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ABSTRACT

Recent studies on learning with noisy labels have shown remarkable performance
by exploiting a small clean dataset. In particular, model agnostic meta-learning-
based label correction methods further improve performance by correcting noisy
labels on the fly. However, there is no safeguard on the label miscorrection, resulting
in unavoidable performance degradation. Moreover, every training step requires
at least three back-propagations, significantly slowing down the training speed.
To mitigate these issues, we propose a robust and efficient meta-learning method
that learns a label transition matrix on the fly. Employing the transition matrix
makes the classifier skeptical about all the corrected samples, which alleviates
the miscorrection issue. We also introduce a two-head architecture to efficiently
learn the label transition matrix every iteration within a single back-propagation, so
that the matrix estimate closely follows the shifting distribution induced by label
correction. Extensive experiments demonstrate that our approach shows the best
performance in training efficiency while having comparable or better accuracy than
existing methods.

1 INTRODUCTION

In the last decade, supervised learning has achieved great success by leveraging an abundant amount
of annotated data to solve various classification tasks such as image classification (He et al., 2016),
object detection (Girshick et al., 2014), and face recognition (Taigman et al., 2014). It has been proven
both theoretically and empirically that the performance of supervised learning-based classification
models steadily improves as the size of annotated data increases (Goodfellow et al., 2016; Charikar
et al., 2017; Floridi & Chiriatti, 2020). However, we cannot avoid noisy labels due to its coarse-
grained annotation sources (Hendrycks et al., 2018; Zheng et al., 2021), resulting in performance
degradation (Chen et al., 2019).

Many methods have been proposed to build a classifier that is robust to noisy labels. Unlike traditional
methods (Mnih & Hinton, 2012; Van Rooyen et al., 2015; Azadi et al., 2015; Patrini et al., 2016)
which assume that all the given labels are potentially corrupted, recently proposed methods utilize
an inexpensively obtained small clean dataset to improve performance further. Based on the clean
data set, loss correction methods (Hendrycks et al., 2018; Wang et al., 2020a) reduce the influence
of noisy labels by modifying loss functions and re-weighting methods (Ren et al., 2018; Shu et al.,
2019; Bahri et al., 2020; Ghosh & Lan, 2021) penalize samples which are likely to be noisy labels.
Especially, recent label correction methods (Wu et al., 2020b; Zheng et al., 2021) achieve remarkable
performance based on model-agnostic meta-learning (MAML) (Finn et al., 2017). These methods
relabel noisy labels to directly reduce the noise level, raising the theoretical upper bound of the
predictive performance (See Appendix A.1).

However, there are two challenges for these MAML-based label correction methods: (1) The label
correction methods blindly trust the already miscorrected labels. Erroneously corrected labels are
often kept throughout the training, which causes the model to learn the miscorrected labels as ground-
truth labels. Several studies (Mirzasoleiman et al., 2020; Wu et al., 2020b) attempt to tackle this
through training techniques such as soft labels, whereas it does not fundamentally solve the problem.
(2) MAML-based methods are inherently slow in training, resulting in excessive computational
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overhead. The inefficiency comes from multiple training steps per single iteration of MAML-based
methods, including virtual updates with inner optimization loops.

To alleviate these issues, we propose a robust and efficient meta-learning method called LT2L
(Learning Transition Matrix to Learn). LT2L efficiently learns a transition matrix to learn with noisy
labels while continuously correcting them on-the-fly. It is theoretically proven that the correctly
estimated label transition matrix is useful to obtain a statistically consistent classifier from noisy
labels (Xia et al., 2019; Yao et al., 2020) (See Appendix A.2), i.e., more robust to noisy labels.
To this end, we adopt a two-head architecture that consists of two classifiers, a noisy and a clean
classifier, with a shared feature extractor. For every iteration, the noisy classifier estimates the label
transition matrix shifted by the label correction. On the other hand, the clean classifier is trained to be
statistically consistent by leveraging the estimated transition matrix. Using the output of the clean
classifier, LT2L relabels noisy labels to reduce the noise level. Our proposed LT2L has a safeguard for
the miscorrected labels since it adaptively estimates the transition matrix on every iteration, so that
the clean classifier stays equally skeptical towards all the corrected labels. Furthermore, our efficient
meta-learning method jointly optimizes the two-head architecture with only a single back-propagation
for each iteration, boosting training speed.

Experimental results show that our method achieves state-of-the-art performance by a large margin
on both the synthetic and real-world noisy label datasets, various noise levels of CIFAR (Krizhevsky
et al., 2009) and Clothing1M (Xiao et al., 2015), respectively. We demonstrate the exceptional training
speed of our proposed LT2L while achieving better performance compared to baselines. Finally, we
conduct a thorough analysis to understand the inner mechanisms of our proposed method.

Our contribution in this paper is threefold:

• We propose a robust and efficient method that learns a transition matrix to learn with noisy
labels while continuously correcting them on the fly. To the best of our knowledge, this is
the first attempt to improve the label correction with the transition matrix estimation.

• Our proposed method boosts training speed by employing a two-head architecture so that
the label transition matrix can be learned with a single back-propagation.

• Extensive experiments validate the efficacy of our proposed method in terms of both training
speed and predictive performance.

2 RELATED WORK

Traditional methods of Learning with Noisy Labels assume that labels in all the training samples
are potentially corrupted. They can be categorized as follows: various loss functions (Natarajan et al.,
2013; Van Rooyen et al., 2015; Patrini et al., 2016; Ghosh et al., 2017; Zhang & Sabuncu, 2018;
Wang et al., 2019; Van Rooyen et al., 2015; Lukasik et al., 2020; Ma et al., 2020; Liu & Guo, 2020;
Lienen & Hüllermeier, 2021), regularizations (Azadi et al., 2015; Jindal et al., 2016; Hendrycks
et al., 2019a; Hu et al., 2019; Menon et al., 2020; Lukasik et al., 2020; Han et al., 2020b; Song et al.,
2019b; Liu et al., 2020; Lienen & Hüllermeier, 2021; Cao et al., 2020; Hendrycks et al., 2019b; Nishi
et al., 2021; Ortego et al., 2020; Li et al., 2020a; Zhang et al., 2017; Harutyunyan et al., 2020; Li
et al., 2020b; Ma et al., 2018), re-weighting training samples (Ren et al., 2018; Jiang et al., 2018;
Mirzasoleiman et al., 2020; Liu & Tao, 2015; Wang et al., 2017; Thulasidasan et al., 2019; Chen
et al., 2019; Huang et al., 2020; Wang et al., 2020b; Wu et al., 2020a;a; Pleiss et al., 2020), and
correcting noisy labels (Tanaka et al., 2018; Yi & Wu, 2019; Han et al., 2019; Song et al., 2019a;
Zheng et al., 2020; Guo et al., 2020). However, different losses or regularizations yield inferior
performance to state-of-the-art methods (Zhang et al., 2017; Mirzasoleiman et al., 2020; Hu et al.,
2019; Li et al., 2020b), and re-weighting methods often filter out noisy but helpful samples for
extracting features to show sub-optimal performance (Song et al., 2019a; Wu et al., 2020b; Zheng
et al., 2021; Mirzasoleiman et al., 2020; Chang et al., 2017; Lin et al., 2017; Shrivastava et al., 2016).
Label correction methods circumvent their shortcomings by relabeling so that the feature extractor
leverage the corrected labels. However, label correction methods also have a limitation in that they are
prone to propagate the error when miscorrected labels are continuously accumulated (Mirzasoleiman
et al., 2020; Wu et al., 2020b; Zheng et al., 2021). Others correct the training loss by estimating a
label transition matrix (Mnih & Hinton, 2012; Reed et al., 2014; Sukhbaatar et al., 2014; Bekker
& Goldberger, 2016; Patrini et al., 2017; Goldberger & Ben-Reuven, 2016; Yao et al., 2019; Xia
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et al., 2019; Yao et al., 2020) to build a statistically consistent classifier, where the methods need
multiple training stages; e.g., include a separate pretraining stage. In this paper, we join a simple
label correction method with estimating the label transition matrix to alleviate the miscorrection issue
caused by miscorrected noisy labels, which only requires a single training stage.

Learning with Noisy Label via Small Clean Dataset. Several recent studies argue that a small clean
dataset is easily obtained; hence one can further devise a method that effectively leverages it. Many
studies have successfully adapted the idea and shown massive performance improvement compared
to the traditional methods. Early methods (Hendrycks et al., 2018; Bahri et al., 2020; Zhang et al.,
2020) require multiple training stages where it hinders the training efficiency. Recent studies widely
adopt MAML (Finn et al., 2017) to various strategies discussed above: sample re-weighting (Veit
et al., 2017; Lee et al., 2018; Jiang et al., 2018; Ren et al., 2018; Li et al., 2019; Shu et al., 2019),
label correction (Wu et al., 2020b; Zheng et al., 2021), and label transition matrix estimation (Wang
et al., 2020a). These approaches first perform a virtual update with the noisy dataset, find optimal
parameters using the clean dataset, and update the actual parameters by the found parameters. This
virtual update process requires three back-propagations per iteration, leading to at least three times
the computational cost. Our proposed label correction method learns the label transition matrix
with a single back-propagation, greatly enhancing the training speed while showing comparable or
better performance to existing state-of-the-art methods. Additional related works are described in
Appendix D.

3 METHODOLOGY

Existing label correction methods try to find and fix noisy labels to utilize them as clean samples in
model training, where they can improve the classification performance by reducing the noise level
of the whole training samples. However, erroneously corrected samples, i.e., clean samples deemed
noisy, or vice versa, are often kept throughout the model training. Since current label correction
methods blindly trust these miscorrected labels, this behavior degrades the classification performance
under the noisy label situation (§ 4.4).

In this section, we show that the accurately estimated label transition matrix with the clean dataset
alleviates the miscorrection problem of existing label correction methods. Further, we describe our
efficient meta-learning method estimating label transition matrix for every training iteration while
correcting noise labels. Our proposed method is summarized in Algorithm 1.

3.1 BATCH FORMATION

In few-shot learning studies (Finn et al., 2017; Snell et al., 2017; Sung et al., 2018), meta-learning
often address the episodic batch formation, a nontrivial sampling method where each mini-batch is
composed as a few-shot task. We closely follow the previous works to ensure the effective estimation
of the label transition matrix, where it benefits from having a certain amount of clean samples. In
our method, the task is defined as estimating the transition matrix representing the shifted noisy
label distribution caused by label correction, using a clean batch. We first compose a clean batch
d with randomly chosen K samples for the entire N classes in the clean dataset D1. Note tha,t
unlike our method, other approaches based on meta-learning (Zheng et al., 2021; Wu et al., 2020b;
Shu et al., 2019; Ren et al., 2018) randomly compose the clean batch, where the noisy batch d̄ is
randomly sampled from the noisy dataset D̄ similar to other works. Namely, we have the clean batch
d = {(xi, yi)}KNi=1 and the noisy batch d̄ = {(xi, ȳi)}Mi=1, where x is an input, y, ȳ ∈ RN are the
labels of x, and M is the size of the noisy batch which we set as M = KN for simplicity.

3.2 TRANSITION MATRIX ESTIMATION

Each element Tij of the label transition matrix T ∈ RN×N is defined as the probability of a clean
label i to be corrupted as a noisy label j, i.e. Tij = p(ȳ = j|y = i). It is well-known that a robust
classifier can be obtained with the accurately estimated label transition matrix (Sukhbaatar et al.,
2014; Patrini et al., 2017; Hendrycks et al., 2018; Xia et al., 2019; Yao et al., 2020). We choose a

1Similar to N -way K-shot few-shot learning in Finn et al. (2017); Vinyals et al. (2016); Snell et al. (2017);
Sung et al. (2018).
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Algorithm 1 Learning Transition Matrix to Learn (LT2L)
Input: Clean dataset D, noisy dataset D̄.
Hyper-parameters: Label correction threshold ρ, Controllable loss ratio for noisy classifier λ.
Output: Clean classifier fφ,θ where linear classifier θ and feature extractor φ.
Randomly initialize common feature extractor φ.
Randomly initialize linear classifiers θ and θ̄ for clean labels and noisy labels, respectively.
for each epoch i = 0, · · · do

for each iteration in epoch i do
Sample mini-batch d ∼ D, d̄ ∼ D̄.
T̂ ←

(∑
(x,y)∈d yfφ,θ̄(x)>

)
diag−1

(∑
(x,y)∈d y

)
J ←

∑
(x,y)∈d L (fφ,θ(x), y) +

∑
(x,ȳ)∈d̄

(
L
(
T̂>fφ,θ(x), ȳ

)
+ λL

(
fφ,θ̄(x), ȳ

))
D̄ ←

(
D̄ − d̄

)
∪

{(
x,

{
ȳ∗, if max(fφ,θ(x)) < ρ

bfφ,θ(x)/max(fφ,θ(x))c, otherwise

)∣∣∣∣(x, ȳ) ∈ d̄

}
Update φ, θ, θ̄ using∇φ,θ,θ̄ J with a single back-propagation.

end for
end for

simple but accurate method that directly estimates the posterior with a clean dataset (Hendrycks
et al., 2018; Xia et al., 2019; Yao et al., 2020), where there are other methods that estimate the
label transition matrix (Mnih & Hinton, 2012; Reed et al., 2014; Sukhbaatar et al., 2014; Bekker &
Goldberger, 2016; Goldberger & Ben-Reuven, 2016; Patrini et al., 2017). Following the assumption
of the previous work (Hendrycks et al., 2018; Chen et al., 2020; Berthon et al., 2020; Xia et al., 2020),
we also assume conditional independence of ȳ and y given x.

p(ȳ|y, x) = p(ȳ|y)

∫
p(x|ȳ, y)dx =

∫
p(ȳ|y, x)p(x|y)dx =

∫
p(ȳ|x)p(x|y)dx. (1)

By parameterizing a feature extractor φ̄ and a linear classifier θ̄, we obtain p(ȳ|x) = fφ̄,θ̄(x) where
fφ̄,θ̄ is the noisy classifier that consists of the linear classifier and the feature extractor trained only
with the noisy labels. If the noisy classifier fφ̄,θ̄ gives a perfect prediction for the noisy data, we
can estimate the transition probability p(ȳ|y) using the clean samples (x, y) ∈ d as follows (See
Appendix A.3 for the mathematical details):

T̂ ←


 ∑

(x,y)∈d

yfφ̄,θ̄(x)>


 diag−1


 ∑

(x,y)∈d

y


 . (2)

We emphasize the importance of the transition matrix estimation, as its accuracy determines the
bounds of the generalization error of the classifier (Xia et al., 2019). However, the limited number of
clean samples inside a single batch may yield an inaccurate transition matrix, even with the ideal
fφ̄,θ̄. We analyze the upper bound of the estimation error as follows:

Theorem 1. Assume the Frobenius norm of the weight matrices φ̄1, ..., φ̄H−1, θ̄ are at most
Φ̄1, ..., Φ̄H−1, Θ̄ for H-layer neural networks fφ̄,θ̄. Let the loss function be L-Lipschitz contin-
uous w.r.t. fφ̄,θ̄. Let the activation functions be 1-Lipschitz, positive-homogeneous, and applied
element-wise (such as ReLU). Let x be upper bounded by B, i.e., for any x ∈ X , ‖x‖ ≤ B. Then, for
ε ≥ 0

p
(∣∣∣T̂ij − Tij

∣∣∣ > ε
)
≤
NLB(

√
2H log 2 + 1)Θ̄ΠH−1

h=1 Φ̄i +
√

1/2 log(1/ε)√
|D̄|

+2 exp
(
−2ε2K

)
. (3)

Proof. See Appendix A.4.

Although the upper bound of the estimation error of the transition matrix is affected by the batch size
K, we empirically verify that small K does not necessarily harm the classification performance (See
Appendix C.6.2).
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3.3 LEARNING WITH ESTIMATED TRANSITION MATRIX

A clean classifier fφ,θ is trained with the estimated transition matrix T̂ :

arg min
φ,θ

∑

(x,y)∈d

L (fφ,θ(x), y) +
∑

(x,ȳ)∈d̄

L
(
T̂>fφ,θ(x), ȳ

)
, (4)

given the cross-entropy loss function L, where the feature extractor φ and the linear classifier θ form
the clean classifier fφ,θ which estimates clean labels. If T̂ is correctly estimated, the clean classifier
fφ,θ becomes statistically consistent (Sukhbaatar et al., 2014; Patrini et al., 2017; Hendrycks et al.,
2018; Xia et al., 2019; Yao et al., 2020). This approach makes the clean classifier skeptical towards
corrected labels, hence avoiding the miscorrection issue.

On the other hand, the noisy classifier fφ̄,θ̄ is trained to model the noisy label distribution.

arg min
φ̄,θ̄

∑

(x,ȳ)∈d̄

L
(
fφ̄,θ̄(x), ȳ

)
(5)

We emphasize that updating the noisy classifier fφ̄,θ̄ every iteration is critical as it can adaptively
model the ever-changing noisy label distribution on the fly, where the distribution constantly shifts as
the noisy labels are actively corrected to reduce the noise level (See § 3.5).

3.4 EFFICIENT TRAINING

Similar to Vinyals et al. (2016); Jiang et al. (2018), we propose an efficient training scheme through
weight sharing via two-head architecture. Where the architecture closely resembles the ones of
Vinyals et al. (2016); Jiang et al. (2018), our two-head architecture only shares the feature extractor
φ = φ̄. Unlike the shared feature extractor, our architecture does not share the linear classifier since
modeling both noisy and clean data distribution with a single linear classifier is impractical. Thus,
we define the clean and noisy classifier as fφ,θ and fφ,θ̄, respectively, to produce our final objective
function:

arg min
φ,θ,θ̄

∑

(x,y)∈d

L (fφ,θ(x), y) +
∑

(x,ȳ)∈d̄

(
L
(
T̂>fφ,θ(x), ȳ

)
+ λL

(
fφ,θ̄(x), ȳ

))
(6)

where λ is a loss balancing factor. In order to prevent over-fitting on d̄, we introduce λ to the final
objective function. We search for the optimal hyperparameter λ for all of our experiments (See
Appendix C.6.3).

Efficiency Analysis. Compared to the vanilla training scheme, which assumes that all labels
are clean, we only add a single linear classifier θ̄ with only N additional parameters. Also, our
loss only requires a single back-propagation, where the added linear classifier has a negligible
computational burden. Our training scheme stands out even more compared to the existing MAML-
based methods (Wu et al., 2020b; Zheng et al., 2021) or multi-stage training (Hendrycks et al., 2018;
Bahri et al., 2020) (See § 4.2 and Figure 1).

3.5 LABEL CORRECTION

In this paper, we focus on the efficient, on-the-fly estimation of the label transition matrix to combat
label miscorrection. To further demonstrate the effectiveness of our method, we employ a naïve label
correction strategy where we feed each noisy set sample x ∈ d̄ to the clean classifier fφ,θ to produce
a probability vector. If the maximum probability max(fφ,θ(x)) is bigger than the threshold ρ, we
correct its label to a more probable label. This strategy relies only on the most recent prediction of
the model mid-training, so the decision is prone to change. Formally, we can describe as follows:

{
ȳ∗, if max(fφ,θ(x)) < ρ

bfφ,θ(x)/max(fφ,θ(x))c, otherwise
(7)

where b·c denotes floor function and ȳ∗ denotes the original label from d̄. Even with this simple strat-
egy, our model shows better performance compared to the state-of-the-art methods. The experimental
results suggest that replacing this strategy may further improve the model performance.
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Table 1: Performance comparison on CIFAR-10/100 datasets under various noise level. Test accuracy
(%) with 95% confidence interval of 5-runs is provided.

Method Symmetric Noise Level Asymmetric Noise Level
20% 40% 60% 80% 20% 40%

C
IF

A
R

-1
0

L2RW 88.26 ± 0.79 83.76 ± 0.54 74.54 ± 1.54 42.60 ± 1.71 88.79 ± 0.63 85.86 ± 0.87
MW-Net 89.76 ± 0.31 86.52 ± 0.28 81.68 ± 0.25 56.56 ± 3.07 91.31 ± 0.25 88.69 ± 0.37

Deep kNN 90.02 ± 0.35 87.27 ± 0.39 82.80 ± 0.55 68.30 ± 1.21 89.97 ± 0.48 84.56 ± 0.87

GLC 89.66 ± 0.10 85.30 ± 0.73 80.34 ± 0.73 67.44 ± 1.50 91.56 ± 0.66 89.76 ± 0.89
MLoC 90.50 ± 0.71 87.20 ± 0.35 81.95 ± 0.44 54.64 ± 4.04 91.15 ± 0.16 89.35 ± 0.45

MLaC 89.75 ± 0.62 86.63 ± 0.56 82.20 ± 0.81 71.94 ± 2.22 91.45 ± 0.32 90.26 ± 0.48
MSLC 90.94 ± 0.45 88.36 ± 0.80 83.93 ± 1.21 64.90 ± 4.84 91.45 ± 1.35 89.26 ± 0.52

LT2L (ours.) 91.94 ± 0.28 90.07 ± 0.17 86.78 ± 0.31 79.52 ± 0.78 92.29 ± 0.10 90.43 ± 0.31

C
IF

A
R

-1
00

L2RW 57.79 ± 1.88 44.82 ± 4.30 30.01 ± 1.74 10.71 ± 1.79 59.11 ± 2.74 55.12 ± 3.40
MW-Net 66.73 ± 0.78 59.44 ± 0.91 49.19 ± 1.57 19.04 ± 1.21 67.90 ± 0.78 64.50 ± 0.34

Deep kNN 59.60 ± 0.97 52.48 ± 1.37 39.90 ± 0.60 23.39 ± 0.75 57.71 ± 0.47 50.23 ± 1.12

GLC 60.99 ± 0.64 49.00 ± 4.33 33.38 ± 4.09 20.38 ± 1.35 64.43 ± 0.43 54.20 ± 0.86
MLoC 68.16 ± 0.41 62.09 ± 0.33 54.49 ± 0.92 20.23 ± 1.86 69.20 ± 0.59 66.48 ± 0.56

MLaC 49.81 ± 5.59 35.15 ± 5.75 20.15 ± 2.81 12.85 ± 0.87 56.46 ± 3.54 49.20 ± 3.23
MSLC 68.62 ± 0.60 63.30 ± 0.49 53.83 ± 0.70 21.07 ± 5.20 70.86 ± 0.30 66.99 ± 0.69

LT2L (ours.) 68.75 ± 0.60 63.82 ± 0.33 55.22 ± 0.64 37.36 ± 1.15 70.35 ± 0.51 67.93 ± 0.53

4 EXPERIMENTS

In this section, we evaluate our proposed learning method, LT2L, in terms of predictive performance
(§ 4.1) and efficiency (§ 4.2). We also validate the label correction performance to demonstrate that
our method is better in correcting noisy labels (§ 4.3 and Appendix C.5) and experimentally show the
robustness of our proposed method towards miscorrected labels. (§ 4.4). We further analyze whether
our method successfully estimates the label transition matrix where the label correction shifts the
true label transition matrix (§ 4.5 and Appendix C.4.3). Additional experimental results and further
analyses are described in Appendix C. We provide the source codes2 for the reproduction of the
experiments conducted in this paper.

Baselines. We deliberately choose the baselines to encompass the three types of approaches in
learning with noisy labels. Re-weighting: L2RW (Ren et al., 2018) learns to assign weights to
training samples based on their gradients. MW-Net (Shu et al., 2019) trains an explicit weighting
function with the training samples. Deep kNN (Bahri et al., 2020) applies the k-nearest neighbor
algorithm to the logit layer of classifiers to find noisy samples. Label transition matrix estimation:
GLC (Hendrycks et al., 2018) estimates the label transition matrix using the small clean dataset.
MLoC (Zheng et al., 2021) considers the label transition matrix as trainable parameters to be obtained
through meta-learning. Label correction: MLaC (Zheng et al., 2021) trains a label correction network
as a meta-process to provide corrected labels. MSLC (Wu et al., 2020b) uses soft labels with loss
balancing weight through meta-gradient descent step under the guidance of the clean dataset.

4.1 PREDICTIVE PERFORMANCE COMPARISON

4.1.1 CIFAR-10/100 WITH SYNTHETIC NOISE

Setup. CIFAR-10/100 (Krizhevsky et al., 2009) have been widely adopted to assess the robustness
of the methods to noisy labels. Since CIFAR-10/100 are known as clean datasets, labels are syntheti-
cally manipulated to contain noisy labels, injecting two types of noise: symmetric and asymmetric.
Symmetric: The labels are randomly flipped with uniform distribution. Asymmetric: the labels are
flipped with class-dependent distribution, following the evaluation protocol of Patrini et al. (2017);
Yao et al. (2019). We claim that most studies report the performance highly overfitted to the test set
without hyperparameter tuning on the validation set (Wu et al., 2020b; Li et al., 2020a; Nishi et al.,
2021; Ortego et al., 2020). Moreover, baseline models employ different backbone networks, making
it challenging to dissect the performance improvement whether it originated from each method or the

2https://anonymous.4open.science/r/LT2L-6014
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Table 2: Test accuracy (%) comparison on Clothing1M dataset with real-world label noise. The
results except L2RW Ren et al. (2018) are taken from original papers.

Method L2RW MW-Net GLC MLoC MLaC MSLC LT2L LT2L
w/o LC (ours.)

Accuracy (%) 72.04 ± 0.24 73.72 73.69 71.10 75.78 74.02 77.07 ± 0.52 77.83 ± 0.17
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Figure 1: Plotting accuracy (%) (y-axis) according to total training time (hours) (x-axis). Our
proposed LT2L shows the best performance in training efficiency while having comparable or better
accuracy.

backbone networks. Therefore, we first extract 5K samples as the validation set from the training
set containing 50K samples and further extract 1K samples as the clean dataset. Then, we unify the
backbone network as ResNet-34 (He et al., 2016), which is widely adopted in various baselines (Wu
et al., 2020b; Liu et al., 2020). Note that we do our best to maintain the experimental settings of each
method, including the hyperparameters written in the original paper. Detailed settings are deferred to
Appendix B.

Results. Table 1 summarizes the evaluation results on CIFAR-10/100. For both CIFAR-10/-100, our
proposed LT2L achieves state-of-the-art performance on various noise levels within 95% confidence
intervals. Especially, under a high noise level (80%), our LT2L considerably outperforms the baselines
with small variance on performance, which implies the robustness of our method (Li et al., 2016;
2017). These results demonstrate that our proposed method performs well in learning with noisy
labels, especially considering its training efficiency (See § 4.2).

4.1.2 CLOTHING1M WITH REAL-WORLD NOISE

Setup. Clothing1M (Xiao et al., 2015) is a noisy real-world dataset that consists of one million
samples with additional 47K human-annotated clean samples. We use its original splits of clean and
noise data. For a fair comparison, we employ ResNet-50 architecture pretrained with the ImageNet
dataset (Deng et al., 2009) for the initial backbone architecture. Evaluation results on Clothing1M
are summarized in Table 2. Except for L2RW that was not evaluated on Clothing1M, we borrow the
reported performance of each baseline from its original paper.

Results. As shown in Table 2, our proposed LT2L achieves state-of-the-art performance on Cloth-
ing1M, beating the baselines by a large margin. This evaluation result indicates that our proposed
LT2L is more applicable in real-world problems where label corruption frequently occurs.

4.2 TRAINING TIME COMPARISON

To verify the efficiency of our proposed LT2L, we compare it with the baselines in terms of accuracy
by total training time. Total training time is measured on CIFAR-10/-100, respectively, with a single
RTX 2080Ti GPU. Test accuracy shows the predictive performance on CIFAR-10/100 with 20%
and 80% symmetric noise ratios, the mildest and most severe noise conditions, respectively. The
detailed information for both iteration time and total training time is summarized in Appendix C.2.
As shown in Figure 1, our proposed method, which learns the label transition matrix with the single
back-propagation, makes model training more efficient than other baselines while showing better
performance.
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Table 3: Label correction performance comparison on CIFAR-10 with symmetric 80% noise. Ac-
curacy (%) and Negative Log Likelihood (NLL) loss are calculated using the true labels before the
synthetic noise is injected. Performance of the trained model on all training samples (Overall) and
incorrectly labeled training samples (Incorrect) is measured. † denotes performance extracted from
the meta model.

Method L2RW MW-Net Deep kNN GLC MLoC MLaC MLaC† MSLC MSLC† LT2L LT2L
w/o LC (ours.)

Acc. Overall 0.4450 0.6024 0.6471 0.6900 0.6261 0.7567 0.7672 0.6762 0.2821 0.7559 0.7847
Incorrect 0.4447 0.6024 0.6483 0.6903 0.6257 0.7569 0.7382 0.6755 0.2836 0.7560 0.7861

NLL Overall 1.6684 1.6961 1.6085 1.3904 1.7492 0.9868 1.7004 1.2694 1.5989 1.0057 0.8889
Incorrect 1.6674 1.6957 1.6084 1.3881 1.7493 0.9851 1.7299 1.2722 1.5990 1.0033 0.8877
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cording to the epoch on CIFAR-10 dataset with symmetric 80%
and asymmetric 40% noise.

4.3 LABEL CORRECTION PERFORMANCE COMPARISON

We analyze the predictive performance of the baseline methods on all the training samples (Overall)
and the wrongly labeled subset of them (Incorrect), respectively. Our method can successfully correct
the noisy labels, where using the label correction further improves the correction performance. This
implies that our LT2L may be helpful in further cleansing the noisy training set. We also compare the
performance between Overall and Incorrect cases. Re-weighting (L2RW, MW-Net, Deep kNN) and
transition matrix estimation-based methods (GLC, MLoC) show similar performance between the
two. However, the performance of the meta-model of MLaC is worse for the Incorrect case, which
indicates that the correction from the meta-model is less effective where the labels are wrong. Also,
notable underperformance of the meta-model of MSLC may indicate the inefficacy of the meta-model.
We also analyze the meta-model of the re-weighting methods in the Appendix C.5, where they do not
distinguish the wrongly labeled samples well.

4.4 ROBUSTNESS TO MISCORRECTION: WHAT HAPPENS IF LABELS ARE WRONGLY
CORRECTED?

This subsection illustrates the robustness of our label correction method to miscorrected labels
by comparing it with other label correction methods (MLaC and MSLC) which blindly trust the
miscorrected labels as the ground-truth, where we verify the imperfect corrections (See § 4.3). We
examine how much this behavior deteriorates the predictive performance.

Setup. We experiment on CIFAR-10 with symmetric 80% noise where there are a maximum
number of noisy labels to correct. To simulate the miscorrection, we perturb the corrected labels by
injecting artificial noise. We control the degree of random perturbation to observe the robustness of
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each method on various levels of miscorrection. We further assess the robustness of our LT2L and
MSLC by comparing it with the performance obtained without label correction.

Results. As shown in Figure 2, our proposed LT2L outperforms MLaC and MSLC on all the
degrees of the random perturbation. MLaC shows steep performance degradation when perturbation
worsens, i.e., there are more miscorrected labels. This observation reveals the susceptibility of MLaC.
MSLC shows trivial performance gains when labels are corrected, implying that it is not using the
full benefits of label correction. Furthermore, when highly perturbed, MSLC performance worsens if
it attempts to correct the labels. In contrast, the label correction of our LT2L improves performance
even in harsh situations. LT2L does not degrade performance even if the correction becomes useless
(100% perturbation), and we argue that this is due to the safeguard provided by the transition matrix.
These observations demonstrate that our LT2L builds a more robust classifier to miscorrected labels
through its efficient estimation of the label transition matrix, and it could act as a safeguard combating
the miscorrected labels.

4.5 ON-THE-FLY ESTIMATION OF THE LABEL TRANSITION MATRIX

Our proposed LT2L newly estimates the label transition matrix on every iteration, where the matrix is
constantly shifted by the label correction. To assess the quality of the estimated transition matrix, we
compare it with the true label transition matrix.

Setup. We train LT2L on CIFAR-10 with symmetric 80% and asymmetric 40% noise, which
are harsh conditions on symmetric and asymmetric noise injection, respectively. We compare the
estimated label transition matrix T̂ with the true label transition matrix T by observing the mean of
diagonal term values for each epoch. The mean of the diagonal term in the transition matrix represents
the average of the probability that a sample is mapped to a clean label.

Results. Figure 3 shows the overall tendency of the estimated transition matrix (red plots) to follow
the true label matrix (blue plots). In the asymmetric 40% setting, the mean of diagonal term values
of the true label transition matrix T gradually increases (blue plots), which indicates the dataset is
cleansed by the label correction. However, in the symmetric 80% case, the mean of diagonal term
values of the oracle transition matrix T decreases at the middle of the training. As we maintain the
fixed threshold ρ, the total number of corrected samples decreases. Nonetheless, we can conclude
that the transition matrix is successfully estimated on shifting noise levels.

Additionally, we observe that the estimated transition matrix T̂ shows higher mean values, i.e., being
overconfident on the clean dataset samples. Theoretically, fφ,θ̄ should correctly approximate the
noisy label distribution given enough number of clean samples (See Appendix A.4), but it seems to
be overfitting to the clean dataset in practice. This observation is consistent with the popular belief
that deep neural networks tend to learn clean samples first and noisy samples later (Arpit et al., 2017).
For the better estimation of the transition matrix to yield a more robust classifier (Han et al., 2020a;
Xia et al., 2019; Mirzasoleiman et al., 2020; Yao et al., 2020), it appears that we need to address the
overfitting through additional components.

5 CONCLUSION

In this work, we propose a meta-learning-based method, LT2L, which efficiently learns a label
transition matrix that mitigates the label miscorrection problem of existing label correction methods.
Our proposed LT2L accurately estimates the label transition matrix using a small clean dataset even
if the samples are miscorrected. Moreover, our LT2L is highly efficient compared to existing methods
since it requires single back-propagation through two-head architecture. Extensive experiments show
that our method is the fastest and the most robust classifier. Especially, our method achieves the
state-of-the-art performance on both the real-world noise dataset (Clothing1M) and the synthetic
dataset on various noise levels (CIFAR). The detailed analysis shows that our method is robust to
miscorrected labels by efficiently estimating the transition matrix shifted by the label correction.
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A THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis of our proposed LT2L. First, we formally establish
the need for label correction (Appendix A.1). Then, we provide a formal background for a statistically
consistent classifier (Appendix A.2) and show the detailed calculation on the estimation of transition
matrix T through forward propagation (Appendix A.3). Finally, we prove that T estimation error of
our method are upper bounded (Appendix A.4).

A.1 MOTIVATION: NEED FOR LABEL CORRECTION

Reducing the noise level of a dataset is crucial in learning with noisy labels both empiri-
cally (Drory et al., 2018; Zheng et al., 2021; Wu et al., 2020b; Hendrycks et al., 2018) and the-
oretically (Chen et al., 2019; Charikar et al., 2017). Following Chen et al. (2019); Ren et al. (2018);
Jiang et al. (2018); Ma et al. (2018); Han et al. (2018b), the true transition matrix T in symmetric
noise with noise level γ (< 1) is defined as follows:

Tij =

{
1− ((N − 1)/N) γ, for i = j.
γ/N, otherwise.

(8)

Correspondingly, the true transition matrix T in asymmetric noise with noise level γ (< 1/2) is
defined as follows:

Tij =





1− γ, for i = j.

γ, for some i 6= j.

0, otherwise.
(9)

We employ these noise schemes in our CIFAR-10 experiments. Under the assumption that the label
class is balanced, Chen et al. (2019) prove that the upper bound of test accuracy for the symmetric
and asymmetric noise is as follows:

{
((N − 1)/N) γ2 − 2 ((N − 1)/N) γ + 1, for symmetric noise.
2γ2 − 2γ + 1, for asymmetric noise.

(10)

Eq. 10 shows quadratic (convex) functions of γ. In the case of the symmetric noise, test accuracy is
minimized at the γ = 1. Similarly, with asymmetric noise, test accuracy is minimized at the γ = 1/2.
Hence, the test accuracy always decreases as γ increases in the feasible bound of γ. Therefore,
reducing the noise level of a dataset plays a vital role in increasing the achievable test accuracy.

How to Reduce the Noise Level of a Dataset Two approaches are commonly used to reduce the
noise level of a dataset: re-weighting samples and label correction. Sample re-weighting reduces the
noise level by eliminating noisy samples during the model training, whereas label correction directly
cleans up the dataset. Recently, label correction methods have shown notable results compared
to sample re-weighting methods. Song et al. (2019a); Wu et al. (2020b); Zheng et al. (2021);
Mirzasoleiman et al. (2020); Chang et al. (2017); Lin et al. (2017); Shrivastava et al. (2016) claim
that re-weighting might show sub-optimal performance by filtering out noisy samples, which might
aid in training feature extractors.

Theoretical Inspired Explanation of the Superiority of Label Correction Here, we provide a
more theoretically motivated explanation of the above claim. We explore the reason behind the
superior performance of label correction compared to sample re-weighting. Chen et al. (2019)
considers only the upper bound of test accuracy according to the noise level while ignoring the effect
on the number of samples on a generalization error while Charikar et al. (2017) does not consider
deep networks. We aim to exhibit the superiority of label correction by presenting the generalization
error considering both the number of samples and the noise level. We argue that both the noise level
and the number of training samples are critical in determining the generalization error.

For simplicity, our explanation assumes binary classification with asymmetric noise with a level γ. We
employ the VC dimension framework (Vapnik, 1999; 2013; Chen et al., 2020; Zhang et al., 2016) to
describe the various methods for learning with noisy labels, although the framework provides a loose
bound. Further investigation on a tighter bound using the Rademacher complexity or considering the
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multi-class classification is suggested for future research. Under clean training data distribution D
and clean true data distribution D∗, the VC dimension framework presents the following bound.

p (|ED(f)− ED∗(f)| > ε) ≤ 4 (2|D|)dV C exp

(
−1

8
ε2|D|

)
, (11)

where dV C is the VC dimension and ED(f) is the expectation of error for function f regarding the
data distribution D. If the VC dimension dV C is bounded (or finite), convergence is guaranteed
because the upper bound decreases exponentially as the size of the dataset increases. Now, we observe
a noisy dataset D̄ rather than a clean dataset D. With the triangular inequality and the definition of γ,
the following inequalities hold.

p (|ED̄(f)− ED∗(f)| > ε) (12)
= p (|ED̄(f)− ED(f) + ED(f)− ED∗(f)| > ε) (13)
≤ p (|ED̄(f)− ED(f)| > ε) + p (|ED(f)− ED∗(f)| > ε) (14)

≤ γ + 4 (2|D|)dV C exp

(
−1

8
ε2|D|

)
(15)

Even if this theoretical bound is loose, we argue that label correction shows better performance
than re-weighting samples. As the dataset gets noisier, the number of filtered out samples by the
re-weighting methods will also increase, resulting in a drastic reduction of the number of training
samples. However, as aforementioned in Section 1, label correction holds an inherent problem of
error propagation. We now explain the theoretical background on how the transition matrix acts as a
safeguard for the label correction on our LT2L.

A.2 BACKGROUND: STATISTICALLY CONSISTENT CLASSIFICATION

It is well known that the label transition matrix T can be used to train statistically consistent classifiers
in the presence of noisy labels (Mirzasoleiman et al., 2020; Xia et al., 2019; Yao et al., 2020). A
statistically consistent classifier is a classifier which guarantees the convergence to an optimal
classifier when the number of data samples increases indefinitely. Following Han et al. (2020a); Xia
et al. (2019); Yao et al. (2020); Mirzasoleiman et al. (2020), we describe the consistency of empirical
risk to yield the consistency of the classifier.

Statistically Consistent Empirical Risk Multi-class classification aims to train the hypothesisH,
which estimates a label y given an input x. Given the deep neural network fφ,θ, a hypothesis H is
commonly defined as follows:

H(x) = arg max
n∈{1,...,N}

fφ,θ(x)|n. (16)

With the true sample distribution D∗, the expected risk R forH is defined as follows:

R(H) = min
H

E(x,y)∼D∗ [L(H(x), y)] (17)

Under the distribution D∗ is unknown, the optimal hypothesisH should minimizeR. Since the risk
of the optimal hypothesis is difficult to calculate, the empirical risk is usually used for approximation
via training dataset D. The definition of empirical risk is as follows:

R|D|(H) = E(x,y)∼D [L(H(x), y)] =
1

|D|
∑

(x,y)∈D

L(H(x), y). (18)

Following equation holds for the statistically consistent empirical risk:

R(H) = lim
|D|→∞

R|D|(H), (19)

where it is common to assume that D is sampled from D∗ as independent and identically distributed
(i.i.d) random variables (Xia et al., 2019; Chen et al., 2019; 2020; Han et al., 2020a; Cheng et al.,
2020).
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Statistically Consistent Classifier Suppose an ideal zero-one loss function L∗ (where it cannot be
used in reality because its differentiation is impossible) (Bartlett et al., 2006):

L∗(H(x) = y) = 1{H(x) 6=y}. (20)

1{·} is an indicator function that outputs 1 ifH(x) 6= y and 0 otherwise. If the class of the hypothesis
H is large enough (Mohri et al., 2018), the optimal hypothesis to minimize the expected riskR(H)
corresponds to the Bayes classifier (Bartlett et al., 2006) as follows:

H(x) = arg max
n∈{1,...,N}

p(y = n|x) (21)

Many classification loss functions in modern machine learning are proven to be classification-
calibrated (Bartlett et al., 2006; Scott et al., 2012), i.e., the classification-calibrated loss function
leads to a similar prediction to that of L∗ when |D| is sufficiently large (Mohri et al., 2018; Vapnik,
2013). For example, the hinge loss is proven to be classification calibrated (Yang & Koyejo, 2020),
and the cross-entropy loss with softmax function is empirically classification-calibrated (Guo et al.,
2017). The classifier fφ,θ(x) is said to be statistically consistent when the classifier converges to the
probability p(y|x) by minimizing the empirical riskR|D|(H). Note that being risk consistent makes
classifier consistent, but not vice versa (Xia et al., 2019).

Statistically Consistent Classifier in Noisy Labels The empirical riskR|D̄|(H) of a noisy dataset
D̄ is as follows.

R ¯|D|(H) = E(x,y)∼D̄ [L(H(x), y)] =
1

|D̄|
∑

(x,y)∈D̄

L(H(x), y) (22)

Since the statistically consistent classifier fφ,θ(x) converges to p(y|x), we can accept fφ,θ(x) to
approximate p(y|x). Given the definition of the transition matrix p(ȳ|x) = T>p(y|x), a hypothesis
with a noisy dataset H̄ is defined as follows:

H̄(x) = arg max
n∈{1,...,N}

T>fφ,θ(x)|n (23)

Hence, minimizing the following empirical riskR ¯|D|(H̄) using only the noisy dataset D̄ leads to a
consistent classifier fφ,θ(x) (Xia et al., 2019).

R ¯|D|(H̄) = E(x,y)∼D̄
[
L(H̄(x), y)

]
=

1

|D̄|
∑

(x,y)∈D̄

L(H̄(x), y) (24)

In other words, fφ,θ converges to the optimal classifier for the clean data when the sample size of the
noisy dataset becomes infinitely large. Although other lines of research guarantee that maximizing
accuracy in noisy data distribution maximizes accuracy in clean data distribution even without the
transition matrix (Chen et al., 2020), loss correction via the transition matrix is still an effective
consistent classifier training scheme. For this reason, a line of work in learning with noisy labels
via the transition matrix attempts to train a statistically consistent classifier by an additional layer
modeling the transition matrix preceded by the softmax layer (Goldberger & Ben-Reuven, 2016;
Patrini et al., 2017; Thekumparampil et al., 2018; Yu et al., 2018; Mnih & Hinton, 2012; Reed et al.,
2014; Sukhbaatar et al., 2014). Incidentally, it is known that modifying the loss function using the
transition matrix has a degree of handling instance-dependent label corruption (Menon et al., 2016;
Hendrycks et al., 2018).

Statistically Consistent Classifier in Noisy Labels with Small Clean Dataset We exploit a small
number of clean data as in Finn et al. (2017); Veit et al. (2017); Lee et al. (2018); Jiang et al. (2018);
Ren et al. (2018); Li et al. (2019); Hendrycks et al. (2018); Shu et al. (2019); Bahri et al. (2020);
Zhang et al. (2020); Zheng et al. (2021); Wu et al. (2020b); Wang et al. (2020a) while disjointing the
clean D and noisy dataset D̄. It is trivial that a statistically consistent classifier in exploiting a clean
set can be obtained by minimizing the following empirical risk:

R|D|(H) +R ¯|D|(H̄) = E(x,y)∼D [L(H(x), y)] + E(x,y)∼D̄
[
L(H̄(x), y)

]
(25)

=
1

|D|
∑

(x,y)∈D

L(H(x), y) +
1

|D̄|
∑

(x,y)∈D̄

L(H̄(x), y). (26)
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Since the cross-entropy loss surrogates the ideal zero-one loss function L∗ (Guo et al., 2017),
minimizing the empirical riskR|D|+|D̄|(H, H̄) is equivalent to following optimization problem.

arg min
φ,θ

∑

(x,y)∈D

L (fφ,θ(x), y) +
∑

(x,ȳ)∈D̄

L
(
T̂>fφ,θ(x), ȳ

)
. (27)

Without loss of generalization, the optimization problem can be rewritten by introducing an episodic
batch formation in Section 3.1:

arg min
φ,θ

∑

(x,y)∈d

L (fφ,θ(x), y) +
∑

(x,ȳ)∈d̄

L
(
T̂>fφ,θ(x), ȳ

)
. (28)

A.3 CALCULATION OF THE ESTIMATED TRANSITION MATRIX T̂ OF LT2L

GLC (Hendrycks et al., 2018) presents a method to estimate the transition matrix through a small
clean dataset similar to our LT2L. GLC adopts the slow calculation method via a FOR or WHILE loop
since Hendrycks et al. (2018) only requires to obtain the transition matrix once in the entire training
process. However, our LT2L needs to estimate the transition matrix for every iteration as we correct
the labels on the fly, ending up altering the ideal transition matrix. We speed up the estimation with a
single forward propagation by using only matrix operations, avoiding the sluggish FOR or WHILE
loop. Here, we show the derivation of Eq. 2. Let di = {(x, y) ∈ d|yi = 1}. Then,

T̂ij = p(ȳ = j|y = i) =
1

|di|
∑

(x,y)∈di

p(ȳ = j|y = i, x) =
1

|di|
∑

(x,y)∈di

fφ,θ(x)

∣∣∣∣∣∣
j

(29)

=
1

|di|




∑

(x,y)∈di

yfφ̄,θ̄(x)>

∣∣∣∣∣∣
(i,j)


 =




∑

(x,y)∈di

yfφ̄,θ̄(x)>

∣∣∣∣∣∣
(i,j)


 1

|di|
(30)

=




∑

(x,y)∈di

yfφ̄,θ̄(x)>

∣∣∣∣∣∣
(i,j)





diag−1


 ∑

(x,y)∈d

y



∣∣∣∣∣∣
(i,j)


 (31)

Without loss of generality, T̂ can be written as follows:

T̂ =


 ∑

(x,y)∈d

yfφ̄,θ̄(x)>


 diag−1


 ∑

(x,y)∈d

y


 . (32)

A.4 PROOF OF THEOREM 1

In this section, we prove under strong assumptions (Theorem 2) followed by milder assumptions (The-
orem 1). Theorem 2 estimates the upper bound of the error on transition matrix T , assuming the ideal
situation where p(ȳ|x) is perfectly parameterized to fφ̄,θ̄(x).
Theorem 2. Assuming p(ȳ|x) = fφ̄,θ̄(x), for ε ≥ 0,

p
(∣∣∣T̂ij − Tij

∣∣∣ > ε
)
≤ 2 exp

(
−2ε2K

)
. (33)

Proof. If p(ȳ|x) = fφ̄,θ̄(x), then p
(∣∣∣E

[
T̂
]
− T

∣∣∣ > ε
)

= 0. With the triangular and Hoeffding
inequality, the following holds:

p
(∣∣∣T̂ij − Tij

∣∣∣ > ε
)

= p
(∣∣∣T̂ij − E

[
T̂ij

]
+ E

[
T̂ij

]
− Tij

∣∣∣ > ε
)

(34)

≤ p
(∣∣∣E

[
T̂ij

]
− Tij

∣∣∣ > ε
)

+ p
(∣∣∣T̂ij − E

[
T̂ij

]∣∣∣ > ε
)

(35)

= p
(∣∣∣E

[
T̂ij

]
− Tij

∣∣∣ > ε
)

+ 2 exp
(
−2ε2K

)
(36)

= 2 exp
(
−2ε2K

)
. (37)
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With Theorem 2 alone, we can see that the estimation error of transition matrix T decreases ex-
ponentially as K (the number of samples per class) increases, as we mentioned in Theorem 1 of
Section 3.2.

We assume the hypothetical case that p(ȳ|x) could flawlessly model fφ̄,θ̄(x), but the assumption
does not hold in practice. Several lemmas are established in order to prove Theorem 1 under more
relaxed assumptions. If p(ȳ|x) 6= fφ̄,θ̄(x), then p(|E[T̂ ]− T | > ε) 6= 0. We focus on examining the
upper bound of p(|E[T̂ ]− T | > ε) under the relaxed assumption. The upper bound of T̂ (which is
equivalent to fφ̄,θ̄(x)) is strictly 1 since it is a probability. By applying McDiarmid’s concentration
inequality (Boucheron et al., 2013), the following inequality is established:

p
(∣∣∣E

[
T̂ij

]
− Tij

∣∣∣ > ε
)
≤ Eσ


sup
H

1

|D̄|
∑

(x,ȳ)∈D̄

σxL(H(x), ȳ)


+

√
log(1/ε)

2|D̄|
(38)

where σ is an i.i.d Rademacher random variable (Montgomery-Smith, 1990) andH is a hypothesis.

We estimate the upper bound of the estimation error of T by assumingH is constructed using deep
neural networks. A deep neural networks hypothesisH′ is defined as follows.

H′(x) = θ̄AH−1(φ̄H−1AH−2(... A1(φ̄1x))) ∈ RN (39)

where H is the depth of deep neural networks and Ai is the i-th activation function. When the
function class is limited with deep neural networks, the following lemma holds by borrowing the
results of (Xia et al., 2019).

Lemma 1. Suppose σ is an i.i.d Rademacher random variable and L is the cross-entropy loss
function which is L-Lipschitz continuous with respect toH′,

Eσ


sup
H

1

|D̄|
∑

(x,ȳ)∈D̄

σxL(H(x), ȳ)


 ≤ NLEσ


sup
H′

1

|D̄|
∑

(x,ȳ)∈D̄

σxH′(x)


 (40)

whereH′ is a hypothesis belonging to the function class of deep neural networks.

As opposed to using the VC dimension framework in Section 1, this section uses the Rademacher
complexity framework (Bartlett & Mendelson, 2002) to assess the upper bounds of our method.
Hypothesis complexity of deep neural networks via Rademacher complexity is broadly studied in
Xia et al. (2019); Bartlett et al. (2017); Golowich et al. (2018); Neyshabur et al. (2017). In particular,
Golowich et al. (2018) proves the following lemma:

Lemma 2. Assume the Frobenius norm of the weight matrices φ̄1, ..., φ̄H−1, θ̄ are at most
Φ̄1, ..., Φ̄H−1, Θ̄ for H-layer neural networks fφ̄,θ̄. Let the activation functions be 1-Lipschitz,
positive-homogeneous, and applied element-wise (such as the ReLU). Let σ is an i.i.d Rademacher
random variable. Let x is upper bounded by B, i.e., for any x ∈ X , ‖x‖ ≤ B. Then, for ε ≥ 0

Eσ


sup
H′

1

|D̄|
∑

(x,ȳ)∈D̄

σxH′(x)


 ≤ B(

√
2H log 2 + 1)Θ̄ΠH−1

h=1 Φ̄i√
|D̄|

. (41)

Now, we can complete the proof of Theorem 1.

Theorem 1. Assume the Frobenius norm of the weight matrices φ̄1, ..., φ̄H−1, θ̄ are at most
Φ̄1, ..., Φ̄H−1, Θ̄ for H-layer neural networks fφ̄,θ̄. Let the loss function be L-Lipschitz contin-
uous w.r.t. fφ̄,θ̄. Let the activation functions be 1-Lipschitz, positive-homogeneous, and applied
element-wise (such as the ReLU). Let x is upper bounded by B, i.e., for any x ∈ X , ‖x‖ ≤ B. Then,
for ε ≥ 0

p
(∣∣∣T̂ij − Tij

∣∣∣ > ε
)
≤
NLB(

√
2H log 2 + 1)Θ̄ΠH−1

h=1 Φ̄i +
√

1/2 log(1/ε)√
|D̄|

+ 2 exp
(
−2ε2K

)
.
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Proof. With the triangular inequality, Hoeffding inequality, Theorem 2, Lemma 1, and 2, the following
holds.

p
(∣∣∣T̂ij − Tij

∣∣∣ > ε
)

(42)

= p
(∣∣∣T̂ij − E

[
T̂ij

]
+ E

[
T̂ij

]
− Tij

∣∣∣ > ε
)

(43)

≤ p
(∣∣∣E

[
T̂ij

]
− Tij

∣∣∣ > ε
)

+ p
(∣∣∣T̂ij − E

[
T̂ij

]∣∣∣ > ε
)

(44)

= p
(∣∣∣E

[
T̂ij

]
− Tij

∣∣∣ > ε
)

+ 2 exp
(
−2ε2K

)
(45)

≤ Eσ


sup
H

1

|D̄|
∑

(x,ȳ)∈D̄

σxL(H(x), ȳ)


+

√
log(1/ε)

2|D̄|
+ 2 exp

(
−2ε2K

)
(46)

≤ NLEσ


sup
H′

1

|D̄|
∑

(x,ȳ)∈D̄

σxH′(x)


+

√
log(1/ε)

2|D̄|
+ 2 exp

(
−2ε2K

)
(47)

≤
NLB(

√
2H log 2 + 1)Θ̄ΠH−1

h=1 Φ̄i√
|D̄|

+

√
log(1/ε)

2|D̄|
+ 2 exp

(
−2ε2K

)
(48)

≤
NLB(

√
2H log 2 + 1)Θ̄ΠH−1

h=1 Φ̄i +
√

1/2 log(1/ε)√
|D̄|

+ 2 exp
(
−2ε2K

)
. (49)

Theorem 1 and 2 state that the estimation error of transition matrix T is reduced with a larger K.
However, we experimentally verify that K = 1 is enough for achieving comparable performance
(See Appendix C.6.2).

We end this section by enumerating the limitations of our theoretical analysis. (i) Although our
method is based on a multi-head architecture, a clean and a noisy classifier are trained simultaneously,
where only the training of the noisy classifier is considered in the theoretical analysis. (ii) We failed to
make the upper bound tight for Theorem 1 and 2. Additional assumptions like Charikar et al. (2017)
may yield tighter bound. We conjecture that our method works empirically well for K = 1 since the
upper bound is loose. (iii) The data distribution on a noisy classifier changes in every iteration due
to simultaneously corrected labels. However, we assume that the data distribution is stationary. In
order to make our theoretical assumption more adequate for our method, it is necessary to examine
the situation under changing data distribution.

B EXPERIMENTAL DETAILS

B.1 DATASETS

As shown in Table 4, we use bigger noisy dataset (noisy-train) and smaller clean dataset (clean-train)
for training. Validation set is used for obtaining the best model. Since CIFAR datasets do not have the
validation set, we split 10% of the entire training set as the validation set. Thus, experimental results
may differ from the results of their papers. For Clothing1M, we use its original data split.

Table 4: Data split composition of dataset used in our experiments.
Dataset Noisy-train Clean-train Valid Test Image size # of classes

CIFAR-10 44K 1K 5K 10K 32 × 32 10
CIFAR-100 100

Clothing1M 1M 47K 14K 10K 224 × 224 14
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B.2 MINI-BATCH CONSTRUCTION

We sample the mini-batches from both clean and noisy datasets. For the clean dataset, we construct
the mini-batch to have the same number of instances per class for clean samplers, whereas the
mini-batch of the noisy set is randomly sampled. We choose the batch size 100 for both CIFAR-10
and CIFAR-100, a total of 200 images used per iteration. As the number of classes is 10 and 100,
10 and 1 image(s) are used per class for the clean batch, respectively. We choose the batch size 42
for each noisy and clean set on Clothing1M dataset with 14 classes so that 84 images are used per
iteration, where 3 samples are used per class for the clean batch.

B.3 DETAILED TRAINING PROCEDURE

B.3.1 CIFAR-10/100 DATASET

Here, we describe the detailed training procedure of our baselines on CIFAR-10/100
dataset (Krizhevsky et al., 2009). For all baselines except Deep kNN, we use SGD optimizer with an
initial learning rate of 1e-1. For Deep kNN (Bahri et al., 2020), we use Adam optimizer (Kingma &
Ba, 2014) and set the initial learning rate to 1e-3. We follow the experimental settings described in
each corresponding papers as much as possible to obtain performance fairly.

L2RW: When training the model, we decay the learning rate to 1e-2 and 1e-3 at 40 and 60 epochs,
with a total of 80 epochs. MW-Net: For the total of 60 epochs, we decay the learning rate by a factor
of 10 at 40 and 50 epochs, respectively. Deep kNN: Since it has multiple training stages, we first
train two independent models with only the clean dataset D and sum of the clean and noisy dataset
D ∪ D̄, respectively. Then, we filter out the suspicious samples from the noisy set to generate the
filtered noisy set D̄filter using k-nearest neighbors algorithm (k-NN) of the logit outputs from one of
the two trained models, where we choose the model with the better validation set accuracy. Finally,
we train the model with the sum of the clean and filtered noisy set D ∪ D̄filter. For each phase, we
train the model until 100 epochs without learning rate decay. GLC: We first train the model with only
the noisy set D̄ and obtain the label transition matrix with the trained model. With the label transition
matrix, we train the initialized model with the clean and noisy set D ∪ D̄ while correcting the loss
obtained from the noisy samples. MLoC: We first train the model with a warm-up of 75 epochs, i.e.,
directly training with the noisy label dataset without bells and whistles. We then meta-train the model
with the learning rate of 1e-4 for additional 75 epochs. MLaC: For a total of 120 epochs, we decay
the learning rate at 80 and 100 epochs by a factor of 10. MSLC: Similar to MLoC, we first train
the model with the warm-up of 80 epochs, then meta-train the model with the learning rate of 1e-2
and cut it to 1e-3 at 20 epochs, for 40 epochs. LT2L (Ours): we train the model until 70 epochs and
decay the learning rate at 50 and 60 epochs by a factor of 10.

B.3.2 CLOTHING1M DATASET

For the Clothing1M dataset (Xiao et al., 2015), we borrow the baseline evaluation results from each
corresponding paper except for L2RW, where we train the model ourselves as the original paper
does not report the results. For a fair comparison, we use the same backbone network, pre-trained
ResNet-50. L2RW: We train the model for 10 epochs using the SGD optimizer with the initial
learning rate of 1e-2. We decay the learning rate after 5 epochs by a factor of 10, where we follow
the common training procedure borrowed from (Wu et al., 2020b; Shu et al., 2019). LT2L (Ours):
Similarly, we use the SGD optimizer with the same initial learning rate, where we decay the learning
rate after 1 epochs for total of 2 epochs.

B.4 EVALUATION DETAILS FOR SECTION 4.3

Considering the situation where we have to purify the existing noisy labels inside the training set
automatically, predicting the correct labels of the train samples is crucial. We compare the accuracy
on the noisy train dataset where we compare with the clean label, which is unknown to the model at
training time. We show the accuracy on CIFAR-10 with symmetric noise of 80%; hence if the model
is perfectly overfitted to the noisy set, it will yield 28% accuracy.

Settings. For each method, we use the model with the best validation accuracy, i.e., the best model
that each has produced. For the meta-model of MLaC, we use the output of the label correction
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Figure 4: Effect of label correction on CIFAR-
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Figure 5: Robustness to Mis-labeling of LT2L.
The corrected label amount (%) and model accu-
racy (%) according to the label correction thresh-
old (ρ) are provided.

network (LCN), where the network is fed with the feature vector and the noisy label for every noisy
dataset to yield a corrected soft label. The feature vector is extracted from the main model, where it is
obtained using the features before the fully connected layer. For the meta-model of MSLC, we use
the cached soft label from the last epoch. MSLC calculates the soft label with the linear combination
of the previous cached soft label, the predicted label from the main model, and the given noisy label,
where the weights are continuously learned during training.

Results. We analyze the performance in terms of two factors: accuracy, which is the direct perfor-
mance of the model, and NLL, which is the target of the noisy label training. We check using all the
samples (Overall) and only the wrongly labeled samples (Incorrect). As we described earlier, our
method shows superior performance in both accuracy and NLL compared to all the other methods that
we have evaluated. We can also observe the efficacy of our label correction method. Furthermore, the
performance of the MSLC meta-model is near 28%, implying the incorrectness of the meta-model.

B.5 BASELINES IN FIGURE 5

Figure 5 demonstrates the robustness of our method when unreliable samples are also corrected by
lowering the threshold of label correction to investigate how safe our method is. Our method uses the
transition matrix to avoid the error propagation problem even if unreliable samples are corrected. We
observe the robustness of our method compared to other label correction methods, MLaC (Zheng
et al., 2021) and MSLC (Wu et al., 2020b).

C ADDITIONAL EXPERIMENTS

C.1 ROBUSTNESS TO MISCORRECTED LABELS: WHAT HAPPENS IF LABELS ARE WRONGLY
CORRECTED?

This section illustrates the robustness of our label correction method to miscorrected labels by
comparing it with other label correction methods (MLaC and MSLC) in learning with noisy labels.
We examine whether miscorrection accumulates errors to deteriorate the predictive performance. To
simulate the label correction error, we perturb the corrected labels by injecting artificial noise. We
control the degree of random perturbation to observe the robustness of each method on various levels
of failure.

Settings. We experiment on CIFAR-10 with symmetric 80% noise where the label correction would
be the most critical on performance. We further test the robustness for our LT2L and MSLC by
comparing it with the performance obtained without label correction.

Results. Figure 6 reveals the susceptibility of MLaC on miscorrection by showing steep perfor-
mance degradation when perturbation worsens. MSLC shows trivial performance gains when labels
are corrected, implying that it is not using the full benefits of label correction. Furthermore, when
highly perturbed, MSLC performance worsens if it attempts to correct the labels. In contrast, the
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Figure 6: Robustness to miscorrected labels on CIFAR-10 with various perturbation strength. Test
accuracy (%) of baselines and baselines without the label correction is provided.

label correction of our LT2L shows stable performance improvement even in harsh situations. We
can understand this result as our method being highly robust to potentially wrong corrections.

C.2 TRAINING TIME COMPARISON

With the Figure 1, the exact values in Table 5 further affirm the efficiency of our method, substantially
outperforming the baseline. Table 5 shows seconds per single iteration and the total training hours of
each baseline, including our LT2L. Since Deep kNN and GLC require multiple training stages, the
sum of the iteration times of each training phase is provided.

Table 5: Training time comparison on CIFAR-10 dataset with 80% symmetric noise. Time (seconds)
per iteration and Time (hours) per total training on a single RTX 2080Ti GPU are provided with the
relative ratio compared to our method.

Method L2RW MW-Net Deep kNN GLC MLoC MLaC MSLC LT2L
(ours.)

Iteration Time 0.416 0.298 0.127 0.0846 0.422 0.527 0.279 0.0713
(Relative to Ours.) (5.84x) (4.19x) (1.78x) (1.19x) (5.92x) (7.39x) (3.91x)

Total Training Time 4.78 2.63 2.32 2.29 7.13 10.2 2.51 1.54
(Relative to Ours.) (3.11x) (1.71x) (1.51x) (1.49x) (4.64x) (6.64x) (1.64x)

C.3 IS THE PERFORMANCE IMPROVEMENT DUE TO OVER-SAMPLING ON THE CLEAN
DATASET?

Unlike many MAML-based methods using the clean dataset as gradient guidance in the meta training
step, our proposed method utilizes the dataset directly during the model training. One may suspect
that the performance improvement of our method may come from over-sampling the clean dataset.
Therefore, we compare our proposed model with an over-sampling method (Chawla et al., 2002;
Hong et al., 2020). To see the effectiveness of our batch formation, we experiment with the standard
cross-entropy loss (Eq. 50) instead of our final objective (Eq. 6), using the same batch formation
(Naïve Oversampling). For a fair comparison, label correction is excluded.

arg min
φ,θ

∑

(x,y)∈d

L (fφ,θ(x), y) +
∑

(x,ȳ)∈d̄

L (fφ,θ(x), ȳ) (50)
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Table 6 shows that our proposed method outperforms the over-sampling method. This observation
indicates that our meta-learning method appropriately leverages the clean dataset to estimate the label
corruption matrix.

Table 6: The effect of clean set oversampling on the performance of CIFAR-10/100 experiments.
The accuracy (%) of naïve oversampling and LT2L (ours.) w/o label correction is provided.

Dataset Method Symmetric Asymmetric
20 % 40 % 60 % 80 % 20 % 40 %

CIFAR-10 Naïve Oversampling 89.39 85.90 83.90 56.83 90.58 84.41
LT2L (ours.) w/o Label Correction 90.67 88.29 84.12 74.19 92.50 91.05

CIFAR-100 Naïve Oversampling 65.42 57.08 42.18 25.88 67.71 61.73
LT2L (ours.) w/o Label Correction 68.02 61.75 52.79 28.46 69.59 66.07

C.4 COMPARISON TO OTHER METHODS WITH THE TRANSITION MATRIX

Although the transition matrix is initially introduced as a safeguard to mitigate the risk of label
correction in the LT2L, our LT2L even shows better performance than other methods employing
the transition matrix. This section illustrates that LT2L, even without label correction, shows better
performance than other methods using transition matrix with the clean dataset: GLC (Section C.4.1)
and MLoC (Section C.4.2).

C.4.1 COMPARISON TO GOLD LOSS CORRECTION (GLC) (HENDRYCKS ET AL., 2018)

Our proposed method is similar to GLC in estimating the label transition matrix, but it shows better
performance than GLC even without label correction (See Table 7). Additionally, instead of estimating
the transition matrix, we directly use the oracle matrix to examine the effectiveness of the multi-head
architecture more clearly. Even using the same oracle matrix for both methods, our LT2L outperforms
GLC. We conjecture that our multi-head architecture trains the model to extract features better than
the two-stage training of GLC, which learns noisy classifier and clean classifier consecutively.

Table 7: The effect of two-head architecture via oracle label transition matrix on CIFAR-10/100
dataset. Test accuracy (%) of GLC Hendrycks et al. (2018) and LT2L (ours.) with and without oracle
label transition matrix is provided. For a fair comparison, label corruption is excluded in LT2L.

Dataset Method Symmetric Asymmetric
20 % 40 % 60 % 80 % 20 % 40 %

CIFAR-10

GLC Hendrycks et al. (2018) w/ Oracle 89.06 85.45 81.56 67.54 91.74 90.35
LT2L (ours.) w/ Oracle w/o Label Correction 91.37 88.71 83.97 74.91 91.80 91.10

GLC Hendrycks et al. (2018) 89.66 85.30 80.34 67.44 91.56 89.76
LT2L (ours.) w/o Label Correction 90.67 88.29 84.12 74.19 92.50 91.05

CIFAR-100 GLC Hendrycks et al. (2018) 60.99 49.00 33.38 20.38 64.43 54.20
LT2L (ours.) w/o Label Correction 68.02 61.75 52.79 28.46 69.59 66.07

C.4.2 COMPARISON TO META LOSS CORRECTION (MLOC) (WANG ET AL., 2020A)

Since our method does not directly parameterize the label transition matrix T , stable estimation of T
and its theoretical analysis are possible (See Theorem 1). Table 8 shows that MLoC and our LT2L
without Label Correction (LC) shows comparable performance. MLoC uses several engineering
techniques for stable training: a strong prior and gradient clipping, where it is not mentioned in the
paper. However, our method shows good performance even without label correction, being robust to
different hyperparameters, reducing the need for excessive engineering. We also emphasize that there
is a significant gap in performance at a severe noise level.

C.4.3 EMPIRICAL CONVERGENCE ANALYSIS IN T ESTIMATION

This section analyzes the convergence of estimation error between the oracle transition matrix T

and the estimated transition matrix T̂ , comparing our LT2L to other methods, MLoC and GLC,
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Table 8: Test accuracy (%) comparison between LT2L without Label Correction and MLoC Wang
et al. (2020a) on CIFAR-10/100 dataset.

Dataset Method Symmetric Asymmetric
20 % 40 % 60 % 80 % 20 % 40 %

CIFAR-10 MLoC Wang et al. (2020a) 90.50 87.20 81.95 54.64 91.15 89.35
LT2L (ours.) w/o Label Correction 91.37 88.71 83.97 74.91 91.80 91.10

CIFAR-100 MLoC Wang et al. (2020a) 68.16 62.09 54.49 20.23 69.20 66.48
LT2L (ours.) w/o Label Correction 68.02 61.75 52.79 28.46 69.59 66.07

which learn the transition matrix. Label correction is excluded for our LT2L as it may produce
unfair comparisons. Figure 7 shows the difference between the probability distribution of the oracle
transition matrix and the estimated transition matrix for each iteration, where Pearson χ2-divergence
is used to measure the discrepancy between the two matrices. Since GLC estimates the transition
matrix only once in the entire learning process, it represents a fixed value unrelated to iteration. The
plot for the MLoC error seems to be constant, but it is, in fact, slowly decreasing. It implies that
MLoC is likely to be highly dependent on the initialization of the transition matrix T̂ . Although our
LT2L does not require pre-training and uses only clean samples inside a single mini-batch, it shows
fast convergence with a similar estimation error to GLC.
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Figure 7: Plot of transition matrix estimation error for every iteration. Pearson χ2-divergence of our
LT2L, MLoC and GLC is provided.

C.5 INCORRECT LABEL DETECTION PERFORMANCE COMPARISON

We consider the case where we have to continuously purify the already-collected dataset with
the existence of a human oracle, where the process can be accelerated by correctly detecting the
candidates for the wrongly labeled samples. Hence, we regard the incorrect label detection problem
as a binary classification problem where the model output probability of the noisy samples is used as
the barometer for the correctness of the label.

Settings. We extract the probability values of the noisy labels per sample inside the noisy training
set to be the negative score for the binary classification problem where we label 1 for the wrongly
labeled sample and 0 otherwise. We additionally measure the performance of the meta-models.
We use the meta-learned sample weights for MSLC, MW-Net, and L2RW. For MLaC, we use the
probability of the soft label obtained by the meta-model, which is described in detail in Appendix B.4.
Finally, as Deep kNN filters out the doubtful samples while training the final model, we regard the
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process as weighting each sample by 0 or 1 depending on its doubtfulness. Note that we evaluate each
method using all the training samples, including the correctly labeled, as each method may mistake
those samples to be wrongly labeled.

Results. Ren et al. (2018); Shu et al. (2019); Bahri et al. (2020) claim that using meta-learning
or pre-training is able to tell whether a sample is mislabeled. Although our model is not directly
aimed at finding noisy samples in the noisy set, Table 9 shows that our model achieves comparable or
better performance in detecting noisy labels than the baselines. Although Ren et al. (2018); Bahri
et al. (2020) claim that the performance has improved because the meta-model detects noisy samples
through re-weighting, the actual performance of meta-models is generally lower than that of the final
classifier. It implies that Ren et al. (2018); Bahri et al. (2020) may operate with different dynamics
than the original author intended.

Table 9: Incorrect label detection performance comparison on CIFAR-10 with symmetric 80%
noise. The Area Under the Receiver Operating Characteristic (AUROC) and The Area Under the
Precision-Recall Curve (AUPRC) are provided. Note that pure random model will yield 0.5 AUROC
and 0.72 AUPRC. † denotes the performance of the sample weights obtained with the meta model.

L2RW L2RW† MW-NET Deep kNN Deep kNN† GLC MLoC MLaC MLaC† MSLC LT2L
AUROC 0.8653 0.4898 0.9205 0.9019 0.8070 0.9324 0.9318 0.9640 0.9564 0.9303 0.9651
AUPRC 0.9412 0.7994 0.9631 0.9396 0.9326 0.9674 0.9695 0.9835 0.9791 0.9624 0.9835

C.6 ANALYSIS ON OUR METHOD

C.6.1 HOW MANY CLEAN SAMPLES ARE REQUIRED?

To verify the effect of the clean dataset size, we observe the performance differences while varying
the size. As shown in Table 10, our method consistently shows better performance on different sizes.
Especially, even when our method only uses 100 clean samples, it outperforms all the baselines which
utilize all the clean samples (1,000 samples). This observation demonstrates that our method could
accurately estimate the label transition matrix with a small number of clean samples, which can be
applicable to real-world scenarios where it is difficult to obtain a sufficient number of clean samples.

C.6.2 HOW SENSITIVE IS TO THE BATCH SIZE?

In Section 3.2, we show that the accuracy of estimating the label transition matrix is upper-bounded
by the number of samples in the mini-batch. As previous studies (Hendrycks et al., 2018) mentioned,
the quality of the estimated transition matrix affects the performance in learning with noisy labels. To
verify the effect of the number of samples in the mini-batch, we observe the performance changes
by varying the number of samples per class in the mini-batch from 1 to 10. As shown in Table 11,
there is little change in performance depending on the number of samples per class, although the
performance degradation is predicted by Theorem 1 when the number of samples is small. From this
observation, we believe that our proposed method shows practicality even in situations where the
batch size cannot be increased due to the limited computing resources.

C.6.3 SEARCHING THE OPTIMAL HYPERPARAMETER λ

We observe performance variance on the CIFAR-10/-100 datasets when we change the hyperparameter
λ which is a loss balancing factor. The results are summarized in Table 12. The hyperparameter is
searched in {0.01, 0.05, 0.1, 0.2, 0.5, 1.0}.

D ADDITIONAL RELATED WORK

D.1 COMPARISON WITH OTHER METHODS WITH LABEL TRANSITION MATRIX

Under the assumption that label corruption occurs class-dependently and instance-independently,
learning with noisy label methods exploiting the label transition matrix has shown admirable perfor-
mance (Mnih & Hinton, 2012; Reed et al., 2014; Sukhbaatar et al., 2014; Bekker & Goldberger, 2016;
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Table 10: The effect of the number of
clean set on CIFAR-10 with symmetric 80%
noise. Comparison with other label correc-
tion methods with meta-learning is provided.

# of MLaC MSLC LT2L
clean examples (ours.)

100 32.92 69.00 76.48
250 42.15 63.52 79.36
500 50.70 63.35 77.82

1000 71.94 64.90 77.88

Table 11: The effect of the number of samples per
class (K) in the mini-batch on the predictive perfor-
mance (Accuracy (%)) of CIFAR-10 experiments.

K
Symmetric Asymmetric

20 % 40 % 60 % 80 % 20 % 40 %

2 91.85 89.96 87.00 81.68 92.43 91.11
4 91.79 89.85 86.92 82.18 92.14 91.18
6 92.16 90.07 86.77 79.57 92.14 90.98
8 92.10 89.82 84.81 79.55 92.41 90.74

10 91.72 89.30 84.63 77.88 91.95 90.25

Table 12: Evaluation results varying the hyperparameter λ. Test accuracy (%) with 95% confidence
interval of 5-runs is provided.

λ
Symmetric Noise Level Asymmetric Noise Level

20% 40% 60% 80% 20% 40%

C
IF

A
R

-1
0

0.01 90.87 ± 0.35 89.03 ± 0.24 85.20 ± 1.00 75.95 ± 1.13 91.06 ± 0.36 89.40 ± 0.44
0.05 91.69 ± 0.17 89.20 ± 0.64 84.48 ± 0.89 76.39 ± 1.79 91.92 ± 0.31 89.58 ± 0.31
0.1 91.72 ± 0.20 89.30 ± 0.32 84.63 ± 0.70 77.88 ± 1.09 91.95 ± 0.22 90.25 ± 0.39
0.2 91.72 ± 0.11 89.61 ± 0.29 85.71 ± 0.24 77.55 ± 2.78 92.20 ± 0.19 90.51 ± 0.27
0.5 91.94 ± 0.28 90.07 ± 0.17 86.78 ± 0.31 79.52 ± 0.78 92.29 ± 0.10 90.43 ± 0.31
1.0 91.80 ± 0.20 89.70 ± 0.19 86.66 ± 0.48 80.95 ± 0.44 92.04 ± 0.40 90.54 ± 0.23

C
IF

A
R

-1
00

0.01 65.36 ± 0.77 57.79 ± 1.12 43.65 ± 1.06 26.95 ± 0.76 66.58 ± 0.71 62.19 ± 0.66
0.05 68.49 ± 0.27 62.47 ± 0.32 53.55 ± 0.86 35.53 ± 1.28 69.73 ± 0.18 65.63 ± 0.79
0.1 68.38 ± 0.29 62.53 ± 0.33 54.82 ± 0.46 35.35 ± 1.13 69.35 ± 0.13 66.34 ± 0.27
0.2 68.65 ± 0.09 63.07 ± 0.22 54.84 ± 0.30 35.65 ± 0.66 70.37 ± 0.15 66.93 ± 0.20
0.5 68.75 ± 0.60 63.82 ± 0.33 55.22 ± 0.64 37.36 ± 1.15 70.35 ± 0.51 67.93 ± 0.53
1.0 67.91 ± 0.59 62.78 ± 0.28 52.76 ± 1.15 31.45 ± 0.75 70.02 ± 0.60 67.11 ± 0.55

Patrini et al., 2017; Goldberger & Ben-Reuven, 2016). It is well known that training a statistically
consistent classifier is possible if the transition matrix is estimated accurately, but precise estimation
is usually challenging (Mirzasoleiman et al., 2020; Xia et al., 2019; Yao et al., 2020). Various methods
have been proposed to alleviate the issue: imposing strong prior (Patrini et al., 2017; Han et al.,
2018a), designing a loss function using the ratio of the label transition matrix T (Xia et al., 2019), or
factorization of the transition matrix (Yao et al., 2020). However, it is still challenging to estimate
the transition matrix with only the noisy dataset. Recently, approaches that improve the estimation
accuracy of the transition matrix using a small clean dataset have shown remarkable results: Gold
Loss Correction (GLC) (Hendrycks et al., 2018) and Meta Loss Correction (MLoC) (Wang et al.,
2020a). The clean dataset makes it possible to directly estimate the noisy label posterior, resulting
in stable prediction of the transition matrix. Our LT2L differs from the existing methods which try
to find the fixed label transition matrix, as the oracle transition matrix continuously changes during
label correction in our method. Our method shows novelty compared to the previous two methods
even without the label correction.

Differences from Gold Loss Correction (GLC) (Hendrycks et al., 2018) Similar to LT2L, GLC
models p(ȳ|x) as fφ̄,θ̄(x) for estimating the transition matrix T . However, GLC is more inefficient
than our LT2L because it requires multiple training phases (See § 4.2 and Appendix C.2). We
introduce a multi-head architecture with to speed up the training. Furthermore, there is an additional
performance advantage compared to GLC. The multi-head architecture is presumed to help obtain a
better feature extractor by inducing corruption-independent feature extraction. Detailed experimental
results can be found in Appendix C.4.1.

Differences from Meta Loss Correction (MLoC) Wang et al. (2020a) MLoC gradually finds
the oracle transition matrix T via the MAML framework (Finn et al., 2017). As mentioned earlier,
MLoC is very slow because it requires three back-propagations for a single iteration due to its nature
of MAML (See § 4.2 and Appendix C.2). MLoC directly parameterizes the transition matrix T and
learns it using various engineering techniques: strong prior and gradient clipping, which were not
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mentioned in original paper. In contrast, our method estimates T more accurately by sampling the
posterior through a single forward propagation. We empirically validate that our method performs
better or comparable to MLoC even without label correction (See Appendix C.4.2).

D.2 METHODS USING MULTI-HEAD ARCHITECTURE FOR NOISY LABELS

We propose a multi-head architecture to estimate the transition matrix efficiently: one is for the clean
label distribution, and the other is for the noisy label distribution. A similar multi-head architecture has
been used in situations dealing with crowdsourcing. Many crowdsourcing studies assume that multiple
people label a single image (Rodrigues & Pereira, 2018; Guan et al., 2018; Tanno et al., 2019), where
training a reliable classifier is the goal of the crowdsourcing problem. They maintain separate heads
for each annotator, and each head performs multi-task learning to learn each annotator’s decisions
directly. Then, the final decision is made by voting each head’s decision. There is no component for
estimating the label transition matrix in these methods and no primary head classifier to learn from
the estimated label transition matrix.

D.3 META LEARNING WITHOUT MULTIPLE BACK-PROPAGATION IN A SINGLE ITERATION

Meta-learning is roughly divided into optimization- (Finn et al., 2017; Grant et al., 2018; Lee &
Choi, 2018) and metric-based methods (Snell et al., 2017; Sung et al., 2018; Vinyals et al., 2016).
Although the optimization-based methods led by MAML (Finn et al., 2017) are now the mainstream,
they require a tremendous computational cost with multiple back-propagations for a single iteration,
making them hard to use in practice, where metric-based methods do not have this problem. However,
metric-based methods are highly optimized only for few-shot classification tasks.

Note that LT2L can hardly be regarded as their variants, since there is no inner-optimization loop or a
k-NN classifier. To devise an efficient meta-learning algorithm, we borrow the idea of weight sharing
from Vinyals et al. (2016) (φ = φ̄) but use different parameters for θ and θ̄ in order to compute the
transition matrix. While most of the methods using meta-learning in learning with noisy labels have
focused on the model agnostic advantages of MAML, we propose a novel meta-learning method for
learning with noisy labels. We define the task as estimating the transition matrix with small subset of
the clean dataset. Thus, meta-module φ̄ in our framework is episodically optimized through these
tasks.
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