34641–34650, 2022.

Siqiao Xue, Xiaoming Shi, Zhixuan Chu, Yan Wang, Hongyan Hao, Fan Zhou, Caigao Jiang, Chen
Pan, James Y Zhang, Qingsong Wen, et al. EasyTPP: Towards open benchmarking temporal point
processes. In The Twelfth International Conference on Learning Representations, 2023.

Chenghao Yang, Hongyuan Mei, and Jason Eisner. Transformer embeddings of irregularly spaced
events and their participants. In Proceedings of the tenth international conference on learning
representations (ICLR), 2022.

Guolei Yang, Ying Cai, and Chandan K Reddy. Recurrent spatio-temporal point process for check-
in time prediction. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, pp. 2203–2211, 2018.

Guilherme Augusto Zagatti, See Kiong Ng, and Stéphane Bressan. Learning multivariate temporal
point processes via the time-change theorem. In International Conference on Artificial Intelli-
gence and Statistics, pp. 3241–3249. PMLR, 2024.

Mai Zeng, Florence Regol, and Mark Coates. Interacting diffusion processes for event sequence
forecasting. arXiv preprint arXiv:2310.17800, 2023.

Qiang Zhang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. Self-attentive Hawkes process. In
International conference on machine learning, pp. 11183–11193. PMLR, 2020.

Shuai Zhang, Chuan Zhou, Yang Aron Liu, Peng Zhang, Xixun Lin, and Zhi-Ming Ma. Neural
jump-diffusion temporal point processes. In Forty-first International Conference on Machine
Learning, 2024.

14

https://chriswhong.com/open-data/foil_nyc_taxi/
https://chriswhong.com/open-data/foil_nyc_taxi/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Qingyuan Zhao, Murat A Erdogdu, Hera Y He, Anand Rajaraman, and Jure Leskovec. Seismic:
A self-exciting point process model for predicting tweet popularity. In Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1513–
1522, 2015.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion Mamba: Efficient visual representation learning with bidirectional state space model. arXiv
preprint arXiv:2401.09417, 2024.

Vladislav Zhuzhel, Vsevolod Grabar, Galina Boeva, Artem Zabolotnyi, Alexander Stepikin,
Vladimir Zholobov, Maria Ivanova, Mikhail Orlov, Ivan Kireev, Evgeny Burnaev, et al.
Continuous-time convolutions model of event sequences. arXiv preprint arXiv:2302.06247, 2023.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer Hawkes
process. In International conference on machine learning, pp. 11692–11702. PMLR, 2020.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIALS FOR SUBMISSION 3981:

DEEP LINEAR HAWKES PROCESSES

TABLE OF CONTENTS

Appendix A Acronyms and Notation

Appendix B Additional Details on Methods

Appendix C Experimental Configurations and Datasets

Appendix D Additional Experimental Results

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A ACRONYMS AND NOTATION

Table 2: Key notation used repeatedly across this paper.

Symbol Space Description

t R≥0 Time
T R≥0 Maximum time in a given sequence’s observation window
ti R≥0 ith time
t− R≥0 Subscript minus indicates left-limit
t+ R≥0 Subscript plus indicates right-limit
k M = {1, . . . , K} Event mark
H MN × RN

≥0 Event history for N events
Nt ZK

≥0 Counting process for K marks at time t

λk
t R≥0 Intensity of kth mark type at time t

λt RK
≥0 Vector of K mark intensities at time t

λt R≥0 Ground/total intensity (sum of mark-specific intensities)
L(·) R Log-likelihood of the argument under the model
νk R≥0 Background intensity for the kth mark
α RK,K

≥0
(For LHP) Matrix of intensity impulses from each type of mark

β RK,K
≥0

(For LHP) Dynamics matrix of intensity evolution

R N Mark embedding rank
P N LLH/SSM hidden dimension
xt RP LLH/SSM hidden state at time t

x0 RP Learned LLH/SSM initial hidden state
H N LLH/SSM output dimension
yt RH LLH/SSM output at time t

ut RH LLH/SSM input at time t

A RP×P LLH/SSM transition matrix
B RP×H LLH/SSM input matrix
C RH×P LLH/SSM output matrix
D RH×H LLH/SSM passthrough matrix
E RP×R LLH mark embedding matrix (P × R in low-rank factorization)
L N Number of linear recurrences in a DLHP model; model “depth”
α RR×K (For DLHP) Mark impulses (R × K in low-rank factorization)
∼ N/A Tilde (e.g. B̃) denotes variable is in the diagonalized eigenbasis
Λ CP×P Matrix of eigenvalues of A; diagonalized dynamics matrix
Λ̄ CP×P Discretized diagonal dynamics matrix
(l) N/A Superscript index in parenthesis indicates layer (i.e. x for layer l)

Table 3: Key acronyms used throughout this paper.

Acronym Page number Definition

CNN 6 Convolutional neural network
LHP 1 Linear Hawkes process
LLH 2 Latent linear Hawkes
MTPP 1 Marked temporal point process
RNN 1 Recurrent neural network
SSM 1 (Deep) State-space model
TPP 7 Temporal point process
ZOH 5 Zero-order hold

RMTPP 7 Recurrent marked temporal point process (Du et al., 2016)
NHP 1 Neural Hawkes process (Mei & Eisner, 2017)
SAHP 7 Self-attentive Hawkes process (Zhang et al., 2020)
THP 7 Transformer Hawkes process (Zuo et al., 2020)
AttNHP 7 Attentive neural Hawkes process (Yang et al., 2022)
IFTPP 7 Intensity-free temporal point process (Shchur et al., 2020a)
DLHP 1 Deep linear Hawkes process (ours)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B ADDITIONAL DETAILS ON METHODS

B.1 DISCRETIZATION AND ZERO ORDER HOLD

The linear recurrence is defined in continuous-time. This mirrors the (M)TPP setting, where event
times are not on a fixed intervals. We use the zero-order hold (ZOH) discretization method, to
convert the continuous-time linear recurrence into a sequence of closed-form updates, given the
integration times, that can also be efficiently computed. We refer the reader to Iserles (2009) for a
comprehensive introduction to the ZOH transform.

The main assumption of the ZOH discretization is that the input signal is held constant over the time
period being integrated. Under this assumption, it is possible to solve for the dynamics and input
matrices that yield the correct state at the end of the integration period. For the LLH dynamics in
Eq. (10), when no events occur in (t, t′), this becomes

xt′− =

∫ t′

t

Axt +AButdt = Axt +ABut assuming dut = 0 ∈ [t, t′], (18)

where the resulting discretized matrices are

A = eA∆t, AB = A−1(eA∆t − I)AB, where ∆t = t′ − t. (19)

The ZOH does not affect the output or passthrough matrices C and D. To compute the matrices A
and AB however requires computing a matrix exponential and a matrix inverse. However, Smith
et al. (2022) avoid this by diagonalizing the system (also avoiding a dense matrix-matrix multiplica-
tion in the parallel scan). The diagonalized dynamics and input matrices are denoted Λ (a diagonal
matrix) and ΛB̃ respectively. In this case, Eq. (19) reduces to

A = eΛ∆t, (20)

AB = Λ−1(eΛ∆t − I)ΛB̃ (21)

= (eΛ∆t − I)B̃ (diagonal matrices commute) (22)

where eΛ∆t is trivially computable as the exponential of the leading diagonal of Λ∆t. These op-
erations are embarrassingly parallelizable across the sequence length and state dimension given the
desired evaluation times.

To contextualize, suppose an event occurs at time t, Eq. (22) allows us to exactly (under the constant-
input assumption) efficiently evaluate the linear recurrence at subsequent times t′. We use this exten-
sively in the DLHP to efficiently evaluate the recurrence (and hence the intensity) at the irregularly-
spaced event times and times used to compute the integral term.

It should be noted the discretization was done to compute a left-limit xt′− from a previous right-
limit xt. Should an event not occur at t′, then the left- and right-limits agree and xt′− = xt′+ = xt′ .
If an event does occur at time t′ with mark k, then the left-limit xt′− can be incremented by Ẽαk to
compute xt′+ = xt′ . This increment from left- to right-limit is exact and leverages no discretization
assumption.

B.2 INTERPRETATION FOR INPUT-DEPENDENT DYNAMICS

Consider the input-dependent recurrence for an LLH layer, as defined in Eq. (17):

dx̃t := Λix̃t−dt+ΛiB̃ut−dt+ ẼαdNt (23)
for t ∈ (ti, ti+1] where Λi := diag(∆i)Λ with the input-dependent factor defined as ∆i :=
softplus(W′uti + b′) ∈ RP

>0. This factor can be thought of as the input-dependent relative-time
scale for the dynamics. To see this, we first note that for vectors p,q ∈ Rd, the following holds true:
diag(p)q = p⊙ q = q⊙ p where ⊙ is the Hadamard or element-wise product. It then follows that

dx̃t := Λix̃t−dt+ΛiB̃ut−dt+ ẼαdNt (24)

= Λi(x̃t− + B̃ut−)dt+ ẼαdNt (25)

= diag(∆i)Λ(x̃t− + B̃ut−)dt+ ẼαdNt (26)

= [Λ(x̃t− + B̃ut−)]⊙ (∆idt) + ẼαdNt. (27)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

As shown, the positive vector ∆i can be thought of as changing the relative time-scale for each
channel in the hidden state x̃. Large values of ∆i will act as if time is passing quickly, encouraging
the state to converge to the steady-state sooner. Conversely, smaller values will make time pass
more slowly causing the model to retain the influence that prior events have on future ones (for that
specific channel in x̃ at least).

B.3 FORWARDS AND BACKWARDS ZERO ORDER HOLD DISCRETIZATION

In Section 3.3 we highlighted that the ZOH discretization is exact when ut is held constant over the
integration window. This raises a unique design question for DLHPs: what constant value should
ut take on when evolving x from time t to t′? For the first layer of the model, the input is zero
by construction, so there is no choice to be made—in fact, since u is constant for the first layer the
updates are exact. However, the input is non-zero at deeper layers, and, crucially, varies over the
integration period.

We must therefore decide how to select a u value over the integration period. This should be a value
in (or function of) {us | s ∈ [t, t′)}. Note this is because the value at t′, ut′ , cannot be incorporated
as this would cause a data leakage in our model; while values prior to t would discard the most
recent mark. For this work, we explore two natural choices: (i) the input value at the beginning of
the interval, ut, and (ii) the left-limit at the end of the interval, ut′−. We illustrate the backwards
variant in Fig. 2, where in the rightmost panel, we use the ut∗ values at each layer, as opposed to
ut3 . We refer to these options as forwards and backwards ZOH, respectively. All experiments in the
main paper utilize backwards ZOH.

It is not obvious a priori which one of these modes is more performant. We therefore conducted an
ablation experiment in Table 10. We see that there is little difference between the two methods. We
also note that models are learned through this discretization, and so this decision does not mean that
a model is “incorrectly discretized” one way or the other, but instead they define subtlety different
families of models. Theoretical and empirical investigation of the interpretations of this choice is an
interesting area of investigation going forwards, extending the ablations we present in Table 10.

[ADDED] THEORETICAL COMPLEXITY

We include in Table 4 a brief summary of the theoretical complexity of each of the methods we
consider. We break these down by the work, memory complexity and theoretical best parallel appli-
cation time of the forward pass (used when conditioning on a sequence, the left-hand term of Eq. (2))
and evaluating the integral term in Eq. (2) given that the forward pass has been completed (as this is
either required by the method, and is nearly always evaluated in conjunction with the forward pass).
We then state the limiting best-case theoretical parallelism of the two components.

The reasoning behind this is as as follows:

• The forward pass of RMTPP, NHP and IFTPP use non-linear RNNs, and hence incur mem-
ory and work that is linear in the sequence length, and cannot be parallelized. However,
they re-use the computed hidden states to compute the integral term, and hence, while they
incur work and memory that scales in the sequence length and number of events, this work
can be perfectly parallelized. This results in a best-case parallelism of O(L) (dominated
by the forward pass).

• SAHP, THP and AttNHP all use self-attention, and hence have a work and memory that
scales quadratically in the sequence length, although this work can be parallelized across
the sequence length, resulting in logarithmic parallel depth. SAHP and THP re-use embed-
dings and a parametric decoder, and hence estimating the integral scales like the RNN, and
hence the limiting parallelism is still the forward pass. AttNHP is slightly different in that it
re-applies the whole independently attention mechanism for each integration point. How-
ever, this work is parallelizeable and hence still reduces to a best-case depth of O(logL).

• DLHP is an RNN and hence has linear work and memory in the forward pass, but can
be parallelized to a best-case depth of O(logL) using the parallel scan. We then re-use
the states computed in the forward pass for estimating the integral, which, as with the

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

other RNN methods, is perfectly parallelizable, resulting in a theoretical parallel depth of
O(logL).

Note that these figures do not account for the number of layers required by each model, which must
be evaluated in sequence.

Table 4: Comparison of methods based on memory and compute complexity. We see that our DLHP
matches the best performing baseline in all categories. L denotes to the sequence length, and M
denotes to the number of Monte Carlo grid points per-event used in evaluating Eq. (2). As IFTPP is
an intensity-free method, it does not need to estimate

∫
λtdt as the other methods do.

Method
Forward Pass Estimating

∫
λtdt Overall

Memory Work Theoretical Memory Work Theoretical Theoretical
Parallelism Parallelism Parallelism

RMTPP O(L) O(L) O(L) O(LM) O(LM) O(1) O(L)
NHP O(L) O(L) O(L) O(LM) O(LM) O(1) O(L)

SAHP O(L2) O(L2) O(logL) O(LM) O(LM) O(1) O(logL)
THP O(L2) O(L2) O(logL) O(LM) O(LM) O(1) O(logL)
AttNHP O(L2) O(L2) O(logL) O(L2M) O(L2M) O(logL) O(logL)

IFTPP O(L) O(L) O(L) N/A N/A N/A O(L)

DLHP O(L) O(L) O(logL) O(LM) O(LM) O(1) O(logL)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL CONFIGURATIONS AND DATASETS

C.1 TRAINING DETAILS & HYPERPARAMETER CONFIGURATIONS

We apply a grid search for all models on all datasets for hyperparameter tuning. We use a default
batch size of 256 for training. For models/datasets that require more memory (e.g. large mark space
or long sequences), we reduce the batch size and keep them as consistent as possible among all
the models on each dataset. We use the Adam stochastic gradient optimizer (Kingma & Ba, 2015),
with a learning rate of 0.01 and a linear warm-up schedule over the first 1% iterations, followed
by a cosine decay. Initial experiments showed this setting generally worked well across different
models and datasets leads to convergence within 300 epochs. We also clip the gradient norm to
have a max norm of 1 for training stability. We use Monte-Carlo samples to estimate the integral in
log-likelihood, where we use 10 Monte-Carlo points per event during training.

On the five EasyTPP benchmark datasets and MIMIC-II that are smaller in their scales, we choose
an extended grid based on the architecture reported in the EasyTPP paper. Specifically, we search
over hidden states size h = {16, 32, 64, 128, 256} for RMTPP, h = {32, 64, 128} for NHP, and h =
{16, 32, 64} for IFTPP. For SAHP, THP, and AttNHP, we searched over all combinations of number
of L = {1, 2, 3}, hidden state size = {16, 32, 64, 128}, and number of heads = {1, 2, 4}. Finally,
for DLHP, we considered combinations for number of layers = {1, 2, 3, 4}, p = {16, 32, 64, 128}
and h = {16, 32, 64, 256}. We fixed the activation function as GeLU (Hendrycks & Gimpel, 2016)
and apply post norm with layer norm (Ba, 2016). We fix the dropout as 0.1 for DLHP on the five
core benchmark datasets, and add dropout = {0, 0.1} to the grid search for the other three datasets.
Due to the scale of Last.fm and EHRShot datasets, we perform a smaller search over architectures
that roughly match the parameter counts for all models at three levels: 25k, 50k, 200k, and choose
the model with the best validation results. AttNHP has expensive memory requirements that tends
to have smaller batch sizes than other models. We were unable to train any AttNHP on EHRShot.
The final model architectures used are reported in Table 5a and Table 5b. These configurations are
also included in the supplementary code we include.

Table 5: Model architectures for the experiments presented in Table 1

(a) Model architectures for the five EasyTPP benchmark datasets.

Model Amazon Retweet Taxi Taobao StackOverflow
RMTPP h = 128 h = 16 h = 128 h = 16 h = 256
NHP h = 128 h = 64 h = 128 h = 128 h = 64

SAHP h = 32, l = 2,heads = 2 h = 32, l = 3,heads = 4 h = 16, l = 2,heads = 4 h = 32, l = 1,heads = 1 h = 64, l = 1,heads = 1
THP h = 32, l = 2,heads = 4 h = 16, l = 3,heads = 4 h = 128, l = 1,heads = 4 h = 64, l = 1,heads = 1 h = 16, l = 2,heads = 4
AttNHP h = 64, t = 16, l = 2,heads = 4 h = 16, t = 16, l = 2,heads = 4 h = 16, t = 16, l = 3,heads = 4 h = 32, t = 16, l = 3,heads = 4 h = 32, t = 16, l = 2,heads = 4

IFTPP h = 64 h = 64 h = 32 h = 64 h = 32

DLHP h = 64, p = 128, l = 2 h = 128, p = 128, l = 2 h = 128, p = 16, l = 4 h = 32, p = 16, l = 4 h = 32, p = 32, l = 3

(b) Model architectures for the additional three benchmark datasets.

Model Last.fm MIMIC-II EHRShot
RMTPP h = 256 h = 128 h = 16
NHP h = 112 h = 128 h = 80

SAHP h = 136, l = 2,heads = 4 h = 64, l = 2,heads = 4 h = 8, l = 2,heads = 4
THP h = 48, l = 2,heads = 4 h = 32, l = 3,heads = 4 h = 32, l = 2,heads = 4
AttNHP h = 28, t = 16, l = 2,heads = 4 h = 64, t = 16, l = 3,heads = 2 OOM
IFTPP h = 48 h = 256 h = 16

DLHP h = 144, p = 16, l = 2 h = 256, p = 64, l = 2 h = 128, p = 32, l = 2

C.2 DATASET STATISTICS

We report the statistics of all eight datasets we used in Table 6. We used the HuggingFace version
of the five EasyTPP datasets. For all datasets, we further ensure the MTPP modeling assumptions
are satisfied that no more than two events occur at the same time (i.e. inter-arrival time is strictly
positive), and event times do not lie on grid points that are effectively discrete-time events. Dataset
descriptions and pre-processing details are provided in Appendix C.3.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Statistics of the eight datasets we experiment with.

Dataset K
Number of Events Sequence Length Number of Sequences

Train Valid Test Min Max Mean Train Valid Test

Amazon 16 288,377 40,995 84,048 14 94 44.8 6,454 922 1,851
Retweet 3 2,176,116 215,521 218,465 50 264 108.8 20,000 2,000 2,000
Taxi 10 51,584 7,404 14,820 36 38 37.0 1,400 200 400
Taobao 17 73,483 11,472 28,455 28 64 56.7 1,300 200 500
StackOverflow 22 90,497 25,762 26,518 41 101 64.8 1,401 401 401
Last.fm 120 1,534,738 344,542 336,676 6 501 207.2 7,488 1,604 1,604
MIMIC-II 75 9,619 1,253 1,223 2 33 3.7 2600 325 325
EHRShot 668 759,141 165,237 170,147 5 3,955 177.0 4,329 927 927

C.3 DATASET PRE-PROCESSING

We use the default train/validation/test splits for EasyTPP benchmark datasets. For MIMIC-II, we
copy Du et al. (2016) and keep the 325 test sequences in the test split, and further split the 2,935 train-
ing sequences into 2,600 for training and 325 for validation. In our pre-processed datasets, Last.fm
and EHRShot, we randomly partition into subsets containing 70%, 15%, 15% of all sequences for
training/validation/test respectively. We provide a high-level description of all the datasets we used,
followed by our pre-processing procedure of Last.fm and EHRShot in more detail. Note that for
datasets that contain concurrent events or effectively discrete times, we apply a small amount of
jittering to ensure no modeling assumptions are violated in the MTPP framework.

Amazon (Ni et al., 2019) contains user product reviews where product categories are considered as
marks. Retweet (Zhao et al., 2015) predicts the popularity of a retweet cascade, where the event
type is decided by if the retweet comes from users with “small”, “medium”, or “large” influences,
measured by number of followers (Mei & Eisner, 2017). Taxi data (Whong, 2014; Mei et al.,
2019) uses data from the pickups and dropoffs of New York taxi and the marks are defined as the
Cartesian product of five discrete locations and two actions (pickup/dropoff). Taobao (Xue et al.,
2022) describes the viewing patterns of users on an e-commerce site, where item categories are
considered as marks. StackOverflow contains the badges (defined as marks) awarded to users on
a question-answering website. Finally, MIMIC-II (Saeed et al., 2002) records different diseases
(used as marks) during hospital visits of patients. We add a small amount of noise to the MIMIC-II
event times so that events do not lie on a fixed grid. Both StackOverflow and MIMIC-II datasets
were first pre-processed by Du et al. (2016).

Last.fm Celma Herrada et al. (2009); McFee et al. (2012) records 992 users’ music listening habits
that has been widely used in MTPP literature (Kumar et al., 2019; Boyd et al., 2020; Bosser &
Taieb, 2023). Mark types are defined as the genres of a song, and each event is a play of a particular
genre. Each sequence represents the monthly listening behavior of each user, with sequence lengths
between 5 and 500. If the song is associated with multiple genres we select a random one of the
genres, resulting in a total of 120 different marks.

EHRShot Wornow et al. (2023) is a newly proposed large dataset of longitudinal de-identified pa-
tient medical records, and has rich information such as hospital visits, procedures, and measure-
ments. We introduce an MTPP dataset derived from EHRShot, where medical services and proce-
dures are treated as marks, as identified by Current Procedural Terminology (CPT-4) codes. Each
patient defines an event sequence, and we retain only CPT-4 codes with at least 100 occurrences in
the dataset. For the < 1% events of events where there are more than 10 codes at a single times-
tamp, we retain the top 10 codes with the most frequencies and discard the rest. We then add a
small amount of random noise to the event time to ensure they are not overlapping. This process
ensures we still satisfy the MTPP framework, and can reasonably instead compute top-10 accuracy
for the next mark prediction. Other work has considered extending the MTPP framework to con-
sider simultaneous event occurrence (Chang et al., 2024). Then we standardize each sequence to
start and end with start and end of a sequence events. Note that we do not score these events. Event
times are normalized to be in hours. We discard sequences that have less than 5 events and a single
timestamp. This leads to the final version of our dataset to have 668 marks, and the sequence lengths
range from 5 to 3955 events, reflecting patient histories that can span multiple years. We include the

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

notebook used for compiling the data we use from the original EHRShot data in the supplementary
code submission.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 FULL RESULTS ON BENCHMARK DATASETS

We provide the full log-likelihood results and corresponding plots in Table 7 and Fig. 5 respectively,
where we decompose the likelihood into time and mark likelihoods. The improvement of our DLHP
model is mainly driven by better modeling of time, though we also often obtain best- or second-best
predictive performance on marks from the next event prediction accuracy results conditioned on true
event time in Table 8. In all predictive metrics, our model ranks the best averaged over all of the
datasets.

In aggregate, our model achieves a 1.416 per-event likelihood ratio between itself and the next best
method across all datasets (a 41.6% improvement in likelihood). This is calculated by computing
the mean log-likelihood ratio across all datasets and then exponentiating. Doing so is equivalent to
taking the geometric mean across likelihood ratios.

Table 7: Complete per-event log-likelihood (higher is better) results on the held-out test for the eight
benchmark datasets we consider. In Table 7a we show the full log-likelihood. We then decompose
this log-likelihood into the log-likelihood of the event time in Table 7b, and the time-conditional
log-likelihood of the mark type in Table 7c. OOM indicates out of memory. We highlight the best-
performing model in bold and underline the second-best. We also report the average rank of models
across datasets as a summary metric (lower is better). DLHP is consistently the best or second
best-performing model across all datasets.

(a) Full log-likelihood results (equal to the summation of Table 7b and Table 7c). Extended version of Table 1.

Model Per-Event Log-Likelihood, LTotal (nats) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP -2.137 -7.169 0.347 1.006 -2.403 -1.776 -0.480 -8.035 6.38
NHP 0.205 -6.346 0.516 1.163 -2.243 -0.578 0.076 -3.907 3.13
SAHP -2.040 -6.704 0.372 1.201 -2.283 -1.500 -0.773 -6.845 5.13
THP -2.098 -6.652 0.374 0.791 -2.331 -1.716 -0.587 -7.183 5.63
AttNHP 0.608 -6.459 0.499 1.278 -2.179 -0.558 -0.244 OOM 2.86
IFTPP 0.493 -10.339 0.454 1.335 -2.224 -0.472 0.299 -6.424 3.00
DLHP (Ours) 0.765 -6.367 0.528 1.332 -2.165 -0.496 1.231 -2.189 1.38

(b) Per-event log-likelihood of the event times (higher is better).

Model Next Event Time Log-Likelihood, LTime (nats) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP 0.010 -6.231 0.622 2.427 -0.780 0.259 -0.182 -1.888 5.88
NHP 2.196 -5.583 0.728 2.579 -0.703 1.196 0.240 -0.758 3.38
SAHP 0.173 -5.895 0.681 2.612 -0.681 0.600 -0.298 -1.779 4.63
THP -0.070 -5.867 0.623 2.242 -0.769 0.220 -0.277 -1.890 6.00
AttNHP 2.545 -5.688 0.724 2.665 -0.681 1.213 -0.017 OOM 3.14
IFTPP 2.482 -9.494 0.736 2.730 -0.660 1.290 0.536 -2.642 3.25
DLHP 2.638 -5.600 0.738 2.742 -0.636 1.294 1.345 0.723 1.13

(c) Per event log-likelihood of mark type conditioned on the arrival time (higher is better).

Model Per-Event Next Mark Log-Likelihood, LMark (nats) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP -2.148 -0.939 -0.275 -1.421 -1.623 -2.035 -0.298 -6.147 6.00
NHP -1.992 -0.764 -0.212 -1.416 -1.540 -1.774 -0.164 -3.149 2.75
SAHP -2.213 -0.809 -0.308 -1.411 -1.602 -2.100 -0.475 -5.066 5.88
THP -2.028 -0.786 -0.249 -1.451 -1.563 -1.936 -0.310 -5.294 5.00
AttNHP -1.938 -0.771 -0.225 -1.387 -1.498 -1.771 -0.227 OOM 2.14
IFTPP -1.989 -0.845 -0.282 -1.395 -1.565 -1.763 -0.237 -3.782 3.75
DLHP -1.873 -0.767 -0.209 -1.410 -1.529 -1.790 -0.114 -2.912 1.88

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 5: Visualization of LTotal decomposed into LTime and LMark for all models and all datasets
relative to RMTPP, as discussed in Section 5.2. The improvement of DLHP is mainly driven by
better modeling of LTime.

Table 8: Next event prediction accuracy (reported as a percentage, ↑ is better) conditioned on the
true event time. We report top 1 accuracy for all datasets except for top 10 accuracy for EHRShot,
due to the pre-processing procedure described in Appendix C.3. We bold the best result per dataset,
and underline the runner-up.

Model Next Mark Accuracy (%) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot (Top 10)

RMTPP 30.96 50.36 91.37 60.93 46.46 52.51 92.20 34.09 5.63
NHP 39.23 61.47 92.82 61.58 47.03 56.43 94.32 71.85 1.88
SAHP 32.03 59.18 92.23 60.78 46.46 52.84 84.52 32.56 5.63
THP 34.63 60.17 91.59 60.00 46.64 53.28 90.98 45.47 5.13
AttNHP 38.55 60.92 92.60 61.24 48.33 56.18 91.98 OOM 3.00
IFTPP 35.75 49.08 91.71 60.93 45.69 56.44 93.43 60.60 4.25
DLHP 40.66 61.33 93.05 61.06 47.45 56.26 96.55 75.45 1.75

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D.2 FULL RESULTS FOR SYNTHETIC POISSON EXPERIMENTS

We present the full results in Fig. 6 for all models regarding the synthetic experiments discussed
in Section 5.1. All models are trained until convergence using a set of 5,000 generated sequences,
where we use 20 Monte Carlo points per event to estimate the integral of log-likelihood during
training to accommodate the sparsity of events. We used small models so they do not overfit; model
architecture and parameter counts are reported in Table 9. We plot the background intensity condi-
tioned on empty sequences using 1,000 equidistant grid points between the start and end points. Our
model is the only one that perfectly recovers the underlying ground truth intensity, while also using
the fewest parameters.

0 1 2 3 4 5 6 7
Time

0.0

0.5

1.0

In
te

n
si

ty

RMTPP Estimated Intensity

0 1 2 3 4 5 6 7
Time

0.0

0.5

1.0

In
te

n
si

ty

NHP Estimated Intensity

0 1 2 3 4 5 6 7
Time

0.0

0.5

1.0

In
te

n
si

ty

SAHP Estimated Intensity

0 1 2 3 4 5 6 7
Time

0.0

0.5

1.0
In

te
n

si
ty

THP Estimated Intensity

0 1 2 3 4 5 6 7
Time

0

2

4

6

In
te

n
si

ty

IFTPP Estimated Intensity

0 1 2 3 4 5 6 7
Time

0.0

0.5

1.0

In
te

n
si

ty

AttNHP Estimated Intensity

0 1 2 3 4 5 6 7
Time

0.0

0.5

1.0

In
te

n
si

ty

DLHP (ours) Estimated Intensity

Figure 6: Results for all baseline models for the synthetic Poisson experiment introduced in Section
5.1. The estimated intensity (blue lines) conditioned on an empty sequence are plotted against the
ground truth (dotted black lines).

Table 9: Model architectures and corresponding parameter counts for synthetic Poisson experiments.

Model Architecture # Parameters

RMTPP h = 16 627
NHP h = 8 1010
SAHP h = 16, l = 2,heads = 4 1738
THP h = 16, l = 2,heads = 4 1684
AttNHP h = 8, t = 2, l = 2,heads = 2 1178
IFTPP h = 16 1899
DLHP h = 4, p = 4, l = 2 178

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D.3 ABLATION FOR DIFFERENT DLHP VARIANTS

We perform an ablation study of different model variants that we proposed on all datasets and sum-
marize the results in Table 10. We train EHRShot using 10% of its training data because larger
dataset scale requires more training time (but use the original validation and test sets for model se-
lection and reporting results). Forward and backward discretization are very close in performance,
with backwards discretization having a slight edge. Models that are input-dependent achieve bet-
ter performance on most datasets, although on certain datasets input dependence appears to harm
performance. It is an interesting direction for future work to explore theoretically and empirically
when each of these variants is best. We select backward discretization with input dependence for
the results in the main paper.

Table 10: Ablation for different model variants log-likelihood (LL). ID stands for input-dependent,
see Section 3.4. Backward and Forward respectively refer to using uti−1

and uti− (i.e. the previous
right limit or current left limit), see Appendix B.3.

Dataset Model variant LL Arrival time LL Mark LL conditioned on time

Amazon

Forward 0.705 2.617 -1.912
Forward + ID 0.748 2.634 -1.886
Backward 0.740 2.640 -1.899
Backward + ID 0.765 2.638 -1.873

Retweet

Forward -6.405 -5.625 -0.780
Forward + ID -6.370 -5.602 -0.767
Backward -6.398 -5.618 -0.780
Backward + ID -6.367 -5.600 -0.767

Taxi

Forward 0.473 0.697 -0.224
Forward + ID 0.525 0.733 -0.208
Backward 0.477 0.705 -0.228
Backward + ID 0.528 0.738 -0.209

Taobao

Forward 1.207 2.643 -1.435
Forward + ID 1.332 2.742 -1.410
Backward 1.215 2.648 -1.432
Backward + ID 1.332 2.742 -1.410

StackOverflow

Forward -2.249 -0.676 -1.572
Forward + ID -2.174 -0.644 -1.530
Backward -2.225 -0.679 -1.547
Backward + ID -2.165 -0.636 -1.529

Last.fm

Forward -0.463 1.309 -1.772
Forward + ID -0.477 1.302 -1.779
Backward -0.474 1.303 -1.777
Backward + ID -0.496 1.294 -1.790

MIMIC-II

Forward 0.555 0.847 -0.292
Forward + ID 1.319 1.405 -0.086
Backward 0.322 0.601 -0.279
Backward + ID 1.231 1.345 -0.114

EHRShot (10%)

Forward -3.885 0.105 -3.990
Forward + ID -3.848 -0.021 -3.827
Backward -4.571 -0.432 -4.139
Backward + ID -4.684 -0.641 -4.043

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D.4 MODEL CALIBRATION

To further probe the models, we evaluate the calibration metrics of MTPPs that are proposed in liter-
ature (Bosser & Taieb, 2023), which has a different focus than log-likelihood-based evaluation. On
a high level, calibration describes how well the uncertainty in the model is reflected in the observed
data. However, a model can achieve perfect calibration by predicting the marginal distribution, so
better calibration does not necessarily transform into better predictive performance. We therefore
present these metrics as a secondary metric (secondary to log-likelihood per Daley & Vere-Jones
(2003)) for investigating the performance of different models. We provide summarized statistics for
both probabilistic calibration error (PCE) for time calibration and expected calibration error (ECE)
for mark calibration in Table 11, and visualize the calibration curves in Figs. 7 and 8. From our re-
sults, all MTPP models are well-calibrated on most of the datasets, especially on mark predictions.

Table 11: Calibration results for the models and datasets tests.

(a) Probabilistic calibration error (PCE) for time calibration in percentage.

Model Probabilistic Calibration Error (PCE)
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP 13.70 4.20 3.55 10.18 1.91 11.55 3.85 13.31
NHP 7.57 0.15 0.27 7.38 1.77 4.77 6.05 8.22
SAHP 10.86 9.75 1.73 2.88 1.14 10.89 2.79 15.05
THP 12.28 5.71 3.32 16.32 2.10 10.90 1.21 14.55
AttNHP 6.20 1.26 0.96 3.17 1.52 1.57 4.66 OOM
IFTPP 1.74 23.93 0.44 0.61 0.50 0.30 2.19 17.66
DLHP 3.47 0.40 0.13 2.05 0.60 1.18 8.94 12.47

(b) Expected calibration error (ECE) for mark calibration in percentage.

Model Expected Calibration Error (ECE)
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP 6.41 5.89 2.62 1.60 1.36 2.44 1.97 9.22
NHP 6.75 0.33 0.81 4.40 1.02 4.10 1.92 2.84
SAHP 8.36 4.74 6.96 3.00 1.12 8.55 5.77 11.09
THP 2.02 1.20 1.74 6.48 0.77 2.67 1.81 11.42
AttNHP 2.88 0.39 0.44 2.52 1.21 0.50 2.79 OOM
IFTPP 0.37 0.58 0.41 1.49 1.48 0.59 1.40 2.01
DLHP 1.00 0.72 0.46 1.66 2.01 0.74 2.34 1.19

E
m

p
ir

ic
al

C
D

F

Predicted CDF

0

0.5

1
Amazon

RMTPP NHP SAHP THP AttNHP IFTPP DLHP

Retweet Taxi Taobao

0 0.5 1
0

0.5

1
StackOverflow

0 0.5 1

Last.fm

0 0.5 1

MIMIC-II

0 0.5 1

EHRShot

Figure 7: Reliability diagram for predicted inter-arrival time for each model on all datasets. Diagonal
dashed lines refer to perfect calibration.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

A
cc

u
ra

cy

Confidence

0

1

R
M

T
P

P

Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

0

1

N
H

P

0

1

S
A

H
P

0

1

T
H

P

0

1

A
tt

N
H

P

OOM

0

1

IF
T

P
P

0 0.5 1
0

1

D
L

H
P

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Figure 8: Reliability diagram for mark prediction of all models and all datasets. The x-axis specifies
the confidence of model estimates grouped into 20 bins, and the y-axis of the bar plot is the model
accuracy within that bin. The diagonal lines represent perfect calibration. The solid curves depict the
distribution of confidences, and do not share the y-axis. The grey dashed lines indicate the overall
prediction accuracy of the model for the next event conditioned on true event time.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Finally, in Figs. 9 and 10 we plot the log-likelihood of time and mark respectively, versus their
corresponding calibration results, to provide an overall view of the performances of different models.
Our DLHP model consistently achieves higher log-likelihood while maintaining good calibration on
both time and mark components on most datasets.

T
im

e
L

og
-L

ik
el

ih
o
o
d

PCE

0 0.1

0

1

2

Amazon

RMTPP NHP SAHP THP AttNHP IFTPP DLHP

0 0.25

−8

−6

Retweet

0 0.025

0.65

0.70

Taxi

0 0.1

2.4

2.6

Taobao

0 0.02

−0.75

−0.70

−0.65

StackOverflow

0 0.1

0.5

1.0

Last.fm

0 0.05

0

1

MIMIC-II

0 0.1

−2

0

EHRShot

Figure 9: Log-likelihood of time vs. PCE for all models grouped by datasets. Higher log-likelihood
and lower PCE are better (i.e. top left corner).

M
ar

k
L

og
-L

ik
el

ih
o
o
d

ECE

0 0.05

−2.2

−2.0

Amazon

RMTPP NHP SAHP THP AttNHP IFTPP DLHP

0 0.05

−0.9

−0.8

Retweet

0 0.05

−0.30

−0.25

Taxi

0 0.05

−1.450

−1.425

−1.400

Taobao

0 0.02

−1.60

−1.55

−1.50

StackOverflow

0 0.05

−2.0

−1.8

Last.fm

0 0.05

−0.4

−0.2

MIMIC-II

0 0.1

−6

−4

EHRShot

Figure 10: Log-likelihood of mark vs. ECE for all models grouped by datasets. Higher log-
likelihood and lower ECE are better (i.e. top left corner).

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

D.5 [ADDED] ADDITIONAL SYNTHETIC RESULTS ON MULTIVARIATE HAWKES PROCESSES

We evaluate our model and baseline models against the true model on a randomly initiated para-
metric Hawkes process with three possible marks. Following the notation in Section 2.1, we draw
all parameters from the following distributions: νi

iid∼ Unif[0.1, 0.5], αij
iid∼ Unif[0.5, 0.8], and

βij
iid∼ Unif[0.4, 1.2] for i, j ∈ {1, 2, 3}.

All models are trained until convergence using a set of 50,000 generated sequences, where we use
20 Monte Carlo points per event to estimate the integral of log-likelihood during training. Model
architecture and parameter counts are reported in Table 12. We plot three example sequences drawn
for an additional test set for each model in Figs. 11 and 12, using 1,000 equidistant grid points for
any inter-event interval. Dotted lines refer to the intensities under the true underlying parametric
model; solid lines are different model estimates from trained models.

As we see in inhomogeneous Poisson processes, our model can recover the ground truth intensities
with the fewest parameters. Both neural Hawkes processes and our DLHP show almost perfect
recovery of parametric Hawkes processes, especially before seeing any event happening, and at event
times. It is also worth noting that our model is 7-9× quicker than NHP and AttNHP regarding wall-
clock runtime on a single A5000 GPU. Our results on synthetic experiments validate the model’s
ability to recover the ground truth intensities.

Table 12: Model architectures and corresponding parameter counts for parametric Hawkes processes
experiments.

Model Architecture # Parameters

RMTPP h = 16 697
NHP h = 8 1046
SAHP h = 16, l = 2,heads = 4 1902
THP h = 16, l = 2,heads = 4 1756
AttNHP h = 8, t = 2, l = 2,heads = 2 1230
IFTPP h = 16 1965
DLHP h = 8, p = 4, l = 2 358

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

DLHP (ours) Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

DLHP (ours) Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

DLHP (ours) Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

Figure 11: Our proposed DLHP model trained with 50k training sequences drawn from a randomly
instantiated multivariate Hawkes process. Three example test sequences are plotted for each model.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

RMTPP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

RMTPP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

RMTPP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

NHP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

NHP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

NHP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

SAHP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

SAHP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

SAHP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

THP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

THP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

THP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

AttNHP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

AttNHP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

AttNHP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

IFTPP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

IFTPP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

0 2 4 6 8 10

Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
te

n
si

ty

IFTPP Estimated Intensity

True k=1

True k=2

True k=3

Est. k=1

Est. k=2

Est. k=3

Figure 12: Baseline models trained with 50,000 training sequences drawn from a randomly instan-
tiated multivariate Hawkes process. Three example test sequences are plotted for each model.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

33


	Introduction
	Preliminaries
	Marked Temporal Point Processes
	State-Space Models

	Deep Linear Hawkes Processes
	Continuous-Time Latent Linear Hawkes Layer
	Continuous-Time Deep Linear Hawkes Process Architecture
	Discretizing & Diagonalizing the LLH Layer
	Input-Dependent Dynamics
	Computing LLH Recurrence
	[Added] On the Relationship With the Linear Hawkes Process

	Related Works
	Experiments
	Synthetic Poisson Experiments
	Log-likelihood Results on Real-world Datasets
	Speed Testing

	Conclusion
	Acronyms and Notation
	Additional Details on Methods
	Discretization and Zero Order Hold
	Interpretation for Input-Dependent Dynamics
	Forwards and Backwards Zero Order Hold Discretization

	Experimental Configurations and Datasets
	Training Details & Hyperparameter Configurations
	Dataset Statistics
	Dataset Pre-processing

	Additional Experimental Results
	Full Results on Benchmark Datasets
	Full Results for Synthetic Poisson Experiments
	Ablation for Different DLHP Variants
	Model Calibration
	[Added] Additional Synthetic Results on Multivariate Hawkes Processes


