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ABSTRACT

Transformer-based models have achieved state-of-the-art results in many natural
language processing tasks. The self-attention architecture allows transformer to
combine information from all elements of a sequence into context-aware repre-
sentations. However, information about the context is stored mostly in the same
element-wise representations. This might limit the processing of properties related
to the sequence as a whole more difficult. Adding trainable memory to selectively
store local as well as global representations of a sequence is a promising direc-
tion to improve the Transformer model. Memory-augmented neural networks
(MANNs) extend traditional neural architectures with general-purpose memory
for representations. MANNs have demonstrated the capability to learn simple
algorithms like Copy or Reverse and can be successfully trained via backpropaga-
tion on diverse tasks from question answering to language modeling outperform-
ing RNNs and LSTMs of comparable complexity. In this work, we propose and
study few extensions of the Transformer baseline (1) by adding memory tokens to
store non-local representations, (2) creating memory bottleneck for the global in-
formation, (3) controlling memory update with dedicated layer. We evaluate these
memory augmented Transformers and demonstrate that presence of memory posi-
tively correlates with the model performance for machine translation and language
modelling tasks. Augmentation of pre-trained masked language model with mem-
ory tokens shows mixed results for tasks from GLUE benchmark. Visualization
of attention patterns over the memory suggest that it improves the model’s ability
to process a global context.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) are extremely successful in a wide range of natural language
processing and other tasks. Due to the self-attention mechanism transformer layer can be trained
to update a vector representation of every element with information aggregated over the whole
sequence. As a result, rich contextual representation for every token is generated at the end of
encoding. However, a combination of local and global information in the same vector has its lim-
itations. Distributed storage of global features results in ”blurring” and makes it harder to access
them. Another well-known deficiency of Transformers is poor scaling of attention span that hurts its
applications to long sequences.

In our work, we propose and study a simple technique to augment Transformer with memory rep-
resentation (MemTransformer). We extend the Transformer baseline by adding [mem] tokens at
the beginning of the input sequence and train the model to see if it is able to use them as universal
memory storage. To assess the capacity of proposed memory augmentation, we additionally applied
it to a number of other architectures. In the MemCtrl model update of [mem] tokens is controlled
by dedicated Transformer layer. MemBottleneck model has removed attention between sequence el-
ements, thus making memory the only channel to access global information about the sequence. We
also tested memory augmented BERT (Devlin et al., 2019) and Transformer XL (Dai et al., 2019)
models.

Our work lies at the intersection of two research directions Memory-augmented neural networks
(MANNs) and Transformers. The history of memory augmentation in neural networks is pretty
long. Classic Long-Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) can be seen as
a simple yet powerful form of fine-grained memory augmentation with a single memory value per
LSTM cell and memory control logic implemented by internal learnable gates. Thus, in LSTMs,
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computations are heavily intertwined with memory. In contrast to that, memory-augmented neu-
ral networks incorporate external-memory, which decouples memory capacity from the number of
model parameters. Neural Turing Machines (NTMs) (Graves et al., 2014) and Memory Networks
(Weston et al., 2014) are among the best-knows MANNs that provide powerful random access op-
erations over external memory. Memory Networks (Weston et al., 2014; Sukhbaatar et al., 2015)
are trained to iteratively reason by combining sequence representation and embeddings in long-
term memory with the help of attention. NTMs, and their successors Differentiable Neural Com-
puter (DNC) (Graves et al., 2016) and Sparse DNC (Rae et al., 2016) are recurrent neural networks
equipped with a content-addressable memory, similar to Memory Networks, but with the additional
capability to write to memory over time. The memory is accessed by a controller network, typi-
cally an LSTM. The full model is differentiable and can be trained via back-propagation through
time (BPTT). There is also a line of work to equip neural networks (typically, LSTMs) with data
structures like stacks, lists, or queues (Joulin & Mikolov, 2015; Grefenstette et al., 2015). MANN
architectures with a more advanced addressing mechanisms such as address-content separation and
multi-step addressing were proposed in (Gulcehre et al., 2016; 2017; Meng & Rumshisky, 2018).

Family of Transformer models have been recently applied to many deep learning tasks and proved
to be very powerful for the language modeling tasks. The core element of Transformers is self-
attention that allows updating representation for every element with information aggregated over the
whole sequence. Self-attention scales as O(N2) with a sequence length, and as a result, it is severely
limited in application to long sequences.

There is a separate line of work dedicated to reducing the computational cost of the transformer
attention to O(N

√
N) using sparsity (Child et al., 2019), O(N logN) with local-sensitive hashing

(Kitaev et al., 2020) or even O(N) with low-rank approximations (Wang et al., 2020), kernel-based
formulation (Katharopoulos et al., 2020), or sparse attention with randomness (Zaheer et al., 2020).

Several recent approaches try to solve this problem by adding some kinds of memory elements to
their architecture. Transformer-XL (Dai et al., 2019) adds segment-level recurrence with state reuse,
which can be seen as a sort of memory. During training, the hidden state sequence computed for the
previous segment is fixed and cached to be reused as an extended context when the model processes
the next segment. Compressive Transformer (Rae et al., 2019) extends the ideas of Transformer-
XL by incorporating the second level of the memory into the architecture. Memory on the second
level stores information from the short-term memory of the first level in compressed form. Memory
Layers (Lample et al., 2019) replace a feed-forward layer with a product key memory layer, that can
increase model capacity for a negligible computational cost.

Some transformers introduce different sorts of global representations. Among the most recent archi-
tectures with global representations are Star-Transformer (Guo et al., 2019), Longformer (Beltagy
et al., 2020), Extended Transformer Construction (ETC) (Ainslie et al., 2020) and its successor Big
Bird (Zaheer et al., 2020). All these architectures reduce full self-attention to some local or patterned
attention and combine it with a sparse global attention bottleneck. For example, Longformer uses
selected tokens such as [CLS] or tokens for question marks to accumulate and redistribute global
information to all other elements of the sequence. Among these, the BigBird-ETC with dedicated
”global” tokens is the most similar to our MemTransformer approach.

Our MemTransformer, MemCtrl and MemBottleneck Transformer models can be seen as more gen-
eral limit cases for this class of models. They have dedicated general purpose [mem] tokens that can
be used by the model as a placeholders to store and process global or copy of local representations.
MemTransformer has full self-attention over the memory+input sequence. In contrast, MemBottle-
neck has full both-way attention between the input sequence and memory but no attention between
sequence tokens.

2 MEMORY IN TRANSFORMER

2.1 BACKGROUND: TRANSFORMER ARCHITECTURE

The process of calculating single Transformer self-attention layer can be seen as a two-step process-
ing flow (see fig. 1a).
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Figure 1: Memory modifications of Transformer architecture. (a) Transformer layer. For ev-
ery element of a sequence (solid arrow), self-attention produces aggregate representation from all
other elements (dashed arrow). Then this aggregate and the element representations are combined
and updated with a fully-connected feed-forward network layer. (b) Memory Transformer (Mem-
Transformer) prepends input sequence with dedicated [mem] tokens. This extended sequence is
processed with a standard Transformer layer without any distinction between [mem] and other ele-
ments of the input. (c) Compared to MemTransformer MemCtrl Transforemer has dedicated mem-
ory controller sub-network. (d) Memory Bottleneck Transformer (MemBottleneck Transformer)
uses [mem] tokens but separates memory and input attention streams. At the first step, representa-
tions of [mem] tokens are updated (2) with the attention span (1) covering both memory and input
segments of the sequence. Then representations of input elements are updated (4) with memory
attention (3) only. Thus information flow is distributed to representations of elements only through
the memory.

1. Self-attention. Calculate normalized sum of input X with multi-head attention
MH(Q,K, V ) between all elements of the sequence:

A = LN(X +MH(X,X,X)). (1)

2. Update. For every element of the sequence update aggregated representation A with FF
feed-forward sub-layer then add skip connection and normalize:

H = LN(A+ FF (A)). (2)

2.2 SIMPLE MEMTRANSFORMER

The first proposed model is a simple extension of a baseline Transformer we call MemTransformer.
The idea is to add m special [mem]ory tokens to the standard input (see fig. 1b) then process them
in a standard way. So, the input vectors X became the concatenation of the memory token vectors
Xmem and the original input token vectors Xseq:

Xmem+seq = [Xmem;Xseq] ∈ R(n+m)×d, Xmem ∈ Rm×d, Xseq ∈ Rn×d.

This modification can be applied independently to encoder and/or decoder. The rest of the Trans-
former stays the same with the multi-head attention layer processing the extended input.
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2.3 MEMCTRL TRANSFORMER

In the simple MemTransformer tokens of the memory and the sequence are processed by layers with
the same parameters. Thus memory and sequence updated in a similar way. To test if dedicated sub-
network for memory update might improve performance we introduce a separate memory control
layer (see fig. 1c). Thus, memory representation of MemCtrl Transformer is updated as:

Amem = LN(Xmem +MHmem(Xmem, Xmem+seq, Xmem+seq)),

Hmem = LN(Amem + FFmem(Amem)).

Sequence representation is updated as:

Aseq = LN(Xseq +MHseq(Xseq, Xmem+seq, Xmem+seq)),

Hseq = LN(Aseq + FF seq(Aseq)).

2.4 MEMBOTTLENECK TRANSFORMER

In the MemTransformer input and [mem] tokens are updated inside the same traditional self-attend
and update processing flow. In this case, representations of the input sequence elements potentially
might be updated “as usual” without attending to the content of the memory. Here, global infor-
mation can propagate in a “peer to peer” manner. To block this distributed information flow and
separate storage and processing of global and local representations, we add a memory bottleneck.
The resulting MemBottleneck Transformer has two-staged processing flow (see fig. 1d).

1. Memory update. First, calculate attention between every memory token and full sequence of
memory Xmem and input Xseq (see Step 1 on the fig. 1d), and update memory token representations
(see Step 2 on the fig. 1d):

Amem = LN(Xmem +MHmem(Xmem, Xmem+seq, Xmem+seq)),

Hmem = LN(Amem + FFmem(Amem)).

2. Sequence update. Calculate attention between sequence and memory (Step 3 on the fig. 1d),
and update sequence token representations (Step 4 on the fig. 1d):

Aseq = LN(Xseq +MHseq(Xseq, Hmem, Hmem)),

Hseq = LN(Aseq + FF seq(Aseq)).

In other words, the memory “attends” to itself and a sequence, and the sequence “attends” only to
the memory. This should force the model to accumulate and re-distribute global information through
memory. Computations for MemBottleneck Transformer scales linearly with the size of the input
sequence or memory O(NM), when the traditional transformer scales as O(N2).

For all encoder-decoder variants of the memory transformers the decoder part was the same as in
the baseline. Output of the last encoder layer [Hmem;Hseq] passed to the decoder layers.

3 RESULTS AND DISCUSSION

As a reference model for a machine translation task we use a vanilla Transformer from official
TensorFlow tutorial1. Two model sizes were studied for a machine translation task small2 with N
= 4 and base3 with N = 6 layers in the encoder. The decoder has the same number of layers as the
encoder. For a language modeling task we augmented Transformer XL (Dai et al., 2019) base4 with
20 [mem]tokens. For a masked language model memory augmentation we used pre-trained BERT5

(Devlin et al., 2019). All values reported in the paper are averaged over 3 runs if otherwise stated.
1https://www.tensorflow.org/tutorials/text/transformer
2dmodel = 128, dff = 512, h = 8, Pdrop = 0.1, batch = 64, warmupsteps = 4000
3dmodel = 512, dff = 2048, h = 8, Pdrop = 0.1, batch = 64, warmupsteps = 32000
4https://github.com/kimiyoung/transformer-xl
5bert-base-cased checkpoint from HuggingFace Transformers (Wolf et al., 2020) was trained with

DeepPavlov (Burtsev et al., 2018) on GLUE tasks.
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Table 1: Performance of baseline and memory models on WMT-14 DE-EN translation. Values represent
an average of BLEU 4 scores for 3 runs of every model evaluated on 2000 samples from WMT-14 DE-EN
validation set.

Small models Base models
4 layers per encoder/decoder, 20 epochs 6 layers per encoder/decoder, 10 epochs

Transformer (baseline) 19.01 Transformer (baseline) 24.65
MemTransformer 5 19.17 - -
MemTransformer 10 19.15 MemTransformer 10 25.07
MemTransformer 20 19.14 MemTransformer 20 25.58
MemBottleneck Transformer 10 11.20 MemCtrl Transformer 20 24.13
MemBottleneck Transformer 20 10.41 MemCtrl Shared Transformer 20 25.73
MemBottleneck Skip Transformer 20 16.45 - -

3.1 PERFORMANCE METRICS

The main hypothesis of the study says that adding memory to multilayered encoder-decoder archi-
tectures should result in better performance for sequence processing tasks such as machine transla-
tion. BLEU scores for WMT-14 DE-EN translation task (Bojar et al., 2014) are presented in Table 1.
After 20 epochs of training, small MemTransformer models have similar scores and clearly outper-
form the Transformer baseline. Base 6-layer MemTransformer with 10 memory tokens improves
the baseline, and doubling the memory up to 20 tokens results in an even higher score of 25.58.
This is a modest but solid performance given no hyperparameters fine tuning and beam search were
used. MemTransformer results supports our intuition that self-attention could be trained to utilize
representations of extra memory elements that are not related to the input sequence to improve the
quality of encoding. Surprisingly, adding separate layer for memory control decreases scores below
baseline (see MemCtrl 20 in Table 1). On the other hand, memory controller with shared parameters
for all 6 encoder layers (MemCtrl Shared 20 in Table 1) demonstrates the best performance among
modifications we studied for this task.

The MemTransformer results suggest that if memory extends but not intervene in the Transformer
sequence processing, then it is beneficial. But to what extent processing of relations between ele-
ments of the sequence can be abstracted to memory? Experiments with MemBottleneck Transformer
(Table 1) shows that it is possible, but performance suffers. This can be due to the more complex
architecture of the MemBottleneck that has twice more layers in the encoder part (see fig. 1c.). So, it
is more difficult and longer to train compared to baseline. On the other hand, degraded performance
can also be attributed to the insufficient throughput of the memory bottleneck. Then, there might
be a trade-off between the size of the bottleneck and the complexity of learning a deeper network.
From the experiments, we see that MemBottleneck 10 learns faster and has lower loss compared
to MemBottleneck 20, which points to the complexity of training but not the bottleneck width as a
major factor limiting performance.

The limit scenario for the MemBottleneck model is when only memory representations are pro-
cessed. In MemBottleneck Skip modification of Transformer, representations for sequence tokens
are not updated at all (steps 3 and 4 on the fig. 1d are skipped) and encoder output consists of input
sequence embeddings and memory representations. Quite unexpectedly, leaving only in memory
processing in encoder significantly improves 10.41 BLEU score of MemBottleneck 20 to 16.45
(MemBottleneck Skip in Table 1).

Memory models have better scores after training, but do they require memory for inference? If
the performance of trained MemTransformer will stay the same for the inference without [mem]
tokens, then memory was only needed to improve training and not used for the processing of an input
sequence. Results of memory lesion experiments presented in Table 2 demonstrate that removing
[mem] tokens from MemTransformer input leads to a dramatic drop in BLEU score, from 25.07
to 11.75 for the MemTransformer 10 and from 25.58 to 3.87 for MemTransformer 20 (both models
have 6-layers in the encoder). This is an indicator that the presence of [mem] tokens is critical for
MemTransformer during inference.

Another important question is related to the universality of the learned memory controller. Is it
able to utilize memory of arbitrary size, or can work only with the memory capacity it was trained?
Memory lesions data (see Table 2) suggest that MemTransformer learns a solution that is partially
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Table 2: Memory lesions. Performance of the models trained with memory gradually degrades if the memory
size is changed during inference.

memory size at inference
0 2 5 10 20 30

MemTransformer 10 11.75 15.91 18.22 25.07 12.39 7.87
MemTransformer 20 3.87 8.58 9.75 14.51 25.58 7.51

Table 3: Memory extension. Values represent an average of BLEU 4 scores for 3 runs of every model.
20 epochs +5 epochs +10 epochs +15 epochs

mem 5 mem 10 mem 15 mem 20
MemTransformer 5 (small) 19.17 19.18 19.19 19.41

Table 4: Memory augmentation for the language modeling task. Average performance after training on
WikiText-103 (Merity et al., 2016) over 3 runs.

Transformer-XL + 20 mem fixed pos. emb. + 20 mem rel. pos. emb.
bpc 3.182 3.179 3.176
ppl 24.09 24.02 23.95

robust to the variations in the size of the memory. BLEU score of MemTransformer 10 with 5
[mem] tokens shows it is still able to produce translation that makes sense . On the other hand, if
we add 20 more [mem] tokens to the same model, it will have scores that are lower even compared
to the case when the model is evaluated without memory at all. Interestingly, the model trained with
a larger memory size of 20 has weaker generalization abilities. It is evident from the more steep
decline of performance with the deviation of memory size from the one used during training.

As we see from memory ablation results (Table 2) increasing memory without fine tuning hurts
performance. But, what will happen if the model will be fine-tuned after memory extension? To
answer this question we take small MemTransformer 5 pre-trained for 20 epochs and grow it’s
memory in a few stages up to 20 [mem] tokens. On every stage 5 [mem] tokens were added and
the model was fine tuned for 5 epochs. Results are presented in Table 3. Extension of the memory
followed by fine tuning proved to be beneficial and resulted in the model with the highest BLEU
score among all small sized modifications.

To test an effect of mem tokens on performance in a language modelling task we trained Trans-
former XL base augmented with memory of size 20. Original Transformer XL has fixed and relative
positional encodings, so results for the both options and the baseline are presented in the Table 4.
Memory augmentation allows the model to achieve better perplexity.

Positive memory extension results suggested experiments with memory augmentation of an already
pre-trained encoders. We took a BERT-base model and augmented it with a memory of different
sizes. The model was trained on datasets from the GLUE (Wang et al., 2018) benchmark. Adding
[mem] tokens to BERT-base model improved its performance on 6 / 9 tasks as shown in the Table 5.

Table 5: Results on GLUE dev set with [mem] tokens added only for end task fine-tuning. Each [mem]
was randomly initialized and trained only on the GLUE task. All runs were repeated 5 times and average scores
are reported. +pool stands for using concatenation of max and avg pooling over outputs for [mem] tokens
instead of the output from [CLS] token for classification.

CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE
BERT-base 62.9 92.7 90.2/85.8 86.0/85.8 86.6/89.8 83.0/83.5 90.5 65.0
5mem 61.3 92.4 90.4/86.4 86.0/85.8 86.8/90.1 82.7/83.3 90.7 68.0
5mem+pool 62.1 92.3 89.4/84.8 85.8/85.6 86.9/90.2 83.3/83.3 90.8 60.2
10mem 60.6 92.5 91.3/87.6 86.6/86.4 86.4/89.8 82.8/83.3 90.5 66.8
10mem+pool 62.6 92.6 90.2/86.0 86.7/86.5 87.1/90.2 83.1/83.0 90.7 61.2
20mem 60.9 92.4 91.2/87.5 86.4/86.2 86.8/90.1 82.8/83.1 90.7 65.3
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Figure 2: Operations with memory learned by MemTransformer 10. (a) The pattern of self-
attention in the 3rd encoder layer. Here, [mem] tokens in the central segment of memory (on the
left) attend to the vector representations of tokens Technik, Entwicklung, Intelligenz
(and some others). This attention values are consistent with the writing of selected token vectors to
the [mem] tokens. Activity in the left top corner that involves first four tokens might indicate fusion
of neighbour vectors by pairwise summation of [mem] tokens. (b) In the next 4th layer of the same
encoder similar fusion operation with the same [mem]’s is repeated. A parallel diagonal activity
just below the fusion pattern can be attributed to copy operation. (c) Another attention head in the
same encoder layer demonstrates combination of fusion and store operations. Sharp self-attention of
three tokens in the middle results in adding vectors to themselves. (d) Attention pattern in decoder
layer 4 over the output of 6th encoder layer suggest that vectors of [mem] tokens are selectively
read and added to the output token representations during decoding.

3.2 ATTENTION PATTERNS IN MEMORY

Generic system with memory relies on three types of operations, such as writing, reading and pro-
cessing. In this section we present results of analysis of the inner workings of memory augmented
transformers to localize these operations. Following previous studies (Kovaleva et al., 2019; Clark
et al., 2019), we visually explored attention patterns. Kovaleva et al. (2019) introduced five cate-
gories of self-attention and suggested that only ”heterogeneous” patterns that spread attention across
all input tokens might extract non-trivial information about the linguistic structure. Numerous ob-
servations of attention maps across baseline Transformer and MemTransformer models allow us to
conclude that the overall structure and distribution of pattern types in the sequence to sequence part
of the attention mechanism are similar. Thus, for further analysis, we skip sequence to sequence
attention and focus on memory to sequence, memory to memory, and sequence to memory attention
patterns. All attention maps for selected models are presented in the Appendix.

Memory to sequence attention makes it possible to selectively update vectors stored in [mem]
token positions with representations of input sequence elements. Such an update is a form of soft
write to memory operation. Indeed, we found many patterns consistent with writing from sequence
to memory in all MemTransformer models. One of them is shown in Figure 2a. Write to memory
type of attention is more frequent in the first layers and almost absent in the deeper part of the
encoder.

Memory to memory attention allows recombining vectors of [mem] tokens. We found a few
common patterns related to in-memory processing. The most common arrangement of activity is
diagonal. The diagonal can be blurred (or ”soft”), making local fusion of the neighboring memory
representations possible. Examples of this operation can be seen in the left top corner of the figures
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2a., 2b. and 2c. If diagonal attention is sharp (see fig. 2c. in the middle), then corresponding memory
vectors are added to themselves, so their content is amplified and became more error-tolerant. This
can be seen as a store operation. Another possible operation is a block copy (examples can be
found in the Appendix). It is usually manifested as a vertical block of attention. In this case,
a number of consequent [mem] vectors are updated with the same values aggregated from some
another sequence of [mem] vectors. A copy operation can also be performed in a [mem] to [mem]
manner with preserving a source order as in figure 2b. or with reversing the order (see Appendix for
examples).

Sequence to memory attention implements read from memory operation and can be found in the
first layers of the encoder, but it is more pronounced in the middle layers of the decoder. A typical
example of the memory ”reading” is presented in Figure 2d. Note, that during decoding token
representation is updated by reading from a block of subsequent [mem] tokens.

The overall pipeline of memory processing is similar for the different runs and sizes of MemTrans-
former. It consists of writing some information from the input sequence to the memory in the first
layers of the encoder, then followed by memory processing in the intermediate layers and amplifica-
tion in the output layers of the encoder. During decoding, information is read from memory. Here,
the highest ”reading” activity is commonly observed in the intermediate decoder layers. Interest-
ingly, memory-related attention patterns usually have a block structure. For example, patterns form
the particular MemTransformer 10 presented in Figure 2 suggest that the model had learned to split
memory into three blocks. Commonly, the same memory operation is applied to all [mem]s of the
same block by one particular head. During memory processing, the model can operate in a block-
wise manner, as in Figure 2b, where the ”block(1-3)” is copying to the ”block(4-6)”. We speculate
that the block structure of memory processing might reduce error rate because the memory repre-
sentation is ”averaged” over the [mem]s of the block during reading (see fig. 2d). Experiments with
MemBottleneck architecture show that the model might be able to learn how to copy representations
of the input sequence into the memory of the fixed size and use only this memory during decoding.

4 CONCLUSIONS

We proposed and studied a series of memory augmented transformer based architectures MemTrans-
former, MemCtrl and MemBottleneck transformers. Qualitative analysis of attention patterns pro-
duced by the transformer heads trained to solve machine translation task suggests that both models
successfully discovered basic operations for memory control. Attention maps show evidence for the
presence of memory read/write as well as some in-memory processing operations such as copying
and summation.

A comparison of machine translation quality shows that adding general-purpose memory in Mem-
Transformer improves performance over the baseline. Moreover, the final quality positively corre-
lates with the memory size. On the other hand, MemBottleneck Transformer, with all self-attention
restricted to the memory only, has significantly lower scores after training.

Memory lesion tests demonstrate that the performance of the pre-trained MemTransformer model
critically depends on the presence of memory. Still, the memory controller learned by the model
degrades only gradually when memory size is changed during inference. This indicates that the
controller has some robustness and ability for generalization. We also found, that extension of
memory followed by fine tuning leads to better performance.

Application of proposed technique to language model training as well as fine-tuning of BERT based
encoder for a battery of GLUE tasks further demonstrated beneficial effect of memory augmentation.
This suggests that simple addition of [mem] tokens can extend almost any ”encoder-decoder with
attention” framework. It can be also applied to the tasks that depend on the multi-hop reasoning or
planning. In this cases memory should help to store and process representations for the intermediate
stages of the solution.
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A ATTENTION MAPS FOR MEMORY AUGMENTED TRANSFORMERS

In this section we present attention maps for two representative cases of MemTransformer and Mem-
Bottleneck transformer models. For both models we use the same input sequence.

Input sequence: Langes Kurzzeitgedächtnis ist eine Technik, die zur Verbesserung der Entwicklung
von künstlicher Intelligenz wesentlich beigetragen hat.6

Predicted translation MemTransformer 10: Long, short-term memory is a technique that has
contributed significantly to improving the development of artificial intelligence.

Predicted translation MemBottleneck 20: The short time memory is a technique that has helped
to improve the development of artificial intelligence in a lot of sense.

Reference: Long-term short-term memory is a technique that has contributed significantly to im-
proving the development of artificial intelligence.7

A short guide to help with interpretation of attention maps is shown on the Figure 3.

Figure 3: How to read Memory Transformer attention map. Attention values indicate how ele-
ments of input sequence (on the top) contribute to the update of representation for specific output el-
ement (on the left). Attention map for memory augmented transformer can be split into four blocks:
(1) update - [sequence] to [sequence]; (2) write - [sequence] to [memory]; (3) read - [memory] to
[sequence]; (4) process - [memory] to [memory].

A.1 MEMTRANSFORMER ATTENTION MAPS

Visualisation of attention maps for MemTransformer 10 (see Section 2.2) with a memory size of
10 is presented on the Figure 4 for 6 layers of encoder and on the Figure 5 for 6 layers of decoder.
Every transformer layer has 8 attention heads. The model was trained for 10 epochs on WMT-14
DE-EN (Bojar et al., 2014) dataset.

6https://de.wikipedia.org/wiki/Long_short-term_memory
7https://translate.google.com
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Figure 4: MemTransformer 10 encoder attention maps. As the model encodes an input se-
quence the change of attention patterns related to memory can be interpreted as a read-process-store
pipeline. Heads in layers 1 to 3 have many read to memory patterns. Patterns consistent with in mem-
ory processing are more frequent in layers 3-6. The last layer is dominated by diagonal attention
that can be seen as an amplification of calculated representations.
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Figure 5: MemTransformer 10 decoder attention maps. Every layer of the decoder has heads
with signs of memory reading activity. Reading patterns suggest that the representations in memory
are locally grouped in 3 blocks.
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A.2 MEMBOTTLENECK TRANSFORMER ATTENTION MAPS

Attention patterns generated by MemBottleneck Transformer architecture (see Section 2.4) strongly
suggest that the model learned to copy a given sequence into a memory, process it and use only this
representations of input for decoding. The main idea of MemBottleneck is a restriction of global
information exchange to memory. Therefore, an update for representations of the input sequence
elements can access representations of other elements only by writing into and then reading them
from memory. To do that, MemBottleneck uses two different transformer sub-layers each with its’
own set of attention heads (see fig. 1c).

Encoder attention maps (see fig. 6) suggest that, as expected, representations for the input elements
are copied into memory in layers 1 and 2. Surprisingly, after that they are not properly updated
anymore and the decoder mostly attends to the content of memory (see fig. 7). This impressive
outcome shows that transformer can be trained to read and process all the information about the
input sequence in memory only.
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Figure 6: MemBottleneck 20 encoder attention maps. In the 1st layer, all attention heads of
memory sub-layer ([memory+sequence] to [memory]) read from the input sequence. Only 2 heads
of memory sub-layer in the layer 2 reads from the input, but all others are diagonal to amplify content
of the memory. No more input reading is present in layers 3 and 4. Notably, all heads of the 1st
layer memory attention have patterns that split into three blocks. The top block has sparse attention
over the whole sequence without preserving the order. The middle block reads the first half of the
sequence in the reverse order, and the bottom block reads the rest in the proper order. This suggests
encoding of global information in the top block and local information in the middle and bottom
blocks. Layer 3 of memory sub-layer has sharp amplifying diagonals, and something like shifting
operations represented by broken diagonals. Layer 4 of memory sub-layer demonstrates mainly
heterogeneous patterns which indicates in memory processing. Maps of attention which belongs to
the sequence sub-layer ([memory] to [sequence]) of MemBottleneck layer degrade to vertical lines
in layers 3 and 4. This is a sing that these attention heads are bypassed as follows from (Kobayashi
et al., 2020).
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Figure 7: MemBottleneck 20 decoder attention maps. At the decoding phase, almost all heads
attend to the content of memory but not on the representations of sequence elements.
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