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ABSTRACT

Marked temporal point processes (MTPPs) are used to model sequences of dif-
ferent types of events with irregular arrival times, with broad applications rang-
ing from healthcare and social networks to finance. We address shortcomings
in existing point process models by drawing connections between modern deep
state-space models (SSMs) and linear Hawkes processes (LHPs), culminating in
an MTPP that we call the deep linear Hawkes process (DLHP). The DLHP mod-
ifies the linear differential equations in deep SSMs to be stochastic jump differ-
ential equations, akin to LHPs. After discretizing, the resulting recurrence can
be implemented efficiently using a parallel scan. This brings parallelism and lin-
ear scaling to MTPP models. This contrasts with attention-based MTPPs, which
scale quadratically, and RNN-based MTPPs, which do not parallelize across the
sequence length. We show empirically that DLHPs match or outperform existing
models across a broad range of metrics on eight real-world datasets. Our proposed
DLHP model is the first instance of the unique architectural capabilities of SSMs
being leveraged to construct a new class of MTPP models.

1 INTRODUCTION

Figure 1: Intensity estimates from trained
models when conditioned on an empty se-
quence Ht = ∅ for NHP (Mei & Eisner, 2017)
and DLHP, our method. Shown in dotted lines
are the ground truth, inhomogeneous Poisson
process intensity. Our DLHP is able to accu-
rately capture the background intensity. See
Section 5.1 for more details.

Marked temporal point processes (MTPPs) are
used to model irregular sequences of events
in continuous-time, where each event has an
associated type, often referred to as a mark.
MTPPs model the joint distribution of marked
event sequences. They have been successfully
applied to modeling purchasing patterns in e-
commerce (Türkmen et al., 2019; Vassøy et al.,
2019; Yang et al., 2018), patient-specific medi-
cal events (Hua et al., 2022), disease propaga-
tion (Gajardo & Müller, 2023), and many other
domains (Williams et al., 2020; Sharma et al.,
2018; Wang et al., 2024).

An MTPP is fully characterized by a marked in-
tensity process which specifies the expected in-
stantaneous rate of occurrence of events of each
mark conditioned on the event history. State-of-
the-art methods use neural networks to compute
hidden states that summarize the event history,
which are then used to compute marked intensi-
ties across future values of time. However, many
models are limited by inexpressive temporal dynamics, lack of support for long-range dependencies,
and serial computation (Du et al., 2016; Mei & Eisner, 2017). Recent advances in transformer-based
MTPPs have improved performance and gained parallelism, but scale quadratically with sequence
lengths (Zhang et al., 2020; Zuo et al., 2020; Yang et al., 2022).

Recently, deep state-space models (often abbreviated as SSMs) have emerged as a challenger to
transformer-based models for discrete sequence modeling (Gu et al., 2022b; Smith et al., 2022; Gu
& Dao, 2023). SSMs interleave a stack of linear state-space recurrences with position-wise non-
linearities (Gu et al., 2021). This architecture has been found to be not only highly performant on a
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Figure 2: Three different schematics of the deep linear Hawkes process (DLHP) and latent linear
Hawkes (LLH) layer we propose. With increasing granularity: Left (a): On a high level, the DLHP
can simply be viewed as a deep stack of neural network layers that transform an event sequence into
an intensity function. Middle (b): On a more granular level, individual LLH layers can be viewed
as discrete-time recurrences (see Eq. (16)), directly defining an intensity evaluated at select times:
t∗ using xt∗ , right limits ti+ using xti , and left values ti using xti−. Right (c): Finally, the same
recurrences can be viewed as a set of non-linearly coupled stochastic jump differential equations in
continuous-time. Events are embedded and impart impulses to the differential equation. [Added]
Note that when decoding intermediate intensities we use a zero-input vector (for both u input and
impulse α). We omit the mark-specific impulse for layers 2 to L in this diagram for visual clarity.

wide range of tasks (e.g. Goel et al., 2022; Deng et al., 2024), but retains linear scaling, can be par-
allelized across the length of a sequence, and can gracefully handle irregularly-spaced observations.

Inspired by this, we revisit a foundational point process model, the linear Hawkes process (LHP
Hawkes, 1971), and draw connections between LHPs and deep SSMs. We combine the parameteri-
zation and parallelization strategy of SSMs with the functional form of LHPs to create what we call
the deep linear Hawkes process (DLHP). More formally, the DLHP is a fully-recurrent neural MTPP
parameterized by a stack of stochastic jump differential equations on the complex plane (serving as
the recurrence) interleaved with position-wise non-linearities (to improve expressivity). This design
yields an MTPP with two main advantages over existing neural MTPPs: (i) parallelism across the
length of the sequence through the use of parallel scans, and (ii) highly flexible intensity functions.
This is achieved not only through the expressivity of the SSM-style architecture, but also by tying
the output intensity at time t to the model’s continuously-evolved hidden state xt (extending ideas
from Mei & Eisner (2017) and Yang et al. (2022), see Figs. 1 and 2), and by going beyond the
classical LHP form with input-dependent recurrent dynamics (akin to Mamba (Gu & Dao, 2023)).

The contributions of this paper are as follows: We introduce a new family of marked point process
models, deep linear Hawkes processes—the first MTPP model that fully leverages the architectural
features of deep SSMs. [Edited] We demonstrate that DLHPs match or exceed the performance of
existing models across eight real-world datasets, with an average per-event likelihood improvement
of 38% across datasets, over the individually best-performing existing method on each dataset. We
also verify that DLHP scales more effectively to longer sequences, a crucial capability for a wide
range of modern machine learning applications. We release our models, datasets and pipelines as
part of the existing EasyTPP library (Xue et al., 2023).1 We conclude by discussing the relative
advantages and disadvantages of the DLHP over existing methods, and opportunities for extending
this work.

1As per ICLR guidelines, we will include anonymised source code, integrated in the EasyTPP library (Xue
et al., 2023), during the private discussion phase. To avoid de-anonymization, we have not yet submitted the
pull request to the public EasyTPP repository.
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2 PRELIMINARIES

2.1 MARKED TEMPORAL POINT PROCESSES

Let t1, t2, · · · ∈ R≥0 be a strictly increasing sequence of positive random variables, each represent-
ing the time of occurrence for an event of interest.2 For each ti, let ki ∈ M be a random variable rep-
resenting accompanying side-information, commonly referred to as an event’s mark, with M being
the mark-space. In this paper, we focus on discrete and finite mark spaces, i.e. M := {1, . . . ,K};
however, in general M can be continuous or even a mixture of continuous and discrete. Together ti
and ki fully define a given event. The joint distribution over a sequence of continuous event times
and mark types is described as a marked temporal point process. We use Ht to represent the se-
quence, or history, of events up to some time t: Ht := {(ti, ki) | ti ≤ t for i ∈ N}, with Ht−
defined similarly except that it does not include events that occur at time t.

One way of characterizing an MTPP is through a marked intensity process, which describes the in-
stantaneous expected rate of occurrence for events of specific marks. Let Nt := [N1

t , . . . , N
K
t ]⊤ ∈

ZK
≥0 be the marked counting process which represents the number of occurrences of events of each

type of mark in the time span [0, t]. The marked intensity process λt := [λ1
t , . . . , λ

K
t ]⊤ ∈ RK

≥0
characterizes an MTPP by describing how the counting process changes via:

λk
t dt := E [event of type k occurs in [t, t+ dt] | Ht−] = E

[
Nk

t+dt −Nk
t | Ht−

]
, (1)

with the total intensity λt :=
∑K

k=1 λ
k
t being the rate that any event occurs. Note that the intensity

conditions on the left limit of the history Ht− to ensure that the intensity is modeling future events.

Parameterized forms of λ are often trained by optimizing the log-likelihood over observed data. The
log-likelihood for a single sequence HT is defined as (Daley & Vere-Jones, 2003, ch. 7.3):

L(HT ) :=
∑|HT |

i=1
log λki

ti −
∫ T

0

λsds. (2)

Linear Hawkes Processes An (unmarked) Hawkes process (Hawkes, 1971), or more generally a
self-exciting process, is a temporal point process where event occurrences increase the rate at which
subsequent events occur soon thereafter. Of particular interest to us are linear Hawkes processes
(LHPs), which are characterized by the following intensity process:

λt := ν +

∫ t−

s=0

h(t− s)dNs := ν +
∑Nt−

i=1
h(t− ti), (3)

where ν > 0 is the background intensity, h : R≥0 → R≥0 is the excitation function (or kernel), and
Nt is the associated counting process characterized by intensity λt. Nt− is used as the upper limit
in Eq. (3) to ensure the intensity at time t does not take into account an event that occurs at time t.

Should h correspond to the exponential decay kernel, h(z) = α exp (−βz), then the LHP intensity
process is Markov (Law & Viens, 2016) and admits the following stochastic differential form:

dλt = β(ν − λt−)dt+ αdNt ⇐⇒ λt = ν +

∫ t−

0

α exp (−β(t− s)) dNs (4)

= ν +
∑Nt−

i=1
α exp (−β(t− ti)) . (5)

LHPs can be extended to the marked setting, with K possible discrete marks, by replacing ν with
a vector of K background rates ν := [ν1, . . . , νK ]⊤, and the excitation effect h(t − s)dNs with
h(t − s)dNs. Here, hij of h : R≥0 → RK×K

≥0 describes the excitation that events of type i exerts
on future events of type j. The counting process, dNt, is then either a K-dimensional zero-vector if
no event occurs at time t, or a one-hot vector indicating which mark is associated with the occurring
event. Generalizing the exponential kernel to handle marks results in the following differential form:

dλt = −β(λt− − ν)dt+αdNt, (6)

where β,α ∈ RK×K
≥0 are restricted to be non-negative to ensure non-negative marked intensities.

2Please refer to Tables 2 and 3 in Appendix A for a list of notation and acronym definitions, respectively.
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2.2 STATE-SPACE MODELS

Deep state-space models (SSMs) are a recent innovation in recurrent models that have found success
in long-range sequence modeling tasks (Gu et al., 2022b) and language modeling tasks (Gu & Dao,
2023), while also having favorable computational properties. The backbone of deep SSMs is the
linear state-space equations, which define a continuous-time dynamical system with input and output
signals u(t),y(t) ∈ RH , respectively, through linear differential equations:

d

dt
x(t) = Ax(t) +Bu(t) (7)

y(t) = Cx(t) +Du(t), (8)

where x(t) ∈ RP is the (hidden) state of the system, and A ∈ RP×P ,B ∈ RP×H ,C ∈ RH×P , and
D ∈ RH×H are the parameters that control the system’s dynamics.

Deep SSMs then stack these recurrences interleaved with non-linear position-wise functions, σ. The
function σ can contain activation functions, residual connections and normalization layers, and trans-
forms the output y of the previous recurrence into the input u of the next, i.e. u(l)(t) := σ(y(l−1)(t))
for layer l. This combination yields a sequence model where each recurrence is conditionally linear
in time given the input, but is ultimately non-linear in depth due to the function σ.

To evaluate the SSM, we first discretize the continuous-time system at the desired times, and then
evaluate as though it were a conventional discrete-time RNN architecture. Crucially, the linearity of
the resulting discrete-time recurrence allows it to be evaluated using parallel scans (Blelloch, 1990;
Smith et al., 2022; Gu & Dao, 2023), leading to linear work scaling (i.e. number of operations),
and, importantly, sublinear scaling of the computation time with respect to sequence length given
sufficient parallel compute. Note this contrasts with conventional sequential RNNs (e.g. LSTMs),
which process sequences serially; and attention-based methods, which can be parallelized over a
sequence, but have quadratic work scaling with respect to sequence length. This allows SSMs to
fully and efficiently leverage modern massively parallel hardware while also a being highly expres-
sive and performant model class. Importantly for our purposes, evaluating a linear recurrence with
a parallel scan natively admits evaluations with varying observation intervals. We will leverage this
to parsimoniously handle the variable inter-event times observed in MTPP settings.

3 DEEP LINEAR HAWKES PROCESSES

In this section, we introduce our deep linear Hawkes process (DLHP), a neural MTPP that draws a
novel connection between LHPs and deep SSMs. Stochastic jump differential equations, akin to the
LHP intensity, form the basis of the conditionally linear recurrent layer, which we refer to as a latent
linear Hawkes (LLH) layer. The LLH layer can be viewed as a modified SSM recurrence, while
still admitting parallel computation. Taking further inspiration from deep SSMs, the DLHP is then
made up of a stack of LLH layers, each interleaved with non-linear, position-wise transformations
to increase the overall expressivity of the model (see Fig. 2a). In this section, we formalize this
approach and outline implementation details.

3.1 CONTINUOUS-TIME LATENT LINEAR HAWKES LAYER

We first start by generalizing the intensity of the linear Hawkes process, Eq. (6):

dλt = −β(λt− − νt)dt+αdNt = −βλt−dt+ βνtdt+αdNt, (9)

whereby the background intensity νt is allowed to vary over time. If we compare this to the recur-
rence in Eq. (7), we see that the intensity in the LHP, λt controlled by decay rates β, is analogous
the state in the linear SSM, x(t) controlled by state matrix A. Additionally, the time-varying base-
line intensity in the LHP, νt, is analogous to the SSM input signal, u(t). What is unique to the
LHP is the (mark-specific) impulse αdNt. This impulse is important because it allows the model
to instantaneously incorporate information from events as they occur, introducing discontinuities in
the output signals of the otherwise continuously-integrated system, unlike conventional SSMs.

With this in mind, we adapt Eq. (9) such that it can replace the typical state-space recurrence in an
SSM, Eq. (7). To do so, we replace the non-negative β with an unrestricted state matrix A ∈ RP×P .

4
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Next, given an input signal ut ∈ RH we project it to P dimensions with an input matrix B ∈ RP×H

to replace νt.3 What was originally the intensity λt is now relabeled to be the state of the layer
xt. Finally, we allow the impulses to be low-rank by having a shared set of mark embeddings
α ∈ RR×K with rank R that are brought into P dimensions with a layer-specific embedding matrix
E ∈ RP×R. For simplicity, we set R = H for all our experiments. The equation for the output
signal yt is left unchanged from Eq. (8), where C ∈ RH×P and D ∈ RH×H . All of this results in
the set of equations that makes up what we call the latent linear Hawkes layer:

dxt = −Axt−dt+ABut−dt+EαdNt (10)
yt = Cxt +Dut, (11)

where the initial state x0 ∈ RP is learned. Realizations of this layer can be seen in Fig. 2c.

3.2 CONTINUOUS-TIME DEEP LINEAR HAWKES PROCESS ARCHITECTURE

Inspired by deep SSMs, our MTPP is formed by stacking LLH layers, chaining the output signal y
of one layer to the input u of another with non-linear transforms in between. The final layer’s output
is then transformed into the intensity λ. An illustration of the DLHP architecture is shown in Fig. 2.

Let L be the number of desired LLH layers that comprise a DLHP with input and output signals
u(l) and y(l) respectively for layers l = 1, . . . , L. For the very first layer, the only input available to
condition on are the event occurrences themselves. As such, we set u(1)

t = 0 for all t ≥ 0.

In general, a layer’s output y(l) := LLH(l)(u(l),H) is passed into a non-linear activation function
f (we use f(z) := GELU(z) (Hendrycks & Gimpel, 2016)), summed with the residual stream u(l),
and normalized with LayerNorm (Ba, 2016) to compute the next layer’s input. More formally,

u
(l+1)
t := LayerNorm(l)(f(y

(l)
t ) + u

(l)
t ) (12)

for t ≥ 0 and l = 1, . . . , L. We use the same strategies for initialization as S5 (Smith et al.,
2022), based off the performant HiPPO initialization scheme (Gu et al., 2020). [Added] Due to
the transformations, unlike the original LHP, we cannot guarantee the output of the final layer is
positive. Therefore, similar to Mei & Eisner (2017), we apply an affine projection followed by a
[Added] rectifying transformation to enforce non-negative intensity:

λt := s⊙ softplus((Wu
(L+1)
t− + b)⊙ s−1) (13)

for t ≥ 0 and where W ∈ RK×H , b, log(s) ∈ RK , and ⊙ is an element-wise product. Eq. (13)
implements the “Proj. & Softplus” layer in Fig. 2. The intensity at time t always uses the left-limit of
u(L+1), which in turn uses the left-limit of y(l) and u(l) for all l to ensure that it has no information
of any events that may or may not have occurred at time t is used.

The DLHP is trained by maximizing the sequence log-likelihood, Eq. (2). Similar to other neural
MTPPs, we opt to approximate the integral term in the log-likelihood,

∫ T

0
λsdNs, with a Monte-

Carlo approximation (Mei & Eisner, 2017). As such, training the model requires the computation of
intensity values at event times t1:N and at sampled times t∼U(0, T ).

3.3 DISCRETIZING & DIAGONALIZING THE LLH LAYER

Unlike the LHP intensity, the recurrence in the LLH layer does not permit an analytic solution.
As such, we must discretize the continuous-time process to compute values of the layer at specified
time points. If we approximate the input signal by treating it as constant over an update interval, also
known as a zero-order hold (ZOH) assumption (Iserles, 2009), then we can achieve a closed-form
exact update to the recurrence relation. However, unfortunately, this involves a computationally-
expensive matrix exponential in the update rule. To circumvent this, we first diagonalize the system
and then impose the zero-order hold restriction on it. Doing so converts the matrix exponential into
an element-wise exponential operation. This is done for all LLH layers that compose the DLHP.
Note that this is same general approach taken by Smith et al. (2022) for deep SSMs.

3Here, we index time t via subscripts (e.g. ut) rather than an argument (u(t)) to emphasize that these are
stochastic (jump) processes rather than deterministic functions.
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Diagonalization Let −A be diagonalizable with a factorization of VΛV−1, where V,Λ ∈
CP×P and Λ is a diagonal matrix of eigenvalues. An equivalent, diagonalized LLH is then

dx̃t := Λx̃t−dt+ΛB̃ut−dt+ ẼαdNt (14)

yt := C̃x̃t +Dut (15)

where x̃t = V−1xt, B̃ = −V−1B, Ẽ = V−1E, and C̃ = CV. Note that in practice we directly
parameterize B̃, C̃, and Ẽ to avoid having to learn and invert V. The eigenvalues Λ are also directly
parameterized and constrained with negative real-components for stability (Davis, 2013). [Added]
While the dynamics are diagonalized, we note this does not mean that we are modeling the intensities
of different mark types independently. This can be seen two ways: First, the diagonalized dynamics
are equivalent to the original dynamics (see Eq. (10), given the system can be diagonalized on the
complex plane). Alternatively, the marks interact through the dense input and output matrices, the
position-wise non-linearity, the mark embeddings, and the final intensity rectification layer.

Discretization We then employ a ZOH discretization to create a closed-form update from the
diagonalized continuous-time system. The ZOH assumption holds the input u constant over the
integration period. This results in the following update rule that transitions from xt to xt′ , where,
by construction, no events occur in (t, t′):

x̃t′ :=

{
Λ̄x̃t + (Λ̄− I)B̃ut′− if no event at t′

Λ̄x̃t + (Λ̄− I)B̃ut′− + Ẽαk if event of type k at t′
(16)

where Λ̄ := exp(Λ(t′ − t)) (derivation in Appendix B.1). Please refer to Fig. 2b for an illustration.

Note that the ZOH is an exact update when u is constant over the window [t, t′). While we choose
the constant value to set u to be as ut′−, it is worth noting that technically any value us for s ∈ [t, t′)
is valid. We explore this design decision and the impact it has on performance in more detail in
Appendices B.3 and D.3. It is important that ut′ is not used as the ZOH value to avoid data leakage.

3.4 INPUT-DEPENDENT DYNAMICS

Inspired by recent developments in modern SSMs (e.g. Mamba (Gu & Dao, 2023)), we also con-
sider allowing the dynamics of the system to vary depending on the input and history of previous
events. This can allow for more expressive intensities. For instance, dynamically adjusting the real
components of Λ to be smaller will result in longer staying power of the recent impulses. Alterna-
tively, larger values will result in more quickly “forgetting” the influence of previous events for a
given hidden state channel. This is formalized with the following recurrence relation:

dx̃t := Λix̃t−dt+ΛiB̃ut−dt+ ẼαdNt (17)

for t ∈ (ti, ti+1] where Λi := diag (softplus(W′uti + b′))Λ with W′ ∈ RP×H and b′ ∈ RP .
Note that this is still conditionally linear in time as even though Λi changes it is entirely input-
dependent based on u and not dependent on previous values of x.

3.5 COMPUTING LLH RECURRENCE

Thus far, we have created the LLH layer by diagonalizing and discretizing a modified SSM. As
discussed earlier, we would like to take advantage of the efficient parallel scans leveraged by many
SSM-based models (Smith et al., 2022; Gu & Dao, 2023; Dao & Gu, 2024). Below we explain how
we can still use the parallel scan, despite the modified recurrence.

Parallel scans admit efficient inference over linear recurrences of the form zi+1 = Aizi + bi (Blel-
loch, 1990). Although we have added an impulse to the recurrence, this is still intrinsically of this
form, where zi := xti , Ai := exp(Λi(ti+1 − ti)), and bi := (Ai − I)B̃uti+1− + Ẽαki+1

. As a re-
sult, we can leverage efficient parallel scans to compute the sequence of right-limits xt1:N in parallel
across the sequence length. The corresponding left-limits xt1:N− can then be efficiently computed
after by subtracting off Ẽαk1:N

from xt1:N . In Algorithms 1 to 3 we compactly detail how to use a
parallel scan to compute the sequence of right limits given events; how to evolve those right limits
to compute left limits; and then how to subsequently compute the log-likelihood of the sequence.
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3.6 [ADDED] ON THE RELATIONSHIP WITH THE LINEAR HAWKES PROCESS

Before we move onto evaluate the DLHP, we briefly reflect on the relationship between the DLHP
and LHP. We presented the derivation above showing the steps to modify an LHP to be a deep
SSM. The connection, parameterization and equivalence we explore does not materially affect the
implementation; this was intended to concretely define how our model differs from a classical model,
and to retain as much of the intuition from the simpler LHP (even if the direct interpretability of the
LHP parameters is somewhat lost). One could have alternatively asked what it takes to convert
a deep SSM into an MTPP model. The steps and result are similar; but the relationship to other
models is markedly less clear (requiring additional, arbitrary constraints to recover a known model).
We hope our choice of exposition makes it clear how the DLHP is a natural extension of a known,
understood and well-used model; instead of an arbitrary modification to a recent architecture.

4 RELATED WORKS

Neural MTPPs Marked temporal point processes (MTPPs) are generative models that jointly
model the time and type of continuous-time sequential events, typically characterized by mark-
specific intensity functions (Daley & Vere-Jones, 2003). Early approaches, such as self-exciting
Hawkes processes (Hawkes, 1971; Liniger, 2009), used simple parametric forms for the inten-
sity. More recently, neural architectures such as RNNs (Du et al., 2016; Mei & Eisner, 2017),
CNNs (Zhuzhel et al., 2023), and transformers (Zhang et al., 2020; Zuo et al., 2020; Yang et al.,
2022) have been used to more flexibly model the conditional intensity. For intensity-free MTPPs, ap-
proaches include normalizing flows (Shchur et al., 2020a; Zagatti et al., 2024), neural processes (Bae
et al., 2023), and diffusion models (Zeng et al., 2023; Zhang et al., 2024); however, the most com-
mon approach is to model intensities as it requires fewer modeling restrictions.

Efficient MTPPs Due to their recurrent nature, RNN-based MTPP models incur O(N) complex-
ity for sequences of length N as events must be processed sequentially. Attention-based MTPP
models can be applied in parallel across the sequence, but the computational work scales as O(N2).
Türkmen et al. (2020) proposed modeling events as conditionally independent so long as they oc-
curred within the same time bin of a specified size. This resulted in parallel computation within bins,
but still scales overall as O(N). Shchur et al. (2020b) proposed an unmarked, intensity-free TPP
which uses triangular maps and the time-change theorem (Daley & Vere-Jones, 2003). This was
extended by Zagatti et al. (2024) to the marked setting, but in doing so, lost many of the benefits of
the original model and scales linearly in the mark dimension—which can rapidly become untenable
with O(NK) work. To the best of our knowledge, our proposed model is the first that efficiently
scales with sequence length and mark space, while also being the first to fully leverage SSMs and
parallel scans.

SSMs for Sequential Modeling SSMs have found recent success as alternatives to RNNs, CNNs,
and transformers, enjoying reduced training cost and comparable modelling power (Gu et al.,
2022b). A range of variants have been developed (Gu et al., 2021; Gupta et al., 2022; Gu et al.,
2022a; Smith et al., 2022), and have been applied in language modeling (Gu & Dao, 2023),
speech (Goel et al., 2022), and vision (Wang et al., 2023; Zhu et al., 2024). The linear recurrence
allows for parallelism, as well as accessible long contexts which would be prohibitive for transform-
ers due to their quadratic scaling. However, SSMs have not previously been applied to MTPPs, in
part due to the irregular inter-event times and the input being a stochastic counting process rather
than a given fixed function.

[Edited] Concurrent work by Gao et al. (2024) used Mamba (Gu & Dao, 2023), a recent deep SSM
architecture, in an MTPP setting, in what they call the Mamda Hawkes Process (MHP). The MHP
uses a mamba SSM as the encoder in an encoder-decoder architecture, also leveraging the variable
interval capabilities. Crucially, however, they use a separate parametric decoder for intermediate
intensities (similar to, for instance, the THP). This misses the opportunity to “fully” leverage the
SSM architecture, re-using the same variable interval evaluation to evaluate the the intensity with a
zero input.
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Table 1: Per event log-likelihood (↑ is better) results on the held-out test set; OOM indicates insuf-
ficient memory. We bold the best and underline the runner-up per dataset. We also report the mean
rank of models across datasets as a summary metric (↓ is better). DLHP is consistently the best or
second best-performing model. Extended results and discussion are presented in Appendix D.1.

Model Per-Event Log-Likelihood, LTotal Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP -2.137 -7.169 0.347 1.006 -2.403 -1.776 -0.480 -8.035 6.4
NHP 0.205 -6.346 0.516 1.163 -2.243 -0.578 0.076 -3.907 3.1
SAHP -2.040 -6.704 0.372 1.201 -2.283 -1.500 -0.773 -6.845 5.1
THP -2.098 -6.652 0.374 0.791 -2.331 -1.716 -0.587 -7.183 5.6
AttNHP 0.608 -6.459 0.499 1.278 -2.179 -0.558 -0.244 OOM 2.9
IFTPP 0.493 -10.339 0.454 1.335 -2.224 -0.472 0.299 -6.424 3.0
DLHP (Ours) 0.765 -6.367 0.528 1.332 -2.165 -0.496 1.231 -2.189 1.4

5 EXPERIMENTS

We now evaluate our deep linear Hawkes process model. Our core objectives in using SSMs for
MTPP modeling were to define an architecture that is both (a) highly performant in its forecasting
ability, and (b) able to leverage efficient parallel compute methods to accelerate inference. To this
end, we first present a simple exploration of the ability of different models to represent a periodic
intensity function. Then we present the main experiments in this paper, where we evaluate our model
against a suite of common MTPP models on a range of datasets of different sizes. We conclude by
testing the runtime of our model against a variety of baselines. We find that DLHP systematically
outperforms baseline methods both in terms of log-likelihood on held-out test data and runtime
across a range of sequence lengths. More results and details are included in Appendices C and D.

Metrics Daley & Vere-Jones (2003, p. 276) state that “testing the model on the basis of its fore-
casting performance amounts to testing the model on the basis of its likelihood” (emphasis added).
As such, our primary metric of interest to assess model performance is the per-event log-likelihood,
LTotal. We also investigate time- and mark-prediction performance through their own log-likelihood
values, LTime =

∑N
i=1 log λti −

∫ T

0
λsds and LMark =

∑N
i=1 log(λ

ki
ti /λti), respectively, where

LTotal = LTime + LMark. The log-likelihood of the arrival time characterizes the ability of the model
to predict when the next event will arrive. The log-likelihood of the mark is effectively the negative
cross-entropy classification loss and measures the ability of the model to predict what types of event
will occur given their arrival times. We discuss additional metrics in Appendices D.1 and D.4.

Models We compare our model (DLHP) with six of the most common MTPP models: two RNN-
based models (RMTPP (Du et al., 2016), NHP (Mei & Eisner, 2017)), three transformer/attention-
based models (THP (Zuo et al., 2020), SAHP (Zhang et al., 2020), AttNHP (Yang et al., 2022)), and
one intensity-free model (IFTPP (Shchur et al., 2020a)). In all real-world experiments, extensive grid
searches were conducted for hyperparameter tuning with configurations chosen based on validation
log-likelihood. Specifics for training, hyperparameters, and architectures are given in Appendix C.

Libraries and Compute Environment We implement our DLHP in the EasyTPP library (Xue
et al., 2023) and use their implementations of the baseline models. We also use the five standard
datasets that EasyTPP immediately supports (see Appendix C.2 for more details). We then further
include three larger datasets to stress-test the MTPP models (see Section 5.2). Unless otherwise
stated, all models were trained using a single NVIDIA A10 GPU with 24GB of onboard memory.

5.1 SYNTHETIC POISSON EXPERIMENTS

We start by performing a simple investigation into the expressivity of the DLHP intensity function
and the ability to capture background intensities. We train our model and baselines on 5,000 se-
quences over the time period [0, 7.5] drawn from an unmarked, inhomogeneous Poisson process
with a square-wave intensity function, λt := 1(t ∈ (1, 2) ∪ (3, 4) ∪ (5, 6)) (see Fig. 1). We plot the
estimated intensity functions conditioned on no events occurring, i.e. Ht := ∅ ∀t.
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Figure 3: Per event log-likelihood on the held-out test data in Table 1 decomposed into time and
mark components (i.e. LTotal = LTime+LMark). Models are ordered by their average ranking. Model
results are adjusted by subtracting the log-likelihood achieved by RMTPP for readability.

Intensity estimates are shown for NHP and DLHP specifically in Fig. 1 (and for all models in Fig. 6
in Appendix D.2). We can see that our model successfully captures the true, underlying background
intensity process almost perfectly. This is largely attributed to the expressivity of the linear recur-
rences and non-linear depth of the model. Other models have various failure modes: struggling to
capture the multi-modality of the ground truth (RMTPP, NHP, SAHP, and THP), not matching the
square shape (previous four and IFTPP), or not being able to stop the pattern from repeating a fourth
time (AttNHP). [Added] It is worth noting that we also perform a similar experiment with randomly
instantiated parametric Hawkes processes and find that DLHP is able to successfully recover the
ground truth intensity. These simple experiments confirm that the DLHP is sufficiently expressive
to be able to represent more complicated intensity functions while other methods break down.

5.2 LOG-LIKELIHOOD RESULTS ON REAL-WORLD DATASETS

We empirically investigate the performance of our proposed model against baseline methods by
comparing the held-out log-likelihood per event. We evaluate our model on eight real-world datasets.
Five of which are taken directly from EasyTPP (Xue et al., 2023). We also include two MTPP
datasets that have been widely used throughout the literature: Last.fm, which includes data on users’
music listening patterns from Celma Herrada et al. (2009), and MIMIC-II, a subset of de-identified
patient hospital visits processed from (Saeed et al., 2002). Finally, we introduce a third dataset from
the recently released, publicly available electronic health record (EHR) dataset EHRShot (Wornow
et al., 2023). To construct the dataset, we first establish the most used Current Procedural Terminol-
ogy (CPT-4) codes that identify medical services and procedures as events. The processed dataset
comprises sequences of CPT-4 codes issued to individual patients during their care. This dataset has
a maximum sequence length 10× longer than the longest in the EasyTPP datasets (and 100× that
of MIMIC-II), providing a challenging testbed (in terms of scale) beyond existing datasets. Data
statistics and other details including pre-processing are provided in Table 6 and Appendix C.3.

From results shown in Table 1, DLHP consistently achieves the best or the second-best log-
likelihood across all datasets. Compared to the best baseline model per-dataset, DLHP produces
a (geometric) mean likelihood ratio of 1.4 (corresponding to 40% higher likelihood on true events).
We decompose this improvements in Fig. 3, where we see the improvements in log-likelihood are
mainly driven by better modeling of time. Extended plots included in Appendix D.1. Given the clear
improvement in temporal modeling, we posit that DLHPs are particularly well suited in applications
that contain more complex patterns over time. All of these results for DLHP utilize input-dependent
dynamics (see Section 3.4). This was found to reliably improve forecasting performance in ablation
studies (see Appendix D.3).

[Edited] We also report and discuss additional metrics in the Appendix. We report next-mark classi-
fication accuracy and RMSE of next mark arrival time, finding that DLHP matches or outperforms
all baselines. We also report model calibration with respect to next event time and mark prediction.
Calibration aims to grade the predictive uncertainty of the model (Bosser & Taieb, 2023), which is
not captured by other metrics such as mark classification accuracy and time RMSE. On the whole,
our model (as well as the baselines) tend to produce well-calibrated time and mark predictions across
the datasets. We also include full tables for the likelihood decomposition in Table 7.
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Figure 4: Median runtime, over 10 random seeds, for various models against increasing sequence
lengths. We show runtimes for both conditioning on a sequence (Algorithm 1) and likelihood eval-
uation (Algorithm 3). We see that DLHP is faster across a wide range of sequence lengths.

5.3 SPEED TESTING

A key motivation for DLHP was to leverage the properties of SSMs to accelerate inference. To test
this, we measure the wallclock time for a full forward pass and log-likelihood evaluation on random
input sequences with lengths ranging from ten events to one million events. The architectures and
mark spaces are the same as the StackOverflow experiments (see Tables 5a and 6). We compare the
baselines to our PyTorch EasyTPP DLHP implementation, which uses an uncompiled loop, and a
standalone JAX DLHP implementation, which uses a parallel scan. Results are shown in Fig. 4.
The DLHP is faster than all baseline methods for both forward and log-likelihood evaluation (for
all but the shortest sequences). The runtime of NHP always scales linearly. THP scales well before
reverting to superlinear scaling (and then running out of memory). Interestingly, IFTPP has very fast
and fairly constant runtime for short sequences. We believe this is due to the highly optimized GRU
implementation from PyTorch. As expected, the JAX parallel scan implementation achieves sub-
linear scaling in sequence length, and is an order of magnitude faster for conditioning on N = 104

sequences. Above this, the GPU saturates and reverts to linear scaling. These results confirm that
our DLHP can exploit parallel scans to scale to long sequences more effectively than other methods.

6 CONCLUSION

We present the deep linear Hawkes process (DLHP)—a novel combination of ideas from LHPs
and SSMs. Our DLHP leverages the unique properties of deep SSM architectures to achieve a
flexible and performant model, without additional and restrictive intensity decoding heads. We then
demonstrated that our DLHP outperforms existing methods across a range of standard and new
benchmark tasks over various metrics, such as log-likelihood and runtime across sequence lengths.
One limitation of our method is the increased complexity of the implementation [Added] (as we
require a parallel scan), compared to, for instance, the NHP [Added] (which only requires a basic
for loop). Following from this, a second limitation is that we have lost the interpretability of the
latent dynamics and parameters enjoyed by the LHP. Future research directions therefore include
improving on these aspects, as well as developing additional theory around the use of deep SSMs in
this novel MTPP setting, and developing heuristics and best-practices for setting hyperparameters.
[Added] Specifically, exploring the relative benefits of the forward and backward discretization is a
unique research direction arising from the DLHP. However, we believe the robustness, performance,
computational efficiency, and extensibility of DLHPs make them a very competitive model out-of-
the-box for a wide range of applications.
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Algorithm 1 Deep Linear Hawkes Process: Get Right State Limits

Input: DLHP layer parameters Θ =
{
Λ(l), B̃(l), C̃(l),D(l), Ẽ(l), x̃

(l)
0

}L

l=1
, event intervals ∆t1:N , nonlinearity σ, shared mark

embeddings α1:N .

Output: Right state limits x(1:L)
t1:N

1: ut1:N− = 0 ▷ Left input limits

2: for l in 1 : L do
3: Λ̄

(l)
1:N = Discretize

(
Λ(l),∆t1:N

)
▷ Zero-order hold, see Eq. (22)

4: x̃
(l)
t1:N

= ParallelScan
(
Λ̄

(l)
1:N , (Λ̄

(l)
1:N − I)B̃(l)ut1:N− + Ẽ(l)α1:N

)
▷ Compute right x limits

5: x̃
(l)
t1:N− = x̃

(l)
t1:N

− Ẽ(l)α1:N ▷ Compute left x limits

6: ut1:N− = LayerNorm
(
σ
(
C̃(l)x̃t1:N− + D(l)ut1:N−

)
+ ut1:N−

)
▷ Compute next layer’s left u limits

7: end for

8: return x
(1:L)
t1:N

Algorithm 2 Deep Linear Hawkes Process: Get Intensity From Right Limit

Input: DLHP layer parameters Θ =
{
Λ(l), B̃(l), C̃(l),D(l), Ẽ(l), x̃

(l)
0

}L

l=1
, Previous state right limits x(1:L)

t , Integration period δt,

nonlinearity σ, Intensity function IntensityFn.

Output: Intensity left limit λt+δt

1: ut+δt− = 0 ▷ Left input limit

2: for l in 1 : L do
3: Λ̄(l) = Discretize

(
Λ(l), δt

)
▷ Zero-order hold, see Eq. (22)

4: x̃
(l)
t+δt− = Λ̄(l)x

(l)
t + (Λ̄(l) − I)B̃(l)ut+δt− ▷ Evolve state

5: ut+δt− = LayerNorm
(
σ
(
C̃(l)x̃

(l)
t+δt− + D(l)ut+δt−

)
+ ut+δt−

)
▷ Compute event left u limits

6: end for

7: λt+δt = IntensityFn(ut+δt−) ▷ Rectify intensity, see Eq. (13)
8: return λt+δt

Algorithm 3 Deep Linear Hawkes Process: Compute Log-Likelihood

Input: DLHP layer parameters Θ =
{
Λ(l), B̃(l), C̃(l),D(l), Ẽ(l), x̃

(l)
0

}L

l=1
, Event times t1:N , mark types k1:N , nonlinearity σ,

shared mark embedding function EmbedMarks, number of integration points per event M , Intensity function IntensityFn.

Output: Log-ikelihood L

1: α1:N = EmbedMarks(k1:N ) ▷ Shared embeddings
2: t0 := 0
3: ∆t1:N = t1:N − t0:N−1

4: s1:N,1:M ∼ U(0,∆t1:N ) ▷ Sample M integration points per interval (non-inclusive)

5: x̃
(1:L)
t1:N

= GetRightStateLimits(Θ,∆t1:N , σ,α1:N ) ▷ Algorithm 1, O(logN) parallel time

6: for n in 1 : N do ▷ This is embarrassingly parallelizable with vmap, O(1) parallel time

7: λtn = GetIntensityFromRightLimit
(
Θ, x̃

(1:L)
tn

,∆tn, σ, IntensityFn
)

▷ Algorithm 2, O(1) parallel time

8: for m in 1 : M do ▷ This is embarrassingly parallelizable with vmap, O(1) parallel time

9: λsn,m = GetIntensityFromRightLimit
(
Θ, x̃

(1:L)
tn

, sn,m, σ, IntensityFn
)

▷ Algorithm 2, O(1) parallel time

10: end for
11: end for

12: L =
∑N

n=1 log λkn
tn

+
∑N

n=1
∆tn
M

∑M
m=1

∑K
k=1 λk

sn,m
▷ Eq. (2) with Monte-Carlo approximation of integral

13: return L
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Oleksandr Shchur, Marin Biloš, and Stephan Günnemann. Intensity-free learning of temporal point
processes. In International Conference on Learning Representations, 2020a.
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A ACRONYMS AND NOTATION

Table 2: Key notation used repeatedly across this paper.

Symbol Space Description

t R≥0 Time
T R≥0 Maximum time in a given sequence’s observation window
ti R≥0 ith time
t− R≥0 Subscript minus indicates left-limit
t+ R≥0 Subscript plus indicates right-limit
k M = {1, . . . , K} Event mark
H MN × RN

≥0 Event history for N events
Nt ZK

≥0 Counting process for K marks at time t

λk
t R≥0 Intensity of kth mark type at time t

λt RK
≥0 Vector of K mark intensities at time t

λt R≥0 Ground/total intensity (sum of mark-specific intensities)
L(·) R Log-likelihood of the argument under the model
νk R≥0 Background intensity for the kth mark
α RK,K

≥0
(For LHP) Matrix of intensity impulses from each type of mark

β RK,K
≥0

(For LHP) Dynamics matrix of intensity evolution

R N Mark embedding rank
P N LLH/SSM hidden dimension
xt RP LLH/SSM hidden state at time t

x0 RP Learned LLH/SSM initial hidden state
H N LLH/SSM output dimension
yt RH LLH/SSM output at time t

ut RH LLH/SSM input at time t

A RP×P LLH/SSM transition matrix
B RP×H LLH/SSM input matrix
C RH×P LLH/SSM output matrix
D RH×H LLH/SSM passthrough matrix
E RP×R LLH mark embedding matrix (P × R in low-rank factorization)
L N Number of linear recurrences in a DLHP model; model “depth”
α RR×K (For DLHP) Mark impulses (R × K in low-rank factorization)
∼ N/A Tilde (e.g. B̃) denotes variable is in the diagonalized eigenbasis
Λ CP×P Matrix of eigenvalues of A; diagonalized dynamics matrix
Λ̄ CP×P Discretized diagonal dynamics matrix
(l) N/A Superscript index in parenthesis indicates layer (i.e. x for layer l)

Table 3: Key acronyms used throughout this paper.

Acronym Page number Definition

CNN 6 Convolutional neural network
LHP 1 Linear Hawkes process
LLH 2 Latent linear Hawkes
MTPP 1 Marked temporal point process
RNN 1 Recurrent neural network
SSM 1 (Deep) State-space model
TPP 7 Temporal point process
ZOH 5 Zero-order hold

RMTPP 7 Recurrent marked temporal point process (Du et al., 2016)
NHP 1 Neural Hawkes process (Mei & Eisner, 2017)
SAHP 7 Self-attentive Hawkes process (Zhang et al., 2020)
THP 7 Transformer Hawkes process (Zuo et al., 2020)
AttNHP 7 Attentive neural Hawkes process (Yang et al., 2022)
IFTPP 7 Intensity-free temporal point process (Shchur et al., 2020a)
DLHP 1 Deep linear Hawkes process (ours)
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B ADDITIONAL DETAILS ON METHODS

B.1 DISCRETIZATION AND ZERO ORDER HOLD

The linear recurrence is defined in continuous-time. This mirrors the (M)TPP setting, where event
times are not on a fixed intervals. We use the zero-order hold (ZOH) discretization method, to
convert the continuous-time linear recurrence into a sequence of closed-form updates, given the
integration times, that can also be efficiently computed. We refer the reader to Iserles (2009) for a
comprehensive introduction to the ZOH transform.

The main assumption of the ZOH discretization is that the input signal is held constant over the time
period being integrated. Under this assumption, it is possible to solve for the dynamics and input
matrices that yield the correct state at the end of the integration period. For the LLH dynamics in
Eq. (10), when no events occur in (t, t′), this becomes

xt′− =

∫ t′

t

Axt +AButdt = Axt +ABut assuming dut = 0 ∈ [t, t′], (18)

where the resulting discretized matrices are

A = eA∆t, AB = A−1(eA∆t − I)AB, where ∆t = t′ − t. (19)

The ZOH does not affect the output or passthrough matrices C and D. To compute the matrices A
and AB however requires computing a matrix exponential and a matrix inverse. However, Smith
et al. (2022) avoid this by diagonalizing the system (also avoiding a dense matrix-matrix multiplica-
tion in the parallel scan). The diagonalized dynamics and input matrices are denoted Λ (a diagonal
matrix) and ΛB̃ respectively. In this case, Eq. (19) reduces to

A = eΛ∆t, (20)

AB = Λ−1(eΛ∆t − I)ΛB̃ (21)

= (eΛ∆t − I)B̃ (diagonal matrices commute) (22)

where eΛ∆t is trivially computable as the exponential of the leading diagonal of Λ∆t. These op-
erations are embarrassingly parallelizable across the sequence length and state dimension given the
desired evaluation times.

To contextualize, suppose an event occurs at time t, Eq. (22) allows us to exactly (under the constant-
input assumption) efficiently evaluate the linear recurrence at subsequent times t′. We use this exten-
sively in the DLHP to efficiently evaluate the recurrence (and hence the intensity) at the irregularly-
spaced event times and times used to compute the integral term.

It should be noted the discretization was done to compute a left-limit xt′− from a previous right-
limit xt. Should an event not occur at t′, then the left- and right-limits agree and xt′− = xt′+ = xt′ .
If an event does occur at time t′ with mark k, then the left-limit xt′− can be incremented by Ẽαk to
compute xt′+ = xt′ . This increment from left- to right-limit is exact and leverages no discretization
assumption.

B.2 INTERPRETATION FOR INPUT-DEPENDENT DYNAMICS

Consider the input-dependent recurrence for an LLH layer, as defined in Eq. (17):

dx̃t := Λix̃t−dt+ΛiB̃ut−dt+ ẼαdNt (23)
for t ∈ (ti, ti+1] where Λi := diag(∆i)Λ with the input-dependent factor defined as ∆i :=
softplus(W′uti + b′) ∈ RP

>0. This factor can be thought of as the input-dependent relative-time
scale for the dynamics. To see this, we first note that for vectors p,q ∈ Rd, the following holds true:
diag(p)q = p⊙ q = q⊙ p where ⊙ is the Hadamard or element-wise product. It then follows that

dx̃t := Λix̃t−dt+ΛiB̃ut−dt+ ẼαdNt (24)

= Λi(x̃t− + B̃ut−)dt+ ẼαdNt (25)

= diag(∆i)Λ(x̃t− + B̃ut−)dt+ ẼαdNt (26)

= [Λ(x̃t− + B̃ut−)]⊙ (∆idt) + ẼαdNt. (27)
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As shown, the positive vector ∆i can be thought of as changing the relative time-scale for each
channel in the hidden state x̃. Large values of ∆i will act as if time is passing quickly, encouraging
the state to converge to the steady-state sooner. Conversely, smaller values will make time pass
more slowly causing the model to retain the influence that prior events have on future ones (for that
specific channel in x̃ at least).

B.3 FORWARDS AND BACKWARDS ZERO ORDER HOLD DISCRETIZATION

In Section 3.3 we highlighted that the ZOH discretization is exact when ut is held constant over the
integration window. This raises a unique design question for DLHPs: what constant value should
ut take on when evolving x from time t to t′? For the first layer of the model, the input is zero
by construction, so there is no choice to be made—in fact, since u is constant for the first layer the
updates are exact. However, the input is non-zero at deeper layers, and, crucially, varies over the
integration period.

We must therefore decide how to select a u value over the integration period. This should be a value
in (or function of) {us | s ∈ [t, t′)}. Note this is because the value at t′, ut′ , cannot be incorporated
as this would cause a data leakage in our model; while values prior to t would discard the most
recent mark. For this work, we explore two natural choices: (i) the input value at the beginning of
the interval, ut, and (ii) the left-limit at the end of the interval, ut′−. We illustrate the backwards
variant in Fig. 2, where in the rightmost panel, we use the ut∗ values at each layer, as opposed to
ut3 . We refer to these options as forwards and backwards ZOH, respectively. All experiments in the
main paper utilize backwards ZOH.

It is not obvious a priori which one of these modes is more performant. We therefore conducted an
ablation experiment in Table 10. We see that there is little difference between the two methods. We
also note that models are learned through this discretization, and so this decision does not mean that
a model is “incorrectly discretized” one way or the other, but instead they define subtlety different
families of models. Theoretical and empirical investigation of the interpretations of this choice is an
interesting area of investigation going forwards, extending the ablations we present in Table 10.

[ADDED] THEORETICAL COMPLEXITY

We include in Table 4 a brief summary of the theoretical complexity of each of the methods we
consider. We break these down by the work, memory complexity and theoretical best parallel appli-
cation time of the forward pass (used when conditioning on a sequence, the left-hand term of Eq. (2))
and evaluating the integral term in Eq. (2) given that the forward pass has been completed (as this is
either required by the method, and is nearly always evaluated in conjunction with the forward pass).
We then state the limiting best-case theoretical parallelism of the two components.

The reasoning behind this is as as follows:

• The forward pass of RMTPP, NHP and IFTPP use non-linear RNNs, and hence incur mem-
ory and work that is linear in the sequence length, and cannot be parallelized. However,
they re-use the computed hidden states to compute the integral term, and hence, while they
incur work and memory that scales in the sequence length and number of events, this work
can be perfectly parallelized. This results in a best-case parallelism of O(L) (dominated
by the forward pass).

• SAHP, THP and AttNHP all use self-attention, and hence have a work and memory that
scales quadratically in the sequence length, although this work can be parallelized across
the sequence length, resulting in logarithmic parallel depth. SAHP and THP re-use embed-
dings and a parametric decoder, and hence estimating the integral scales like the RNN, and
hence the limiting parallelism is still the forward pass. AttNHP is slightly different in that it
re-applies the whole independently attention mechanism for each integration point. How-
ever, this work is parallelizeable and hence still reduces to a best-case depth of O(logL).

• DLHP is an RNN and hence has linear work and memory in the forward pass, but can
be parallelized to a best-case depth of O(logL) using the parallel scan. We then re-use
the states computed in the forward pass for estimating the integral, which, as with the
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other RNN methods, is perfectly parallelizable, resulting in a theoretical parallel depth of
O(logL).

Note that these figures do not account for the number of layers required by each model, which must
be evaluated in sequence.

Table 4: Comparison of methods based on memory and compute complexity. We see that our DLHP
matches the best performing baseline in all categories. L denotes to the sequence length, and M
denotes to the number of Monte Carlo grid points per-event used in evaluating Eq. (2). As IFTPP is
an intensity-free method, it does not need to estimate

∫
λtdt as the other methods do.

Method
Forward Pass Estimating

∫
λtdt Overall

Memory Work Theoretical Memory Work Theoretical Theoretical
Parallelism Parallelism Parallelism

RMTPP O(L) O(L) O(L) O(LM) O(LM) O(1) O(L)
NHP O(L) O(L) O(L) O(LM) O(LM) O(1) O(L)

SAHP O(L2) O(L2) O(logL) O(LM) O(LM) O(1) O(logL)
THP O(L2) O(L2) O(logL) O(LM) O(LM) O(1) O(logL)
AttNHP O(L2) O(L2) O(logL) O(L2M) O(L2M) O(logL) O(logL)

IFTPP O(L) O(L) O(L) N/A N/A N/A O(L)

DLHP O(L) O(L) O(logL) O(LM) O(LM) O(1) O(logL)
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C EXPERIMENTAL CONFIGURATIONS AND DATASETS

C.1 TRAINING DETAILS & HYPERPARAMETER CONFIGURATIONS

We apply a grid search for all models on all datasets for hyperparameter tuning. We use a default
batch size of 256 for training. For models/datasets that require more memory (e.g. large mark space
or long sequences), we reduce the batch size and keep them as consistent as possible among all
the models on each dataset. We use the Adam stochastic gradient optimizer (Kingma & Ba, 2015),
with a learning rate of 0.01 and a linear warm-up schedule over the first 1% iterations, followed
by a cosine decay. Initial experiments showed this setting generally worked well across different
models and datasets leads to convergence within 300 epochs. We also clip the gradient norm to
have a max norm of 1 for training stability. We use Monte-Carlo samples to estimate the integral in
log-likelihood, where we use 10 Monte-Carlo points per event during training.

On the five EasyTPP benchmark datasets and MIMIC-II that are smaller in their scales, we choose
an extended grid based on the architecture reported in the EasyTPP paper. Specifically, we search
over hidden states size h = {16, 32, 64, 128, 256} for RMTPP, h = {32, 64, 128} for NHP, and h =
{16, 32, 64} for IFTPP. For SAHP, THP, and AttNHP, we searched over all combinations of number
of L = {1, 2, 3}, hidden state size = {16, 32, 64, 128}, and number of heads = {1, 2, 4}. Finally,
for DLHP, we considered combinations for number of layers = {1, 2, 3, 4}, p = {16, 32, 64, 128}
and h = {16, 32, 64, 256}. We fixed the activation function as GeLU (Hendrycks & Gimpel, 2016)
and apply post norm with layer norm (Ba, 2016). We fix the dropout as 0.1 for DLHP on the five
core benchmark datasets, and add dropout = {0, 0.1} to the grid search for the other three datasets.
Due to the scale of Last.fm and EHRShot datasets, we perform a smaller search over architectures
that roughly match the parameter counts for all models at three levels: 25k, 50k, 200k, and choose
the model with the best validation results. AttNHP has expensive memory requirements that tends
to have smaller batch sizes than other models. We were unable to train any AttNHP on EHRShot.
The final model architectures used are reported in Table 5a and Table 5b. These configurations are
also included in the supplementary code we include.

Table 5: Model architectures for the experiments presented in Table 1

(a) Model architectures for the five EasyTPP benchmark datasets.

Model Amazon Retweet Taxi Taobao StackOverflow
RMTPP h = 128 h = 16 h = 128 h = 16 h = 256
NHP h = 128 h = 64 h = 128 h = 128 h = 64

SAHP h = 32, l = 2,heads = 2 h = 32, l = 3,heads = 4 h = 16, l = 2,heads = 4 h = 32, l = 1,heads = 1 h = 64, l = 1,heads = 1
THP h = 32, l = 2,heads = 4 h = 16, l = 3,heads = 4 h = 128, l = 1,heads = 4 h = 64, l = 1,heads = 1 h = 16, l = 2,heads = 4
AttNHP h = 64, t = 16, l = 2,heads = 4 h = 16, t = 16, l = 2,heads = 4 h = 16, t = 16, l = 3,heads = 4 h = 32, t = 16, l = 3,heads = 4 h = 32, t = 16, l = 2,heads = 4

IFTPP h = 64 h = 64 h = 32 h = 64 h = 32

DLHP h = 64, p = 128, l = 2 h = 128, p = 128, l = 2 h = 128, p = 16, l = 4 h = 32, p = 16, l = 4 h = 32, p = 32, l = 3

(b) Model architectures for the additional three benchmark datasets.

Model Last.fm MIMIC-II EHRShot
RMTPP h = 256 h = 128 h = 16
NHP h = 112 h = 128 h = 80

SAHP h = 136, l = 2,heads = 4 h = 64, l = 2,heads = 4 h = 8, l = 2,heads = 4
THP h = 48, l = 2,heads = 4 h = 32, l = 3,heads = 4 h = 32, l = 2,heads = 4
AttNHP h = 28, t = 16, l = 2,heads = 4 h = 64, t = 16, l = 3,heads = 2 OOM
IFTPP h = 48 h = 256 h = 16

DLHP h = 144, p = 16, l = 2 h = 256, p = 64, l = 2 h = 128, p = 32, l = 2

C.2 DATASET STATISTICS

We report the statistics of all eight datasets we used in Table 6. We used the HuggingFace version
of the five EasyTPP datasets. For all datasets, we further ensure the MTPP modeling assumptions
are satisfied that no more than two events occur at the same time (i.e. inter-arrival time is strictly
positive), and event times do not lie on grid points that are effectively discrete-time events. Dataset
descriptions and pre-processing details are provided in Appendix C.3.
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Table 6: Statistics of the eight datasets we experiment with.

Dataset K
Number of Events Sequence Length Number of Sequences

Train Valid Test Min Max Mean Train Valid Test

Amazon 16 288,377 40,995 84,048 14 94 44.8 6,454 922 1,851
Retweet 3 2,176,116 215,521 218,465 50 264 108.8 20,000 2,000 2,000
Taxi 10 51,584 7,404 14,820 36 38 37.0 1,400 200 400
Taobao 17 73,483 11,472 28,455 28 64 56.7 1,300 200 500
StackOverflow 22 90,497 25,762 26,518 41 101 64.8 1,401 401 401
Last.fm 120 1,534,738 344,542 336,676 6 501 207.2 7,488 1,604 1,604
MIMIC-II 75 9,619 1,253 1,223 2 33 3.7 2600 325 325
EHRShot 668 759,141 165,237 170,147 5 3,955 177.0 4,329 927 927

C.3 DATASET PRE-PROCESSING

We use the default train/validation/test splits for EasyTPP benchmark datasets. For MIMIC-II, we
copy Du et al. (2016) and keep the 325 test sequences in the test split, and further split the 2,935 train-
ing sequences into 2,600 for training and 325 for validation. In our pre-processed datasets, Last.fm
and EHRShot, we randomly partition into subsets containing 70%, 15%, 15% of all sequences for
training/validation/test respectively. We provide a high-level description of all the datasets we used,
followed by our pre-processing procedure of Last.fm and EHRShot in more detail. Note that for
datasets that contain concurrent events or effectively discrete times, we apply a small amount of
jittering to ensure no modeling assumptions are violated in the MTPP framework.

Amazon (Ni et al., 2019) contains user product reviews where product categories are considered as
marks. Retweet (Zhao et al., 2015) predicts the popularity of a retweet cascade, where the event
type is decided by if the retweet comes from users with “small”, “medium”, or “large” influences,
measured by number of followers (Mei & Eisner, 2017). Taxi data (Whong, 2014; Mei et al.,
2019) uses data from the pickups and dropoffs of New York taxi and the marks are defined as the
Cartesian product of five discrete locations and two actions (pickup/dropoff). Taobao (Xue et al.,
2022) describes the viewing patterns of users on an e-commerce site, where item categories are
considered as marks. StackOverflow contains the badges (defined as marks) awarded to users on
a question-answering website. Finally, MIMIC-II (Saeed et al., 2002) records different diseases
(used as marks) during hospital visits of patients. We add a small amount of noise to the MIMIC-II
event times so that events do not lie on a fixed grid. Both StackOverflow and MIMIC-II datasets
were first pre-processed by Du et al. (2016).

Last.fm Celma Herrada et al. (2009); McFee et al. (2012) records 992 users’ music listening habits
that has been widely used in MTPP literature (Kumar et al., 2019; Boyd et al., 2020; Bosser &
Taieb, 2023). Mark types are defined as the genres of a song, and each event is a play of a particular
genre. Each sequence represents the monthly listening behavior of each user, with sequence lengths
between 5 and 500. If the song is associated with multiple genres we select a random one of the
genres, resulting in a total of 120 different marks.

EHRShot Wornow et al. (2023) is a newly proposed large dataset of longitudinal de-identified pa-
tient medical records, and has rich information such as hospital visits, procedures, and measure-
ments. We introduce an MTPP dataset derived from EHRShot, where medical services and proce-
dures are treated as marks, as identified by Current Procedural Terminology (CPT-4) codes. Each
patient defines an event sequence, and we retain only CPT-4 codes with at least 100 occurrences in
the dataset. For the < 1% events of events where there are more than 10 codes at a single times-
tamp, we retain the top 10 codes with the most frequencies and discard the rest. We then add a
small amount of random noise to the event time to ensure they are not overlapping. This process
ensures we still satisfy the MTPP framework, and can reasonably instead compute top-10 accuracy
for the next mark prediction. Other work has considered extending the MTPP framework to con-
sider simultaneous event occurrence (Chang et al., 2024). Then we standardize each sequence to
start and end with start and end of a sequence events. Note that we do not score these events. Event
times are normalized to be in hours. We discard sequences that have less than 5 events and a single
timestamp. This leads to the final version of our dataset to have 668 marks, and the sequence lengths
range from 5 to 3955 events, reflecting patient histories that can span multiple years. We include the
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notebook used for compiling the data we use from the original EHRShot data in the supplementary
code submission.
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 FULL RESULTS ON BENCHMARK DATASETS

We provide the full log-likelihood results and corresponding plots in Table 7 and Fig. 5 respectively,
where we decompose the likelihood into time and mark likelihoods. The improvement of our DLHP
model is mainly driven by better modeling of time, though we also often obtain best- or second-best
predictive performance on marks from the next event prediction accuracy results conditioned on true
event time in Table 8. In all predictive metrics, our model ranks the best averaged over all of the
datasets.

In aggregate, our model achieves a 1.416 per-event likelihood ratio between itself and the next best
method across all datasets (a 41.6% improvement in likelihood). This is calculated by computing
the mean log-likelihood ratio across all datasets and then exponentiating. Doing so is equivalent to
taking the geometric mean across likelihood ratios.

Table 7: Complete per-event log-likelihood (higher is better) results on the held-out test for the eight
benchmark datasets we consider. In Table 7a we show the full log-likelihood. We then decompose
this log-likelihood into the log-likelihood of the event time in Table 7b, and the time-conditional
log-likelihood of the mark type in Table 7c. OOM indicates out of memory. We highlight the best-
performing model in bold and underline the second-best. We also report the average rank of models
across datasets as a summary metric (lower is better). DLHP is consistently the best or second
best-performing model across all datasets.

(a) Full log-likelihood results (equal to the summation of Table 7b and Table 7c). Extended version of Table 1.

Model Per-Event Log-Likelihood, LTotal (nats) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP -2.137 -7.169 0.347 1.006 -2.403 -1.776 -0.480 -8.035 6.38
NHP 0.205 -6.346 0.516 1.163 -2.243 -0.578 0.076 -3.907 3.13
SAHP -2.040 -6.704 0.372 1.201 -2.283 -1.500 -0.773 -6.845 5.13
THP -2.098 -6.652 0.374 0.791 -2.331 -1.716 -0.587 -7.183 5.63
AttNHP 0.608 -6.459 0.499 1.278 -2.179 -0.558 -0.244 OOM 2.86
IFTPP 0.493 -10.339 0.454 1.335 -2.224 -0.472 0.299 -6.424 3.00
DLHP (Ours) 0.765 -6.367 0.528 1.332 -2.165 -0.496 1.231 -2.189 1.38

(b) Per-event log-likelihood of the event times (higher is better).

Model Next Event Time Log-Likelihood, LTime (nats) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP 0.010 -6.231 0.622 2.427 -0.780 0.259 -0.182 -1.888 5.88
NHP 2.196 -5.583 0.728 2.579 -0.703 1.196 0.240 -0.758 3.38
SAHP 0.173 -5.895 0.681 2.612 -0.681 0.600 -0.298 -1.779 4.63
THP -0.070 -5.867 0.623 2.242 -0.769 0.220 -0.277 -1.890 6.00
AttNHP 2.545 -5.688 0.724 2.665 -0.681 1.213 -0.017 OOM 3.14
IFTPP 2.482 -9.494 0.736 2.730 -0.660 1.290 0.536 -2.642 3.25
DLHP 2.638 -5.600 0.738 2.742 -0.636 1.294 1.345 0.723 1.13

(c) Per event log-likelihood of mark type conditioned on the arrival time (higher is better).

Model Per-Event Next Mark Log-Likelihood, LMark (nats) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP -2.148 -0.939 -0.275 -1.421 -1.623 -2.035 -0.298 -6.147 6.00
NHP -1.992 -0.764 -0.212 -1.416 -1.540 -1.774 -0.164 -3.149 2.75
SAHP -2.213 -0.809 -0.308 -1.411 -1.602 -2.100 -0.475 -5.066 5.88
THP -2.028 -0.786 -0.249 -1.451 -1.563 -1.936 -0.310 -5.294 5.00
AttNHP -1.938 -0.771 -0.225 -1.387 -1.498 -1.771 -0.227 OOM 2.14
IFTPP -1.989 -0.845 -0.282 -1.395 -1.565 -1.763 -0.237 -3.782 3.75
DLHP -1.873 -0.767 -0.209 -1.410 -1.529 -1.790 -0.114 -2.912 1.88
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Figure 5: Visualization of LTotal decomposed into LTime and LMark for all models and all datasets
relative to RMTPP, as discussed in Section 5.2. The improvement of DLHP is mainly driven by
better modeling of LTime.

Table 8: Next event prediction accuracy (reported as a percentage, ↑ is better) conditioned on the
true event time. We report top 1 accuracy for all datasets except for top 10 accuracy for EHRShot,
due to the pre-processing procedure described in Appendix C.3. We bold the best result per dataset,
and underline the runner-up.

Model Next Mark Accuracy (%) Avg. Ranking
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot (Top 10)

RMTPP 30.96 50.36 91.37 60.93 46.46 52.51 92.20 34.09 5.63
NHP 39.23 61.47 92.82 61.58 47.03 56.43 94.32 71.85 1.88
SAHP 32.03 59.18 92.23 60.78 46.46 52.84 84.52 32.56 5.63
THP 34.63 60.17 91.59 60.00 46.64 53.28 90.98 45.47 5.13
AttNHP 38.55 60.92 92.60 61.24 48.33 56.18 91.98 OOM 3.00
IFTPP 35.75 49.08 91.71 60.93 45.69 56.44 93.43 60.60 4.25
DLHP 40.66 61.33 93.05 61.06 47.45 56.26 96.55 75.45 1.75
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D.2 FULL RESULTS FOR SYNTHETIC POISSON EXPERIMENTS

We present the full results in Fig. 6 for all models regarding the synthetic experiments discussed
in Section 5.1. All models are trained until convergence using a set of 5,000 generated sequences,
where we use 20 Monte Carlo points per event to estimate the integral of log-likelihood during
training to accommodate the sparsity of events. We used small models so they do not overfit; model
architecture and parameter counts are reported in Table 9. We plot the background intensity condi-
tioned on empty sequences using 1,000 equidistant grid points between the start and end points. Our
model is the only one that perfectly recovers the underlying ground truth intensity, while also using
the fewest parameters.
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Figure 6: Results for all baseline models for the synthetic Poisson experiment introduced in Section
5.1. The estimated intensity (blue lines) conditioned on an empty sequence are plotted against the
ground truth (dotted black lines).

Table 9: Model architectures and corresponding parameter counts for synthetic Poisson experiments.

Model Architecture # Parameters

RMTPP h = 16 627
NHP h = 8 1010
SAHP h = 16, l = 2,heads = 4 1738
THP h = 16, l = 2,heads = 4 1684
AttNHP h = 8, t = 2, l = 2,heads = 2 1178
IFTPP h = 16 1899
DLHP h = 4, p = 4, l = 2 178
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D.3 ABLATION FOR DIFFERENT DLHP VARIANTS

We perform an ablation study of different model variants that we proposed on all datasets and sum-
marize the results in Table 10. We train EHRShot using 10% of its training data because larger
dataset scale requires more training time (but use the original validation and test sets for model se-
lection and reporting results). Forward and backward discretization are very close in performance,
with backwards discretization having a slight edge. Models that are input-dependent achieve bet-
ter performance on most datasets, although on certain datasets input dependence appears to harm
performance. It is an interesting direction for future work to explore theoretically and empirically
when each of these variants is best. We select backward discretization with input dependence for
the results in the main paper.

Table 10: Ablation for different model variants log-likelihood (LL). ID stands for input-dependent,
see Section 3.4. Backward and Forward respectively refer to using uti−1

and uti− (i.e. the previous
right limit or current left limit), see Appendix B.3.

Dataset Model variant LL Arrival time LL Mark LL conditioned on time

Amazon

Forward 0.705 2.617 -1.912
Forward + ID 0.748 2.634 -1.886
Backward 0.740 2.640 -1.899
Backward + ID 0.765 2.638 -1.873

Retweet

Forward -6.405 -5.625 -0.780
Forward + ID -6.370 -5.602 -0.767
Backward -6.398 -5.618 -0.780
Backward + ID -6.367 -5.600 -0.767

Taxi

Forward 0.473 0.697 -0.224
Forward + ID 0.525 0.733 -0.208
Backward 0.477 0.705 -0.228
Backward + ID 0.528 0.738 -0.209

Taobao

Forward 1.207 2.643 -1.435
Forward + ID 1.332 2.742 -1.410
Backward 1.215 2.648 -1.432
Backward + ID 1.332 2.742 -1.410

StackOverflow

Forward -2.249 -0.676 -1.572
Forward + ID -2.174 -0.644 -1.530
Backward -2.225 -0.679 -1.547
Backward + ID -2.165 -0.636 -1.529

Last.fm

Forward -0.463 1.309 -1.772
Forward + ID -0.477 1.302 -1.779
Backward -0.474 1.303 -1.777
Backward + ID -0.496 1.294 -1.790

MIMIC-II

Forward 0.555 0.847 -0.292
Forward + ID 1.319 1.405 -0.086
Backward 0.322 0.601 -0.279
Backward + ID 1.231 1.345 -0.114

EHRShot (10%)

Forward -3.885 0.105 -3.990
Forward + ID -3.848 -0.021 -3.827
Backward -4.571 -0.432 -4.139
Backward + ID -4.684 -0.641 -4.043
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D.4 MODEL CALIBRATION

To further probe the models, we evaluate the calibration metrics of MTPPs that are proposed in liter-
ature (Bosser & Taieb, 2023), which has a different focus than log-likelihood-based evaluation. On
a high level, calibration describes how well the uncertainty in the model is reflected in the observed
data. However, a model can achieve perfect calibration by predicting the marginal distribution, so
better calibration does not necessarily transform into better predictive performance. We therefore
present these metrics as a secondary metric (secondary to log-likelihood per Daley & Vere-Jones
(2003)) for investigating the performance of different models. We provide summarized statistics for
both probabilistic calibration error (PCE) for time calibration and expected calibration error (ECE)
for mark calibration in Table 11, and visualize the calibration curves in Figs. 7 and 8. From our re-
sults, all MTPP models are well-calibrated on most of the datasets, especially on mark predictions.

Table 11: Calibration results for the models and datasets tests.

(a) Probabilistic calibration error (PCE) for time calibration in percentage.

Model Probabilistic Calibration Error (PCE)
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP 13.70 4.20 3.55 10.18 1.91 11.55 3.85 13.31
NHP 7.57 0.15 0.27 7.38 1.77 4.77 6.05 8.22
SAHP 10.86 9.75 1.73 2.88 1.14 10.89 2.79 15.05
THP 12.28 5.71 3.32 16.32 2.10 10.90 1.21 14.55
AttNHP 6.20 1.26 0.96 3.17 1.52 1.57 4.66 OOM
IFTPP 1.74 23.93 0.44 0.61 0.50 0.30 2.19 17.66
DLHP 3.47 0.40 0.13 2.05 0.60 1.18 8.94 12.47

(b) Expected calibration error (ECE) for mark calibration in percentage.

Model Expected Calibration Error (ECE)
Amazon Retweet Taxi Taobao StackOverflow Last.fm MIMIC-II EHRShot

RMTPP 6.41 5.89 2.62 1.60 1.36 2.44 1.97 9.22
NHP 6.75 0.33 0.81 4.40 1.02 4.10 1.92 2.84
SAHP 8.36 4.74 6.96 3.00 1.12 8.55 5.77 11.09
THP 2.02 1.20 1.74 6.48 0.77 2.67 1.81 11.42
AttNHP 2.88 0.39 0.44 2.52 1.21 0.50 2.79 OOM
IFTPP 0.37 0.58 0.41 1.49 1.48 0.59 1.40 2.01
DLHP 1.00 0.72 0.46 1.66 2.01 0.74 2.34 1.19
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Figure 7: Reliability diagram for predicted inter-arrival time for each model on all datasets. Diagonal
dashed lines refer to perfect calibration.
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Figure 8: Reliability diagram for mark prediction of all models and all datasets. The x-axis specifies
the confidence of model estimates grouped into 20 bins, and the y-axis of the bar plot is the model
accuracy within that bin. The diagonal lines represent perfect calibration. The solid curves depict the
distribution of confidences, and do not share the y-axis. The grey dashed lines indicate the overall
prediction accuracy of the model for the next event conditioned on true event time.
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Finally, in Figs. 9 and 10 we plot the log-likelihood of time and mark respectively, versus their
corresponding calibration results, to provide an overall view of the performances of different models.
Our DLHP model consistently achieves higher log-likelihood while maintaining good calibration on
both time and mark components on most datasets.
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Figure 9: Log-likelihood of time vs. PCE for all models grouped by datasets. Higher log-likelihood
and lower PCE are better (i.e. top left corner).
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Figure 10: Log-likelihood of mark vs. ECE for all models grouped by datasets. Higher log-
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D.5 [ADDED] ADDITIONAL SYNTHETIC RESULTS ON MULTIVARIATE HAWKES PROCESSES

We evaluate our model and baseline models against the true model on a randomly initiated para-
metric Hawkes process with three possible marks. Following the notation in Section 2.1, we draw
all parameters from the following distributions: νi

iid∼ Unif[0.1, 0.5], αij
iid∼ Unif[0.5, 0.8], and

βij
iid∼ Unif[0.4, 1.2] for i, j ∈ {1, 2, 3}.

All models are trained until convergence using a set of 50,000 generated sequences, where we use
20 Monte Carlo points per event to estimate the integral of log-likelihood during training. Model
architecture and parameter counts are reported in Table 12. We plot three example sequences drawn
for an additional test set for each model in Figs. 11 and 12, using 1,000 equidistant grid points for
any inter-event interval. Dotted lines refer to the intensities under the true underlying parametric
model; solid lines are different model estimates from trained models.

As we see in inhomogeneous Poisson processes, our model can recover the ground truth intensities
with the fewest parameters. Both neural Hawkes processes and our DLHP show almost perfect
recovery of parametric Hawkes processes, especially before seeing any event happening, and at event
times. It is also worth noting that our model is 7-9× quicker than NHP and AttNHP regarding wall-
clock runtime on a single A5000 GPU. Our results on synthetic experiments validate the model’s
ability to recover the ground truth intensities.

Table 12: Model architectures and corresponding parameter counts for parametric Hawkes processes
experiments.

Model Architecture # Parameters

RMTPP h = 16 697
NHP h = 8 1046
SAHP h = 16, l = 2,heads = 4 1902
THP h = 16, l = 2,heads = 4 1756
AttNHP h = 8, t = 2, l = 2,heads = 2 1230
IFTPP h = 16 1965
DLHP h = 8, p = 4, l = 2 358
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Figure 11: Our proposed DLHP model trained with 50k training sequences drawn from a randomly
instantiated multivariate Hawkes process. Three example test sequences are plotted for each model.
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Figure 12: Baseline models trained with 50,000 training sequences drawn from a randomly instan-
tiated multivariate Hawkes process. Three example test sequences are plotted for each model.
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