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ABSTRACT

Selecting high-quality training data can reduce computation cost for LLM fine-
tuning. Prior data selection methods have developed a variety of scores aiming
to reflect what kind of information a data instance can provide to the model, in
order to subselect instances for fine-tuning—and a majority of this prior work has
focused on scores quantifying difficulty. The intuition in such work is that diffi-
cult examples are more informative, and can therefore lead to more efficient fine-
tuning. While data selection based on difficulty has shown promise for smaller
classification models, in this work we find that such scores are ineffective for
fine-tuning LLMs on generative tasks because their narrow focus on “difficult”
instances fails to capture the necessary diversity of the input data. We find that
in generative tasks, such approaches always fall behind random selection, which
our analysis reveals is more representative of the underlying input space—i.e., has
better coverage. Motivated by this, we propose a simple clustering-based selec-
tion method which selects data that is more representative of the underlying input
distribution, enabling selection of smaller subsets of training data for generative
tasks. Using a case study on Llama 3 8B (Grattafiori et al., 2024) and OLMo 2
7B (OLMo et al., 2025), we find that the coverage-based approach performs well
above difficulty scoring, yielding performance at or above that of random selection
across a set of generative tasks.

1 INTRODUCTION

While scaling—in terms of data, parameters, and compute—has become a standard pathway to
success in pre-training LLMs (Hoffmann et al., 2022), it can often conflict with the practicalities
(financial or otherwise) of deployment of these models at scale Recent studies have pointed out
that, using a small but high-quality dataset can often lead to performance that is competitive with
that obtained using a large but potentially noisy dataset (Abbas et al., 2023; Tirumala et al., 2023).
Similar observations have been made for instruction tuning (Zhou et al., 2023) and fine-tuning for
reasoning (Ye et al., 2025). The field of data selection/pruning, then, presents an alternate pathway
to that of data scaling,1 where the goal is to promote sample-efficient training by selecting a high-
quality subset of the available data.

A promising body of research in data selection has led to the development of various “difficulty
scores” which leverage the target model’s internal signals to rank instances in the training set for
level of difficulty. The basic premise is that confidently (or “easily”) predicted instances add limited
new signal, whereas examples that the model finds “difficult” are more likely to drive meaningful
learning (Campbell et al., 2000; Lewis & Gale, 1994; Settles, 2009). As such, difficulty-based
data selection has become a popular paradigm in deep-learning, resulting in the proliferation of a
variety of difficulty scores (Toneva et al., 2019; Swayamdipta et al., 2020; Paul et al., 2021; Agarwal
et al., 2022, i.a.), primarily applied to classification settings, especially in computer vision tasks. In
these works, the target model (a classifier) is trained on the most difficult or uncertain data, with
the expectation that these instances are the most informative to learn effective decision boundaries

1E.g., see Sorscher et al. (2022) for how effective data-pruning can allow models to go beyond power-law
scaling and achieve exponential scaling
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among classes. While this paradigm has been successful in classification settings, its transfer to LLM
fine-tuning is unclear. Unlike in standard classification settings, in which the model’s output space
is constrained to the fixed label-set, LLMs are typically fine-tuned using the same pretraining task of
next-word prediction—such that their output space after fine-tuning is still their entire vocabulary.
That is, fine-tuning of LLMs preserves their generative nature.

A major reason to hypothesize that difficulty scores may be insufficient for data selection in LLM
fine-tuning is that exclusively prioritizing difficult instances results in only capturing a restricted
space of the input data, thus suffering from low data coverage. A specific instance of this argument
has previously been explored even in case of classification tasks in computer vision (Zheng et al.,
2023), who showed that only including difficult instances leads to catastrophic failures at low data-
selection percentages, citing lack of sufficient data coverage as a reason. Similarly, efforts in data
filtering for pre-training have highlighted the importance of data diversity, and not difficulty, in order
to achieve better performance (Tirumala et al., 2023; Sachdeva et al., 2024).

Taking these observations as our motivation, in this paper we explore the extent to which difficulty-
based data selection transfers to generative settings. We first catalog five difficulty scores, and
extend them beyond their standard usage in fixed-label classification settings.2 Specifically, we
select three tasks for LLM fine-tuning, choosing datasets in which LLMs have notable gaps between
zero-shot and fine-tuning performance, and we apply the difficulty scores to perform data selection
at various percentages ranging from 1% to 75% of the training data. We then conduct fine-tuning
experiments on two separate models. Our results from these experiments suggest that transfer of
these selection methods for LLM fine-tuning is indeed very weak: random sampling often yields
performance that is on par with or sometimes better than these methods. We then hypothesize that
this may be due to the abovementioned limitations of difficulty scores in selecting instances with
sufficient coverage of the training data. To test this, we first operationalize coverage using a method
that compares the full data and selected data in terms of distributions over clustering-based partitions
of the data. We find that the divergence between the selected data and the full training data strongly
correlates with the performance obtained by fine-tuning LMs on the selected data, lending support
to our hypothesis. Finally, we devise a purely coverage-based selection method that prioritizes data
coverage as operationalized in our analysis. We find that while this method outperforms difficulty-
based data selection as well as another recently proposed method that balances between difficulty
and diversity (Maharana et al., 2023), it remains on par with random-sampling, only occasionally
outperforming it. At the same time, unlike random sampling, our method achieves monotonically
increasing performance with respect to the amount of data selected. Overall, while our findings show
mixed added value from the clustering based coverage method (relative to random sampling), they
robustly support the prioritization of data coverage over difficulty when it comes to LLM fine-tuning.

2 RELATED WORK

Data selection using difficulty Difficulty-based methods often use artifacts of models’ training
dynamics to implicitly or explicitly rank training instances by their “difficulty”. Swayamdipta et al.
(2020) use model confidence to categorize data instances, while gradient based methods like VoG
(Agarwal et al., 2022; Anand et al., 2023) measure difficulty using variance of the gradients. Etha-
yarajh et al. (2022) use the notion of usable information for a model to define Pointwise V-usable
information (PVI), and use it to quantify the difficulty of data instances. All of the above meth-
ods have been devised for fine-tuning to perform classification tasks. Difficulty-based selection has
also been applied to pre-training and alignment task during post-training: Marion et al. (2023) use
perplexity on a large reference model for data selection during pre-training, while Qi et al. (2025)
quantify difficulty as the difference between accepted and rejected response reward, and apply the
measure to perform data selection during LLM alignment. We build on these prior methods by
extending difficulty scores for generative fine-tuning tasks (see Section 3).

Data selection using diversity Difficulty-based methods often result in the selection of redundant
instances that cover only a limited portion of the data distribution (Settles & Craven, 2008; Xu et al.,
2003) Prior work in active learning (Dasgupta & Hsu, 2008; Ash et al., 2020; Sener & Savarese,
2018) has shown that training on diverse data leads to better performance in computer vision tasks.

2To the best of our knowledge, we are the first ones to do this.
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D2 (Maharana et al., 2023) aims to balance diversity as well as hardness for data selection and is pri-
marily focused on fixed-label classification tasks. The instruction-tuning literature (Bukharin et al.,
2024; Zhou et al., 2023) has emphasized the importance of data quality as well as data diversity.
Our focus is to investigate whether diversity alone is sufficient for selecting data when fine-tuning
on generative tasks.

3 DIFFICULTY SCORES

We approach our experiments and analyses with the goal of identifying scores that will enable ef-
fective subselection of data for generative fine-tuning. We begin by investigating existing difficulty-
based scores, which are either derived from the training dynamics of a model trained on the full
dataset, or require a single forward pass on the dataset. In this section, we discuss our extension of
common difficulty scores to generative fine-tuning.

Common to the data-selection methods used in this work is the notion of a utility function, which
determines which instances in the target dataset are selected. Since we are primarily focused on
difficulty here, our utility functions will operationalize difficulty in some way, and will prioritize
data that are deemed to be more difficult (over those deemed less so). Given a supervised training
dataset Dtrain = {(xi, yi)}ni=1, our aim is to choose a subset S ⊂ Dtrain such that the model
trained on S maximizes accuracy on the test set Dtest. Here yi represents the output sequence
instead of a single label. The utility function f(xi) : Dtrain → R maps a data instance xi to
a real number representing the difficulty score of the instance. Once we obtain these difficulty
scores, we select Sm%, or the subset containing the top-m% of instances ranked by difficulty, as
Sm% = {xj ∈ Dtrain | f(xj) ≥ Cm%}, where Cm% denotes the (100 −m)-th percentile of the
difficulty score distribution. Below we describe five utility functions used in our analyses.

Perplexity Language model perplexity is a common, general-purpose measure of an LM’s quality
at predicting a given sequence distribution, and as such has also been adopted by prior work to
quantify the difficulty of data instances with respect to data-selection for pre-training (Marion et al.,
2023; Ankner et al., 2024). One benefit of using perplexity as a measure of difficulty for LM fine-
tuning is that it can be computed using a simple forward pass over the training data, rather than
training the model fully. We adopt perplexity as a difficulty score by selecting instances in the
training data with higher perplexity, assuming a correspondence between perplexity and difficulty
(i.e., the greater the perplexity on an instance, the worse the model is at predicting it).

Confidence and Variability Swayamdipta et al. (2020) propose two utility functions for classifi-
cation tasks, both measured across training epochs: (1) a model’s confidence of the true label, and
(2) its variability. Confidence is calculated as the average likelihood of the true label across epochs,
while Variability is its standard deviation. We extend these measures to generative fine-tuning as
follows: let E be the total number of epochs that the LM is fine-tuned for, xi be the input sequence
corresponding to the i-th data-instance, and y1, . . . , yn be the ground-truth output sequence, then
the confidence (µi) and variability (σi) are given as:

µi =
1

E

E∑
e=1

 n∏
j=1

pe(yj | y1:j−1xi)
1/n

 σi =

√√√√√ 1

E

E∑
e=1

 n∏
j=1

pe(yj | y1:j−1xi)1/n − µi

,
where pe is the LM’s sequence probability at the eth epoch. In order to operationalize difficulty-based
selection for these metrics, we use smaller values for confidence, and larger values for variability.

Variance of Gradients (VoG) VoG (Agarwal et al., 2022; Anand et al., 2023) is a utility function
based on the idea that easy examples lead to saturated losses and stable gradients early in training,
whereas “difficult” examples exhibit gradient variability throughout training. This measure is also
originally proposed for classification task, so to apply it to generative fine-tuning we compute the
gradients of the logits at the location of target token yi with respect to the embedding of each word in
xi. Averaging the gradients across output length gives us Gi. Once Gi is obtained, the computation

3
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of VoG follows exactly the same process as the original VoG method. Selection preference is given
to instances with high VoG score. For brevity, we describe VoG score calculation in Appendix A.2

Pointwise V-usable information (PVI) Ethayarajh et al. (2022) propose PVI, which quantifies
the usable information an instance provides to a model for predicting the target. To quantify this,
PVI involves fine-tuning two copies of the same base model on Dtrain and on a modified dataset
Dϕ = {(ϕ, yi)|(xi, yi) ∈ Dtrain}, where all inputs (xi) are replaced with an empty string ϕ. After
training, the method obtains two models, g (trained on Dtrain), g′ (trained on Dϕ). Each model can
be treated as a function that maps an input to a probability distribution over possible outputs y. The
PVI for each training instance (x, y) is calculated as PVI(x, y) = − log2 g[ϕ](y) + log2 g

′[x](y).
Intuitively, a low PVI means that the input provides less usable information for the model and hence
the model struggles to learn from these instances. We apply PVI directly by using the likelihood
of the entire output sequence, and select training instances with low PVI as “difficult” instances for
fine-tuning.

Difficulty scores we did not include Besides the difficulty scores mentioned above, there are at
least two popular scores that we did not include in our experiments. First, the EL2N score (Paul
et al., 2021) measures the squared difference between the predicted and (one-hot) true labels for a
specific input instance. Second, the forgetting score (Toneva et al., 2019) measures the number of
times a training instance moves from being classified correctly to being classified incorrectly. We did
not include these scores because both of these metrics require multiple fine-tuning runs for stability,
as well as a large number of epochs, which is impractical in the context of fine-tuning LLMs.

4 EXPERIMENTAL SETUP

To test the effectiveness of each of these data selection metrics in generative fine-tuning, we carry
out experiments across 3 target datasets, described below. For all our experiments, we vary the
number of selected instances as {1, 5, 10, 25, 50, 75}% of the total training data. We first compute
our difficulty scores for the entire dataset (i.e., 100%), use them to select difficult training exam-
ples, and then fine-tune a model on the resulting subset. For large-scale model fine-tuning, we use
Huggingface Accelerate (Gugger et al., 2022) and utilize Zero3 optimizer in DeepSpeed (Rasley
et al., 2020). We compare against a random sampling baseline, in which we randomly sample the
given percentage of the training data, and then fine-tune our models on this subset. We repeat this
random-sampling with three different random seeds for each selected percentage.

Models tested We experiment on two transformer-based language models, both of which are
trained on the standard language model objective: Llama 3 8B (Grattafiori et al., 2024) and OLMo
2 7B (OLMo et al., 2025). We fine-tune for 3 epochs using AdamW optimizer with linear scaling
and learning rate of 2e-05. All models use a context window length of 512.

Datasets We choose datasets in which fine-tuning yields marked improvements compared to zero-
shot performance for both models (difference of at least 10% points). Based on this criterion, we
select three multiple-choice QA datasets: Social IQa (Sap et al., 2019), CommonsenseQA (Talmor
et al., 2019), and CosmosQA (Huang et al., 2019) from among all the datasets that we considered
(see Table 3 for our initial results from five different datasets for both models). We use the validation
set of these datasets in our tests.

Evaluation We follow the MCF (multiple-choice formulation)-based evaluation procedure (Gu
et al., 2025). That is, we compute accuracy as the exact-match between the first token of the LM’s
generated response and the true label. For instance, a generated response to the example in (Table 1)
is considered to be correct only if the first token exactly matches the target completion (i.e., answer
choice C).

Difficulty score computation While we use only the option label during evaluation, our target
ground-truth sequence during difficulty score computation includes both the letter label and the full
answer string. That is, had the example in Table 1 appeared in the training set, our difficulty scores
would have been computed based on the full target sequence “C. frame the picture”. We use the

4
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Prompt Question: Kai improved Jan’s picture and she loved how it came out. What will
Jan want to do next?
A. wanted to be helpful
B. wanted Jan to be glad
C. frame the picture
Answer:

Target C

Table 1: Example item from the Social IQA validation set.

full sequence in lieu of only the label since it provides sufficient information for PVI and Perplexity
(e.g., in the case of PVI, without the full content, we would be fine-tuning the null model on only the
single-letter option labels). Furthermore, this allows us to extend these scores beyond single item
predictions to multi-word sequences, thereby enabling their use in long-form context generation,
which we leave for future work.

5 DIFFICULTY-BASED METHODS ARE OFTEN OUTPERFORMED BY RANDOM
SAMPLING

We evaluate the difficulty score selection methods as outlined in Section 4. This helps us in an-
swering our question: Can we rely on difficulty scores to determine which instances are most useful
for fine-tuning generative models? Figure 1 shows validation accuracies at the end of training as a
function of data selected for each of the five difficulty-based selection methods.

We first see that models fine-tuned with as little as 50% of the full dataset achieve performance
highly comparable to models fine-tuned on the entire dataset. Across all models and datasets, the
performance curves for most selection methods—including the random baseline—reach a plateau at
or before the 50% data mark. This suggests that the datasets considered here contain a significant
degree of redundancy, and that data selection methods can be highly beneficial for achieving strong
performance with reduced training time and computational cost.

We also find that the most effective data selection method is dependent on the specific dataset. For
a given dataset, however, the superior method appears to be consistent regardless of the base model.
For example, the variability method consistently yields a top-performing accuracy for the Social
IQa dataset on both Llama 3 8B and OLMo 2 7B. Similarly, for both the CosmosQA and Common-
senseQA datasets, VoG consistently provides the highest validation accuracy. At an aggregate level,
VoG achieves the highest average accuracy among all difficulty-based methods.

Finally, we find empirically that the random baseline is consistently competitive—and often the
best performing method—across all selected percentages and datasets. The surprising effectiveness
of this simple baseline motivates our subsequent analysis into why random selection outperforms
conventional difficulty-based scoring methods for fine-tuning LLMs.

6 DIFFICULTY-BASED SELECTION SUFFERS FROM POOR DATA COVERAGE

Why might simple random sampling be as good as—or even better than—principled, difficulty-
based selection methods in these generative fine-tuning settings? A potential explanation lies in
the extent to which each method’s data-selection scheme “covers” the domain of the dataset. We
hypothesize that difficulty-based measures may select for items occupying a smaller, more restricted
space within the training dataset, resulting in an unrepresentative sample—whereas a simple random
sampling method may cover a larger, more representative space. As a result, a model fine-tuned on a
difficulty-based data selection may end up biased toward a smaller space of the task, de-prioritizing
features that may be important for tasks that are more general in nature. This hypothesis is consistent
with the findings of Zheng et al. (2023) for fixed-label computer vision tasks, described in Section 1.

In this section we test this hypothesis by defining a measure of coverage and testing whether this
measure is predictive of how effective a selection method will be. To do so, we must first opera-

5
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Figure 1: Comparative performance of difficulty-based data selection methods on the Llama 3 8B
and OLMo 2 7B models across the three datasets, as a function of the percentage of training data
selected. For random selection, the points show the mean test accuracy and shaded regions indicate
the ±1 standard deviation band across runs. The blue dashed line indicates results from fine-tuning
on 100% training data, while the gray dotted line indicates zero-shot performance.

tionalize the notion of coverage. However, computing how well a given data-selection scheme picks
out a diverse, high-coverage sample of the entire training data requires access to the true distribution
of the data, which is intractable. In light of this, we rely on a quantized/discretized embedding space,
sensitive to the distributional semantic features of the instances in the training set. This part of our
method is inspired by a similar component introduced in the computation of MAUVE (Pillutla et al.,
2021), a metric for comparing LM-generated data to that of humans, using divergence curves.

Our estimation process is as follows: first, we use the non-fine-tuned state of the target LM to map
training data instances {(x1, y1), . . . , (xn, yn)} to an embedding space LM((xi, yi)) → Rd, where
d is the dimensionality of the embedding space, giving us a collection of vectors {v1, . . . ,vn}.3
We then use k-means clustering (Lloyd, 1982) to quantize these embeddings, allowing us to use
the cluster assignments {1, . . . , k} as a support to compare the distribution of the training set to a
selected subset. To execute this comparison, we define P and Q, the (approximate) distributions of
the cluster labels in the full training data and a given selected subset, Sm%, respectively, as:

P (j) =
1

n

n∑
i=1

1[ψ(vi) = j] Q(j) =
1

|Sm%|

|Sm%|∑
i=1

1[ψ(vi) = j],

where ψ(v) represents the cluster assignment function (i.e., one resulting from the k-means
algorithm) that returns a cluster label in {1, . . . , k}. We can now compare how dif-
ferent Q is from P , by computing the Jensen-Shannon Divergence (JSD) between them:

JSD(P || Q) =
1

2
KL(P ||M) +

1

2
KL(Q ||M); KL(P || Q) =

∑
x

P (x) log
P (x)

Q(x)
,

where M is the mixture distribution of P and Q, computed as (P+Q)/2. Since this measure, as it is
currently defined, is sensitive to the chosen value of k, we repeat this computation over 10 different
random seeds, as well as across a range of values for k per dataset, model, and data percentage.
More specifically for m% selected data, we experiment with values of k ranging from 2 to mn/100,
incrementing in powers of 2. Overall, selection methods that have lower Average JSDs are more
similar to the distribution of the training data.

3In practice, we use the model’s hidden state representation at the last layer and last position as our embed-
ding extractor.
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We now explore how this measure patterns against our findings from the previous section, and
whether it is a reliable predictor of the effectiveness of different data selection methods. For
this, we measure the average JSD for our data selection methods, across different models and
datasets. Figure 2 shows the mean rank of each data-selection method, calculated on the ba-
sis of its average JSD values across selected-percentages, datasets, and models. We find that
the Random data selection method is always the one with the lowest average JSD value across
all datasets, both models, and all data-selection percentages, suggesting that it systematically
achieves the greatest coverage of the training data relative to other methods. Next, we measure
the Spearman’s correlation between average JSD values of different methods and accuracy ob-
tained as a result of deploying them at each data-selection percentage, across different datasets
and models. Insofar as coverage—as operationalized by our metric—is related to data-selection
performance, we expect there to be a strong negative correlation between average JSD and ac-
curacy, since methods with poorer coverage (i.e., high divergence) are posited to have poorer
performance under this prediction. Table 2 shows our results across models and datasets. In
line with the aforementioned prediction, we find strong negative correspondence between aver-
age JSD and accuracy, across all model-dataset pairs, with values ranging from -0.71 to -0.90.
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Figure 2: Mean rank (based on Avg. JSD) of each
selection method across models and datasets. Meth-
ods with lower ranks have lower avg. JSD.

Model Dataset ρ

Llama 3 8B
CommonsenseQA -0.71

CosmosQA -0.87
Social IQa -0.81

OLMo 2 7B
CommonsenseQA -0.83

CosmosQA -0.88
Social IQa -0.90

Table 2: Spearman’s correlation between
avg. JSD and accuracy across data-selection
percentages and methods, for each dataset
and model. Lower values indicate greater
correspondence between coverage and per-
formance.

Our results suggest that this notion of coverage may explain the weakness of the difficulty scores for
selecting subsets of training data: we find that reduced coverage directly correlates with lower task
accuracy for models trained on these subsets. Random sampling preserves coverage, which may be
the source of its consistently strong performance in these generative fine-tuning settings.

7 A PURELY COVERAGE-BASED DATA SELECTION METHOD

Our analysis in the previous section indicated that selecting subsets with good coverage of the train-
ing data might be key to better LLM fine-tuning performance, and may potentially explain the poor
performance of difficulty-based methods. We now turn to proposing a method that exclusively pri-
oritizes coverage-based selection, to shed further light on the extent to which coverage alone can
serve as an alternative to difficulty-based selection for fine-tuning LMs.

Our method builds directly from our analysis in the previous section. As in our analysis, we use
the embedding space of the training data by using the target LM’s last hidden state at the last token-
position of each training instance. Then we cluster these embeddings using k-means clustering, this
time fixing k as mn/100, where n is the total size of the training set, and m denotes the data selection
percentage. This means that our total number of clusters is the same as the number of points to
be selected. We then simply sample one instance from each cluster, allowing all cluster points to
be represented, thereby encouraging “good” coverage of the data.4 We then perform standard fine-
tuning as described in Section 4 to obtain performance estimates that represent our coverage-based
selection method. To capture randomness introduced by both our clustering step as well as random

4We explored sampling using difficulty measures such as perplexity, etc. but our initial results in this
direction were consistently worse than random sampling.
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Figure 3: Performance of the Coverage-based selection method on Llama 3 8B and OLMo 2 7B
models as a function of training data selected, along with comparisons to random selection, he best
overall difficulty-based method (VoG), and D2. For random selection and Coverage, the points show
the mean test accuracy and shaded regions indicate the ±1 standard deviation band across runs. The
blue dashed line indicates results from fine-tuning on 100% training data, while the gray dotted line
indicates zero-shot performance.

sampling, we repeat this experiment three times for each dataset, model, and selected percentage,
with different random seeds. We would like to point out that unlike previous works like (Tirumala
et al., 2023; Sorscher et al., 2023) we do not rely on pretrained embeddings. We use the target
model’s embeddings since these may provide a more direct signal of data usefulness.

We compare performance obtained by our method (averaged over three random seeds) to those
from random sampling, as well as the best (overall) difficulty-based selection method—i.e., VoG.
In addition, we also compare against D2 Pruning (Maharana et al., 2023, abbreviated as D2). D2

aims to balance difficulty and diversity by representing the training set as a graph, where each
instance is a node initialized with a difficulty score, and edges are weighted by the distance between
nodes in embedding space. The forward message-passing step propagates node features so that
each instance’s score is adjusted by the difficulty of its neighborhood, thereby promoting diversity
across regions of the data distribution. Instances are then ranked by these updated scores in the
reverse message-passing step. In our adaptation, we use the variability scores from Section 3 as
node features, following Maharana et al. (2023), and the target LLM’s final hidden state at the last
token position as embeddings.

Each comparison here meaningfully addresses aspects of our research questions: 1) by comparing
against the best difficulty-based method, we directly pit diversity against difficulty; 2) by comparing
against D2 Pruning, we can shed light on how well data-diversity (captured by coverage) alone fares
against a selection scheme that balances between the two extremes; and 3) by comparing against
random, we test if a more principled and stable method of data-selection can compete against the
uncertainty of exclusive random-sampling.

Results Figure 3 compares results using our Coverage method to those from random sampling,
the best difficulty-based method (VoG), and D2. First, we see that accuracies obtained from us-
ing D2 are consistently worse at lower percentages, across both models for CommonsenseQA and
CosmosQA. In fact, D2 seems to under perform even VoG in most cases, suggesting that balancing
between difficulty and diversity in this setting harms rather than helps with data selection. There
are certain instances where D2 is in fact the best performing method (e.g., Social IQa) but these are
overshadowed by the fact that it performs substantially worse than zero-shot performance for other
datasets. While VoG is fairly competitive against random and our coverage method, there are cases
where it is clearly outperformed by them (e.g., CosmosQA and Social IQa with Llama 3 8B), and
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it sometimes shows a non-monotonic trajectory with respect to the percentage of data selected. In
contrast, our coverage-based method almost always shows an upward trajectory with respect to the
selected percentage, obtaining similar performance to the fully fine-tuned model at even 25% data.
Overall, except in a small number of instances, the finding from Section 5 seems to persist—random
sampling is rarely systematically outperformed by any more principled method tested so far.

8 DISCUSSION

Our results suggest that coverage rather than difficulty should be prioritized when doing data selec-
tion for generative fine-tuning. This is indicated by the observation that random selection and our
coverage-based method perform better than difficulty-based scores in generative fine-tuning tasks.

Why do we find that lack of coverage leads to such weak performance in generative fine-tuning?
Diversity has been shown to be a driver of performance during pretraining (Tirumala et al., 2023;
Sachdeva et al., 2024), so we postulate that the particular importance we see here for coverage in
this setting is attributable to the greater similarity between generative fine-tuning and more general-
ized language modeling, by contrast to the more focused decision space of fixed-label classification.
More specifically, we speculate that fixed-label classification tasks can be solved by learning a more
focused set of items that help to identify the decision boundary, while generative tasks require mod-
els to retain more generalized capabilities.

A natural extension of this work would be to combine data difficulty and diversity for data selection.
Prior work, such as D2 (Maharana et al., 2023), explores this direction but underperforms both
random selection and our coverage-based method, and many times even the best difficulty-based
method. We did attempt to combine difficulty and diversity in our method by selecting data with the
highest difficulty (e.g., perplexity) from within each cluster—however, as shown in Figure 4 in the
Appendix, this approach did not yield any performance gains, suggesting that it was coverage that
was driving our observed gains. We leave for future work the investigation of other approaches to
combine difficulty and diversity which might benefit data selection in these generative settings.

A practical concern regarding adoption of any of these data selection methods is the compute cost for
selection. For instance, almost all difficulty-based scores above, except Perplexity, require training
the model on the full dataset—sometimes even twice (in the case of PVI). This is counter-intuitive,
since in practical settings if one has the full model trained there would be limited benefit in training
another model on a subset of data—in fact, it will result in increased compute costs while also
(likely) sacrificing performance. Two exceptions to this are Perplexity and our Coverage method,
both of which only require a single forward pass, though this is still a significant amount of compute
cost compared to random sampling. We provide the FLOPs utilized for each selection method in
Appendix A.3, and a plot of FLOPs vs. accuracy in Figure 5. After random selection, our Coverage
method is by far the best in terms of compute efficiency.

Limitations and Future Work Our main goal in this work is to investigate the impact of data
diversity and data difficulty while fine-tuning for generative tasks. While our empirical analyses
reveal a strong correlation between diversity and the task performance, establishing causality is left
for future work. Furthermore, while notions of difficulty have been shown to fare well in certain
pretraining investigations (Marion et al., 2023), they have not been compared to coverage, leaving
open the question of difficulty vs. diversity in those settings. Future work can also explore whether
selection utility transfers across model scales, as seen in Bordelon et al. (2023) for learning rates in
Vision Transformers, and in Wang et al. (2023) for active learning.

9 CONCLUSION

We explored how different difficulty-based data selection methods perform in task-specific fine-
tuning settings. We find that each of these methods fall behind random selection. Our results sug-
gest that the strong performance of random selection arises from its better coverage of the training
distribution, which appears to have greater importance in generative settings. We also show that a
simple coverage-based method consistently outperforms difficulty-based methods, and is at par or
sometimes better than random sampling. These findings highlight the likely importance of coverage
in data selection for generative fine-tuning.
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A APPENDIX

A.1 EFFECT OF RANDOM SELECTION VS. PERPLEXITY IN OUR COVERAGE METHOD

Figure 4 shows the impact of using perplexity vs. random sampling for our Coverage method.
Using perplexity does not provide any noticeable gain, and in fact hurts performance at lower data-
percentages—e.g., see performance on Llama 3 8B for CommonsenseQA, or on OLMo 2 7B for
Social IQA.
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Figure 4: Effect of random sampling vs. selection using perplexity after performing clustering for
our coverage-based method.

Dataset Model Zero-shot 100%
Social IQa Llama 3 8B 0.633 0.755

OLMo 2 7B 0.665 0.782

CommonsenseQA Llama 3 8B 0.667 0.784
OLMo 2 7B 0.678 0.812

CosmosQA Llama 3 0.606 0.853
OLMo 2 7B 0.747 0.884

OpenBookQA (Mi-
haylov et al., 2018)

Llama 3 8B 0.736 0.828

OLMo 2 7B 0.714 0.844

ARC-Hard (Clark
et al., 2018)

Llama 3 8B 0.782 0.743

OLMo 2 7B 0.709 0.799

Table 3: Datasets considered for experiments. Zeero-shot performance and performance on using
the entire train data on Llama 3 and OLMo 2

A.2 VOG EXTENSION

Let xi = xi,1, xi,2, ...xi,N and yi = yi,1, yi,2, ...yi,M . Let Ai,j be the logit at the location of j − th

token in yi. Now, Gi,k =

∑M
j=1

∂Ai,j
∂Exi,k

M .
Here, Gi,k represents the gradient of logit at the target location yj w.r.t the embedding vector of
k− th token in xi. We obtain Gi = Gi,1|Gi,2|...Gi,N by concatenating the obtained logit gradients.
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Figure 5: Data Selection FLOPs (×1015) vs. Average Accuracy (calculated over all percentages)
across all methods. X axis is in logarithmic scale. Dashed line indicates Random Selection perfor-
mance which has a data-selection FLOP value of 0.

We calculate the mean and variance across the epochs. µi =
∑E

e=1 Gi

E

Vi =
(Ge

i−µi)
2

√
E

The (unnormalized) score vi for each instance xi is then given by the mean of Vi (that is, we average
over the input embeddings)
V oG(xi) =

vi−µdset

σdset

Here, µdset and σdset are the mean and standard deviation of vi for the full dataset.

A.3 DATA SELECTION FLOPS

For FLOP calculation, we use the common approximation as performed by Kaplan et al. (2020)
Cforward = 2ND for forward pass and Ctrain = 6ND for one finetuning pass which involves
one forward and one backward pass, where D denotes total number of training tokens, and N is the
number of parameters. Figure 5 shows a comparison between methods across models and datasets
in terms of their average accuracy vs. FLOPs used during data selection.

Dataset Model Total tokens
Social IQa Llama 3 8B 1,786,531

OLMo 2 7B 1,786,578

CommonsenseQA Llama 3 8B 577,187
OLMo 2 7B 577,230

CosmosQA Llama 3 8B 3,692,490
OLMo 2 7B 3,692,921

Table 4: Total tokens.
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Difficulty Score Dataset Data Selection FLOPs (×1015)
Perplexity Social IQa 25

CommonsenseQA 8.08
CosmosQA 51.7

Confidence Social IQa 225
CommonsenseQA 72.7
CosmosQA 465

Variability Social IQa 225
CommonsenseQA 72.7
CosmosQA 465

PVI Social IQa 450
CommonsenseQA 145
CosmosQA 931

VoG Social IQa 225
CommonsenseQA 72.7
CosmosQA 465

Table 5: FLOPS utilized for data selection using Llama 3 8B.

Difficulty Score Dataset Data Selection FLOPs (×1015)
Perplexity Social IQa 28.6

CommonsenseQA 9.23
CosmosQA 59.1

Confidence Social IQa 257
CommonsenseQA 83.1
CosmosQA 532

Variability Social IQa 257
CommonsenseQA 83.1
CosmosQA 532

PVI Social IQa 515
CommonsenseQA 166
CosmosQA 1060

VoG Social IQa 257
CommonsenseQA 83.1
CosmosQA 532

Table 6: FLOPS utilized for data selection using OLMo 2 7B.
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