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Abstract

Human-AI planning for complex goals remains001
challenging with current large language mod-002
els (LLMs), which rely on linear chat histo-003
ries and simplistic memory mechanisms. De-004
spite advances in long-context prompting, users005
still manually manage information, leading to006
a high cognitive burden. Hence, we propose007
JumpStarter, a system that enables LLMs to008
collaborate with humans on complex goals by009
dynamically decomposing tasks to help users010
manage context. We specifically introduce task-011
structured context curation, a novel framework012
that breaks down a user’s goal into a hierarchy013
of actionable subtasks, and scopes context to lo-014
calized decision points, enabling finer-grained015
personalization and reuse. The framework is re-016
alized through three core mechanisms: context017
elicitation, selection, and reuse. We demon-018
strate that task-structured context curation sig-019
nificantly improves plan quality by 16% over020
ablations. Our user study shows that Jump-021
Starter helped users generate plans with 79%022
higher quality compared to ChatGPT.1023

1 Introduction024

Planning is a core cognitive process for solving025

complex, goal-oriented tasks (Miller and Venditto,026

2021; Ho et al., 2022). Recent advances in the027

planning abilities of large language models (LLMs)028

(Valmeekam et al., 2023; Shinn et al., 2023) have029

enabled human-AI planning across various do-030

mains, such as travel planning (Xie et al., 2024),031

manufacturing, and healthcare (Lee et al., 2025).032

In these settings, LLMs assist users in decompos-033

ing complex goals into actionable steps (Wei et al.,034

2022; Shinn et al., 2023). However, while LLMs035

can support planning at scale, they still struggle036

with maintaining context over long interactions037

(Jiang et al., 2023). Despite improvements in mem-038

ory mechanisms and extended context windows039

1We will release the code upon publication.

(Luo et al., 2025), users must actively manage what 040

information to provide, as LLMs frequently forget 041

key details, leading to a degraded user experience. 042

To generate personalized plans, users often resort 043

to intensive prompt engineering, manually curating 044

chat histories to elicit relevant responses, resupply 045

information, and manage subtasks. This process 046

is opaque since users have little insight into what 047

context is retrieved. It is also burdensome, often 048

resulting in generic output misaligned with prior 049

interactions. To support complex, personalized 050

workflows, LLM-based systems need mechanisms 051

that treat both tasks and context as dynamic, com- 052

posable units, enabling more modular, transparent, 053

and efficient human-AI planning. 054

To address this limitation, we propose task- 055

structured context curation, a novel framework 056

that enables LLMs to collaborate with humans on 057

complex goals by dynamically decomposing tasks 058

to help users manage context. By decomposing 059

a user’s goal into a hierarchy of actionable sub- 060

tasks, our system scopes context to localized deci- 061

sion points, enabling finer-grained personalization 062

and reuse. This approach is implemented through 063

three core mechanisms for context management: 064

1) Context Elicitation: the system prompts users 065

for missing information specific to each subtask; 066

2) Context Selection: the system and users collabo- 067

ratively select and surface only the most relevant 068

prior inputs for each subtask; and 3) Context Reuse: 069

user-approved answer drafts (e.g., emails or study 070

schedules) are saved and incorporated into future 071

subtasks. Together, these mechanisms provide an 072

alternative to labor-intensive long-context prompt- 073

ing, enabling more structured, adaptive, transpar- 074

ent, and user-controllable LLM interactions. 075

We specifically operationalize this method in 076

JumpStarter, a human-AI planning system that sup- 077

ports open-ended user goals through structured task 078

planning and personalized output generation. The 079

process, as shown in Figure 1, begins when a user 080
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Figure 1: JumpStarter helps users get started on their personal goals through task-structured context curation. It
first takes the user’s goal and elicits context for the goal. It then decomposes the goal into actionable subtasks. For
each subtask, it helps users select relevant context and write answer drafts. It also aids users in refining these drafts
by eliciting further context. Task-structured context curation improves plan quality over ablations. Our user study
showed that JumpStarter helped users generate plans with 79% higher quality compared to using GPT-4o via the
ChatGPT interface.

inputs their personal goal. The system then poses081

questions to elicit the relevant context for the goal.082

Based on the user’s responses, the system breaks083

down the goal into subtasks that the user can ex-084

plore. If the system detects that a subtask is not ac-085

tionable enough, it prompts the user, who can break086

it down further into additional subtasks. When the087

user is ready to work on a task, the system selects088

the relevant context and generates answer drafts.089

If the user is not satisfied with the suggested solu-090

tion, they can request more elicitation questions or091

provide their own prompts for refinement. Users092

can modify the suggested solution, and also save it093

as context to be used by the system in further sub-094

tasks. The user can then move to explore the next095

subtask, moving towards the completion of their096

goal. This task-structured workflow enables users097

to iteratively plan their goals by focusing on one098

actionable step at a time, while allowing the LLM099

to operate on localized, context-rich prompts that100

improve output quality throughout the planning101

process.102

We evaluate JumpStarter through both technical103

evaluation and user studies. For subtask detection,104

our prompting technique that combines chain-of-105

thought (CoT) reasoning, the tree level of each sub-106

task node, and draft quality achieves 87% accuracy,107

significantly outperforming a 35% baseline. In a108

controlled expert evaluation (N=6), our full task-109

structured context curation pipeline significantly110

improves plan quality by 16% compared to ablated111

variants. In a within-subjects user study (N=10),112

JumpStarter helps users generate plans with 79%113

higher quality compared to using GPT-4o from the 114

ChatGPT interface. It also reduces perceived task 115

load across all NASA-TLX (Hart, 2006a) dimen- 116

sions. These results demonstrate that structured 117

context curation enhances model effectiveness and 118

user experience over flat long-context prompting. 119

Overall, our contributions are three-fold: 120

• A novel framework, namely task-structured 121

context curation, for complex human-AI plan- 122

ning, involving hierarchical task decomposi- 123

tion with three components: context elicita- 124

tion, selection, and reuse; 125

• A human-AI planning system called Jump- 126

Starter that helps people get started on com- 127

plex personal goals by identifying when and 128

how to decompose large tasks, and by gener- 129

ating answer drafts with suggested context to 130

create detailed and personalized plans. 131

• Empirical validation through automatic and 132

human-centered evaluations demonstrating 133

clear benefits of task-structured context cu- 134

ration over existing approaches in human-AI 135

planning, and suggesting a promising direc- 136

tion for building personalized, goal-oriented 137

LLM-based systems. 138

2 Related Work 139

Task Structuring and Planning with Language 140

Models Recent work has explored how LLMs 141

can support planning by generating step-by-step 142

breakdowns for user goals. Studies on LLM-based 143
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agents for tasks like travel, scheduling, and gar-144

dening often use chain-of-thought prompting or145

multi-agent setups to scaffold plans (Lal et al.,146

2024; Xie et al., 2024; Zheng et al., 2024). How-147

ever, these systems typically operate as single-turn148

planners with limited personalization and shallow149

interaction loops. Other tools offer lightweight150

task scaffolding through user interfaces, but they151

generally support only single-layer decomposition152

without context management. For example, Ex-153

ploreLLM (Ma et al., 2024) prompts users to man-154

ually decompose goals and specify preferences via155

a schema-based interface. While structured guid-156

ance improves planning, it assumes heavy manual157

effort. In contrast, JumpStarter co-creates a multi-158

layer subtask hierarchy with the user and localizes159

context dynamically, enabling finer-grained person-160

alization and reuse across planning workflows.161

Several goal-directed LLM agents, such as Au-162

toGPT (Significant Gravitas), attempt autonomous163

task chaining but often lack transparency, robust-164

ness, and meaningful user interaction (Zheng et al.,165

2024). Moreover, prior work notes that humans166

rarely perform spontaneous, exhaustive planning167

due to cognitive cost (Krieger et al., 2009; Teevan168

et al., 2016), underscoring the need for systems169

that scaffold both planning and personal context.170

Our work uniquely combines LLM-based goal de-171

composition with context-aware output generation172

across evolving task structures, aiming to reduce173

user burden while enhancing planning continuity.174

Context Curation in LLM-based Systems Ef-175

fective context curation for multi-step tasks re-176

quires more than flat prompting or opaque memory.177

Prior work in proactive dialogue systems explores178

context elicitation and information-seeking strate-179

gies (Zhang et al., 2024; Malaviya et al., 2024;180

Deng et al., 2023; Zhang et al., 2023), but these fo-181

cus on short-turn interactions in synthetic or search-182

based tasks, rather than structured, long-context183

workflows involving draft reuse or evolving context.184

Other systems integrate retrieval or scratchpad-185

style memory to maintain context (Liu et al., 2024),186

yet typically store information in flat formats with-187

out explicit links to task hierarchies. For example,188

RAISE (Liu et al., 2024) mirrors short- and long-189

term memory but lacks subtask anchoring. In con-190

trast, JumpStarter grounds context in a hierarchical191

task structure, enabling selective retrieval and reuse192

of prior inputs and outputs across subtasks.193

Our work also draws on task-centric information194

management from prior HCI systems (Kerne et al., 195

2014; Jones et al., 2008; Kaptelinin, 2003; Conley 196

and Carpenter, 2007; Kersten and Murphy, 2006), 197

reimagined for LLM-based workflows. Rather than 198

relying on long prompts or passive memory mod- 199

ules, we propose a modular architecture—context 200

elicitation, condensation, and reuse—that adapts 201

dynamically as tasks evolve. While recent efforts 202

like the Model Context Protocol (MCP) (Anthropic, 203

2024) introduce standardized interfaces for exter- 204

nal tool access, they do not address subtask-scoped 205

context curation. JumpStarter complements such 206

protocols by structuring context around subtasks, 207

providing finer control over planning and execution 208

in personalized workflows. 209

3 JumpStarter System 210

JumpStarter is an LLM-based interactive sys- 211

tem that enables human-AI planning with task- 212

structured context curation. As a motivating ex- 213

ample, we focus on planning for users’ personal 214

projects. The system takes the user-specified goal 215

as input, and outputs personalized plans and answer 216

drafts for the user. Here, an answer draft refers to 217

any tangible artifact that assists users in taking real- 218

world actions related to a task, for example, an 219

email draft for requesting recommendation letters 220

or a study schedule to prepare for an exam. 221

This section describes how JumpStarter works 222

with an example walk-through, and the implemen- 223

tation details of the system. 224

3.1 System Walkthrough 225

To illustrate how users interact with JumpStarter, 226

we present a walkthrough using a concrete exam- 227

ple. Consider John, a user aiming to apply for a 228

PhD in NLP. Figures in the Appendix A provide 229

corresponding interface visuals. 230

3.1.1 Goal Input and Global Context 231

Elicitation 232

John begins by entering his goal—"Apply for a PhD 233

in NLP"—into a text input box and clicks Start. 234

The system then generates elicitation questions to 235

collect relevant context (e.g., existing documents, 236

preferences). In John’s case, it asks about potential 237

target schools and recommendation letters. Since 238

he is uncertain about the former and has not yet 239

obtained the latter, he uploads his CV in response 240

to the first question and clicks Let’s get started. The 241

elicited context becomes part of the global context 242

used across subsequent tasks. 243
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3.1.2 Subtask Generation and Detection244

Using the elicited context, JumpStarter generates245

an initial subtask tree, presenting titles, descrip-246

tions, and estimated durations (Figure 6). John247

reviews the list to gain an overview of the plan and248

decides to explore the subtasks sequentially.249

John selects the first subtask, Identify Potential250

PhD Programs. The system detects that it is in-251

sufficiently actionable and prompts John to either252

decompose the task or proceed with drafting. Fol-253

lowing the system’s recommendation, John selects254

Decompose the task, resulting in a new set of sub-255

tasks under the original node (Figure 7).256

3.1.3 Answer Draft Creation and Refinement257

John selects the subtask Research Universities and258

Programs, which the system deems actionable. It259

generates an initial answer draft—a list of NLP260

PhD programs. Upon review, John refines the out-261

put by adding, "I want schools in the Midwest of262

the US." He is satisfied with the revised list and263

saves it as an answer draft. He is also given three re-264

finement options: regenerate, add more context and265

regenerate, or iterate on the current draft. Saved266

drafts are stored as context and appear as icons on267

the task tree, marking completed nodes.268

3.1.4 Task Forking269

John proceeds to the next subtask, Identify Faculty270

Members. The system suggests decomposing the271

task and detects that it requires forking based on272

the previously identified programs. It selects the273

saved university list as relevant context and asks274

John to confirm or modify the selection (Figure 8a).275

Upon confirmation, the system forks the task into276

program-specific subtasks (Figure 8b), which John277

begins to explore individually.278

John then explores the task Get Recommenda-279

tion Letters and decomposes it as prompted. For280

the subtask Compile a List of Recommenders, the281

system uses his CV to generate a list including282

Prof. Blake White, Prof. Julian Deng, and Dr. Al-283

ice Feng. John accepts and saves the draft. He284

proceeds to Reach Out to Potential Recommenders,285

which is forked into person-specific subtasks. For286

Reach Out to Prof. Blake White, the system iden-287

tifies relevant context—including John’s CV, prior288

collaborations, and the university list—and gener-289

ates a personalized email draft (Figure 9a).290

3.1.5 Context Elicitation for Draft Iteration 291

Unsatisfied with the initial email draft, John clicks 292

Add Context and Regenerate. The system prompts 293

follow-up questions to elicit additional details (e.g., 294

specific projects or papers), which John provides 295

(Figure 9b). The refined draft incorporates these 296

details, resulting in a more personalized and accept- 297

able version. 298

Through structuring the goal as a hierarchy of 299

tasks, JumpStarter helps John curate relevant con- 300

text, enabling the creation of detailed action plans 301

and high-quality answer drafts. JumpStarter’s 302

structured context management and iterative refine- 303

ment enable him to effectively progress toward his 304

goal of applying for a PhD in NLP. 305

3.2 Data Representation 306

JumpStarter represents each piece of context as 307

a key-value pair, where the key denotes the con- 308

text name and the value specifies its content. For 309

example, the pair “Location preference: Midwest 310

of US” captures a user’s geographical preference. 311

The system maintains two types of context: global 312

and local. Global context consists of information 313

elicited from the user immediately after goal speci- 314

fication and is universally applied throughout plan- 315

ning. Local context includes answer drafts and any 316

additional information the user provides during in- 317

teraction. 318

To organize tasks, JumpStarter employs a hi- 319

erarchical tree structure. This design mirrors the 320

natural decomposition of complex goals into man- 321

ageable components, facilitating clear tracking of 322

task dependencies and progression. Each user goal 323

serves as the root node, with system-generated sub- 324

tasks represented as child nodes. Each subtask 325

node stores task-specific attributes, including titles, 326

descriptions, estimated durations, and any associ- 327

ated answer drafts. 328

3.3 Task-Structured Context Curation 329

Task-Structured Context Curation leverages a hier- 330

archical subtask tree to support two core operations. 331

First, it performs subtask detection and generation 332

to expand the task tree. Second, it curates con- 333

text by eliciting, selecting, and reusing relevant 334

information. The following sections describe how 335

each operation is implemented, with corresponding 336

prompts provided in Section E. 337

4



3.3.1 Task Decomposition338

Subtask Generation When a user chooses to339

break down a task, JumpStarter decomposes it into340

a list of subtasks, which are attached as child nodes341

to the corresponding task node. We prompt GPT-4o342

to generate these subtasks, each including a name,343

description, and estimated completion time to help344

users better understand the scope and duration of345

the task. To reduce redundancy across the task tree,346

GPT-4o is prompted with the current tree structure347

and instructed to take it into account when suggest-348

ing new subtasks, ensuring coherence and avoiding349

repetition (Figure 13).350

Subtask Detection For each task selected by the351

user, JumpStarter first evaluates whether it is suf-352

ficiently detailed and actionable. If not, the sys-353

tem recommends further decomposition; if so, it354

prompts the user to proceed with generating an355

answer draft. To identify an effective prompting356

strategy, we experimented with multiple techniques357

and found that Chain-of-Thought (CoT) prompting358

(Wei et al., 2022) with few-shot examples, aug-359

mented with the task’s tree level, achieved the best360

balance between accuracy and latency. We refer361

the reader to Section C for experimental details and362

results.363

Task Forking When a task is flagged for further364

decomposition by the Subtask Detection module,365

JumpStarter evaluates whether it requires Fork-366

ing—a decomposition strategy based on distinct367

entities (e.g., multiple recipients or institutions)368

that enables subtasks to be completed in parallel.369

Unlike standard sequential breakdowns, forking370

produces independent subtasks that do not rely on371

order. We prompt GPT-4o to determine whether372

a task should be forked (See Figure 15). If fork-373

ing is not needed, the system proceeds with stan-374

dard hierarchical decomposition; if forking is de-375

tected, JumpStarter then performs context selection376

to identify the most relevant context keys for guid-377

ing parallel subtask generation. These context ele-378

ments help ensure that the resulting entity-specific379

subtasks are well-scoped and non-redundant.380

3.3.2 Context Elicitation381

Based on the user’s specified goal, JumpStarter382

identifies relevant information the user may need383

to provide. The model generates suggestions for384

context-relevant documents (e.g., resumes, tran-385

scripts) along with corresponding elicitation ques-386

tions. These questions are then displayed in the387

UI, where users can either upload the suggested 388

documents or respond directly. If a question does 389

not require a file, the system instead provides a 390

text input box, allowing the user to type their an- 391

swer inline. The user’s goal, along with all elicita- 392

tion questions and their corresponding responses, 393

is then compiled into the global context, which is 394

incorporated into the system prompt to guide all 395

subsequent planning features. 396

In addition, when users want to improve an an- 397

swer draft for a subtask but are unsure how to pro- 398

ceed, the system generates clarifying questions to 399

elicit additional context from the user. With the 400

new input, the system regenerates an improved ver- 401

sion of the answer draft. See Appendix E.1 for 402

relevant prompts. 403

3.3.3 Context Selection and Context Reuse 404

When a user chooses to work on a task, JumpStarter 405

assists in generating an answer draft through the fol- 406

lowing multi-step process. First, JumpStarter iden- 407

tifies the most relevant context for the selected task. 408

Given the task title and description, our system se- 409

lects relevant entries from the local context. These 410

suggested context keys are shown in a checklist 411

pop-up, where users can deselect irrelevant items or 412

add additional context from a drop-down list. This 413

allows users to refine the context before genera- 414

tion. Subsequently, the curated context is then used 415

to generate an answer draft by prompting GPT-4o 416

with the task title, description, selected context, 417

the user’s goal, and global context (See prompts 418

in Appendix E.2). Once approved, answer drafts 419

are stored in the local context and can be reused in 420

future subtasks, supporting continuity and enabling 421

task forking throughout the planning workflow. 422

4 Evaluation of Task-structured Context 423

Curation 424

JumpStarter supports hierarchical planning by iden- 425

tifying actionable tasks and curating personal con- 426

text to guide answer draft generation. We evaluate 427

the accuracy of subtask detection and detail the 428

experiment settings and results in Section C. In this 429

section, we examine how task-structured context 430

curation2 influences the quality of generated plans 431

and answer drafts. Specifically, we conducted a 432

controlled within-subjects lab study for the follow- 433

ing conditions: 1) only context reuse; 2) only con- 434

2We use task-structured context curation and context cura-
tion interchangeably in the paper.
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text selection and reuse; and 3) context elicitation,435

selection, and reuse.436

Besides ablating the use of both context selection437

and context elicitation in Condition (1) and context438

elicitation alone in Condition (2), all features and439

UI were kept exactly the same. We hypothesized440

that action plans and answer drafts developed with441

the full context curation method, represented by442

Condition (3), would be judged as higher quality443

than those created without it.444

4.1 Participants and Procedure445

We evaluated the effect of context curation on sub-446

task and answer draft quality for three preselected447

personal goals inspired by Little (1983): (a) Apply448

to a fellowship, (b) Get a driver’s license, and (c)449

Organize a team event. We then used a university450

mailing list to recruit participants. Each goal was451

assigned two expert participants—those who re-452

ported achieving the goal in the past six months.453

Overall, we recruited six expert participants for this454

study (average age=25.8, three female, three male).455

Participants were compensated $20 per hour, with456

sessions lasting about 1.5 hours each. The detailed457

procedure of the study is illustrated in Appendix B.458

4.2 Results and Findings459

Overall, 46 subtasks (i.e. plan items) were gen-460

erated for Condition 1, 50 for Condition 2, and461

50 for Condition 3. An equal number of answer462

drafts were produced, as we asked participants to463

generate a draft only once for each subtask.464

Our method of context curation, represented by465

Condition 3, performed the best for both subtask466

quality and answer draft quality. For subtask qual-467

ity, context curation (µ=6.12, σ=0.95) was rated468

higher than Condition 1 (µ=5.26, σ=1.26) and Con-469

dition 2 (µ=5.28, σ=1.25). For the quality of an-470

swer drafts, context curation (µ=6.36, σ=0.95) out-471

performed Condition 2 (µ=5.68, σ=1.01) by a sim-472

ilar margin, which also outperformed Condition 1473

(µ=5.04, σ=1.04). The results are shown in Figure474

2.475

Our results show that context selection signifi-476

cantly improves the quality of answer drafts com-477

pared to the baseline. Unlike context reuse only,478

which includes all previously saved context indis-479

criminately, context selection prompts LLMs to480

selectively retrieve only the most relevant in-481

formation from the available pool. Participants482

frequently noted that outputs under this condition483

reflected earlier inputs more effectively. For ex-484

Figure 2: Expert evaluation of plan and answer draft
quality across three conditions. Our task-structured con-
text curation method (context elicitation, selection, and
reuse) significantly outperforms both context reuse only
and context selection and reuse only. Improvements are
statistically significant (***p < 0.001, **p < 0.01).

ample, the system generated personalized check- 485

lists for applying for scholarships and synthesized 486

itineraries for group events. As one participant de- 487

scribed, “Very useful synthesis of everything I’ve 488

explored.” In contrast, context reuse only often 489

produced generic suggestions. Another participant 490

noted, “I like the rec letter request email it gives 491

me, as it considers much of my background that I 492

saved in the previous ‘update your CV’ task. I did 493

the same thing in the other version [context reuse 494

only] but did not feel it was as effective.” 495

Beyond context selection, context elicitation fur- 496

ther improved the quality of both subtasks and an- 497

swer drafts. Participants noted that the elicitation 498

questions posed early in the session “provided the 499

right plan to start with.” These questions helped 500

tailor subtasks to users’ specific situations—for 501

example, adjusting the number of recommendation 502

letters required for a particular fellowship. Simi- 503

larly, elicitation prompts such as the user’s state of 504

residence (for obtaining a driver’s license) or team 505

size (for organizing an event) led to more precise 506

and context-aware task breakdowns. Preference- 507

based questions—e.g., “What type of vehicle do 508

you intend to drive?”—enabled participants to sup- 509

ply individualized context, resulting in more rele- 510

vant and highly rated answer drafts. 511

5 User Study 512

To evaluate how JumpStarter supports users in 513

planning personal goals, we conducted a within- 514

subjects study with ten participants, comparing 515
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Participant Personal goal Goal type
P1 Start a side job Career
P2 Organize a weekly game night Life
P3 Land a job offer Career
P4 Prepare for the LSAT Academia
P5 Manage social media accounts Creativity
P6 Move to a new apartment Life
P7 Create a portfolio website Creativity
P8 Prepare to deliver a tutorial Academia
P9 Start a YouTube channel Creativity
P10 Organize a family reunion Life

Table 1: Overview of personal goals picked by partici-
pants in the user study.

JumpStarter to ChatGPT.3 We selected ChatGPT516

as a baseline due to its widespread familiarity and517

its capacity to accept contextual input across a ses-518

sion, making it a realistic point of comparison for519

goal-oriented planning.520

Each participant used both systems to explore a521

personal goal they intended to pursue in the near522

future. After interacting with each system, partici-523

pants completed questionnaires assessing task load524

and satisfaction with outcomes. We also conducted525

semi-structured interviews to gather qualitative in-526

sights into their experience with each system.527

5.1 Participants and Procedure528

We recruited ten participants (average age=23.8;529

six female, four male) through a university mailing530

list and word of mouth. All reported being familiar531

or very familiar with ChatGPT. Before the study,532

each participant selected a personal goal to pursue533

within the next six months (see Table 1). At the534

start of each session, participants were introduced535

to the concepts of action plans and answer drafts536

through examples, then used both ChatGPT and537

JumpStarter to plan and generate answer drafts for538

as many subtasks as possible. The system order539

was randomized and counterbalanced to mitigate540

order effects. Each task was limited to 25 minutes,541

and each study session lasted approximately 1.5542

hours. All participants were compensated $20 per543

hour.544

5.2 Results and Findings545

We collected participants’ ratings on a 1-7 point546

scale through questionnaires (see Table 4 for de-547

tailed results). Participants rated their task load,548

outcome satisfaction, and confidence level in taking549

3We used the chat interface of ChatGPT and specified
GPT-4o in the user study.

***
**

** **

(a) NASA Task Load Index Comparison

(b) Exploration Efficiency Comparison

(c) Result Satisfaction Comparison

Figure 3: User study results comparison between using
ChatGPT and using JumpStarter. The statistical test
results comparing JumpStarter with ChatGPT, where
the p-values (∗: p < .050, ∗∗: p < .010, ∗∗∗: p < .001)
are reported.

the next steps on their goal by using JumpStarter 550

and ChatGPT. We recorded the number of plan 551

items explored and the answer draft generated by 552

each participant in each task. During the interviews, 553

we asked them follow-up questions to understand 554

the reasons behind their scores. We applied the 555

thematic analysis method (Braun and Clarke, 2006) 556

to analyze the interview transcripts. We report the 557

results in Figure 3 and discuss the key findings in 558

this section. See Appendix D for more detailed 559

analysis. 560

5.2.1 JumpStarter Reduces Users’ Task Load 561

As shown in Figure 3a, in the NASA TLX dimen- 562

sions (Hart, 2006b), working with JumpStarter was 563

significantly less demanding in mental demand 564

(p=.005), temporal demand (p=.012), performance 565

(p=.007), effort (p=.007), and frustration (p=.009). 566

Participants attributed this to the structured inter- 567

face and context-aware guidance of JumpStarter, 568

which helped reduce cognitive load. Unlike Chat- 569
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GPT’s linear chat format, JumpStarter made it eas-570

ier to visualize progress and maintain task structure.571

As P2 noted, “ChatGPT info dumps a lot, and I572

have to keep the structure in my brain, whereas573

JumpStarter gave me a structure that I could easily574

follow.” Similarly, targeted questions helped users575

refine their input and move forward. P10 com-576

mented, “I appreciate the questions JumpStarter577

asked when I felt stuck about how to iterate the578

answer draft.” In contrast, ChatGPT required users579

to generate and manage context manually. P8 re-580

marked, “In ChatGPT, the information load is581

high—I have to think very hard about what info582

I should provide to get things that work for me.”583

Participants also reported expending more effort584

with ChatGPT, often without meaningful improve-585

ment in output quality. For example, P1 asked586

ChatGPT to generate clarifying questions to im-587

prove the answer draft. It returned eight, which P1588

described as “a bit too abstract and hard to answer.”589

Despite answering them all, P1 felt the revised out-590

put remained “too general and not useful.” They591

also noted that “ChatGPT seemed to forget these592

eight answers soon after”, leading to frustration593

and a sense that their effort was wasted.594

5.2.2 JumpStarter Enables Better Exploration595

Efficiency596

Participants explored significantly more plan items597

using JumpStarter (mean=4.5, SD=1.43) than with598

ChatGPT (mean=2.9, SD=0.74), and created more599

answer drafts as well (mean=5.3, SD=1.89 vs.600

mean=3.3, SD=1.16). Figure 3b illustrates this601

difference.602

One reason for this disparity is that ChatGPT’s603

linear interaction format often leads users to fixate604

on a single task, limiting broader exploration. For605

instance, P2 iterated nine times on one answer draft:606

“It took nine iterations to get the draft I like. I really607

hoped ChatGPT would guide me, but I had to direct608

myself. I got so involved that I completely forgot I609

had other planning items.”610

In contrast, JumpStarter’s task-structured inter-611

face helped users stay oriented within the broader612

plan while focusing on one task at a time. P4 re-613

marked, “JumpStarter has a more flexible structure.614

I like that I can easily jump between tasks... See-615

ing the task description and relevant context gives616

me everything I need” P10 similarly noted, “Jump-617

Starter automatically manages and considers my618

drafts from previous tasks, which is great and helps619

me focus on the current one.”620

5.2.3 JumpStarter Improves Perceived Quality 621

of Outcome 622

Plans created with JumpStarter were rated sig- 623

nificantly higher in quality (mean=5.9, SD=0.88) 624

than those created with ChatGPT (mean=3.3, 625

SD=1.49). Similarly, participants rated the qual- 626

ity of answer drafts higher with JumpStarter 627

(mean=5.8, SD=0.92) compared to ChatGPT 628

(mean=4.7, SD=1.25). Figure 3c shows these dif- 629

ferences in perceived quality. 630

Participants attributed this improvement to Jump- 631

Starter’s proactive questioning and personalized 632

planning. Unlike ChatGPT, which often produced 633

generic plans, JumpStarter asked targeted ques- 634

tions early in the process and incorporated user 635

responses into the plan structure. For example, 636

P9, who was planning to start a YouTube channel, 637

noted: “JumpStarter asked if I was experienced 638

with video editing, and I said yes. It was reflected 639

in the plan accordingly, unlike ChatGPT, which 640

focused too much on editing I didn’t need.” 641

In addition, participants also appreciated how 642

JumpStarter effectively uses the relevant context 643

to personalize the answer draft, as P1 noted, 644

“JumpStarter gave me much more tailored re- 645

sponses—like a personalized schedule to help me 646

start my side job. It took into account key details 647

like my limited time and the specific area I am in- 648

terested in. It handled the context very well.” 649

6 Conclusion 650

We introduced task-structured context curation, a 651

novel framework for improving human-AI plan- 652

ning by aligning context management with hier- 653

archical task decomposition. Operationalized in 654

JumpStarter, this approach enables users to break 655

down complex goals into actionable subtasks while 656

dynamically eliciting, selecting, and reusing rel- 657

evant context. Through both technical evalua- 658

tions and user studies, we show that JumpStarter 659

significantly improves subtask and answer draft 660

quality, reduces task load, and promotes broader 661

exploration compared to ChatGPT. Our findings 662

highlight the limitations of traditional long-context 663

prompting and underscore the importance of struc- 664

turing both tasks and context in human-AI planning 665

workflows. By treating planning as an interactive, 666

task-decomposed process, JumpStarter offers a de- 667

sign paradigm for building more transparent, mod- 668

ular, and personalized LLM-based assistants. 669
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7 Limitations670

JumpStarter primarily assists users in figuring out671

“how” to achieve their personal goals, prompting672

real-world actions by increasing simplicity, as sug-673

gested by the Fogg Behavior Model (Fogg, 2009).674

However, the “why” problem—motivation (such675

as self-regulation or emotional challenges)—is an-676

other very important dimension that JumpStarter677

does not address. For example, one participant678

shared that their confidence dropped after explor-679

ing the goal, as they realized how much they had680

to do to make it happen. Emotional support at this681

time would be very valuable. But as prior studies682

suggested (Bhattacharjee et al., 2024), we should683

be very careful about using LLMs to provide emo-684

tional support, which deserves further investiga-685

tion.686

JumpStarter was designed to support people687

with personal goals that primarily involve cognitive688

or knowledge work, encompassing a wide range of689

goals across academia, career, creativity, and life690

(see examples in Table 1). However, there are many691

other personal goals that JumpStarter does not692

cover, such as physical goals (e.g., losing weight),693

behavioral goals (e.g., overcoming shyness), and694

spiritual goals (e.g., coming to terms with one’s695

faith), as outlined in (Little, 1983). Many of these696

goals require motivational support, a topic explored697

in previous HCI works (Consolvo et al., 2009;698

Ekhtiar et al., 2023). Future iterations of Jump-699

Starter could potentially expand to include these700

areas to accommodate a broader spectrum of per-701

sonal goals.702

JumpStarter utilizes GPT-4o as its core engine703

for providing information. While LLMs are adept704

at synthesizing information from the Internet and705

can sometimes offer valid and useful references,706

they are also prone to generating inaccurate or hal-707

lucinated information (Achiam et al., 2023). Hence,708

it is crucial to integrate search agents into our sys-709

tem to enhance the credibility of the information710

provided. Also, when pursuing creative goals such711

as starting a YouTube channel, users require sup-712

port in collecting and analyzing real-world data.713

Developing a search agent specifically tailored to714

platforms like YouTube could be a valuable direc-715

tion to explore.716

8 Ethics Statement717

Biases We did not explicitly address potential718

biases present in the pre-trained language models719

used in this study. 720

Reproducibility In this work, we use GPT-4o as 721

the backbone of our JumpStarter system. To sup- 722

port reproducibility, we provide all prompts used 723

in the paper. 724

Study Participants We recruit participants for 725

both technical evaluation and user study through 726

a university mailing list and word of mouth. They 727

were paid at a rate of $20 per hour. To protect 728

privacy and anonymity, participants’ personal and 729

demographic information will not be released. 730
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A JumpStarter System Walkthrough912

This section presents the interface visuals of the913

JumpStarter system. Figure 4 shows an overview914

of the interface as it generates plans and answer915

drafts for the goal “Apply for a PhD in NLP”. Fig-916

ure 5 displays the elicitation interface used to gather917

global context before initiating the planning pro-918

cess. Figure 6 illustrates the subtask tree, providing919

a structured overview of the user’s goal. Figure 7920

shows how the system recommends further decom-921

position for a selected subtask. Figure 8 depicts922

context selection for task forking and the resulting923

forked subtask structure. Finally, Figure 9 presents924

the interface for generating an answer draft, includ-925

ing both context selection and additional elicitation.926

B Details for Technical Evaluation of927

Task-structured Context Curation928

B.1 Study Procedure929

During the study, we first introduced the expert par-930

ticipants to the concept of action plans and answer931

drafts with examples. We instructed the partici-932

pants that they would be using three versions of933

the system for their respective goals, from start to934

finish. The system versions represented the three935

experimental conditions, which were presented in936

shuffled order among participants to counterbal-937

ance the learning effect (see Table 2 in Appendix938

B). We demonstrated how to use each version be-939

fore each participant used it. We asked the partic-940

ipants to generate the subtasks and answer drafts941

exactly once. They then rated the perceived quality942

of the subtasks and answer drafts on a seven-point943

Likert scale, providing a verbal explanation.944

B.2 Technical Evaluation Analysis945

Our results show that the context selection feature946

significantly enhances the quality of answer drafts947

compared to the baseline. Unlike context saving948

only, which keeps all context in the context window949

all the time, context selection requires the LLM to950

explicitly choose relevant context from the avail-951

able pool. During sessions under this condition,952

participants often remarked that the generated solu-953

tions appeared to take into account what they had954

input in previous subtasks. This was particularly955

evident in “summarizing” tasks, where the system956

could provide a personalized checklist for tasks957

like applying for scholarships and driver’s licenses,958

or an overall itinerary for a team event. E5 referred959

Participant Personal goal Condition order

E1
Apply to a fellowship

(1) → (2) → (3)
E2 (2) → (3) → (1)
E3

Get a driver’s license
(3) → (1) → (2)

E4 (1) → (2) → (3)
E5

Organize a team event
(2) → (3) → (1)

E6 (3) → (1) → (2)

Table 2: Overview of expert participants for the com-
parative study. Six experts were assigned one of three
goals to evaluate under all three conditions, which were
presented in shuffled order to avoid biasing the results.

to the event itinerary they got as a “very useful syn- 960

thesis of everything I’ve explored.” In contrast, the 961

context saving only condition tended to produce 962

only general tips for creating the itinerary. As an- 963

other example, E1 mentioned that the email draft 964

generated with context selection was more person- 965

alized than that created without it. E1 stated, “I 966

like the recommendation letter request email draft 967

it gives me, as it considers much of my background 968

that I saved in the previous ‘update your CV’ task. 969

I did the same thing in the previous round [context 970

dumping] but did not feel it was as effective.” 971

In addition to context selection, context elici- 972

tation improves the quality of both subtasks and 973

answer drafts, outperforming both context dump- 974

ing and context filtering conditions. Participants 975

reported that the elicitation questions posed at the 976

beginning “provided the right plan to start with.” 977

(E4) For instance, E2 uploaded the fellowship re- 978

quirements document as initially suggested by the 979

system, later rating the generated subtasks a per- 980

fect 7/7. “It captured the requirements quite ac- 981

curately..." E2 noted. “The subtasks were precise, 982

fitting the unique aspects of the fellowship I am ap- 983

plying to, which requires only one recommendation 984

letter, though typically more are needed.” Similarly, 985

elicitation questions about which state to obtain a 986

driver’s license in (for the “get a driver license” 987

goal) and how many people are in the team (for 988

the “organize a team event” goal) both resulted in 989

subtasks that were better tailored to participants’ 990

individual situations. In addition, preference elici- 991

tation questions such as “What type of vehicle do 992

you intend to drive?” and “When do you prefer to 993

hold the event? Weekday or weekend? Noon or 994

night?” prompted participants to provide answers 995

as personal context, ultimately resulting in more 996

tailored answer drafts that they rated highly. 997
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Figure 4: A screenshot of JumpStarter creating plans and answer drafts for the goal Apply for a PhD in NLP. (A)
Task breakdown is shown as a subtask tree, with the goal being the root node. Subtasks decomposed from the same
parent node are shown on the same level. (B) Saving the answer draft. (C) Detailed descriptions of the selected
subtask are shown. (D) The answer draft is generated, considering the specification from the user – "I want schools
in midwest of US". Users have three options to improve the draft: regenerate, add context and regenerate, and iterate
based on users’ new specifications.

Figure 5: JumpStarter generates questions to elicit con-
text from users to clarify the goal. The user uploads his
CV.

C Technical Evaluation of Subtask998

Detection999

C.1 Experiment settings1000

Subtask Detection aims to determine whether a1001

task should be further decomposed to become ex-1002

ecutable. Using zero-shot and few-shot prompt-1003

ing as baselines, we evaluated three GPT-4-based1004

prompting strategies for identifying actionable sub-1005

tasks (see Appendix E for prompt details). First, we1006

applied Chain-of-Thought (CoT) prompting with1007

few-shot examples (Wei et al., 2022). Second, we1008

incorporated the tree level of each task node into1009

the prompt, based on the intuition that higher-level1010

nodes are less likely to be immediately actionable1011

(“Tree”). Third, we explored including the initial1012

Figure 6: The initial subtask tree and the overview for
the goal Apply for a PhD in NLP. (E) The task break-
down for the goal. (F) The overview of all the subtasks
of the goal, including the titles, descriptions, and dura-
tion of completion of the subtasks.

answer drafts in the prompt, allowing the model to 1013

assess whether decomposition is necessary based 1014

on draft quality (“Draft”). We assessed the accu- 1015

racy of each method using an expert-labeled test 1016

suite. All experiments used a temperature of 1, a 1017

maximum token limit of 2048, and top-p set to 1. 1018

Results are reported as averages across five runs 1019

for each setting. 1020

C.2 Test suite construction 1021

Drawing inspiration from Little (1983), we created 1022

a test suite comprising four real-world task scenar- 1023

ios, each representing a distinct aspect of everyday 1024

life: 1) Applying for a PhD program (Academic), 2) 1025

Obtaining a driver’s license (Practical), 3) Finding 1026

a surfing camp (Recreational), and 4) Arranging a 1027
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Figure 7: JumpStarter suggests further decomposition
for the first subtask Identify Potential PhD Programs.
(1) John presses the button Decompose the task. (2)
JumpStarter generates the subtasks for John.

(a) Selecting relevant context for forking.

(b) Entity-based task decomposition (forking).

Figure 8: Context selection for forking and the task de-
composition after applying forking on Identify Faculty
Members.

trip abroad (Travel). For each scenario, we created1028

ten distinct test cases, resulting in a total of 40 test1029

cases. An example test case is shown as follows:1030

Compile a List of Potential Universities: start by1031

identifying the universities that offer PhD programs1032

in Natural Language Processing (NLP). Research1033

and compile a comprehensive list of these univer-1034

sities. We recruited four expert participants—one1035

for each task scenario—via a university mailing list1036

(average age=26.3, two female, two male). These1037

participants reported having completed the tasks in1038

the past six months and were compensated $10 for1039

their participation. For each test case, the experts1040

were asked to determine if the current task should1041

be further decomposed to make it actionable. For1042

the example test case shown above, its label is "No"1043

(a) Context selection for answer draft generation.

(b) Context elicitation for answer draft iteration.

Figure 9: Context selection and elicitation for creating
and iterating the answer draft of the subtask Reach Out
to Potential Recommenders: Prof. Blake White.

Prompting Techniques
Accuracy Statistics

Mean SD p Sig.

Zero-shot .35 .000

Few-shot .58 .040

+ CoT .62 .050 .405 -
+ CoT + Tree .69 .020 .004 **
+ CoT + Draft .72 .020 .009 **
+ CoT + Tree + Draft .87 .040 .000 ***

Table 3: The technical evaluation results for Subtask
Detection comparing different prompting techniques,
where the p-values (−: p > .100, +: .050 < p < .100,
∗: p < .050, ∗∗: p < .010, ∗ ∗ ∗: p < .001) are
reported. Note that the p-values are computed against
the few-shot-only baseline. Few-shot combined with
CoT+Tree+Draft achieved the best accuracy.

as it is actionable and does not require further task 1044

decomposition. 1045

C.3 Results and Findings 1046

As summarized in Table 3, the zero-shot method 1047

yielded the lowest accuracy of only 0.35, which 1048

also implies an inherent difficulty in the task itself. 1049

We observe enhanced performance with few-shot 1050

prompting (0.58), with accuracy rising even more 1051

when using the CoT prompting paradigm (0.62). 1052

Combining CoT few-shot prompting with the task 1053

node tree levels (0.69), initial solution draft (0.72), 1054

or both (0.87), all significantly led to enhanced 1055

performance. Generating the initial solution draft 1056

introduced a trade-off between latency and accu- 1057
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racy, so we opted for the slightly less performant1058

few-shot CoT with tree levels for a better user ex-1059

perience.1060

D Detailed Design and Results of User1061

Study1062

D.1 Hypotheses1063

In the user study, we investigate the following hy-1064

potheses:1065

• H1: Compared to ChatGPT, JumpStarter1066

significantly lowers users’ task load (H1)1067

for mental demand (H1a), temporal demand1068

(H1b), performance (H1c), effort (H1d) and1069

frustration (H1e).1070

• H2: Compared to ChatGPT, JumpStarter sig-1071

nificantly increases users’ exploration effi-1072

ciency (H2) in terms of the number of plan1073

items explored (H2a) and the number of work-1074

ing solutions drafted (H2b) within the given1075

time.1076

• H3: Compared to ChatGPT, JumpStarter sig-1077

nificantly increases users’ satisfaction level1078

with the quality of results (H3) in terms of1079

plan quality (H3a) and working solution qual-1080

ity (H3b).1081

• H4: Compared to ChatGPT, JumpStarter sig-1082

nificantly increases users’ confidence in tak-1083

ing the next steps on their personal projects1084

(H4).1085

D.2 Detailed Results and Findings1086

D.2.1 Confidence level in taking the next steps1087

on the goal1088

Participants reported significantly higher confi-1089

dence in taking the next steps on their personal1090

projects using JumpStarter (mean=5.6, SD=1.07)1091

compared to using ChatGPT (mean=3.9, SD=.99).1092

Participants reported that ChatGPT helped vali-1093

date their thoughts with commonsense knowledge1094

and sometimes provided surprising or useful tips.1095

As P7 said, “Sitting down and planning things1096

out itself is very helpful. I used ChatGPT as1097

a cross-reference, checking to make sure I’m on1098

the right track—thinking similarly to other people.1099

And sometimes answers to low-level tasks covered1100

things I did not really know, which is good.” How-1101

ever, they reported that they still always felt they1102

might miss something important while using Chat-1103

GPT, whereas with JumpStarter, they feel more1104

secure (P3, P4, P9), as P4 commented, “I love that 1105

I can break things down further if I want, so I don’t 1106

feel like I miss anything.” 1107

In addition, JumpStarter can provide very per- 1108

sonalized and actionable next steps that greatly 1109

increase users’ confidence in taking action on their 1110

projects. For example, P1, with the goal of starting 1111

a side job, shared that “The schedule JumpStarter 1112

helped me generate is very personalized, and I can 1113

directly use it to take real action—before, I felt wor- 1114

ried about launching this idea as I had very limited 1115

time, now I feel like I can really start doing it.” P10 1116

also liked that JumpStarter provided them with a 1117

specific and personalized itinerary for organizing 1118

the family reunion—“I like that it summarizes ev- 1119

erything I saved in the previous tasks—I can use it 1120

in the real world.” 1121

D.2.2 Tool preference 1122

8 out of 10 participants reported they prefer to use 1123

JumpStarter in the future, compared to ChatGPT. 1124

The main reasons given include that JumpStarter 1125

can provide more customized responses with less 1126

cognitive load. The users feel that they do not have 1127

to think hard about what information to provide 1128

(P1), are guided by the system (P2), can more easily 1129

consume the information (P3) or track the plan 1130

(P6), and can get their personal details efficiently 1131

organized, framed, and utilized (P8, P9, P10). 1132

The other two participants (P4 and P5) men- 1133

tioned that their choice depended on how familiar 1134

they were with the project they wanted to work on. 1135

If it was a topic they already had a clear under- 1136

standing of, they preferred the chatbot interaction 1137

to help them figure out the details. Otherwise, they 1138

would prefer to use JumpStarter as it offers more 1139

structure. 1140

D.2.3 Improvement feedback 1141

Participants also provided insights on how to im- 1142

prove JumpStarter. The main feedback included 1143

“make the subtask outline and task descriptions ed- 1144

itable” (P1, P3, P6, P7, P8, P9), “format the sug- 1145

gested answer draft to be easier to read” (P4, P8, 1146

P9), “enable users to add or edit context whenever 1147

they want” (P3, P7), and “add a synthesis button 1148

to summarize what has been explored so far” (P1, 1149

P2). P8 also suggested embedding a search agent 1150

to collect data and ensure credibility. We discuss 1151

limitations and future work further in Section 7. 1152
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Category Factor JumpStarter ChatGPT Statistics Hypotheses
Mean SD Mean SD p Sig.

Task load

Mental demand 3.3 1.64 5.3 1.06 .005 ** H1a accepted
Temporal demand 2.4 .97 4.7 1.83 .012 * H1b accepted
Performance 2.7 .95 4.6 1.26 .007 ** H1c accepted
Effort 2.8 1.69 4.8 1.23 .007 ** H1d accepted
Frustration 2.1 1.60 4.5 1.90 .009 ** H1e accepted

Exploration efficiency Plan items explored 4.5 1.43 2.9 .74 .002 ** H2a accepted
Answer drafts generated 5.3 1.89 3.3 1.16 .047 * H2b accepted

Satisfaction Plan quality 5.9 .88 3.3 1.49 .004 ** H3a accepted
Answer draft quality 5.8 .92 4.7 1.25 .017 * H3b accepted

Confidence 5.6 1.07 3.9 .99 .007 ** H4 accepted

Table 4: The statistical test results comparing JumpStarter with ChatGPT, where the p-values (−: p > .100, +:
.050 < p < .100, ∗: p < .050, ∗∗: p < .010, ∗ ∗ ∗: p < .001) are reported.

D.3 Extended Discussion about User Study1153

JumpStarter demonstrates how adaptive personal1154

context curation—through context elicitation, con-1155

densation, and reuse—can enhance human-AI col-1156

laborative planning by improving both plan qual-1157

ity and user experience. Unlike ChatGPT’s user-1158

driven “pull” model, JumpStarter’s “push” ap-1159

proach reduces cognitive load by guiding users1160

with targeted questions and enabling selective con-1161

text previews, aligning with recognition-over-recall1162

principles from cognitive psychology (Craik and1163

Lockhart, 1972). Users valued this structured in-1164

teraction but also expressed a desire for more per-1165

sistent and adaptive memory, particularly as their1166

goals and preferences evolved, highlighting the1167

need for systems that can update context dynami-1168

cally over time (Wang et al., 2024).1169

While ChatGPT is designed to retain conver-1170

sational context, it often failed to apply it mean-1171

ingfully, occasionally generating contradictory re-1172

sponses. These findings underscore the importance1173

of designing systems that support more seamless1174

and transparent context management. Looking for-1175

ward, integrating in-situ context capture from tools1176

like email or desktop files (Kaptelinin, 2003; Ker-1177

sten and Murphy, 2006; Bergman and Norman,1178

2000) may enable more fluid, real-world human-1179

AI collaboration. JumpStarter offers a design1180

paradigm for building systems that better align1181

LLM capabilities with users’ evolving needs in1182

complex, long-term planning workflows.1183

E LLM Prompts 1184

E.1 Context Elicitation 1185

E.1.1 Goal Initialization and Global Context 1186

Figure 10 details the prompts used for eliciting 1187

global context for the goal initialization process 1188

introduced in Section 3.3.2. 1189

Figure 10: Prompts for Context Elicitation for Goal
Input.

E.1.2 Answer Draft Creation and Iteration 1190

Figure 11 presents the prompts used to generate an 1191

answer draft for each subtask. 1192
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Figure 11: Prompts for Context Elicitation for Answer
Draft Creation.

E.2 Context Selection1193

E.2.1 Answer Draft Generation1194

Figure 12 specifies the prompts used to select rele-1195

vant context for generating an answer draft.1196

Figure 12: Prompts for Context Selection for Answer
Draft Creation.

E.2.2 Task Forking1197

The prompt to conduct the task forking is as fol-1198

lows:1199

• My user has a main purpose: {main_purpose}.1200

My user is working on the task {task_name}:1201

{task_description}. My user needs to break1202

down the task into sub-tasks. Here is the1203

current context history from the user: {con-1204

text_history}. Please select the most rele-1205

vant context key from the current context his-1206

tory that can be used to better decompose1207

the current task into several sub-tasks for the1208

user to get started. Do not help the user to1209

break down the task. Please also provide1210

explanations. Format the response like this:1211

<context_key>: <reasons>. Replace the con-1212

text_key with the actual key in the context his-1213

tory.1214

E.3 Task Decomposition1215

This section presents the prompts used for task de-1216

composition, organized into three core components:1217

Subtask Generation (Figure 13), Subtask Detection1218

(Figure 14), and Task Forking (Figure 15).1219

Figure 13: The prompt for Subtask Generation.

Figure 14: The prompt for Subtask Detection.

E.4 Answer Draft Creation 1220

The prompt to generate the answer drafts is shown 1221

as follows: 1222

• My user has a main purpose: {main purpose}. 1223

Please consider the following context informa- 1224

tion from my user: {user_context}. My user 1225

needs help with the current task {current task}: 1226

{task description} 1227

E.5 Prompts for Technical Evaluation of 1228

Subtask Detection 1229

E.5.1 Zero-shot Prompting 1230

The prompt for zero-shot for the task of subtask 1231

detection is demonstrated below: 1232

• System prompt: You are a useful assistance 1233

to detect if the current task needs to be further 1234

decomposed if it is not actionable and the pri- 1235

mary goal of the task can not be viewed as a 1236

singular, distinctive deliverable. Based on the 1237

user prompt, please output Yes if it needs to 1238

be decomposed; No otherwise meaning it is 1239
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Figure 15: The prompt for Task Forking.

actionable and does not require task decom-1240

position.1241

• User Prompt: My user is working on the task1242

{task title}: {task description}. My user needs1243

to know if the current task needs to be decom-1244

posed.1245

E.5.2 Few-shot Prompting1246

The prompt for few-shot-only prompting is shown1247

in Figure 16. Note that we used three in-context1248

examples in the prompt.1249

E.5.3 Few-shot + CoT1250

We constructed the prompt in a Chain-of-Thought1251

fashion, where GPT-4 is instructed to first generate1252

the reasoning and then the answer. The prompt is1253

shown in Figure 17.1254

E.5.4 Few-shot + CoT + Draft1255

We experimented with incorporating both CoT and1256

the initial working solution draft into the prompt.1257

The system prompt is shown in Figure 18. For the1258

user prompt, before detecting subtasks. we first1259

generated the initial working solution draft for the1260

current task. The user prompt is shown below:1261

• My user is working on the task {task title}:1262

{task description}. The GPT response to the1263

task is: {Draft}. My user needs to know if the1264

current task is specific and actionable.1265

Figure 16: The few-shot-only prompt for Subtask De-
tection.

E.5.5 Few-shot + CoT + Tree + Draft 1266

To construct the system prompt for this setting, 1267

we incorporate the tree level of each task into the 1268

prompt. The prompt is shown in Figure 19. Addi- 1269

tionally, for the current task at hand, its tree-level 1270

information is also presented in the user prompt, as 1271

shown below: 1272

• My user is working on the task {task title}: 1273

{task description}. The current node level of 1274

the task is {level}. The GPT response to the 1275

task is: {Draft}. My user needs to know if the 1276

current task is specific and actionable. 1277
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Figure 17: The prompt for few-shot + CoT for Subtask
Detection.
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Figure 18: The prompt for few-shot + CoT + Draft for Subtask Detection.
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Figure 19: The prompt for few-shot + CoT + Tree + Draft for Subtask Detection.

21


	Introduction
	Related Work
	JumpStarter System
	System Walkthrough
	Goal Input and Global Context Elicitation
	Subtask Generation and Detection
	Answer Draft Creation and Refinement
	Task Forking
	Context Elicitation for Draft Iteration

	Data Representation
	Task-Structured Context Curation
	Task Decomposition
	Context Elicitation
	Context Selection and Context Reuse


	Evaluation of Task-structured Context Curation
	Participants and Procedure
	Results and Findings

	User Study
	Participants and Procedure
	Results and Findings
	JumpStarter Reduces Users' Task Load
	JumpStarter Enables Better Exploration Efficiency
	JumpStarter Improves Perceived Quality of Outcome


	Conclusion
	Limitations
	Ethics Statement
	JumpStarter System Walkthrough
	Details for Technical Evaluation of Task-structured Context Curation
	Study Procedure
	Technical Evaluation Analysis

	Technical Evaluation of Subtask Detection
	Experiment settings
	Test suite construction
	Results and Findings

	Detailed Design and Results of User Study
	Hypotheses
	Detailed Results and Findings
	Confidence level in taking the next steps on the goal
	Tool preference
	Improvement feedback

	Extended Discussion about User Study

	LLM Prompts
	Context Elicitation
	Goal Initialization and Global Context
	Answer Draft Creation and Iteration

	Context Selection
	Answer Draft Generation
	Task Forking

	Task Decomposition
	Answer Draft Creation
	Prompts for Technical Evaluation of Subtask Detection
	Zero-shot Prompting
	Few-shot Prompting
	Few-shot + CoT
	Few-shot + CoT + Draft
	Few-shot + CoT + Tree + Draft



