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Abstract

Longitudinal data are important in numerous
fields, such as healthcare, sociology, and seis-
mology, but real-world datasets present notable
challenges for practitioners because they can be
high-dimensional, contain structured missingness
patterns, and measurement time points can be gov-
erned by an unknown stochastic process. While
various solutions have been suggested, the ma-
jority of them have been designed to account for
only one of these challenges. In this work, we pro-
pose a flexible and efficient latent-variable model
that is capable of addressing all these limitations.
Our approach utilizes Gaussian processes to cap-
ture temporal correlations between samples and
their associated missingness masks as well as to
model the underlying point process. We construct
our model as a variational autoencoder together
with deep neural network parameterised encoder
and decoder models and develop a scalable amor-
tised variational inference approach for efficient
model training. We demonstrate competitive per-
formance using both simulated and real datasets.

1. Introduction
Longitudinal data arise in many domains such as healthcare,
sociology and seismology (Liu, 2015). These datasets con-
sist of repeated measurements of unique instances, e.g. pa-
tients, collected over time. However, real-world applications
pose several challenges for practitioners: measurements are
typically high-dimensional and contain non-trivial missing-
ness patterns, and time points of the observations are not
deterministic but rather arise from an unknown stochastic
process. These challenges are characteristic of many real
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biomedical datasets, such as electronic health records.

Variational autoencoders (VAEs) have become a popular ap-
proach to model high-dimensional data (Kingma & Welling,
2014; Rezende et al., 2014). However, a notable limitation
of standard VAEs is their assumption that the latent vari-
ables factorize across samples, hence ignoring correlations
between observations and making the models inappropriate
for temporal and longitudinal datasets. Several recent works
(Casale et al., 2018; Fortuin et al., 2020; Ramchandran et al.,
2021) have addressed this issue by incorporating Gaussian
process (GP) priors for these latent variables, creating a
probabilistic model that is capable of modelling arbitrary
correlations between latent encodings.

The simplest form of missingness is missing completely at
random (MCAR), i.e., the missingness pattern is indepen-
dent of the observed and unobserved data. While it is gener-
ally feasible to handle MCAR in most latent-variable mod-
els, more complex patterns of structured missingness (Ru-
bin, 1976; Mitra et al., 2023) require additional modeling
capacities. Extending VAEs to be able to model various
structured missingness patterns has recently become the fo-
cus of several papers (Collier et al., 2020; Ipsen et al., 2021;
Ghalebikesabi et al., 2021). However, these methods still
lack the ability to model correlations among observations
or missingness masks, thus limiting their applicability to
temporal data.

While VAEs have been applied to various biomedical
datasets, the existing methods cannot consider observation
time points as random variables. Instead, they have to treat
time as a deterministic covariate and, therefore, loose useful
information embedded in its stochastic nature. A separate
line of research has proposed methods to model unknown
temporal point processes primarily using GP-based meth-
ods (Lloyd et al., 2015; Liu & Hauskrecht, 2019). Overall,
the field lacks versatile modeling methods that would allow
modeling high-dimensional, marked point-processes that
may be corrupted by structured missingness.

Contributions. In this work, we propose a novel deep
latent variable model (DLVM), that is specifically designed
to capture structured missingness and uses temporal point
processes to model time. We construct the model by intro-
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Figure 1. Conceptual overview of our model. Shaded, partially-
shaded, and blank rectangles refer to observed, partially observed,
and latent components. Dashed arrow corresponds to the depen-
dence of the point process intensity on the previous time points.

ducing three sets of latent variables with GP priors, which
model observations, missingness masks and point process.
To adapt the model for longitudinal data, we rely on lon-
gitudinal additive kernels (Ramchandran et al., 2021) for
the latent representations of observations and masks. Addi-
tionally, to use the information embedded in the temporal
point process, we provide the intensity of the point process
as an additional input to the GP kernel functions of observa-
tions and missingness masks. See Figure 1 for a high-level
summary of our model and Appendix G for an extended
visualization. We present two variations of our proposal,
the simplified longitudinal latent variable model with struc-
tured missingness (LLSM) without a temporal point process,
and the full model, longitudinal latent variable model for
high-dimensional point process with structured missingness
(LLPPSM). To summarize, our contributions are that

(i) we present a latent variable model able to capture struc-
tured missingness in the context of longitudinal data;

(ii) we extend this model by a temporal point process and
use the inferred intensity of the process as an additional
input to the model;

(iii) we compare the performance of our two model variants
against baseline methods on several datasets and report
state-of-the-art results on a variety of tasks.

2. Related Work
We summarize and compare previous methods in Table 1.

Challenges with missing data. In his pioneering work,
Rubin (1976) identified three classes of missing data: miss-
ing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR). For MCAR,
the missingness mechanism is independent of both observed
and unobserved variables. In case of MAR, the missing-
ness depends on the observed attributes. Whereas, if data is
MNAR, missing readings are dependent on the unobserved
data, or systematic factors that are not accounted for in

the experiment. The last two are examples of structured
missingness. Although MCAR case can be handled by sim-
ply excluding missing elements from the analysis without
introducing a bias, the same does not hold for the other sce-
narios. Despite the utility of Rubin’s taxonomies, Mitra et al.
(2023) emphasized that they do not fully account for high-
dimensional patterns of structured missingness, frequently
encountered in modern ML applications. They also pro-
posed a set of current grand challenges in learning from data
with structured missingness and claimed that the field of
learning with missing values needs to be further advanced.

DLVMs for missing data. Various methods have been
proposed to address the challenge of missing values within
generative models. Collier et al. (2020) employed a varia-
tional autoencoder by concatenating the input with a miss-
ingness mask. While this approach can model MAR and
MNAR scenarios, it fails to model temporal correlations and
does not take into account auxiliary covariate information.
Mattei & Frellsen (2019) used importance sampling to de-
rive a Missing Importance Weighted Autoencoder (MIWAE)
bound for training DLVMs under MAR condition. Building
upon this work, Ipsen et al. (2021) expanded this method
to MNAR scenario by directly modeling the missingness
mask. However, both these approaches lack the ability to
model temporal correlation in the latent space, hence they
are not suitable for longitudinal setting.

Temporal DLVMs. To model temporal data, a set of
methodologies has emerged, exploring the use of GP priors
for latent variables. Casale et al. (2018) introduced the GPP-
VAE model to integrate both view and object information in
a GP prior through the product kernel. Fortuin et al. (2020)
proposed the GP-VAE that assigns individual GP prior for
the time-series of each subject. While these methods al-
low to model subject-specific temporal structure, they have
limited or no functionality to account for possible other
auxiliary covariates. Ramchandran et al. (2021) introduced
L-VAE, a model that uses a multi-output additive GP prior
and is well-suited for longitudinal data by leveraging care-
fully designed interaction kernels. The main drawback of
all these approaches is their limitation to MCAR modeling
which is naı̈ve in many domains, such as healthcare.

Another direction of research to deal with temporal data
focuses on recurrent neural networks (RNNs). Che et al.
(2018) developed GRU-D which incorporates masking and
a time interval into a deep model architecture, making it pos-
sible to model structured missingness patterns. They also
proposed to use a decaying mechanism to handle irregularly-
sampled timestamps. Luo et al. (2018) extended this model
for time-series imputation by employing generative adver-
sarial networks (GRUI-GAN). However, it is not straightfor-
ward to incorporate auxiliary information into these models.
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Table 1. A summary of related methods.
Model Temporal structure Other covariates Structured missingness Modelling timestamps Generative Reference

VAE missing ✗ ✗ ✓ ✗ ✓ Collier et al. (2020)
not-MIWAE ✗ ✗ ✓ ✗ ✓ Ipsen et al. (2021)
GRUI-GAN ✓ ✗ ✓ ✗ ✓ Luo et al. (2018)
GPPVAE ✓ Limited ✗ ✗ ✓ Casale et al. (2018)
GP-VAE ✓ ✗ ✗ ✗ ✓ Fortuin et al. (2020)
L-VAE ✓ ✓ ✗ ✗ ✓ Ramchandran et al. (2021)
GPRPP ✓ ✗ ✗ ✓ Limited to timestamps Liu & Hauskrecht (2019)

LLSM ✓ ✓ ✓ ✗ ✓ This work
LLPPSM ✓ ✓ ✓ ✓ ✓ This work

Longitudinal data analysis. An additional line of re-
search that gained popularity in recent years refers to mod-
eling of longitudinal data. Several works have focused on
addressing the dependence between timestamps and longitu-
dinal observations in order to avoid bias during the inference
(Pullenayegum & Lim, 2016; Xu et al., 2022; Sang et al.,
2022). However, although previous methods take into ac-
count auxiliary covariate information, they have two limita-
tions. First, they are not applicable for the high-dimensional
setting considered in our work as these previous methods
were derived for one-dimensional case and employ purely
statistical techniques. Second, to the best of our knowl-
edge, the previous methods do not assume missing data
mechanisms to depend on timestamps.

Temporal Point Process. Modelling temporal point pro-
cesses has been a subject of several studies in recent years.
Classical statistical approaches (Puri & Tuan, 1986) use
maximum likelihood estimation to infer the parameters of a
model. For this, they require specifying a parametric form
of the intensity function which significantly limits their ap-
plications. Neural network-based models typically employ
RNNs (Du et al., 2016). Lloyd et al. (2015) proposed to
model intensity function with Gaussian processes and a
squared link function that leads to closed-form solution.
John & Hensman (2018) extended this model to variational
Fourier features. Both approaches use the current time point,
and don’t take the previous history of events into account
which limits them to model only inhomogeneous Poisson
processes, a potentially unrealistic assumption in real-world
scenarios. Liu & Hauskrecht (2019) overcome this prob-
lem by incorporating the previous D timestamps into the
computation of the GP kernel function.

3. Methods
3.1. Background

Problem setup. We are given N =
∑P
p=1 np observa-

tions, where P denotes the number of unique instances,
e.g., patients, and np is the number of observations of in-
stance p. The longitudinal response variables (or marks)
of instance p are denoted as yp = [yp1 , . . . , y

p
np
] ∈ RK×np ,

where each sample ypi ∈ Y = RK . Each sample yi ∈ Y
can be split into observed and missing parts, yo

i and ym
i ,

with a corresponding binary mask mi ∈ {0, 1}K specifying
which features of yi are missing (1 is observed, 0 is miss-
ing). The auxiliary covariate information of instance p is
xp = [xp1, . . . , x

p
np
], where each xpi ∈ X = X1 × · · · × XQ

is a Q-dimensional vector. Covariates can be both discrete
and continuous and represent, for instance, a patient’s age,
their gender, etc. For notational convenience, we sepa-
rately denote the measurement time points of the subject p
as tp = [tp1, . . . , t

p
np
]T modeled as random variables, and

X static as the set of covariates that do not depend on time,
such that t ⊂ X and X static ⊂ X . Observations from all P
instances, e.g., patients, form our longitudinal data matrix y,
matrix of missing values m, covariate matrix x, and vector
of timestamps t, defined respectively as

y = [y1, . . . ,yP ] = [y1, . . . , yN ] ∈ RK×N ,

m = [m1, . . . ,mP ] = [m1, . . . ,mN ] ∈ {0, 1}K×N ,

x = [x1, . . . ,xP ] = [x1, . . . , xN ] (size Q×N),

t = [tT1 , . . . , t
T
P ]
T = [t1, . . . , tN ]T ∈ RN .

We rely on a latent space Z = RL and combine the latent
embedding for allN samples as z = [z1, . . . , zN ] ∈ RL×N .

Variational autoencoders. Assuming a deep latent vari-
able model pω(y, z) = pψ(y|z)pθ(z), inference of the
posterior pω(z|y) = pψ(y|z)pθ(z)/pω(y) is in general in-
tractable, as the evidence pω(y) cannot be computed analyt-
ically due to the highly non-linear relationship between z
and y. Common practice is to rely on amortized inference
(Kingma & Welling, 2014; Rezende et al., 2014), where a
parameterized approximation, qϕ(z|y), to the true posterior
is inferred by optimizing a lower bound to the evidence,

log pω(y) ≥ Eq [log pψ(y|z)]− KL(qϕ(z|y)||pθ(z)),

with respect to all parameters. Usually, likelihood pψ(y|z),
prior pθ(z), and variational posterior qϕ(z|y) are assumed
to be mean-field, i.e., to factorize over their respective ran-
dom variables.
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GP-prior variational autoencoder. Despite the computa-
tional efficiency provided by a factorized prior pθ(z) over
the latent variables, its major limitation is the inability to
model correlations between data samples. Prior work ad-
dressed this by combining VAEs with GPs, creating a pow-
erful probabilistic model for this task (Casale et al., 2018;
Fortuin et al., 2020; Ramchandran et al., 2021). The key
difference is that the factorized prior pθ(z) is replaced by
a GP-prior pθ(z|x) which depends on auxiliary informa-
tion x. The conditional generative model is then given as

pω(y|x) =
∫ N∏

i=1

pψ(yi|zi)pθ(z|x)dz.

Defining a mapping from the covariates to the latent space,
f : X → Z , such that z = f(x) = [f1(x), . . . , fL(x)]

T ,
these models assume a GP-prior over each fl,

fl(x) ∼ GP
(
µl(x), kl(x, x

′|θl)
)
,

where µl(x) is the mean function and kl(x, x
′|θl) is the

covariance function parameterized by θl.

Given this prior, the l-th latent variable
z̄l = fl(x) = [fl(x1), . . . , fl(xN )]T follows a multi-
variate Gaussian distribution across the N data samples

pθl(z̄l|x) = pθl(fl(x)) = N
(
z̄l
∣∣0,K(l)

xx

)
,

where K
(l)
xx is a N × N covariance matrix such that

{K(l)
xx}ij = kl(xi, xj |θl). We follow common practice and

factorize the GP-prior across its L dimensions, such that the
conditional prior is given as

pθ(z|x) =
L∏
l=1

pθl(z̄l|x) =
L∏
l=1

N
(
z̄l
∣∣0,K(l)

xx

)
.

The main distinction among previous GP-prior models lies
in the choice of covariance functions. GPPVAE (Casale
et al., 2018) and GP-VAE (Fortuin et al., 2020) both rely on
restricted kernels that do not adequately model longitudinal
data structure. Instead, we adopt the proposal by Ramchan-
dran et al. (2021) who introduce a flexible additive kernel
structure that is specifically designed for longitudinal data
and is capable of employing various interactions between
continuous and categorical covariates

kl(x, x
′|θl) =

R∑
r=1

kl,r(x, x
′|θl,r) + σ2

zl,

such that

pθ(z|x) =
L∏
l=1

N

(
z̄l

∣∣∣0, R∑
r=1

K(l,r)
xx + σ2

zlIN

)
.

3.2. Modeling structured missingness

These GP-prior models are capable of dealing with miss-
ing values solely by substituting zeros or alternative values
and propagating y through encoder-decoder structure to per-
form imputation. However, this approach lacks the ability
to model specific missingness patterns therefore making
them suitable only for an MCAR scenario, an unrealistic
assumption in many real applications. In this work, we solve
this constraint and propose the longitudinal latent variable
model with structured missingness (LLSM).

To model non-random missingness in VAE models various
approaches exist. For example, Mattei & Frellsen (2019)
and Ipsen et al. (2021) model the dependency between y
and m directly, whereas Collier et al. (2020) propose a
VAE model that incorporates an additional latent variable
to account for structured missingness. In this work, we
follow Collier et al. (2020) and introduce a second latent
variable zm ∈ RLm associated with a missingness mask m,
while referring to the latent variables associated to y from
now on as zy ∈ RLy . To properly model MNAR we assume
that m depends on both zm and zy . The joint likelihood for
a single sample is given as

pω(y
o, zy,m, zm|x) = pψy

(yo|zy, zm,m)pψm
(m|zy, zm)

· pθy (zy|x)pθm(zm|x), (1)

where yo refers to the observed features specified by m.
Also, by optionally conditioning y on zm, we can use any
information contained in the missing mask, e.g., during an
imputation task. To model correlation within the missing-
ness patterns, e.g., across time, or within a patient, we assign
zm a GP prior as well,

zm(x) ∼ GP
(
0, k(x, x′|θm)

)
.

Additionally, we assume that yo and m are distributed as

pψy
(yo|zy, zm,m) = N (y|gψy

(zy, zm),σ2)⊙m

pψm
(m|zy, zm) = Ber(m|gψm

(zy, zm)),

where the decoder functions gψy and gψm are parame-
terized by neural networks, ⊙ denotes an element-wise
Hadamard product, and the observational variance param-
eters σ2 = diag(σ2

y1 , . . . , σ
2
yK ) are optimized jointly with

all other parameters via gradient descent. The graphical
model of LLSM is shown in Figure 2.

We approximate the intractable posterior across all N sam-
ples p(zy, zm|x,yo,m) using a mean-field amortized in-
ference distribution

qϕ(z
y, zm|yo,m) = qϕy

(zy|yo)qϕm
(zm|m)

=

N∏
i=1

qϕy
(zyi |y

o
i )qϕm

(zmi |mi) (2)
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Figure 2. The graphical model of LLSM. Shaded, partially-shaded,
and blank circles refer to observed, partially observed, and latent
variables. The dashed arrow highlights an optional dependency.

where qϕy
(zyi |yo

i ) and qϕm
(zmi |mi) are diagonal Gaussian

distributions parameterized by neural network-based map-
pings from the corresponding inputs yo

i and mi. The lower
bound on the evidence to be optimized is given as

log p(yo,m|x) ≥ Eqϕ
[
log pψy (y

o|zy, zm,m)
]

+ Eqϕ [log pψm(m|zy, zm)]

− K̂L(qϕy
(zy|yo)||pθy (zy|x))

− K̂L(qϕm
(zm|m)||pθm(zm|x)),

where, in order to maintain computational tractability, and
to be able to perform mini-batching, we substitute the KL
terms with the corresponding upper bounds K̂L derived
by Ramchandran et al. (2021) that, for longitudinal data,
are tighter than the well-known bound proposed by Titsias
(2009). Further details on the lower bound and KL upper
bound are given in Appendix A and Appendix B.

3.3. Modeling Time

Prior work relying on GP-based priors suffers from a sec-
ond restriction. They often rely on time t as a primary, or
even the only (Fortuin et al., 2020), covariate that is used
in the covariance function. This implies that the similarity
between two measurements y and y′ is directly contingent
on the corresponding t and t′, e.g., their temporal difference
when employing a stationary kernel. While this assumption
is reasonable in some use cases, it is too limiting to be uni-
versally applicable. For instance, consider a scenario where
a patient develops a disease, and since the progression varies
for each individual, it may be more appropriate for similar-
ity to be determined not solely by the elapsed time since the
onset of the disease, but rather by their current well-being,
which can be captured by factors such as the frequency of
doctor visits. This example highlights a possible bias that
may occur if the dependence between timepoints and lon-
gitudinal observations is ignored. To properly account for
such variations, we model t by a temporal point process and
add the intensity of this point process as an additional input
to the GP kernel computation.

Temporal point processes (TPP). A TPP (Cox & Isham,
1980) is a stochastic process over variable-length sequences
in some time interval T = [0, T ] defined via an intensity
function λ(t). The probability density function of N ob-
served points t = {ti ∈ T } is defined as

p(t|λ) = exp
(
−
∫
T
λ(t)dt

) N∏
i=1

λ(ti).

TPPs can be divided into roughly two classes: inhomoge-
neous Poisson processes, where the intensity function only
depends on the current time point t, and self-exciting pro-
cesses, where the occurrence of events changes the intensity.
One type of these self-exciting processes, known as the
Hawkes process (Hawkes, 1971), has an intensity function

λ(t) = µ+
∑
tj<t

ν(t− tj),

where ν is a triggering kernel that characterizes the influence
of past events on intensity at time t and µ is a corresponding
baseline. Inspired by the broad applicability of Hawkes
processes (Hawkes, 2018), we adopt the proposal by Liu
& Hauskrecht (2019) to model such self-exciting processes
with GPs by computing kernels from the last D timestamps.

GP point processes. Given a latent variable zλ with

zλ(t) ∼ GP
(
0, kθλ(vD, vD

′)
)

vD = t− tD,
(3)

where tD denotes D previous timestamps before t, vD are
the elapsed times between t and tD, and kθλ is an additive
kernel structure, we model the intensity as

λ(t) = (zλ(t) + β)2 (4)

where β is either a trainable baseline or a function that can
depend on static covariates (John & Hensman, 2018). We
choose a squared link function as it provides an analytical
tractability (Lloyd et al., 2015).

The posterior distribution of the intensity,

p(λ|t) =
p(λ) exp

(
−
∫
T λ(t)dt

)∏N
i=1 λ(ti)∫

p(λ) exp
(
−
∫
T λ(t)dt

)∏N
i=1 λ(ti)dλ

,

is intractable due to the integration over λ. To overcome this
challenge, we approximate it with a variational distribution
p(zλ|u)q(u) that relies on inducing points u for additional
scalability (Quiñonero Candela & Rasmussen, 2005). See
Appendix C for a more detailed discussion.

LLPPSM. Combining such a point process with our
LLSM model allows us to capture intricate missingness
patterns and to effectively leverage information embedded
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Figure 3. The graphical model of LLPPSM. (Partially) shaded, and
blank circles refer to (partially) observed, and latent variables.
The dashed arrow highlights an optional dependency, xs

p are static
covariates and tD the D previous time steps to t.

in the time points. We call this model longitudinal latent
variable model for high-dimensional point process with
structured missingness (LLPPSM). See Figure 3 for its plate
diagram.

Defining zλ and λ as in Equations (3) and (4), we extend the
GP priors for zy and zm by letting their covariance kernel
depend on the rate of the TPP λ as well, i.e.,

zy(x, λ) ∼ GP
(
0, k((x, λ(t)), (x′, λ(t′))|θy)

)
,

and analogously for zm. As inference of the full model
remains intractable, we once again rely on variational infer-
ence and use the following variational approximation

q(zy, zm, zλ,u|yo,m)

= qϕy (z
y|yo)qϕm(zm|m)p(zλ|u)q(u),

where qϕy (z
y|yo) and qϕm(zm|m) are defined as in Equa-

tion (2), and u are the inducing points of zλ. The bound to
be optimized is given as

log p(yo,m, t|xs) ≥
Eq
[
log
(
pψy

(yo
∣∣zy, zm,m)pψm

(m
∣∣zy, zm)p(t

∣∣λ))]
− KL(q(u)||p(u))
− Ep(zλ|u)·q(u)[K̂L(qϕy (z

y
∣∣yo)||pθy (zy

∣∣x, λ(t))]
− Ep(zλ|u)·q(u)[K̂L(qϕm(zm

∣∣m)||pθm(zm
∣∣x, λ(t))],

where xs refers to static covariates and x is composed of
xs and t. See Appendix C for a detailed derivation and
discussion.

3.4. Imputation and future prediction

Our method can be employed for various tasks such as
imputation and future prediction. The imputation is done

by substituting missing elements with some intermediate
values (in our case zeros), and propagating them through the
encoder-decoder structure of our model so that the decoder
imputes the missing values.

Future predictions are obtained by evaluating the posterior
predictive distribution p(y∗ |x∗,yo,x,m) for new data y∗
given covariates x∗ and all training data. A detailed explana-
tion together with the necessary derivations to approximate
this intractable density is given in Appendix D.

3.5. Computational complexity and scalability

The complexity of LLSM is dominated by computation of
KL divergence upper bounds K̂L(qϕy

(zy|yo)||pθy (zy|x))
and K̂L(qϕm(zm|m)||pθm(zm|x)), which, by employing
the techniques from Ramchandran et al. (2021), have com-
plexity O(

∑P
p=1 np

3 +NM2), where M is the number of
inducing points. We also adopt the mini-batching scheme
from Ramchandran et al. (2021) that provides additional
scalability to large-sized datasets in terms of memory con-
sumption.

For LLPPSM, an additional complexity comes from
the point process computation, which corresponds to
O(NM2D2) (Liu & Hauskrecht, 2019), therefore the total
complexity is O(

∑P
p=1 np

3+NM2D2), where NM2 van-
ishes as NM2D2 dominates it. When training LLPPSM,
we also employ mini-batching in a similar fashion as for
LLSM to achieve additional scalability.

4. Experiments
We demonstrate the efficiency of our proposal on vari-
ous tasks, such as missing value imputation, long-term
prediction, for synthetic as well as real-world healthcare
datasets. We compare against a variety of models: GPPVAE
(Casale et al., 2018) serves as a general GP-prior repre-
sentative, L-VAE (Ramchandran et al., 2021) as a variant
specifically designed for longitudinal type of data, GRUI-
GAN (Luo et al., 2018) is a GAN-based model capable
of modelling non-random missingness, and mean imputa-
tion/prediction is a common simple baseline. As GRUI-
GAN is not designed for generative purposes, we only pro-
vide imputation results for this method. For each method
we evaluate its mean-squared error (MSE) and report the
mean performance as well as standard deviation computed
over five runs. The lowest mean in each experiment is
marked bold in the corresponding table. See Appendix E
for further experimental details (e.g., hyperparameters, ker-
nel structures) that are not specified in the main text and
Appendix F for neural network architectures. An imple-
mentation of our proposed methods is available at https:
//github.com/sinelnikovmaxim/MPP-VAE.
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Figure 4. Future predictions of data (top) and missingness mask (bottom) on the regularly sampled health MNIST dataset. Although
predictions of mask look almost identical, the prediction of data cannot be captured by L-VAE, whereas LLSM does it very accurately.

Table 2. Imputation MSEs on the regularly sampled health MNIST
dataset. The percentage represents maximum probability of pixel
being missing.

Method 50% 75% 90%

mean imputation 0.266±0.000 0.314±0.000 0.373±0.000

GPPVAE 0.248±0.004 0.291±0.004 0.379±0.015

GRUI-GAN 0.224±0.037 0.218±0.012 0.269±0.028

L-VAE 0.124±0.009 0.283±0.062 0.373±0.001

LLSM (ours) 0.124±0.008 0.144±0.009 0.174±0.016

Table 3. Future data prediction MSEs on the regularly sampled
health MNIST dataset. The percentage represents maximum prob-
ability of pixel being missing.

Method 50% 75% 90%

mean prediction 0.040±0.000 0.042±0.000 0.048±0.000

GPPVAE 0.041±0.000 0.041±0.000 0.048±0.001

L-VAE 0.021±0.002 0.038±0.008 0.047±0.000

LLSM (ours) 0.023±0.002 0.024±0.001 0.026±0.002

4.1. Regularly sampled Health MNIST

To simulate a high-dimensional longitudinal dataset with
structured missingness, we used a modified version of the
MNIST dataset (LeCun et al., 1998) called Health MNIST
(Krishnan et al., 2015). We chose two digits, ‘3’ and ‘6’,
to represent two biological genders. We simulated a shared
time-related effect by shifting all digit instances towards
the right corner over time. In our experiments, half of
the instances remain healthy and half get a disease. To
demonstrate changes in the laboratory measurements of the
diseased individuals, we rotated digits with the amount of
rotation depending on the time from disease diagnosis. Each

sample has in total five covariates: time, id, diseasePresence,
diseaseTime, and gender, where id serves as the identifier of
a specific instance. The timestamps of all observations are
regularly sampled which is why we only evaluated LLSM.

To model MNAR, the probability of each pixel being miss-
ing depends on the color intensity of that pixel: the higher
the intensity, the higher is the probability of the pixel being
unobserved. For MAR, we applied a square-shaped miss-
ingness mask to the images. If a patient is healthy, no box
is applied. For diseased patients, a mask is only applied
upon the onset of the disease. Afterwards, the mask starts to
increase in size linearly as time progresses. See Figure 4 for
an illustration. In this case, missingness depends on both
unobserved signal as well as on covariate information.

The training set consists of P = 900 unique instances,
each having np = 20 time points. The test set contains 100
unique instances, with 15 last observations for each instance.
When performing future prediction, the model conditions
on all training data as well as first five observations of each
instance, that are kept separately.

Table 2 shows that our method outperforms all baselines
on the task of missingness imputation. The same holds for
future prediction of data from covariates (Table 3), with the
exception for the simplest missingness scenario where L-
VAE is slightly better. We also performed future prediction
of missingness mask by the same approach. Because none of
the baseline methods is able to model the mask m explicitly,
we separately modelled missingness by training an L-VAE
with a Bernoulli likelihood for m. The results are shown
in Table 4 and show that the mask prediction is almost
identical except for the case with the highest missingness
when LLSM is slightly better. In Figure 4, we demonstrate
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Table 4. Future missingness prediction MSEs on the regularly sam-
pled health MNIST dataset. The percentage represents maximum
probability of pixel being missing.

Method 50% 75% 90%

L-VAE 0.032±0.000 0.038±0.002 0.040±0.002

LLSM (ours) 0.031±0.002 0.038±0.003 0.038±0.002

Table 5. Imputation MSEs on the irregularly sampled health
MNIST dataset. The percentage represents maximum probability
of pixel being missing.

Method 50% 75% 90%

mean imputation 0.259±0.000 0.335±0.000 0.380±0.000

GPPVAE 0.239±0.002 0.319±0.001 0.396±0.004

GRUI-GAN 0.165±0.016 0.203±0.021 0.277±0.035

L-VAE 0.171±0.045 0.264±0.059 0.379±0.001

LLSM (ours) 0.130±0.007 0.163±0.011 0.191±0.012

LLPPSM (ours) 0.128±0.005 0.162±0.007 0.207±0.028

visually the benefits of our model for future prediction for
the case of 75% maximum probability of missingness.

4.2. Irregularly sampled Health MNIST

We modified the previous setup such that timepoints come
from a random process and similarity in the observations
depends on covariates as well as the underlying rate of the
TPP that was discussed in Section 3.3. We implemented it in
a following way: for healthy patients, the timestamps come
from a homogeneous Poisson process with intensity λ = 0.1
and the digit is not modified, whereas for diseased patients,
timestamps are generated according to a Hawkes process,
with baseline intensity µ = 0.5 and the digit rotation de-
pends on the intensity of process at the moment: the higher
the intensity, the stronger the rotation. For healthy patients
we modelled MNAR as in the previous setup, while for dis-
eased patients we also applied a square-shaped mask with its
size being proportional to the intensity of the process at that
moment. Table 5 shows that both of our models improve
upon the baselines in all imputation scenarios. Moreover,
Tables 6 and 7 show that LLPPSM outperforms LLSM in
both future data and mask prediction tasks. The Figure 5
depicts that although LLSM is capable of capturing the gen-
eral form of an image, it cannot model the rotation properly
due to the limited kernel component related to time whereas
LLPPSM does it well. The same holds for prediction of
mask. The inferred mean intensity function of the point
process for one individual can be found in Appendix G.

4.3. Physionet data

We evaluated our model on healthcare data from the 2012
Physionet Challenge (Silva et al., 2012). The dataset con-
tains around 12,000 patients monitored on the intensive care

Table 6. Future data prediction MSEs on the irregularly sampled
health MNIST dataset. The percentage represents maximum prob-
ability of pixel being missing.

Method 50% 75% 90%

mean prediction 0.039±0.000 0.044±0.000 0.047±0.000

GPPVAE 0.040±0.000 0.044±0.001 0.049±0.000

L-VAE 0.029±0.005 0.036±0.006 0.047±0.000

LLSM (ours) 0.030±0.001 0.031±0.001 0.031±0.001

LLPPSM (ours) 0.025±0.002 0.027±0.001 0.030±0.003

Table 7. Future missingness prediction MSEs on the irregularly
sampled health MNIST dataset. The percentage represents maxi-
mum probability of pixel being missing.

Method 50% 75% 90%

L-VAE 0.063±0.000 0.067±0.001 0.068±0.001

LLSM (ours) 0.063±0.002 0.067±0.001 0.066±0.001

LLPPSM (ours) 0.054±0.006 0.056±0.005 0.058±0.005

Table 8. Future prediction on Physionet dataset.

Method MSE

mean prediction 0.785±0.000

GPPVAE 0.786±0.001

L-VAE 0.720±0.008

LLSM (ours) 0.713±0.006

LLPPSM (ours) 0.745±0.009

unit (ICU) for 48 hours. We modelled measurements of 37
different attributes, such as glucose level, heart rate, body
temperature, etc. The dataset is extremely sparse, with about
85% missing values. We cannot directly measure imputa-
tion performance due to the lack of ground truth data for
missing values, hence, to test the learned representations
of our models, we used this dataset only for future predic-
tion. We predicted values of laboratory attributes given
the knowledge of the first ten measurements for a patient
in the test set. As auxiliary covariates, we employed the
following variables: time of the measurement, id, type of
ICU, gender, and in-hospital mortality. More information
regarding Physionet data can be found in Appendix E.2. We
present the results in Table 8. LLSM performs best, with
LLPPSM performing worse. This can be explained by the
fact that many observations are taken regularly each hour,
making the temporal process be pseudo-stochastic, which
is reflected in the intensity of the point process that starts
to explode at each hour timepoint, hence modelling it just
brings additional redundant information to the model.

5. Conclusions
In this work, we introduced a novel probabilistic frame-
work for multivariate data with missing values. First, we
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Figure 5. Future predictions of data (top) and missingness mask (bottom) on irregularly sampled health MNIST dataset.

developed a deep latent variable model, LLSM, that mod-
els structured missingness via separate set of latent vari-
ables. Second, we extended this model by utilizing temporal
point process to account for stochastic nature of timepoints,
LLPPSM. Our methods are specifically designed for longi-
tudinal type of data by leveraging GPs to define priors for
latent variables. We demonstrated excellent performance
of both models on different representation learning tasks
and expect them to become useful tools in the analysis of
high-dimensional temporal and longitudinal data.
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APPENDIX
A. Deriving the ELBO for LLSM
By introducing a variational distribution qϕ(zy, zm|yo,m), the marginal likelihood can be expanded as

log pω(y
o,m|x) =

∫∫
qϕ(z

y, zm|yo,m) log
pω(z

y, zm|yo,m)pω(y
o,m|x)

pω(zy, zm|yo,m)
dzydzm

=

∫∫
qϕ(z

y, zm|yo,m) log
pω(y

o,m, zy, zm|x)
pω(zy, zm|yo,m)

dzydzm

=

∫∫
qϕ(z

y, zm|yo,m) log
pψ(y

o,m|zy, zm)pθ(z
y, zm|x)

pω(zy, zm|yo,m)
dzydzm

=

∫∫
qϕ(z

y, zm|yo,m) log pψ(y
o,m|zy, zm)dzydzm

+

∫∫
qϕ(z

y, zm|yo,m) log
pθ(z

y, zm|x)
pω(zy, zm|yo,m)

dzydzm

= Eqϕ [log pψ(yo,m|zy, zm)]

+

∫∫
qϕ(z

y, zm|yo,m) log
pθ(z

y, zm|x)qϕ(zy, zm|yo,m)

pω(zy, zm|yo,m)qϕ(zy, zm|yo,m)
dzydzm

= Eqϕ [log pψ(yo,m|zy, zm)]

+

∫∫
qϕ(z

y, zm|yo,m) log
qϕ(z

y, zm|yo,m)

pω(zy, zm|yo,m)
dzydzm

−
∫∫

qϕ(z
y, zm|yo,m) log

qϕ(z
y, zm|yo,m)

pθ(zy, zm|x)
dzydzm

= Eqϕ [log pψ(yo,m|zy, zm)]

+ KL(qϕ(zy, zm|yo,m)||pω(zy, zm|yo,m))

− KL(qϕ(zy, zm|yo,m)||pθ(zy, zm|x)).

Hence,

log pω(y
o,m|x)− KL(qϕ(zy, zm|yo,m)||pω(zy, zm|yo,m)) =

Eqϕ [log pψ(yo,m|zy, zm)]− KL(qϕ(zy, zm|yo,m)||pθ(zy, zm|x)).

As the KL divergence term is positive, we get

log pω(y
o,m|x) ≥ Eqϕ [log pψ(yo,m|zy, zm)]− KL(qϕ(zy, zm|yo,m)||pθ(zy, zm|x))

= L(ϕ, ψ, θ;yo,m).

By assuming the following factorizations:

pψ(y
o,m|zy, zm) = pψy

(yo|zy, zm,m)pψm
(m|zy, zm)

qϕ(z
y, zm|yo,m) = qϕy

(zy|yo)qϕm
(zm|m)

pθ(z
y, zm|x) = pθy (z

y|x)pθm(zm|x),

the ELBO simplifies to

L(ϕ, ψ, θ;yo,m) = Eqϕ
[
log pψy

(yo|zy, zm,m)
]
+ Eqϕ [log pψm

(m|zy, zm)]

− KL(qϕy
(zy|yo)||pθy (zy|x))− KL(qϕm

(zm|m)||pθm(zm|x)),

where ψy, ψm, ϕy, ϕm are parameterized by neural networks and qy, qm are corresponding variational distributions of zy

and zm.
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By approximating the KL terms with the corresponding upper bounds K̂L that are necessary for computational scalability
(see Appendix B), the final ELBO is given as

L(ϕ, ψ, θ;yo,m) ≥ Eqϕ
[
log pψy

(yo|zy, zm,m)
]
+ Eqϕ [log pψm

(m|zy, zm)]

− K̂L(qϕy (z
y|yo)||pθy (zy|x))− K̂L(qϕm(zm|m)||pθm(zm|x)).

B. Scalable KL Divergence Computation
Here we review the KL upper bound from Ramchandran et al. (2021) that implements a scalable KL divergence com-
putation. Optimising the variational objective requires us to evaluate L KL terms KL(N (µ̄l,Wl)||N (0,Σl)), where
µ̄l = [µϕ,l(y1), . . . , µϕ,l(yN )]T ,Wl = diag(σ2

ϕ,l(y1), . . . , σ
2
ϕ,l(yN )), and Σl =

∑R
r=1K

(r,l)
xx + σ2

zlIN . For notational
convenience, we drop the index l. The exact computation has O(N3) complexity, making it impractical for large datasets.
Therefore, instead of computing it, we will use an upper bound to the KL that comes from the fact that any lower bound
for the prior GP marginal log-likelihood induces an upper bound to the KL divergence. Titsias (2009) proposed the free-
form variational lower bound for a GP marginal log-likelihood logN (z

∣∣0,Σ) by assuming a set of M inducing locations
s = [s1, . . . , sM ] in X , with the corresponding inducing function values u = [f(s1), . . . , f(sM )]T = [u1, . . . , uM ]T , such
that

p(u) = N (u
∣∣0,Kss)

p(f
∣∣u) = N (f

∣∣KxsK
−1
ss u, K̃),

K̃ = Kxx −KxsK
−1
ss Ksx

p(z
∣∣f) = N (z

∣∣f , σ2
zIN ),

and the corresponding lower bound is L(z; Σ) = N (z
∣∣0,KxsK

−1
ss Ksx+σ

2
zIN )− 1

2σ2
z

tr(K̃), where tr(·) is the matrix trace.
Titsias bound is known to be tight when M is large enough and the covariance function is smooth enough. Longitudinal data,
however, always contain categorical covariates corresponding to instance ids, making the covariance function necessarily
non-continuous.

To still get a tighter bound, we separate the additive component that corresponds to the instance id from the other covariates,
so that covariance function has the following form Σ = K

(A)
xx + Σ̂, where Σ̂ = diag(Σ̂1, . . . , Σ̂P ), Σ̂p = K

(R)
xpxp + σ2

zInp

contains all terms with instance-specific id and K(A)
xx =

∑R−1
r=1 K

(r)
xx contains the other components. Ramchandran et al.

(2021) proposed the following upper bound for KL

KL ≤ 1

2

(
tr
(
Σ̄−1W

)
+ µ̄T Σ̄−1µ̄−N + log |Σ̄| − log |W |+

P∑
p=1

tr
(
Σ̂−1
p K̃(A)

xpxp

))
,

where Σ̄ = K
(A)
xs K

(A)−1

ss K
(A)
sx +Σ̂ and K̃(A)

xpxp = K
(A)
xpxp −K

(A)
xpsK

(A)−1

ss K
(A)
sxp . This bound has a computational complexity

O(
∑P
p=1 np

3 +NM2) and Ramchandran et al. (2021) proved it to be tighter than the corresponding bound by Titsias
for longitudinal datasets. Despite the reduced complexity, a problem still remains. For every gradient descent step, the
algorithm has to iterate through the entire dataset, requiring a substantial allocation of memory and computational time.
This issue can be solved using a similar technique as the one presented by Hensman et al. (2013), with adaptation to the
properties of a longitudinal kernel. We will only present the final bound and refer the reader to Ramchandran et al. (2021)

for a detailed derivation. Defining Ipi to be the index of the ith sample for the pth patient and µ̄p =
[
µ̄Ipi

, . . . , µ̄Inp

]T
to

be a a sub-vector of µ̄ that is related to the pth patient, the unbiased estimate of the KL divergence upper bound, computed
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from the batch with instances Pbatch ⊂ {1, . . . , P}, is defined as

K̂L =
1

2

P

|Pbatch|
∑
p∈P

((
K(A)

xpsK
(A)−1

ss mH − µ̄p

)T
Σ̂−1
p

(
K(A)

xpsK
(A)−1

ss mH − µ̄p

)
+

np∑
i=1

(Σ̂−1
p )iiσ

2
ϕ(yIpi

)

+ log |Σ̂p|+ tr
(
Σ̂−1
p K̃(A)

xpxp

)
+ tr

((
K(A)−1

ss HK(A)−1

ss

)(
K(A)

sxp
Σ̂−1
p K(A)

xps

))
−

np∑
i=1

log σ2
ϕ(yIpi

)

)

− N

2
+ KL

[
N (mH , H)||N (0,K(A)

ss )
]
,

where mH and H are variational parameters computed via natural gradients.

C. Various LLPPSM specifications
We define three sets of latent variables: zy, zm and zλ. Observations y, masks m and timestamps t are modelled as random
variables. The complete joint probability is given as:

pω(y
o, zy,m, zm, t, zλ|xs,vD) =pψy (y

o|zy, zm,m)pψm(m|zy, zm)pθy (z
y|x, λ(t))pθm(zm|x, λ(t))

p(t|λ)pθλ(zλ|vD),

where vD corresponds to elapsed times between t and D previous timepoints that occurred before t, denoted as tD, xs

refers to static covariates and x consists of t and xs. To compute the marginal likelihood, we have to marginalize over the
latent variables as

pω(y
o,m, t|xs,vD) =

∫∫∫
pω(y

o, zy,m, zm, t, zλ|xs,vD)dz
ydzmdzλ

=

∫∫∫
pψy

(yo|zy, zm,m)pψm
(m|zy, zm)pθy (z

y|x, λ(t))pθm(zm|x, λ(t))

· p(t|λ)pθλ(zλ|vD)dzydzmdzλ.

Factorizing the joint likelihood w.r.t. the observation given the latent variables, we get

pω(y
o,m, t|xs,vD) =

∫∫∫ N∏
i=1

pψy (y
o
i |z

y
i , z

m
i ,mi)pψm(mi|zyi , z

m
i )pθy (z

y|x, λ(t))pθm(zm|x, λ(t))

p(t|λ)pθλ(zλ|vD)dzydzmdzλ.

We assume the following Gaussian process priors

zλ(t) ∼ GP
(
0, k(vD, vD

′|θλ)
)

zy(x, λ) ∼ GP
(
0, k((x, λ(t)), (x′, λ(t′))|θy)

)
zm(x, λ) ∼ GP

(
0, k((x, λ(t)), (x′, λ(t′))|θm)

)
.

The decoders of y and m are parameterized by neural networks that predict the mean of the generative distributions

pψy (y
o
i |z

y
i , z

m
i ,mi) = N(yi

∣∣gψy (z
y
i , z

m
i ), diag(σ2

y1 , . . . , σ
2
yK ))⊙mi

pψm
(mi

∣∣zyi , zmi ) = Ber(mi|gψm
(zyi , z

m
i )),

where σ2
y1 , . . . , σ

2
yK are jointly optimised via gradient descent, and ⊙ is the elementwise Hadamard product.

The likelihood of the temporal point process for instance p is given as

p(tp|λ) = exp
(
−
∫
T
λ(t)dt

) np∏
i=1

λ(ti),

where λ(t) = (zλ(t) + β)2,

13
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and β is a learnable offset.

The covariances of the GPs of zy and zm are parameterized by the additive kernels discussed in Section 3. For zλ, we
instead rely on the following additive structure:

k(vD, vD
′|θλ) =

D∑
d=1

1(vd)1(vd
′) · γd · exp

(
− (vd − vd

′
)2

2l2d

)
,

1(vd) =

{
1, if vd <∞
0, otherwise

,

where vd is the elapsed time between t and dth timepoint, td, that happened before t, and infinite, if there is no available
information about the past event. Hence, the above kernel depends on past events and on the current time point.

As the posterior inference is not tractable, we rely on variational inference and choose the following approximation to the
posterior

q(zy, zm, zλ,u
∣∣yo,m) = qϕy

(zy|yo) · qϕm
(zm|m) · p(zλ|u) · q(u),

where we also employed inducing points of zλ, denoted by u with q(u) = N(mλ, S). Note that these inducing points
are different from those of the scalable KL bound in Appendix B. To shorten the notation we will denote this variational
posterior as q in the following derivations. The ELBO is given as

L = Eq
[
log

pω(y
o,m, t, zy, zm, zλ,u|xs,vD)

qϕy (z
y|yo) · qϕm(zm|m) · p(zλ|u) · q(u)

]
= Eq

[
log
(
pψy (y

o|zy, zm,m)pψm(m|zy, zm)p(t|λ)
)]

− Eq
[
log(

q(u)

p(u)
)

]
− Eq

[
log(

qϕy
(zy|yo)

p(zy|x, λ(t))
)

]
− Eq

[
log(

qϕm
(zm|m)

p(zm|x, λ(t))
)

]

= Eq
[
log
(
pψy

(yo|zy, zm,m)pψm
(m|zy, zm)p(t|λ)

)]
− KL(q(u)||p(u))

− Ep(zλ|u)·q(u)

[
KL(qϕy

(zy|yo)||p(zy|x, λ(t))
]
− Ep(zλ|u)·q(u) [KL(qϕm

(zm|m)||p(zm|x, λ(t))]

≥ Eq
[
log
(
pψy

(yo|zy, zm,m)pψm
(m|zy, zm)p(t|λ)

)]
− KL(q(u)||p(u))

− Ep(zλ|u)·q(u)

[
K̂L(qϕy

(zy|yo)||p(zy|x, λ(t))
]
− Ep(zλ|u)·q(u)

[
K̂L(qϕm

(zm|m)||p(zm|x, λ(t))
]
,

where K̂L is the corresponding upper bound for KL divergence from Appendix B and expectations involving upper bounds
are estimated via Monte Carlo sampling. The generative part can be further decomposed into

Eq
[
log
(
pψy

(yo|zy, zm,m)pψm
(m|zy, zm)p(t|λ)

)]
= Eqϕ

[
log
(
pψy

(yo|zy, zm,m)
)]

+ Eqϕ [log (pψm
(m|zy, zm))] + Ep(zλ|u)·q(u) [log(p(t|λ)] ,

where qϕ(zy, zm|yo,m) = qϕy
(zy|yo) · qϕm

(zm|m).

The expectations involving zy and zm are computed by sampling from their variational distributions and utilizing the
reparameterization trick (Kingma & Welling, 2014), whereas expectation involving likelihood of the point process can be
evaluated in a closed from due to the chosen squared link function as we show below for the timepoints of individual p.

To lighten the notation, we use LT := Ep(zλ|u)·q(u) [log(p(t|λ)], drop subscript p denoting the individual and drop subscript

14
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D from vD. Also, by s we denote inducing point locations of u. First, we integrate out u:

q(zλ) =

∫
U

p(zλ|u) · q(u)du = N(zλ
∣∣µ̃, Σ̃),

where µ̃(v) = kvsK
−1
ss mλ,

Σ̃(v, v′) = Kvv′ − kvsK
−1
ss ksv′ + kvsK

−1
ss SK

−1
ss ksv′ ,

and U is a space of inducing values. We write LT as

LT =
∑
n

Eq(zλ) [log λ(tn)]− Eq(zλ)
[ ∫

T

λ(t)dt
]
=
∑
n

Eq(zλ)
[
log
(
zλ(tn) + β

)2]− Eq(zλ)
[ ∫

T

λ(t)dt
]

︸ ︷︷ ︸
:=Lt

,

where we sum over all timepoints of the individual. Via Lloyd et al. (2015), we have

Eq(zλ)
[
log
(
zλ(tn) + β

)2]
=

∫ ∞

−∞
log((zλ(tn) + β)2)N(zλ(tn)

∣∣µ̃, σ̃2)dzλ(tn)

= −G̃
(
− (µ̃+ β)2

2σ̃2

)
+ log

( σ̃2

2

)
− C,

where σ̃2 is the diagonal element of Σ̃, C is the Euler-Mascheroni constant and G̃ is the confluent hyper-geometric function.

Following the derivations of Liu & Hauskrecht (2019), we compute Lt as:

Lt = Eq(zλ)
[∫

T

λ(t)dt

]
= Eq(zλ)

[∫
T

(zλ(t) + β)2dt

]
=

∫
T

Eq(zλ)
[
(zλ(t) + β)2

]
dt

=

∫
T

(
Eq(zλ)

[
(zλ(t)2

]
+ 2βEq(zλ)

[
zλ(t)

]
+ β2

)
dt

=

∫
T

Eq(zλ)
[
zλ(t)

]2
dt+

∫
T

Varq(zλ)
[
zλ(t)

]
dt+ 2β

∫
T

Eq(zλ)
[
zλ(t)

]
dt+ β2|T |

=
∑
n

[∫ tn

tn−1

Eq(zλ)
[
zλ(t)

]2
dt+

∫ tn

tn−1

Varq(zλ)
[
zλ(t)

]
dt+ 2β

∫ tn

tn−1

Eq(zλ)
[
zλ(t)

]
dt

]
+ β2|T |.

Each integral is computed as follows:

∫ tn

tn−1

Eq(zλ)
[
zλ(t)

]2
dt = mT

λK
−1
ss ΨnK

−1
ss mλ,∫ tn

tn−1

Varq(zλ)
[
zλ(t)

]
dt =

D∑
d=1

γd

∫ tn

tn−1

1(vd)dt− tr(K−1
ss Ψn) + tr(K−1

ss SK
−1
ss Ψn),∫ tn

tn−1

Eq(zλ)
[
zλ(t)

]
dt = Φn(s)

TK−1
ss mλ,

Ψn(s, s
′) =

∫ tn

tn−1

K(s, v(t))K(v(t), s′)dt,

Φn(s) =

∫ tn

tn−1

K(s, v(t))dt.
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Φ and Ψ each have closed form solutions which we obtain by evaluating the integrals for the sum of SE kernels.

Φn(s) =

D∑
d=1

1(sd)1(vdn)γd

√
πl2d√
2

[
erf

(
vdn − sd√

2l2d

)
− erf

(
vdn−1 − sd√

2l2d

)]
,

Ψn(s, s
′) =

D∑
i,j=1

1(si)1(s
′
j)1(vin)1(vjn)γiγj

√
πl2i l

2
j√

2 · (l2i + l2j )
exp

(
−
(si + tin − s′j − tjn)

2

2(l2i + l2j )

)
erf

 l2i (vjn − s′j) + l2j (vin − si)√
2l2i l

2
j (l

2
i + l2j )

− erf

 l2i (vjn−1 − s′j) + l2j (vin−1 − si)√
2l2i l

2
j (l

2
i + l2j )

 ,
where li, γi are kernel hyperparameters.

D. Predictive distribution
Given training samples yo, covariate information x and masks m, the predictive distribution for a new observation y∗, given
covariates x∗ is

p(y∗ |x∗,yo,x,m) =

∫
p(y∗ | zy∗ , zm∗ )p(zy∗ , z

m
∗ |x∗,yo,x,m) dzy∗ dz

m
∗

≈
∫

p(y∗ | zy∗ , zm∗ )︸ ︷︷ ︸
decode GP predictions

p(zy∗ |x∗, λ(t∗), zy,x, λ(t))︸ ︷︷ ︸
GP posterior of zy∗

p(zm∗ |x∗, λ(t∗), zm,x, λ(t))︸ ︷︷ ︸
GP posterior of zm∗

q(zλ∗ )︸ ︷︷ ︸
variational posterior of zλ∗

qϕy
(zy |yo)︸ ︷︷ ︸

encode data

qϕm
(zm |m)︸ ︷︷ ︸

encode mask

dzλ∗ dz
y
∗ dz

m
∗ dzy dzm,

where timestamps t and t∗ belong to x and x∗, respectively, and p(zy∗ |x∗, λ(t∗), zy,x, λ(t)) and
p(zm∗ |x∗, λ(t∗), zm,x, λ(t)) are GP posteriors such that

p(z∗ |x∗, λ(t∗), z,x, λ(t)) = N (µ̃, Σ̃),

µ̃ = Kw∗w(Kww + σ2
zIN )−1z,

Σ̃ = Kw∗w∗ + σ2
zIN∗ −Kw∗w(Kww + σ2

zIN )−1Kww∗ ,

where w = (x, λ(t)), w∗ = (x∗, λ(t∗)) and N∗ is a number of elements for prediction. Above, we dropped the superscripts,
meaning that the same formulae hold for both zy and zm with respect to their kernel hyperparameters. The same approach
holds for deriving p(m∗ |x∗,yo,x,m). In order to sample from these predictive distributions, ancestral sampling can
be employed. Computing the predictive distributions scales cubically for this case. To get the idea of how to implement
a scalable predictive distribution using low-rank inducing point approximation, we refer the reader to the derivations by
Ramchandran et al. (2021).

E. Experimental setups
We employed identical kernel structures for the GPs of both zy and zm across all of the datasets mentioned below.
Nonetheless, it’s important to note that, in general, these kernel structures could differ between the two. We also selected
sixty inducing points for each GP model for all setups and chose the latent dimension to be 32.

E.1. HealthMNIST variants

For the Health MNIST regularly sampled dataset we use the following covariates: time, id, diseasePresence, diseaseTime
and gender. When running LLSM on the corresponding dataset, we relied on the following additive kernel structure

fca(id) + fse(time) + fca×se(id × time) + fca×se(gender × time) + fca×se(diseasePresence × diseaseTime),

where se denotes squared exponential kernel and ca is referred to categorical one.
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For Health MNIST irregularly sampled dataset, time, id, gender and diseasePresence were used as covariates for LLSM and
LLPPSM. In case of LLPPSM, we also added intensity of the point process for covariance computation. When using LLSM,
we employed the following kernel structure

fca(id) + fse(time) + fca×se(id × time) + fca×se(gender × time),

whereas for LLPPSM

fca(id) + fse(time) + fca×se(id × time) + fca×se(gender × time) + fca×se(id × intensity) + fca×se(gender × intensity).

For both variants, we used the Adam optimiser (Kingma & Ba, 2015) as implemented in Pytorch (Paszke et al., 2019), with
a learning rate equal to 0.001, which was selected based on cross-validation. After having pretrained a standard VAE, we
trained both LLSM and LLPPSM on 1000 epochs, employing early stopping.

When training LLPPSM, we defined separate β parameters for “healthy” and “sick” instances and optimised them jointly
together with other parameters. For the temporal point process part of the model, the number of previous timestamps, D, is
15.

E.2. Physionet dataset

We selected 2000 patients for training, 1917 for validation and performed future prediction on 100 patients, not included in
training and validation sets. We used the following covariates: time, id, type of ICU, gender and in-hospital mortality, with
the corresponding additive kernel structure for LLSM

fca(id) + fse(time) + fca×se(id × time) + fca×se(gender × time)
+fca×se(type of ICU × time) + fca×se(in-hospital mortality × time),

and for LLPPSM, including intensity as an additional variable

fca(id) + fse(time) + fca×se(id × time) + fca×se(gender × time) + fca×se(type of ICU × time)
+fca×se(in-hospital mortality × time) + fca×se(id × intensity) + fca×se(gender × intensity)
+fca×se(type of ICU × intensity) + fca×se(in-hospital mortality × intensity),

The optimisation was done by Adam optimiser (Kingma & Ba, 2015) using Pytorch (Paszke et al., 2019), with the learning
rate 0.001. Both models were trained for 400 epochs, employing early stopping, after having pretrained them by standard
VAE.

When training LLPPSM, we defined separate β parameters based on in-hospital mortality attribute and optimised them
jointly with other parameters. For temporal point process part, the number of previous timestamps, D, is 15.

Moreover, we found it useful to drop the dependence from zm to y as was discussed in Section 3.2. Our intuition is that
in this case, if the dependence is left, we are obliged to apply predictive distribution (Appendix D) for both zy and zm,
which, due to the highly complex and sparse nature of this dataset, cannot be modelled highly accurately, leading to the
accumulation of additional error.

F. Neural network architectures
Table 9 describes neural network architecture used for both Health MNIST setups that consists of convolutional and
feedforward layers. Table 10 describes neural network architecture for the Physionet dataset. In this case, we employed a
multi layered perceptron (MLP).

G. Supplementary figures
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Table 9. Neural Network architecture used in Health MNIST variants
Hyperparameter Value

Inference network of both zy and zm

Dimensionality of input 36× 36
Number of filters per convolution layer 144

Kernel size 3× 3
Stride 2

Pooling Max pooling
Pooling kernel size 2× 2

Pooling stride 2
Number of feedforward layers 2
Width of feedforward layers 300, 30

Dimensionality of latent space L
Activation function of layers RELU

Generative network of both y and m

Dimensionality of input L
Number of transposed convolution layers 3

Number of filters per transposed convolution layer 256
Kernel size 4× 4

Stride 2
Number of feedforward layers 2
Width of feedforward layers 30, 300
Activation function of layers RELU

Table 10. Neural Network architecture used in Physionet dataset

Hyperparameter Value

Inference network of both zy and zm

Dimensionality of input 37
Number of feedforward layers 2
Width of feedforward layers 300, 30

Dimensionality of latent space L
Activation function of layers RELU

Generative network of both y and m

Dimensionality of input L
Number of feedforward layers 3
Width of feedforward layers 30, 30, 300
Activation function of layers RELU
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Figure 6. Detailed overview of our model

Figure 7. Inferred mean intensity function of the point process
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