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ABSTRACT

Modern semantic segmentation methods devote much effect to adjusting image
feature representations to improve the segmentation performance in various ways,
such as architecture design, attention mechnism, etc. However, almost all those
methods neglect the particularity of class weights (in the classification layer) in
segmentation models. In this paper, we notice that the class weights of categories
that tend to share many adjacent boundary pixels lack discrimination, thereby
limiting the performance. We call this issue Boundary-caused Class Weights
Confusion (BCWC). We try to focus on this problem and propose a novel method
named Embedded Conditional Random Field (E-CRF) to alleviate it. E-CRF
innovatively fuses the CRF into the CNN network as an organic whole for more
effective end-to-end optimization. The reasons are two folds. It utilizes CRF
to guide the message passing between pixels in high-level features to purify the
feature representation of boundary pixels, with the help of inner pixels belonging
to the same object. More importantly, it enables optimizing class weights from
both scale and direction during backpropagation. We make detailed theoretical
analysis to prove it. Besides, superpixel is integrated into E-CRF and served as
an auxiliary to exploit the local object prior for more reliable message passing.
Finally, our proposed method yields impressive results on ADE20K, Cityscapes,
and Pascal Context datasets.

1 INTRODUCTION

Semantic segmentation plays an important role in practical applications such as autonomous driving,
image editing, etc. Nowadays, numerous CNN-based methods (Chen et al., 2014; Fu et al., 2019;
Ding et al., 2019) have been proposed. They attempt to adjust the image feature representation of
the model itself to recognize each pixel correctly. However, almost all those methods neglect the
particularity of class weights (in the classification layer) that play an important role in distinguishing
pixel categories in segmentation models. Hence, it is critical to keep class weights discriminative.
Unfortunately, CNN models have the natural defect for this. Generally speaking, most discriminative
higher layers in the CNN network always have the larger receptive field, thus pixels around the
boundary may obtain confusing features from both sides. As a result, these ambiguous boundary
pixels will mislead the optimization direction of the model and make the class weights of such
categories that tend to share adjacent pixels indistinguishable. For the convenience of illustration, we
call this issue as Boundary-caused Class Weights Confusion (BCWC). We take DeeplabV3+ (Chen
et al., 2018a) as an example to train on ADE20K (Zhou et al., 2017) dataset. Then, we count the
number of adjacent pixels for each class pair and find a corresponding category that has the most
adjacent pixels for each class. Fig 1(a) shows the similarity of the class weight between these pairs in
descending order according to the number of adjacent pixels. It is clear that if two categories share
more adjacent pixels, their class weights tend to be more similar, which actually indicates that BCWC
makes class representations lack discrimination and damages the overall segmentation performance.
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Previous works mainly aim to improve boundary pixel segmentation, but they seldom explicitly take
class weights confusion i.e., BCWC, into consideration 1.
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Figure 1: (a) Observations on ADE20K. We find a corresponding category that shares the most
adjacent pixels for each class and calculate the similarity of their class weights. X-axis stands for the
number of adjacent pixels for each class pair in descending order, and Y-axis represents the similarity
of their class weights. Blue line denotes baseline model while orange line denotes E-CRF. Apparently,
two categories that share more adjacent pixels are inclined to have more similar class weights, while
E-CRF effectively decreases the similarity between adjacent categories and makes their class weights
more discriminative. (b) Message passing procedure of E-CRF. F is the original feature maps of the
CNN network. E-CRF utilizes pairwise module ψf

p and auxiliary superpixel-based module ψf
s on F

to obtain refined feature maps F p and F s respectively. Then F , F p and F s are fused as F ∗ to further
segment the image.

Considering the inherent drawback of CNN networks mentioned before, delving into the relationship
between raw pixels becomes a potential alternative to eliminate the BCWC problem, and Conditional
Random Field (CRF) (Chen et al., 2014) stands out. It is generally known that pixels of the same
object tend to share similar characteristics in the local area. Intuitively, CRF utilizes the local
consistency between original image pixels to refine the boundary segmentation results with the help
of inner pixels of the same object. CRF makes some boundary pixels that are misclassified by the
CNN network quite easy to be recognized correctly. But these CRF-based methods (Chen et al., 2014;
Zhen et al., 2020a) only adopt CRF as an offline post-processing module, we call it Vanilla-CRF, to
refine the final segmentation results. They are incapable of relieving BCWC problem as CRF and the
CNN network are treated as two totally separate modules.

Based on Chen et al. (2014; 2017a), Lin et al. (2015); Arnab et al. (2016); Zheng et al. (2015)
go a step further to unify the segmentation model and CRF in a single pipeline for end-to-end
training. We call it Joint-CRF for simplicity. Same as Vanilla-CRF, Joint-CRF inclines to rectify
those misclassified boundary pixels via increasing the prediction score of the associated category,
which means it still operates on the object class probabilities. But it can alleviate the BCWC problem
to some extent as the probability score refined by CRF directly involves in the model backpropagation.
Afterwards, the disturbing gradients caused by those pixels will be relieved, which will promote the
class representation learning. However, as shown in Fig 3, the effectiveness of Joint-CRF is restricted
as it only optimizes the scale of the gradient and lacks the ability to optimize class representations
effectively due to the defective design. More theoretical analysis can be found in Sec. 3.3.

To overcome the aforementioned drawbacks, in this paper, we present a novel approach named
Embedded CRF (E-CRF) to address the BCWC problem more effectively. The superiority of E-CRF
lies in two main aspects. On the one hand, by fusing CRF mechanism into the segmentation model,
E-CRF utilizes the local consistency among original image pixels to guide the message passing of
high-level features. Each pixel pair that comes from the same object tends to obtain higher message
passing weights. Therefore, the feature representation of the boundary pixels can be purified by
the corresponding inner pixels from the same object. In turn, those pixels will further contribute
to the discriminative class representation learning. On the other hand, it extends the fashion of
optimizing class weights from one perspective (i.e., scale) to two (i.e., scale and direction) during

1These methods improve boundary segemetation and may have effect on class weights. But they are not
explicit and lack theoretical analysis. We show great benifit of explicitly considering BCWC issue. See A.4.1.
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Figure 2: Illustration of Joint-CRF and E-CRF. The first row is the simplified structure of Joint-CRF,
which unifies the CNN network and CRF in a single pipeline for end-to-end training. However, CRF
only serves as a post-processing module. The second row is the overview of our E-CRF, which fuses
CRF into CNN network as an organic whole to eliminate BCWC problem.

backpropagation. In Sec. 3.3, we prove theoretically that E-CRF outperforms other CRF-based
methods on eliminating the BCWC problem by optimizing both direction and scale of the disturbing
gradient of class weights. However, during this process, the noise information can also have a
direct influence on the class weights (likely to hinder the optimization for the BCWC problem). In
addition, E-CRF adopts superpixel (Ren & Malik, 2003) as an auxiliary and leverage its local prior to
suppress the noise and further strengthen the reliability of the message passing to the boundary pixels.
Superpixel groups adjacent pixels that share similar characteristics to form a block. It is prone to
achieve clear and smooth boundaries and increases the potential for higher segmentation performance.
In E-CRF, we average the deep feature representation of all inner pixels in the same superpixel block
and then add this local object prior to each pixel back to enhance the representation of boundary
pixels.

In this work, we explicitly propose the BCWC problem in semantic segmentation and an effective
approach to alleviate it. We conduct extensive experiments on three challenging semantic seg-
mentation benchmarks, i.e., ADE20K (Zhou et al., 2017), Cityscapes (Cordts et al., 2016), and
Pascal Context (Mottaghi et al., 2014), and yeild impressive results. For example, E-CRF outper-
forms baselines (DeeplabV3+ (Chen et al., 2018a) with ResNet-101 (He et al., 2016)) by 1.42%
mIoU on ADE20K and 0.92% mIoU on Cityscapes in single scale. In addition, we make an ex-
haustive theoretical analysis in Sec. 3.3 to prove the effectiveness of E-CRF. Code is available at
https://github.com/JiePKU/E-CRF.

2 RELATED WORK

Semantic Segmentation. Fully convolutional network (FCN) (Long et al., 2015) based methods
have made great progress in semantic segmentation by leveraging the powerful convolutional features
of classification networks (He et al., 2016; Huang et al., 2017) pre-trained on large-scale data (Rus-
sakovsky et al., 2015). There are several model variants proposed to enhance contextual aggregation.
For example, DeeplabV2 (Chen et al., 2017a) and DeeplabV3 (Chen et al., 2017b) take advantage
of the astrous spatial pyramid pooling (ASPP) to embed contextual information, which consists of
parallel dilated convolutions with different dilated rates to broaden the receptive field. Inspired by
the encoder-decoder structures (Ronneberger et al., 2015; Ding et al., 2018), DeeplabV3+ (Chen
et al., 2018a) adds a decoder upon DeeplabV3 to refine the segmentation results especially along
object boundaries. With the success of self-attention mechanism in natural language processing,
Non-local (Wang et al., 2018) first adopts self-attention mechanism as a module for computer vision
tasks, such as video classification, object detection and instance segmentation. A2Net (Chen et al.,
2018b) proposes the double attention block to distribute and gather informative global features from
the entire spatio-temporal space of the images.

Conditional Random Fields. Fully connected CRFs have been used for semantic image labeling in
(Payet & Todorovic, 2010; Toyoda & Hasegawa, 2008), but inference complexity in fully connected
models has restricted their application to sets of hundreds of image regions or fewer. To address
this issue, densely connected pairwise potentials (Krähenbühl & Koltun, 2011) facilitate interactions
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between all pairs of image pixels based on a mean field approximation to the CRF distribution.
Chen et al. (2014) show further improvements by post-processing the results of a CNN with a CRF.
Subsequent works (Lin et al., 2015; Arnab et al., 2016; Zheng et al., 2015) have taken this idea further
by incorporating a CRF as layers within a deep network and then learning parameters of both the
CRF and CNN together via backpropagation. In terms of enhancements to conventional CRF models,
Ladický et al. (2010) propose using an off-the-shelf object detector to provide additional cues for
semantic segmentation.

Superpixel. Superpixel (Ren & Malik, 2003) is pixels with similar characteristics that are grouped
together to form a large block. Since its introduction in 2003, there have been many mature
algorithms (Achanta et al., 2012; Weikersdorfer et al., 2013; Van den Bergh et al., 2012). Owing to
their representational and computational efficiency, superpixels are widely-used in computer vision
algorithms such as target detection (Shu et al., 2013; Yan et al., 2015), semantic segmentation (Gould
et al., 2008; Sharma et al., 2014; Gadde et al., 2016), and saliency estimation (He et al., 2015; Perazzi
et al., 2012). Yan et al. (2015) convert object detection problem into superpixel labeling problem
and conducts an energy function considering appearance, spatial context and numbers of labels.
Gadde et al. (2016) use superpixels to change how information is stored in the higher level of a CNN.
In (He et al., 2015), superpixels are taken as input and contextual information is recovered among
superpixels, which enables large context to be involved in analysis.

We give a detailed discussion about the difference between E-CRF and three highly related works
including PCGrad (Yu et al., 2020b), OCNet (Yuan & Wang, 2018), and SegFix (Yuan et al., 2020b)
in Appendix A.5.

3 METHOD

3.1 REVISITING CONDITIONAL RANDOM FIELD (CRF)

CRF is a typical discriminative model suitable for prediction tasks where contextual information
or the state of the neighbors affects the current prediction. Nowadays, it is widely adopted in the
semantic segmentation field (Krähenbühl & Koltun, 2011; Chen et al., 2014). CRF utilizes the
correlation between original image pixels to refine the segmentation results by modeling this problem
as the maximum a posteriori (MAP) inference in a conditional random field (CRF), defined over
original image pixels. In practice, the most common way is to approximate CRF as a message passing
procedure among pixels and it can be formulated as:

Y ∗
i =

1

Zi
(ψu(i) +

G∑
j ̸=i

ψp(i, j)Yj) , (1)

where Yi and Y ∗
i are defined as the classification scores of CNN model and CRF respectively for

pixel i, Zi is the normalization factor known as the partition function, and ψu(i) is a unary function
which often adopts Yi as the default value. G is the associated pixel set with pixel i. For example,
DenseCRF (Krähenbühl & Koltun, 2011) takes all other pixels except pixel i itself as the set G.
Moreover, the pairwise function ψp(i, j) is defined to measure the message passing weight from pixel
j to pixel i. It is formulated as:

ψp(i, j) = µ(i, j)

M∑
m=1

ω(m)k(m)(fi, fj)︸ ︷︷ ︸
k(fi,fj)

, (2)

where µ(i, j) is a label compatibility function that introduces the co-occurrent probability for a
specific label pair assignment at pixel i and j, while k(fi, fj) is a set of hand-designed Gaussian
kernels, fi and fj are feature vectors of pixel i and j in any arbitrary feature space, such as RGB
images. w(m) is the corresponding linear combination weight for each Gaussian kernel. When
dealing with multi-class image segmentation, M=2 is a common setting. Then, k(fi, fj) is carefully
designed as contrast-sensitive two-kernel potentials, defined in terms of color vectors (Ii, Ij) and

4



Published as a conference paper at ICLR 2023

position coordinates (pi, pj) for pixel i and j respectively:

k(fi, fj) = w(1) exp

(
−|pi − pj |2

2θ2α
− |Ii − Ij |2

2θ2β

)
︸ ︷︷ ︸

appearance kernel

+ w(2) exp

(
−|pi − pj |2

2θ2γ

)
︸ ︷︷ ︸
smoothness kernel

. (3)

The appearance kernel is inspired by the observation that nearby pixels with similar colors are more
likely to share the same class. θα and θβ are scale factors to control the degree of these two elements,
i.e., similarity and distance between two pixels. Apart from this, the smoothness kernel further
removes the influence of some small isolated regions (Krähenbühl & Koltun, 2011) and θγ is the
associated scale factor. Notably, all these parameters are learnable during the model training.

Unfortunately, current CRF-based methods (Chen et al., 2014; 2017a; Lin et al., 2015; Liu et al.,
2015) for semantic segmentation always adopt CRF as a post-processing module. For example,
Vanilla-CRF (Chen et al., 2014; 2017a) utilizes CRF to refine segmentation scores offline, which
has no impacts on BCWC since the CNN network and CRF are treated as two separate modules.
Joint-CRF (Lin et al., 2015; Liu et al., 2015; Lin et al., 2016) works in a similar way although CRF
involves in the backpropagation of CNN networks, restricting its ability to relieve BCWC.

3.2 EMBEDDED CRF

To solve the BCWC problem in a more intrinsical way, we propose a novel method named Embedded
CRF (E-CRF) to tackle the tough problem via fusing the CRF mechanism into the CNN network as
an organic whole for more effective end-to-end training. An overview of E-CRF can be found in
Fig 2 and we formulate its core function based on Eq (1) as:

F ∗
i =

1

Zi

ψf
u(i) +

G∑
j ̸=i

ψf
p (i, j)Fj + FS

i

 . (4)

Specifically, the first two terms are analogous to Eq (1) but we perform CRF mechanism on the
high-level features. Fi stands for the original output of feature extractors for pixel i, ψf

u(i) and
ψf
p (i, j) play the same role as they do in Eq (1). ψf

u(i) takes Fi as the default value. In addition, we
reformulate ψf

p (i, j) to perform message passing between pixel pairs in the high-level feature:

ψf
p (i, j) = µf (i, j)k(fi, fj) . (5)

It is worth noting that k(fi, fj) is no longer hand-designed Gaussian kernels as it is in Eq (1) but
simple convolution operators instead to make the whole model more flexible for end-to-end training
and optimization. Experiments in Sec. 4 prove this modification is a more suitable choice:

k(fi, fj) = fi · fj = conv([Ii, pi]) · conv([Ij , pj ]) , (6)

where [x, y] denotes the concatenation operator. Different from Eq (3), we normalize the input
image I into the range [0, 1] to eliminate the scale variance between pixels and we replace original
absolute position coordinates p with cosine position embeddings (Vaswani et al., 2017) to make it
more compatible with CNN networks. E-CRF encodes the appearance and position of pixels into
more discriminative tokens via the flexible convolution operation, then the dot product is adopted to
measure the similarity between pixel pairs. As indicated in Eq (6), E-CRF intends to make nearby
pixel pairs that share same appearance to achieve higher k(fi, fj). Its intention is the same as Eq (3).
Correspondingly, we also adjust µf (i, j) as the feature compatibility to measure the co-occurrent
probability of Fi and Fj :

µf (i, j) = sigmoid(conv[Fi, Fj ]) . (7)

Another component in Eq (4) is FS
i . It relies on the superpixel algorithm (Ren & Malik, 2003;

Weikersdorfer et al., 2013; Van den Bergh et al., 2012; Gadde et al., 2016) to divide the whole image
I into several non-overlapping blocks. Pixels in the same superpixel block tend to share the same
characteristics. Thus, we adopt this local object prior to achieve the more effective message passing
between pixels in the high-level feature space. Concretely, we design FS

i as:

FS
i =

Q∑
l

ψf
s (l)Fl =

Q∑
l

1

n
Fl (8)
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Figure 3: Different optimization effects for baseline, Joint-CRF and E-CRF. W1 and W2 are two
class weight vectors that share adjacent pixels. ∇W is the gradient variation for W1 and W ∗

1 is the
new class weight after gradient descent. Fk is a sample boundary pixel whose ground-truth label
keeps consistent with W1 but contains confusing features from both sides. θ measures the distance
between W2 and W ∗

1 . (a) ∇W tends to push W1 towards W2 due to the confusing features from both
classes. (b) Joint-CRF eases the disturbing gradients and reduces the scale of ∇W . Obviously, θ2 is
larger than θ1. (c) E-CRF aims to enhance the feature representation of Fk via the inner pixels like
Fj from the same object. It adjusts both scale and direction of ∇W to make θ3 > θ2 > θ1.

Q is the associated superpixel block that contains pixel i and ψf
s (l) devotes the re-weighting factor

for the deep features of pixel l in Q. We adopt ψf
s (l) =

1
n and n is the total number of pixels in

Q. FS
i serves as a supplement in Eq (4) to add the local object prior to each pixel back, which

increases the reliability of message passing in E-CRF. What’s more, superpixel (Gould et al., 2008;
Sharma et al., 2014; Gadde et al., 2016) always tends to generate clearer and smoother boundary
segmentation results than traditional CNN networks or CRFs do, which also increases the potential
for more accurate segmentation results. Detailed experiments can be found in Sec. 4.

3.3 HOW E-CRF RELIEVES BCWC

In this section, without loss of generality, we take multi-class segmentation problem as an example
to dive into the principle of E-CRF from the perspective of gradient descent. Suppose Fk is the
feature vector of a foreground boundary pixel k whose class label is c ∈ [0, n− 1] and its prediction
probability is P c

k . Then, considering the label yk is one-hot form, the typical cross-entropy loss Lk

can be defined as:

Lk = −
i<n∑
i=0

yik lnP
i
k = − lnP c

k , (9)

P c
k = softmax(Y c

k ) =
eY

c
k

(
∑
m̸=c

eY
m
k ) + eY

c
k
, and Y c

k =WT
c ·Fk , (10)

where Wc is the class weight of c-th category. Y m
k is calculated by other class weights and unrelated

with Wc and Y c
k . Below the gradient variation ∇Wc can be formulated as:

∇Wc =
∂Lk

∂Wc
=
∂Lk

∂P c
k

· ∂P
c
k

∂Y c
k

· ∂Y
c
k

∂Wc
(11)

Through Eq (9), Eq (10) and Eq (11), class weight in the next iteration will be updated 2:

W ∗
c =Wc −∇Wc =Wc + (1− P c

k ) · Fk (12)

As shown in Eq (12), the direction of the gradient descent keeps the same as Fk while the magnitude
of the gradient is decided by P c

k . What happens if we integrate the CRF into the segmentation
pipeline? As we have discussed in Sec. 1, Vanilla-CRF has nothing to do with the optimization
process of CNN networks, while if we adopt Joint-CRF, ∇Wc can be reformulated as:

−∇Wc = (1− P̂ c
k ) · Fk = (1− 1

Zk
(
∑
j∈G

wjP
c
j + P c

k ))︸ ︷︷ ︸
scale

·Fk (13)

2The detailed derivation process can be found in our Appendix A.1.
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where P̂ c
k is the refined score by CRF, wj is the message passing weight from pixel j to pixel k and

P c
j is the original score of pixel j. In general, boundary pixel k is hard to classify correctly due to

the confusing features from both sides. Thus the original probability P c
k is always small. In contrast,

other inner pixels of the same object are easy to recognize and tend to achieve a higher probability.
Consequently, P̂ c

k is usually larger than P c
k and disturbing gradients caused by boundary pixel will

be relieved to some extent, which makes inter-class distance further as shown in Fig 3(b). However,
Eq (13) only adjusts the scale of the gradient descent while the direction still keeps the same as Fk,
which weakens its effects for better representation learning. When it comes to our proposed E-CRF,
∇Wc can be further defined as:

−∇Wc = (1− P c
k
∗) · F ∗

k = (1− P c
k
∗)︸ ︷︷ ︸

scale

· 1
Zk

(
∑
j∈G

wjFj︸ ︷︷ ︸
direction

+Fk) (14)

P c
k
∗ = softmax(

∑
j∈G

wjY
c
j + Y c

k ) (15)

where F ∗
k is the refined feature representations by E-CRF, and P c∗

k is the refined score which is
analogous to P̂ c

k in Eq (13). Comparing with Joint-CRF, it is clear that E-CRF not only changes the
scale of the gradient descent but also adjusts its optimization direction. The optimization process
is directly applied to the class weight matrix (in the final layer), which opens up room for more
discriminative class weights. In other words, we can adjust the class weight from both the scale
and direction to make the class weights more discriminative to decrease the class weights similarity
(or class weights confusion). As depicted in Fig 3(c), assume W1 is the class weight vector that a
pixel belongs to, while W2 is the other one which has a higher co-occurrent probability with W1

in the same image. E-CRF designs an effective message passing procedure to purify the feature
representation of boundary pixels assisted by inner pixels from the same object (Fj in Fig 3(c)). In
this way, it relieves the influence of disturbing gradients and makes the inter-class distance between
W1(W ∗

1 ) and W2 further, which means more discriminative feature representations.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We follow the previous works (Chen et al., 2014; He et al., 2019b; Chen et al., 2018a) and perform
experiments on three challenging semantic segmentation benchmarks, i.e., ADE20K (Zhou et al.,
2017), Cityscapes (Cordts et al., 2016) and Pascal Context (Mottaghi et al., 2014). Due to the
space limit, a detailed description of these three datasets can be found in our Appendix A. We adopt
DeeplabV3+ (Chen et al., 2018a) with ResNet (He et al., 2016) pretrained on ImageNet (Russakovsky
et al., 2015) as our baseline to implement E-CRF. The detailed information follows standard settings
in (Chen et al., 2014; 2018a) and we add it into our Appendix A. Specially, we employ SLIC (Achanta
et al., 2012), a common superpixel segmentation algorithm, to divide each image of ADE20K,
Cityscapes and Pascal Context into 200, 600, and 200 blocks respectively. Note that the superpixel is
generated offline. To verify the effectiveness of our approach for semantic segmentation, we adopt
two common metrics in our experiments, i.e., class-wise mIoU to measure the overall segmentation
performance and 1-pixel boundary F-score (Takikawa et al., 2019; Tan et al., 2023) to measure the
boundary segmentation performance.

4.2 ABLATION STUDY

4.2.1 COMPARISONS WITH RELATED METHODS

As shown in Table 1, we compare our proposed E-CRF with other traditional CRF-based methods,
i.e., Vanilla-CRF and Joint-CRF. First of all, it is clear that all the CRF-based methods outperform the
baseline model by a large margin, which well verifies the main claim in (Chen et al., 2014; 2017a;
Lin et al., 2015; Liu et al., 2015; Lin et al., 2016) that CRF is beneficial to boundary segmentation
(F-score). What’s more, E-CRF achieves the best result among all those methods, which surpasses
the baseline model with up to 1.48% mIoU and 2.20% F-score improvements. E-CRF fuses the CRF
mechanism into the CNN network as an organic whole. It relieves the disturbing gradients caused
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Table 1: Comparisons with baseline, Vanilla-CRF and Joint-CRF on ADE20K val dataset. 3It stands
for DeeplabV3+ followed by DenseCRF. 4An end-to-end manner of Vanilla-CRF, similar to (Zheng
et al., 2015).

Method ResNet-50 ResNet-101

F-score (%) mIoU (%) F-score (%) mIoU (%)

DeeplabV3+ 14.25 42.72 16.15 44.60
Vanilla-CRF 3 16.26 43.18 (+0.46) 17.89 45.14 (+0.54)
Joint-CRF 4 16.32 43.69 (+0.96) 18.03 45.61 (+1.01)
E-CRF (Ours) 16.45 44.20 (+1.48) 18.32 46.02 (+1.42)

by the BCWC problem and adjusts the feature representations to boost the overall segmentation
performance and the boundary segmentation. Fig 1(a) also proves that E-CRF can decrease the inter-
class similarity consistently which results in more discriminative feature representations. Experiments
on Cityscapes dataset can be found in our Appendix A.

4.2.2 ABLATION ON MESSAGE PASSING STRATEGIES

As we have discussed in Sec. 3.2, two message passing components, i.e., pairwise module ψf
p and

superpixel-based module ψf
s , play vital roles in our proposed E-CRF. Table 2 shows that ψf

p and ψf
s

can boost the overall segmentation performance on ADE20K val dataset with up to 1.19% mIoU and
1.25% mIoU gains when integrated into the baseline model respectively. Moreover, if we fuse them
as a whole into E-CRF, they can further promote the segmentation performance by up to 1.48% mIoU
improvements. We also compare with Non-local (Wang et al., 2018), another famous attention-based
message passing method, into our experiments for comprehensive comparisons even though it actually
has different design concepts from ours. Unfortunately, we find that although Non-local achieves
improvements over the baseline, it is still inferior to our E-CRF.

Table 2: Comparisons between message passing strategies, and ablation studies for different message
passing components in E-CRF, pairwise ψf

p and auxiliary superpixel-based ψf
s .

Method ψf
p ψf

s
mIoU(%)

ResNet-50 ResNet-101

DeeplabV3+ 42.72 44.60
+ Non-local 43.52 (↑ 0.80) 45.34 (↑ 0.74)

E-CRF
✓ 43.91 (↑ 1.19) 45.47 (↑ 0.87)

✓ 43.83 (↑ 1.11) 45.85 (↑ 1.25)
✓ ✓ 44.20 (↑ 1.48) 46.02 (↑ 1.42)

4.2.3 ABLATION OF SUPERPIXEL NUMBERS

We follow standard settings in our paper and take DeeplabV3+ based on ResNet-50 as the
baseline model to present the performance of E-CRF under different superpixel numbers. De-
tailed comparisons on ADE20K dataset are reported in Table 3 and SP denotes SuperPixel. As
shown in Table 3, different numbers of superpixels indeed affect the performance of E-CRF.

Table 3: Comparisons with different superpixel
numbers on ADE20K val dataset.

SP num mIoU w\ ψf
p (%) mIoU w\o ψf

p (%)

No 43.91 42.72
100 44.02 43.43
200 44.20 43.83
300 44.13 43.56
400 43.96 43.22

Intuitively, when the number of superpixels is
200, E-CRF acquires the best performance as
it achieves a better trade-off between the su-
perpixel purity and the long-range dependency.
Moreover, it is worth noting that when the pair-
wise message passing strategy (i.e., ψf

p ) is also
adopted in E-CRF, it becomes more robust to
the different numbers of superpixels that may
introduce noise, as our adaptive message pass-
ing mechanism (including ψf

p and ψf
s ) can be

compatible with the variance.

More ablation studies including comparison of different boundary refinement and computational cost
are presented in Appendix A.4.
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Table 4: Comparisons with other state-of-the-art methods on ADE20K val dataset, Cityscapes val
and test, and Pascal Context val dataset.

Method
backbone mIoU(%)

ADE-val City-val City-test Pas-Con
CCNet (Huang et al., 2019) ResNet101 45.22 81.3 81.9 -
ANL (Zhu et al., 2019) ResNet101 45.24 - - 52.8
GFFNet (Li et al., 2020c) ResNet101 45.33 81.8 82.3 54.2
APCNet (He et al., 2019b) ResNet101 45.38 - - 54.7
DMNet (He et al., 2019a) ResNet101 45.50 - - 54.4
SpyGR (Li et al., 2020a) ResNet101 - 80.5 81.6 52.8
RecoNet (Chen et al., 2020) ResNet101 45.54 81.6 82.3 54.8
SPNet (Hou et al., 2020) ResNet101 45.60 - - 54.5
DNL (Yin et al., 2020) ResNet101 45.82 - - 55.3
RANet (Shen et al., 2020) ResNet101 - 81.9 82.4 54.9
ACNet (Fu et al., 2019) ResNet101 45.90 82.0 82.3 54.1
HANet (Choi et al., 2020) ResNet101 - 82.05 82.1 -
RPCNet (Zhen et al., 2020b) ResNet101 - 82.1 81.8 -
CaCNet (Liu et al., 2020) ResNet101 46.12 - - 55.4
CPNet (Yu et al., 2020a) ResNet101 46.27 - - 53.9
STLNet (Zhu et al., 2021) ResNet101 46.48 82.3 82.3 55.6
E-CRF (Ours) ResNet101 46.83 82.74 82.5 56.1

4.3 COMPARISONS WITH SOTA METHODS

In this research, we mainly focus on the Boundary-caused Class Weight Confusion (BCWC) in CNN
models. Hence, in this section, we choose CNN-based methods for fair comparisons.5

ADE20K. We first compare our E-CRF (ResNet101 as backbone) with existing methods on the
ADE20K val set. We follow standard settings in (Huang et al., 2019; Yuan et al., 2020a; Zhu et al.,
2021) to adopt multi-scale testing and left-right flipping strategies. Results are presented in Table 4.
It is shown that E-CRF outperforms existing approaches. Segmentation visualization is presented in
our Appendix

Cityscapes. To verify the generalization of our method, we perform detailed comparisons with other
SOTA methods on Cityscapes val and test set. Multi-scale testing and left-right flipping strategies
are also adopted. The results with ResNet101 as backbone are reported in Table 4. Remarkably, our
algorithm achieves 82.74% mIoU in val set and outperforms previous methods by a large margin.

Pascal Context. To further verify the generalization of E-CRF (ResNet101 as backbone), we compare
our method with other SOTA method on Pascal Context dataset as shown in Table 4. We adopt
multi-scale testing and left-right flipping strategies as well. The result suggests the superiority of our
method.

5 CONCLUSION AND FUTURE WORKS

In this paper, we focus on the particularity of class weights in semantic segmentation and explicitly
consider an important issue , named as Boundary-caused Class Weights Confusion (BCWC). We
dive deep into it and propose a novel method, E-CRF, via combining CNN network with CRF as
an organic whole to alleviate BCWC from two aspects (i.e., scale and direction). In addition, we
make an exhaustive theoretical analysis to prove the effectiveness of E-CRF. Eventually, our proposed
method achieves new results on ADE20K, Cityscapes, and Pascal Context datasets.

There are two important directions for future research. In this work, we use SLIC, a common
cluster-based algorithm for fast implementation. There exist many other superpixel algorithms such
as graphical-based (Felzenszwalb & Huttenlocher, 2004) and CNN-based (Jampani et al., 2018) that
may give better boundary results for objects. Therefore how these different methods influence the
performance in our framework is interesting. Besides, We find that transformer-based networks suffer
from BCWC issue as well and make a preliminary exploration. More works are expected to focus on
this issue.

5We also conduct experiments based on SegFormer (Xie et al., 2021) to make a preliminary exploration in
our Appendix B as we found that BCWC issue also exists in transformer-based models.
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A APPENDIX

A.1 FORMULA DERIVATION

Firstly, we give the gradient equation of ∇Wc mentioned in this paper:

∇Wc =
∂Lk

∂Wc
=
∂Lk

∂P c
k

· ∂P
c
k

∂Y c
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· ∂Y
c
k

∂Wc
. (16)

According to it, we present the derivative of each term respectively:
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and
∂Y c

k

∂Wc
= Fk . (19)

Further, it is worth noting that P c
k is given by:

P c
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(
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k
. (20)

To simplify Eq (18), we take Eq (20) into account. Thus, Eq (18) is formulated as:
∂P c

k

∂Y c
k

= P c
k − P c

k · P c
k = P c

k · (1− P c
k ) . (21)

So after integrating Eq (17), Eq (21), and Eq (19), Eq (16) can be formulated as:

∇Wc =
∂Lk

∂Wc
= − 1

P c
k

· P c
k · (1− P c

k ) · Fk = −(1− P c
k ) · Fk . (22)

Finally, the class weights W ∗
c in the next iteration will be updated:
W ∗

c =Wc −∇Wc =Wc + (1− P c
k ) · Fk . (23)

A.2 EXPERIMENT SETUP

ADE20K ADE20K (Zhou et al., 2017) is one of the most challenging benchmarks, containing 150
fine-grained semantic concepts and a variety of scenes with 1,038 image-level labels. There are
20210 images in training set and 2000 images in validation set.

Cityscapes Cityscapes (Cordts et al., 2016) has 5,000 images captured from 50 different cities. Each
image has 2048 × 1024 pixels, which have high quality pixel-level labels of 19 semantic classes.
There are 2,975 images in training set, 500 images in validation set and 1,525 images in test set. We
do not use coarse data in our experiments.

Pascal Context PASCAL Context (Mottaghi et al., 2014) is a challenging scene understanding
dataset, which provides the semantic labels for the images. There are 4, 998 images for training and
5, 105 images for validation on PASCAL Context dataset. In our experiment, the 59 most frequent
categories are used for training.

Implementation Details. The initial learning rate is set as 0.01 for both datasets. We employ a
poly learning rate strategy where the initial learning rate is multiplied by (1− iter/totaliter)

0.9

after each iteration. We set training time to 80000 iterations for ADE20K and Pascal Context, and
180 epochs for Cityscapes. Momentum and weight decay coefficients are set as 0.9 and 0.0005,
respectively. For data augmentation, we apply the common scale (0.5 to 2.0), cropping and flipping
of the image to augment the training data. Input size for ADE20K dataset is set to 512 × 512, and
480 × 480 is for Pascal Context while input size for Cityscapes dataset is set to 832 × 832. The
syncBN (Peng et al., 2018) is adopted in all experiments, and batch size on ADE20K and Pascal
Context is set to 16 and it is set to 8 for Cityscapes.
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A.3 COMPARISONS WITH RELATED METHODS ON CITYSCAPES

To further evaluate our proposed method, we thoroughly compare our approach with baseline and
other traditional CRF-based methods, i.e., Vanilla-CRF and Joint-CRF on Cityscapes dataset. As
shown in Table 5, E-CRF achieves the best result among all those methods, which outperforms the
baseline model by 0.92% in mIoU and 3.81% in F-score respectively. Obviously, our method is
more effective than both Vanilla-CRF and Joint-CRF.

Method ResNet-50 ResNet-101

F-score (%) mIoU (%) F-score (%) mIoU (%)

DeeplabV3+ 60.48 79.54 61.94 80.85
Vanilla-CRF 62.38 79.65 (+0.11) 63.46 80.92 (+0.07)
Joint-CRF 63.44 79.78 (+0.24) 64.43 81.05 (+0.20)
E-CRF (Ours) 64.29 80.35 (+0.81) 65.57 81.77 (+0.92)

Table 5: Comparisons with baseline, Valina-CRF and Joint-CRF on Cityscapes val dataset.

A.4 MORE ABLATION STUDIES

A.4.1 DIFFERENT BOUNDARY REFINEMENT

We consider three typical methods inlcuding Segfix Yuan et al. (2020b), DecoupleSegNet Li et al.
(2020b), and ABL 6 (Wang et al., 2022). They refine boundary segmentation via post-processing,
improving boundary representation, and adding boundary allignment loss respectively. But all of
them ignore the existence of BCWC issue, which may restrict their capability. In Table 4, we use
DeeplabV3+ with ResNet101 as our baseline method. For Segfix, we use the official code (It uses
HRNet as backbone) to boost the performance of DeeplabV3+. For DecoupleSegNet which is
constructed based on DeeplabV3+, we also use the official code (It uses ResNet101 as backbone).
All the models are trained on ADE20K for 80K iterations with batch size set to 16. When testing,
we adopt the single-scale testing strategy (i.e., raw image) because using a single scale (i.e., raw
images) when comparing with baselines or performing ablation studies is a traditional default setting
in the semantic segmentation field. The goal is to eliminate the effect of other elements (e.g., image
augmentation).

Table 6: Comparisons with other boundary refining
methods on ADE20K val dataset.

Method mIoU (%) F-score (%)
DeeplabV3+ (Chen et al., 2018a) 44.60 16.15
SegFix (Yuan et al., 2020b) 45.62 18.14
DecoupleSegNet (Li et al., 2020b) 45.73 18.02
ABL (Wang et al., 2022) 45.38 -
E-CRF 46.02 18.32

It is observed that all the methods enhance
the performance and E-CRF achieves the
highest mIoU and F-score. We speculate
that this is because E-CRF has explicitly
considered the BCWC problem and opti-
mizes the class weights from both scale
and direction aspects while refining bound-
ary representation. It also indicates the im-
portance of obtaining distinguishable class
weights in semantic segmentation.

A.4.2 COMPARISONS ON COMPUTATIONAL COSTS

We take DeeplabV3+ based on ResNet101 as the baseline model to perform the training time
comparisons. Image size is set to 512 × 512 and all the experiments are conducted on 8 GeForce
RTX 2080Ti GPUs with two images per GPU. The FLOPs, parameter size, and inference FPS are
also reported in Table 7. We can find that our proposed E-CRF brings negligible extra costs over the
baseline model. The cost difference between E-CRF and Joint-CRF is marginal. We also measure the
time consuming of superpixel method (5ms), which is much smaller than that of inference (55ms).

6The authors do not provide the code in their paper. Hence, we just report the result based on OCRNet (Yuan
et al., 2020a) in their paper.
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Table 7: Comparisons on Computational costs on ADE20K dataset.
Method Backbone Training Time(s) FLOPs(G) Parameters(M) FPS
DeeplabV3+ ResNet101 0.71 254.8 60.1 19.75
Vanilla-CRF ResNet101 0.71 254.8 60.1 1.86
Joint-CRF ResNet101 0.73 254.9 60.2 19.04
E-CRF ResNet101 0.74 255.0 60.2 18.32

A.5 DISCUSSION

In this section, we discuss the difference between E-CRF and three related works including PC-
Grad (Yu et al., 2020b), OCNet (Yuan & Wang, 2018), and SegFix (Yuan et al., 2020b).

Difference between Projecting Conflicting Gradients (PCGrad) and E-CRF: PCGrad and E-CRF
are both gradient-based methods that focus on adjusting the gradient properly to optimize the learning
process more effectively and efficiently. PCGrad is designed to mitigate a key optimization issue in
multi-task learning caused by conflicting gradients, where gradients for different tasks point away
from one another as measured by a negative inner product. If two gradients are conflicting, PCGrad
alters the gradients by projecting each onto the normal plane of the other, preventing the interfering
components of the gradient from being applied to the network. The idea behind PCGrad is simple
and the method is effective. PCGrad is a task-level gradient optimization method, mainly focusing
on conflicting gradients caused by multiple tasks during training (e.g., in semantic segmentation
and depth estimation). E-CRF is a finer-grained pixel-level gradient optimization method. E-CRF
mainly aims at mitigating the boundary-caused class weights confusion in semantic segmentation via
adjusting class weights from both scale and direction.

Difference between OCNet and E-CRF: OCNet uses self-attention to implement the object context
pooling module. The object context pooling estimates the context representation of each pixeliby
aggregating the representations of the selected subset of pixels based on the estimated dense relation
matrix. Further, OCNet combines context pooling module with the conventional multi-scale context
schemes including PPM and ASPP. In E-CRF, we follow the idea behind Conditional Random Filed
and embed it from logit space to deep-feature space. We instance the unary function and reformulate
the pairwise function with a convolutional-based kernel. The kernel takes raw image RGB value and
relative position embeddings as inputs (See Eq (6)), which is different from self-attention that takes
extracted deep features as inputs. We also maintain one special term in CRF called label compatibility
and transfer it to feature compatibility (See Eq (7)). Such is missing in self-attention. Besides, we do
not measure the similarity between superpixel center and boundary pixels. We simply leverage the
local prior in superpixel and use it to guide deep feature averaging. The motivation is to suppress
noise information. Finally, the motivation between OCNet and E-CRF is different. OCNet mainly
focuses on integrating as much object context as possible while E-CRF explicitly targets on the
BCWC problem and optimizes class weights from both scale and direction.

Difference between SegFix and E-CRF: SegFix first encodes input image and predicts a boundary
map and a direction map. Then SegFix uses the predicted boundary map and offset map derived
from the direction map to correct the wrongly classified boundary pixels via internal points with
high confidence. SegFix is beneficial for refining boundary segmentation and is served as a post-
processing method, thus lacking the capability to alleviate BCWC problem. Our method is derived
from traditional CRF (a post-processing method) and can be regarded as a plug-and-play module. It
can be easily integrated with other methods. Besides, our method extends the optimization flexibility
for BCWC problem. Empirically, we have compared Segfix and E-CRF based on DeeplabV3+ in
Table 6 (Please see A.4.1). E-CRF produces 46.02% for mIoU on ADE20K, outperforming SegFix
(45.62%) by 0.4%. This indicates the importance of alleviating BCWC problem.

A.6 PAIRWISE MESSAGE PASSING VISUALIZATION

E-CRF takes an equivalent transformation to replace hand-designed Gaussian kernels in Vanilla-
CRF with simple convolution operators for more flexible end-to-end optimization. The convolution
operation involves two aspects. One is the appearance similarity and the other one is the relative
position between pixels. As depicted in Fig 4(a), we take a pixel k in the stool for an example and
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show its relationship with other pixels in the image. Fig 4(b) and Fig 4(c) show its appearance
similarity and cosine position embedding with other pixels respectively. It is clear that pixels share
similar colors or close to the target pixel k tend to be highlighted. Subsequently, in Fig 4(d), we
directly visualize the results of our pairwise message passing module ψf

p defined in Eq.(5). We can
find that ψf

p becomes concentrated on the most relevant pixels compared with the pixel k, which
verifies the reliability of our pairwise message passing design.

Target point

(a) (b) (c) (d)

k

Figure 4: Visualization of pairwise message passing module ψf
p in E-CRF. (a) A target pixel k of

the stool in the image. (b) The appearance similarity between other pixels and k. Pixels share the
similar colors with k tend to be highlighted. (c) The visualization of the relative position between k
and other pixels. Pixels close to k achieve higher values. (d) The visualization of ψf

p in E-CRF. ψf
p

focuses more on most relevant pixels compared to k.

Figure 5: Visualization comparisons between our method and baseline on ADE20K validation set. (a)
Images from ADE20K dataset. (b) Segmentation output from DeeplabV3+. (c) Segmentation output
from our method. Obviously, compared with baseline, the results are segmented well by E-CRF. (d)
Image labels.

18



Published as a conference paper at ICLR 2023

B BCWC IN TRANSFORMER

Are transformer-based models also suffering from Boundary-caused Class Weight Confusion? Is our
method effective to transformer-based models? To answer these questions, we make a preliminary
exploration in this section.

B.1 OBSERVATIONS ON ADE20K
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Figure 6: Class weight similarity on transformer-based model

Following the same idea in Fig.1(a)
of this paper, we take Segformer (Xie
et al., 2021) (a transformer-based seg-
mentation model) as an example to
train on ADE20K (Zhou et al., 2017)
dataset. We count the number of ad-
jacent pixels for each class pair and
find a corresponding category that
has the most adjacent pixels for each
class. Then, we calculate the simi-
larity of their class weights and de-
pict it in Fig 6. X-axis stands for the
number of adjacent pixels for each
class pair in descending order, and Y-
axis represents the similarity of their
class weights. Blue line denotes Seg-
former while orange line denotes E-
CRF based on Segformer. As shown
in Fig 6, two categories that share more adjacent pixels are inclined to have more similar class
weights, while E-CRF effectively decreases the similarity between adjacent categories and makes
their class weights more discriminative. These observations on transformer-based model are quite
similar to previous results in CNN-based models. Apparently, transformer-based models are also
suffering from Boundary-caused Class Weight Confusion.

B.2 EFFECTIVENESS ON TRANSFORMER

To evaluate the effectiveness of our method, we take Segformer (Xie et al., 2021) (based on MiT-B5)
as our transformer baseline and incoporate E-CRF into it. Experiments are conducted on ADE20K
and Cityscapes datasets. Similarly, we also compare our method with other traditinal CRF-based
methods, i.e., Vanilla-CRF and Joint-CRF 7. As shown in Table 8, E-CRF achieves the best result
among all those methods, which surpasses the baseline model with up to 1.01% mIoU and 3.81%
F-score improvements. By E-CRF relieves the disturbing gradients caused by the BCWC problem
boost the overall segmentation performance and the boundary segmentation. Fig 6 also proves that
E-CRF can decrease the inter-class similarity consistently which results in more discriminative feature
representations.

Method ADE20K Cityscapes

F-score (%) mIoU (%) F-score (%) mIoU (%)

Segformer 18.53 49.13 62.42 82.25
Vanilla-CRF 21.72 49.36 (+0.23) 64.06 82.31 (+0.06)
Joint-CRF 21.91 49.55 (+0.42) 64.93 82.41 (+0.16)
E-CRF (Ours) 22.34 50.14 (+1.01) 66.05 83.07 (+0.82)

Table 8: Comparisons with baseline, Valina-CRF, and Joint-CRF on ADE20K and Cityscapes val
datasets.

7Note that they are also based on Segformer
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B.3 COMPARISONS WITH SOTA METHODS

To further verify the effectiveness, we compare our methods with other transformer-based SOTA
methods with similar number of parameters (except SETR) for fair comparisons in both ADE20K
and Cityscapes datasets. Multi-scale testing and left-right flipping strategies are adopted. As shown
in Table 9, our method achieves the best results among all the SOTA methods in both ADE20K and
Cityscapes datasets. Besides, our method also has the smallest number of parameters.

Table 9: Comparisons with other transformer-based SOTA methods on ADE20K val dataset and
Cityscapes val and test dataset.

Method Backbone
mIoU(%)

ADE-val City-val City-test Params (M)

SETR (Zheng et al., 2021) ViT-L (307M) 50.20 82.15 82.2 310M
UperNet Swin-B (Liu et al., 2021) (88M) 49.65 - - 121M
UperNet Twins-L (Chu et al., 2021) (99M) 50.20 - - 133M
SegFormer (Xie et al., 2021) MiT-B5 (81M) 50.22 83.48 82.2 85M
UperNet XCiT-M24 (Chu et al., 2021) (84M) 48.40 - - 109M
DPT (Ranftl et al., 2021) ViT-B (86M) 48.34 - - 112M
Segmentor (Strudel et al., 2021) DeiT-B (86M) 50.08 80.60 - 86M

E-CRF (Ours) MiT-B5 (81M) 51.28 83.7 82.5 85M
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