UniBench: Visual Reasoning Requires Rethinking
Vision-Language Beyond Scaling

Haider Al-Tahan', Quentin Garrido':2, Randall Balestriero®,
Diane Bouchacourt', Caner Hazirbas', Mark Ibrahim’
!Meta FAIR, 2Univ Gustave Eiffel, CNRS, LIGM, 3Brown University

Abstract

Significant research efforts have been made to scale and improve vision-language
model (VLM) training approaches. Yet, with an ever-growing number of bench-
marks, researchers are tasked with the heavy burden of implementing each proto-
col, bearing a non-trivial computational cost, and making sense of how all these
benchmarks translate into meaningful axes of progress. To facilitate a systematic
evaluation of VLM progress, we introduce UniBench: a unified implementation
of 50+ VLM benchmarks spanning a range of carefully categorized vision-centric
capabilities from object recognition to spatial awareness, counting, and much
more. We showcase the utility of UniBench for measuring progress by evaluating
nearly 60 publicly available vision-language models, trained on scales of up to
12.8B samples. We find that while scaling training data or model size can boost
many vision-language model capabilities, scaling offers little benefit for reason-
ing or relations. Surprisingly, we also discover today’s best VLMs struggle on
simple digit recognition and counting tasks, e.g. MNIST, which much simpler
networks can solve. Where scale falls short, we find that more precise interven-
tions, such as data quality or tailored-learning objectives offer more promise. For
practitioners, we also offer guidance on selecting a suitable VLM for a given
application. Finally, we release an easy-to-run UniBench code-base with the
full set of 50+ benchmarks and comparisons across 59 models as well as a dis-
tilled, representative set of benchmarks that runs in 5 minutes on a single GPU.
UniBench with model evaluations on all benchmarks are provided as a toolbox at:
https://github.com/facebookresearch/unibench

1 Introduction

The growing investment in vision-language models (VLMs), capable of a range of open-world
multimodal tasks, has spurred the development of numerous benchmarks. Although in principle a
more thorough set of evaluations is welcome, the ever-growing number of benchmarks has resulted
in a complex, fragmented landscape for evaluation. Researchers are tasked with the heavy burden
of implementing the protocol for each benchmark and making sense of how all these benchmarks
translate into meaningful axes of progress. Of course, running such a large number of benchmarks
also carries a non-trivial computational burden. Consequently, many new models are evaluated only
on a subset of available benchmarks. When benchmarks are omitted, the research community is faced
with blind spots in model strengths and weaknesses. Additionally, comparing the performance of one
model versus others becomes challenging as the underlying set of benchmarks is not comparable.
Ultimately, drawing well-founded conclusions about the best strategies to advance VLMs in this
fragmented landscape of benchmarks is a challenge.

To help researchers navigate this overwhelming landscape of benchmarks and ease the burden of
systematically evaluating VLMs, we introduce UniBench. In UniBench we implement 53 vision-
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Figure 1: Benchmark Types in UniBench with their respective performance gains from scaling
model size and training dataset size. Scale offers limited benefits for relational understanding and
reasoning tasks.

language model benchmarks in a unified, user-friendly code-base. These benchmarks cover a range
of vision-centric capabilities from standard object recognition to spatial understanding, counting,
geographic robustness, domain-specific medical and satellite imagery, and many others. With such a
comprehensive set of benchmarks, we shine a light on the blind spots in the strengths and weaknesses
of the model. Next, to ensure that the research community can translate the many resulting metrics
into meaningful axes of progress, we categorize these benchmarks into seven types and seventeen
finer-grained capabilities, as shown in Figure|l} Researchers can quickly pinpoint model strengths
and weaknesses in a comprehensive, apples-to-apples fashion.

We demonstrate the utility of UniBench by evaluating nearly 60 openly available vision-language
models spanning a range of architectures, model sizes, training dataset scales, and learning objectives
with scales of up to 12.8B samples and 1B parameters. We systematically compare this diverse set of
models across the axes of progress in UniBench. We find that scaling, model size, or training data
is a powerful lever for many axes of performance, but offers little benefit for visual relations and
reasoning. We also find today’s best VLMs struggle with simple benchmarks involving numerical
comprehension, even with the right training data, on tasks such as character recognition or counting—
including decades old benchmarks such as MNIST and SVHN [LeCun et al., {1998, [Netzer et al.,
2011]]. Where scale falls short, we find tailored learning objectives and training data quality are
promising levers for relations and reasoning. Finally, we provide practical recommendations on which
models practitioners should select. For example, we find large open models such as Eva ViT-E/14 to
be a good choice for a general-purpose VLM while models such as NegCLIP excel at specialized
tasks such as visual relations.

To facilitate systematic, comparable, yet easy-to-run evaluations we distill the many benchmarks into
a few representative evaluations. We provide the UniBench codebase including the 50+ benchmarks
with comparisons against all 59 VLMs as well as the distilled set of representative benchmarks that
can run in less than 5 minutes on a single A100 GPU. We hope our contribution facilitates thorough
and practical evaluation of vision-language model capabilities to faithfully gauge research progress
and surface promising strategies to advance VLM research.

2 Related Works

2.1 Visual Models From Natural Language Supervision

Visual models trained with natural language supervision have revolutionized computer vision by
enabling models to learn rich, joint representations of images and text. A seminal work in this area
is CLIP (Contrastive Language—-Image Pre-training) introduced by [Radford et al. [2021b]], which
demonstrated that pre-training on a large dataset of image-caption pairs using a contrastive objective
yields models with remarkable zero-shot transfer capabilities to downstream tasks.



Following CLIP’s success, numerous methods have been proposed to enhance visual models through
natural language supervision [Bordes et al.| 2024, Jia et al., 2021} |Yao et al., 2021} [Yu et al.,[2022b,
Li et al.| [2022b} [Singh et al., 2022b| |Gadre et al.,[2023a]]. These models vary in their approaches,
including differences in backbone architectures, training objectives (contrastive learning, image-text
matching, masked language modeling), and the scale and quality of the training data. To assess the
capabilities of these models, the community has developed a diverse set of benchmarks that test
various aspects of visual and multimodal understanding [Yuksekgonul et al., 2023, [Thrush et al.,
2022b| [Hsieh et al., [2024].

However, the proliferation of benchmarks and models has led to a fragmented evaluation landscape,
making it challenging to comprehensively assess and compare models. Different benchmarks
emphasize different capabilities, and inconsistent evaluation protocols hinder direct comparison. This
fragmentation underscores the need for unified evaluation frameworks like UniBench, which aim to
provide a cohesive and comprehensive suite of benchmarks covering a wide range of vision-language
understanding tasks.

2.2 CLIP-Style versus LLM-style Evaluation

Evaluation of VLMs has been an active area of research in recent years [Li et al.,[2023al [Yue et al.,
2024/ [Liu et al., [2024], [Salin et al., 2023| Bitton et al.,|2023]]. While these benchmarks provide an
insightful perspective of VLM capabilities, they primarily focus on LLM-style evaluations, which
generate tokens or text as output. These benchmarks are not suitable for evaluating CLIP-like VLMs,
which focus on vision-language classification and understanding capabilities. As a result, they do not
allow for direct comparisons with CLIP-Style models.

CLIP-Style evaluation is a widely used approach that calculates the similarity between the image
representation and text label. This method focuses on vision-language classification and understanding
capabilities, making it particularly useful for evaluating models used as backbone/foundation models
for image generation and fine-grain visual tasks [Rombach et al.,[2021, Ramesh et al.|| 2021} |Saharia
et al., [2022]. In contrast, LLM-style evaluation asks the model to demonstrate its knowledge via text
generation. While this approach is suitable for evaluating models designed for text-based tasks, it
may not be as effective for evaluating models focused on visual tasks. The key difference between
CLIP-Style and LLM-style evaluation lies in their respective objectives: CLIP-Style aims to assess a
model’s ability to align visual and textual representations, whereas LLM-style focuses on assessing a
model’s ability to generate coherent and accurate text.

UniBench focuses on CLIP-Style evaluation, which provides a more comprehensive understanding of
a model’s visual reasoning capabilities. By concentrating on traditional zero-shot tasks and predefined
choices, we enable an apples-to-apples comparison of progress over the past few years, shedding
light on promising directions for future research.

3 UniBench: A comprehensive unified evaluation framework for VL.Ms

Here we describe the benchmarks, protocols, and axes of progress that comprise UniBench as well
as the VLMs evaluated.

3.1 VLMs Considered in UniBench

We evaluate 59 openly available VLMs across a range of model sizes, pre-training dataset sizes, learn-
ing objectives, and architectures (full list in Appendix Table[6). For traning dataset size, we include
models trained and/or fine-tuned with datasets ranging from 13 million to 12.8 billion samples; in-
cluding DataComp [|Gadre et al.,|2023b|| (small, medium, large, and extra-large), LIAON [Schuhmann
et al., [2022] (400M, 2B, 5B), MetaCLIP [Xu et al., [2023] (400M and 2.5B), Flickr [Young et al.,
2014, PMD [Singh et al., [2022a]], and COCO [Lin et al., [2015]]. For model size and architecture, we
categorize models based on the number of parameters and whether these models are convolutional or
transformer-based models, ranging from ResNet50 [He et al.,[2016]] with 38 million parameters to
EVAO2 ViT E [Fang et al., [2023b] with 4.3 billion parameters.

Evaluation Procedure We evaluate performance of zero-shot classification benchmarks similar
to [Radford et al.,[2021b], by contrasting the representations of class labels (averaged across prompts



as defined by Cherti et al.|[2022]) with the image representations and using the class with the highest
probability as the predicted class. For relation benchmarks, we follow the standard protocol of
contrasting correct and incorrect captions with image representations.

3.2 Benchmark Types

To better navigate the overwhelming number of VLM benchmarks, we classify benchmarks into
seven distinct types (Figure[I]each covering an key aspect of model performance):

1.

Non-Naural Images: Consisting of PCam[Veeling et al., 2018]], Diabetic Retinopathy[Wang
and Yang, [2018]], ImageNet Sketch[Wang et al.,[2019]], imagnetr[Hendrycks et al., 2021al],
eurosat[Helber et al., [2019, |2018]], and resisc45[Cheng et al., 2017], these benchmarks
evaluate the models’ ability to handle non-natural images, such as computer-generated
graphics, medical images, or satellite imagery.

. Object Recognition: These benchmarks focus on the models’ ability to accurately identify

and classify objects within images. It includes benchmarks with variety of objects and
settings, from everyday items to specific categories like animals or vehicles. Consisting
of CUB [Wah et al., 2011]], iNaturalist [[Van Horn et al., [2018]], Pets [Parkhi et al., [2012]],
MNIST [LeCun et al., [1998]], Rendered SST2 [Radford et al.,|2021a]], SVHN [Netzer et al.,
2011]], Caltech 101 [Fei-Fei et al., [2004], Stanford Cars [Krause et al., [2013]], Cifar 10
[Krizhevsky et al., [2009], Cifar 100 [Krizhevsky et al.,|2009], Country211 [Radford et al.,
2021al], Dollar Street [Gaviria Rojas et al.|[2022]], FGVC Aircraft [Maji et al.,[2013], Flowers
102 [Nilsback and Zisserman, 2008]], Food 101 [Bossard et al., 2014f], GTSB [Stallkamp
et al.,2012], STL-10 [Coates et al.,|2011], VOC 2007 [Everingham et al.]], ImageNet [Deng
et al., 2009], Places365 [Zhou et al., 2017]], sun397 [Xiao et al., 2010], MNIST Fashion
[Xiao et al.,[2017]], and PUG: ImageNet [Bordes et al., 2023].

. Reasoning: These benchmarks test the models’ capacity to understand relationships between

objects, spatial reasoning, and logical inference based on visual input. The benchmarks
consist of CLEVR [Johnson et al.,|2017]], dmlab [Zhai et al.,[2019], DSPR [Matthey et al.,
2017], Kitti [Geiger et al., [2012]], smalINORB [LeCun et al.,|2004]], and CountBench [Paiss
et al.,[2023]].

. Robustness: These benchmarks evaluates the models’ resilience to adversarial attacks

and variations in image data. It includes tests with perturbed images to see how well
the models can maintain performance under challenging conditions. For example, the
ObjectNet benchmark introduces changes in object position, scale, and background, while
the ImageNet-R benchmark focuses on transformations related to many types of image
renditions. This collection incdlues ImageNet-E [Li et al.| 2023c]], ObjectNet [Barbu et al.,
2019], ImageNet-A [Hendrycks et al., |2021b], ImageNet-O [Hendrycks et al., 2021b],
ImageNet-9 [Xiao et al.}[2020], and ImageNet-V2 [Recht et al., 2019].

. Relation: We include relational benchmarks, such as Visual Genome [Yuksekgonul et al.,

2023]], Winoground [Thrush et al., [2022a]], and SugarCrepe [Hsieh et al.,|[2024]] designed to
evaluate the models’ ability to understand and represent relationships between objects within
an image, a crucial aspect of visual understanding. For instance, Visual Genome benchmark
includes a variety of relationships (denoted VG-Relation) and attributions (denoted VG-

"o

Attribution) tasks, such as spatial relationships (e.g, “above", “next to"), action relationships

(e.g, “riding", “holding"), and appropriate attribution (e.g, “the brown horse and the orange
cat" vs. “the orange horse and the orange brown").

. Texture: We rely on DTD [[Cimpoi et al., 2014] a benchmark focusing on the models’

capability to recognize and differentiate textures within images, which is crucial for tasks
such as material recognition and scene understanding.

. Corruption: Consisting of ImageNet-C benchmark [Hendrycks and Dietterich, 2019]

introduces various types of image corruptions, such as noise, blur, and digital artifacts.
These corruptions simulate the types of degradation that images may undergo in real-world
scenarios, such as poor lighting conditions, low-quality cameras, or transmission errors.

3.3 Benchmark Capabilities

We further breakdown benchmarks into several capabilities:



1-3. Depth Estimation, Pose Detection, and Spatial Understanding: Assessing the models’
ability to estimate the depth of objects and scenes from images, and detect object poses
which is crucial for understanding spatial relationships.

4-5. Medical and Satellite: Testing the models’ performance on medical imaging tasks, such as
identifying diseases or conditions from medical scans while testing on satellite imagery re-
quires requires recognizing and interpreting land use, terrain, and other geographic features.

6—7. Counting and Character Recognition: Assessing the models’ ability to identify digits and
count objects within images, a fundamental skill for quantitative understanding.

8. Geographic Diversity: Evaluating the models’ capability to recognize and interpret images
from diverse geographic locations and settings.

9. Scene Recognition: Measuring how well models can identify and classify different scenes
or environments.

10-12. Standard Object Recognition, ImageNet and Challenging ImageNet: Evaluating perfor-
mance on the widely used benchmark for object recognition. We also include the ubiqutous
ImageNet and more difficult variants of ImageNet to evaluate model robustness and adapt-
ability.

13. Specific Classification: Evaluating models on tasks that require classification of specific
categories or fine-grained distinctions between similar objects.

14. Texture Detection: Assessing the models’ ability to recognize and differentiate various
textures within images.
15. Rendition: Assessing models’ performance on tasks involving rendered or synthetic images,
which differ from natural photographs.
16-17. Corruptions and Natural Transformations: Evaluating robustness to image corruptions,

such as noise, blur, and other artifacts that degrade image quality whereas natural transfor-
mations includes common changes in lighting, rotation, or perspective.

3.4 UniBench: a systematic, practical VLM evaluation

UniBench is framework for comprehensive, fast, and easy-to-use evaluation of VLMs. UniBench
also has the ability to expand the existing set of benchmarks and VLMs, as shown in (Code Snippet

1.

| import unibench
from unibench.models_zoo.wrappers.clip import ClipModel
from torchvision.datasets import FashionMNIST

s evaluator = unibench.Evaluator ()
¢ model = partial(

7 ClipModel,

8 model=model,

9 model_mname="vitamin_1l_complb",

10 tokenizer=tokenizer,

11 input_resolution=model.visual.image_size[0],
12 logit_scale=model.logit_scale,

13 )

14 evaluator.add_model (model=model)

5 class_names = ["T-shirt/top",...]

16 templates = ["an image of {}", ...]

17 benchmark = partial (FashionMNIST, root="./", train=False, download=
True)

12 handler = partial(ZeroShotBenchmarkHandler, benchmark_name="
fashion_mnist_new", classes=class_names,templates=templates)

19 evaluator.add_benchmark (benchmark, handler, meta_data={"
benchmark_type": "object recognition"})

20 evaluator.evaluate ()

Code Snippet 1: Running UniBench with a custom model and a new benchmark. UniBench accepts
any torchvision dataset type.
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Figure 2: Median performance of all 59 VLMs on 53 benchmarks, illustrating that despite
advancements, VLMs still struggle on several benchmarks. Benchmarks that barely exceed
chance-level performance include Winoground, iNaturalist, DSPR, Small Norb, dmlab, Clevr, PCam,
Renderedssst2, and Kitti. Blue bars represent the median zero-shot performance of the models, while
grey bars indicate the chance-level for each benchmark.

4 Gauging progress in Vision Language Modeling with UniBench

We show the overall median performance of the nearly 60 VLMs we examined on 53 benchmarks in
Figure 2] ranked by their zero-shot classification performance. The results suggest that, while VLMs
perform remarkably well on many tasks, for others, VLM performance is near or below random
chance level. These results highlight the need for a unifying pipeline to systematically surface model
limitations.

4.1 Scaling improves many benchmarks, but offers little benefit for reasoning and relations

Scaling training dataset size hardly helps for reasoning and relations. While scaling training
dataset size improves performance across many tasks, this trend does not hold for benchmarks
assessing relation understanding and reasoning capabilities. To control for other confounding factors,
we fix the architecture, learning paradigm, model size (for right panel), and training dataset size
(for left) by using the same CLIP ViT-B/32 model and LAION 400M dataset, respectively Figure [3]
The results suggest despite increasing the training dataset size by a factor of 1000 x, relational and
reasoning benchmarks performance is fairly flat compared to the significant boost in performance on
other tasks. We observe a similar trend overall when we include all 59 models in Appendix Figure[7]
We specifically pinpoint capabilities such as Depth Estimation, Spatial Understanding, Counting,
Scene and Text Recognition, as the underlying capabilities where scale does not lead to improvements
as shown in Figure 4]

Scaling model size also offers little to no benefit for reasoning or relations. When we scale
models’ size from 86 million parameters to 1 billion parameters, we also find that models struggle to
scale on similar proportions on relation and reasoning tasks as shown in Figure 3] While for other
benchmark types including object recognition, robustness, etc. performance improves by 17.4% as
model size scales by 11x, relations and reasoning improve by a modest 3.41% with a fairly flat
scaling curve. Similar to scaling training dataset size, scaling model size also offers little benefit for
capabilities such as Depth Estimation, Spatial Understanding, Counting, Scene and Text Recognition
as shown in Figure 4]
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Figure 3: The effect of scaling model and training dataset size using a fixed architecture and
learning paradigm. Zero-shot performance of models on various benchmark types. We investigate
the impact of training dataset size (left), and model size on various benchmark types (right). To
isolate the effect of scale, we fix the architecture, learning paradigm, model size (for right panel), and
training dataset size (for left) by using the same CLIP ViT-B/32 model and LAION 400M dataset,
respectively. We observe a similar trend when measured across all 59 models as shown in Appendix

Figure[7]
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Figure 4: The effect scaling of training dataset (left) and model size (right) across capabilities
for all models. Accuracy is the difference in performance between the most scaled and the least
scaled model across capabilities relative to ImageNet performance.
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Figure 5: Performance of 59 VLLMs on MNIST, showing despite progress, VLMs still struggle on
MNIST. Blue bars represent zero-shot performance of models, grey bars represent the chance-level
for MNIST, and green bar shows performance for a 2-Layer MLP.

4.2 A Case Study: Digit Recognition and Counting are notable limitations for VLMs even
with the right training data

A surprising aspect of VLM:s is their poor performance on benchmarks that are traditionally considered
straightforward, such as MNIST, CIFAR-10, and CIFAR-100, as shown in Figure@ For example, a
simple 2-layer MLP achieves 99% accuracy on MNIST significantly outperforming
all 59 VLMs we studied. To delve deeper into this unexpected result, we controlled for several
variables:

1. VLM confusions go beyond top-1: To further understand the performance results on
MNIST, we compute more generous top-2,-3,-4, and -5 accuracy measures to understand
whether models confuse similar digits. We show in Appendix Figure [I0] that even when
we compute top-5 accuracy (with 50% being chance), VLMs barely reach 90% accuracy
suggesting poor performance is not due to minor confusions among digits.

2. Prompt engineering isn’t enough for good performance: To ensure that the poor perfor-
mance was not an artifact of the prompts used, we tested multiple hand-crafted prompts that
included detailed descriptions of the image characteristics Appendix Figure[9] Despite these
tailored prompts, which explicitly described the black-and-white nature and content of the
images, the performance still lagged significantly behind simpler models.

3. Training data contains ample samples with digit concept: We investigated whether the
subpar performance could be attributed to a lack of training images containing digit concepts
by analyzing the popular LAION 400M dataset. Our findings reveal a substantial number
of captions with both word digits (100k-2M) and integer digits (15M-48M) in the training
captions, suggesting that the poor performance is not merely due to insufficient training data
(see Figure [IT] for exact counts by digit).

4. VLMs struggle on other digit benchmarks: To further explore whether the poor perfor-
mance on MNIST is indicative of broader issues in number comprehension, we extend our
investigation to other benchmarks such as SVHN, CountBench, and ClevrCount (Appendix
Figure [6). We find across all benchmarks VLMs struggled with number recognition and
counting tasks.

Takeaway Despite training on vast datasets, even leading VLMs can struggle with simple tasks
solved trivially by much smaller models, including tasks involving basic number comprehension.
These findings highlight the need for a comprehensive evaluation pipeline that includes so called,
simpler benchmarks, to uncover VLM limitations.
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Figure 6: Median performance of 59 VLMs on counting and character recognition benchmarks,
showing MNIST performance is not an isolated instance and VLMs generally sruggle with
these tasks. Blue bars represent the median zero-shot performance of models and gray bars represent
random chance-level.

4.3 What contributes to better model performance?

We have shown both the promise and limitations of scale for VLM performance. We now examine
what other levers can overcome the limitations of scale. In particular, we examine other promising
factors, such as data quality and learning objectives for improving relational understanding and
reasoning.

Data quality matters more than data quantity. Among the 59 VLMs we evaluated, there are
models trained from 12.8 million samples to 12.8 billion samples. While the quantity of data is often
highlighted as a key driver for improving model performance, the quality of the data can be even
more critical. For instance, among all models in Appendix Tables[T]and[3] the top performing models
are generally the ones trained on 2 billion samples, which use more strict CLIP score filtering as
described in|Gadre et al.|[2024]]. This observation suggests that beyond a certain threshold, simply
adding more data does not necessarily translate to better performance. Instead, the composition
and quality of the data set become paramount. Models trained on such data are better equipped to
generalize from their training environments to real-world applications, demonstrating that strategic
curation of data can be more valuable than the sheer volume of data collected.

Tailored learning objectives can help where scale does not. The learning objectives defined
during model training phase are pivotal in steering the model’s learning process and ultimately its
performance on various tasks. A notable example is NegCLIP [Yuksekgonul et al.| [2022]], with
a tailored learning objective for capturing relations via hard-negatives seems to substantially aid
NegCLIP’s performance on relational understanding (Appendix Tables[T]and[5)). As shown in the
original paper NegCLIP’s performance isn’t simply the result of finetuning with additional data (see
Table 6 of [ Yuksekgonul et al.|[[2022])), but is thanks to a tailored learning objective involving hard
negatives. NegCLIP, with only 86M parameters, significantly outperforms models up to 50 x larger
with an overall performance of 70.4%, compared to only 50.5% for the largest EVA ViT-E/14 model
with 4.3B parameters. Similarly, [Paiss et al.| [2023]] tailored learning objective for VLMs can have
significantly improve performance on counting tasks.

4.4 Which model should I use?

Finally, we provide recommendations for practitioners to select the most suitable openly available
VLM. For an overall high-performing model across the axes we measured, models with large ViT
encoders trained on large datasets exhibit the highest overall performance, with Eva-2 ViT-E/14
leading the way. For relations, counting, or related capabilities, we rank the top and worst performing
models in Appendix Table[3]



Mean

Benchmark Type Performance Top Top vs Worst Scale Worst

Model Performance Trammg Model Size | Performance Model

Dataset Size

Corruption 46.2 EVAOQ2 VIiTE 14 74.3 153x 50x 2.4 DataComp ViT B 32
Non-Natural Images 54.1 EVAO02 ViTE 14 74.6 153 % 50% 16.1 DataComp ViT B 32
Object Recognition 55.0 CLIPA VIiT G 14 71.1 98x 21 % 12.1 DataComp ViT B 32
Reasoning 14.9 OpenCLIP ViT g 14 19.0 133x 18x 10.6 OpenCLIP ResNet101
Relation 46.7 NegCLIP ViT B 32 66.8 30x% 1x 332 DataComp ViT B 32
Robustness 52.1 EVAOQ2 VIiTE 14 72.8 153% 50 3.8 DataComp ViT B 32
Texture 53.5 MetaCLIP ViT H 14 72.5 192x T 5.4 DataComp ViT B 32
Overall 46.1 EVAO02 ViTE 14 61.2 ‘ 153 % 50x ‘ 12.1 DataComp ViT B 32

Table 1: List of all evaluated benchmark types with their corresponding mean performance across
models, the best and worst performing models. The Top vs. Worst Scale shows the proportion
difference between the worst and best model on the training dataset size and the model size.

5 UniBench: A Practical Way Forward for Faster Comprehensive VLM
Evaluations

While ideally, evaluating VLM across all 53 benchmarks would provide the most comprehensive
insights, the computational demands and complexity of parsing such extensive data can be over-
whelming (6 million images to evaluate; 2+ hours for one model on an A100 GPU). While ImageNet
maybe a tempting candidate as it correlates with many benchmarks, for many others, specifically 18
of the 53 benchmarks, ImageNet performance is poorly or negatively correlated Appendix Figure[12]
This suggests that success on ImageNet does not universally translate to proficiency in all tasks.

Comprehensive VLM evaluation with UniBench in 5 minutes. To streamline evaluation, we
distill the full set of benchmarks in UniBench into seven benchmarks most representative of each
axis of progress (via correlations in Appendix[A.6). Fortunately, in UniBench this comprehensive
set of benchmarks runs in 5 minutes on a single A100 GPU (for ViT-B/32), offering a fast, yet
comprehensive evaluation pipeline.

6 Discussion

Limitations While we invested a considerable effort to include as comprehensive set of models
and benchmarks as possible, there of course will always be new ones we do not cover. We focus
especially on vision-centric benchmarks to track progress since the early contrastive vision-language
models. To mitigate that, we provide a flexible interfaces to extend UniBench with additional models
or benchmarks (see code|[I). Our analysis is also limited to the standard zero-shot evaluation protocol.

Impact To guide the research community in navigating the overwhelming and fragmented landscape
of VLM benchmarks, we introduced UniBench. UniBench provides a unified implementation of 50+
benchmarks, out-of-the-box comparisons across nearly 60 open VLMs, and a distilled fast-to-run set
of representative benchmarks that can run on in 5 minutes a single GPU. In doing so, we uncover the
limits of scale for reasoning and relations, the promise of data quality and tailored learning objectives,
as well as offer recommendations for which VLMs practitioners should use. We hope UniBench is a
step towards avoiding the blindspots in VLM evaluations, enabling researchers to comprehensively,
yet efficiently evaluate progress.
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of GPUs, internal cluster, or cloud provider)? [Yes] To compute our evaluations, we
have utilized one NVIDIA A100 GPU for each model.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] All benchmarks and
VLMs used in the current work has been cited in Section[3.2]and Table

(b) Did you mention the license of the assets? [Yes] We reference the original works for
each benchmark used and confirmed each contains a permissive license for research
use.

¢) Did you include any new assets either in the supplemental material or as a URL?
y y PP
We have not used new assets, we primarily used existing assets from previously
published work.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content?
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |
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A Appendix

A.1 UniBench Implementation Details

We have developed UniBench to be easy-to-run library to allow researchers to systemati-
cally compare and contrast exsisting (n=59 ) and new VLMs on 53 benchmarks. To eval-
uate new VLMs that expand beyond the already implemented 59 VLMs, users need to fol-
low Code Snippet Users would need to create a class that inherent from ClipModel from
uni_bench.models_zoo with get_image_embeddings and get_text_embeddings methods
implemented. get_image_embeddings and get_text_embeddings methods takes images and
captions as input, respectively, and returns a tensor of encoded representations.

I from unibench.models_zoo import ClipModel

2> import unibench

4 class CustomModel (ClipModel):

6 @torch.no_grad ()

7 # Output tensor of final layer of image encoder
8 def get_image_embeddings (self, images):

11 @torch.no_grad ()
# Output temnsor of final layer of text encoder given captions

13 def get_text_embeddings(self, captions):

16

17 evaluator = unibench.Evaluator () # Initialize Evaluator class

18 new_model = CustomModel () # Initialize new model

19 evaluator.add_model (new_model) # add new model to the evaluation
pipeline

20 evaluator.evaluate() # run the evaluation

Code Snippet 2: Custom Model Example

A.2 Natural Language Output Models on UniBench

As described in Section[2.2] LLM-style models defined as models that generate tokens/text as output.
Thereby, making them hard to compare with CLIP-style VLMs. In UniBench, we also incorporated
LLM-style models in a control experiments. While, LLM-style benchmarks are not suitable for
evaluating CLIP-like VLMs, benchmarks in UniBench are capable of testing both LLM and CLIP
style models. Following |[Matsuura et al.| [2023]] methodology, we evaluated Llava 1.5 [Liu et al.,
2023]| - a LLM-style VLM - on various benchmark types in UniBench (Table[2)). In Table 2] we
evaluated 7 and 13 billion scales of Llava.

Model Name Corruption  Non-natural Images  Object Recognition Reasoning Relation Robustness Texture
Llava 1.5 13B [Liu et al.|[2023] 31 50 36 11 41 24 34
Llava 1.5 7B [Liu et al.|[2023] 29 51 32 12 42 23 28

Table 2: Performance (%) of Llava 1.5 on different Benchmark types.

A.3 Gauging progress in Vision Language Models

Scaling improves many benchmarks, but offers little benefit for reasoning and relation. Ap-
pendix Figure[7)shows that despite increasing the training dataset size by a factor of 1000x and model
size by a factor of 11X, relational and reasoning benchmarks performance is fairly flat compared
to the significant boost in performance on other tasks. We further pinpoint capabilities such as
Depth Estimation, Spatial Understanding, Counting, Scene and Text Recognition, as the underlying
capabilities where scale does not lead to improvements as shown in Figure [§]
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A.4 Impact of Prompts on MNIST Performance

The MNIST benchmark, featuring handwritten digits, was subjected to various prompting strategies to
evaluate their impact on model performance. Our findings reveal a distinct hierarchy in performance
based on the type of prompts used. The benchmark was tested with both numeral formats ("zero-nine"
and "0-9") and different prompt styles (specialized word prompts, specialized digit prompts, and a
basic prompt) (Figure ).

A.4.1 Hierarchy of Prompt Performance

The performance of the MNIST model varied significantly across different prompt types and formats,
arranged here from best to worst performing setups: 1. Word digits ("zero-nine") with specialized
word prompts 2. Word digits ("zero-nine") with basic prompt 3. Word digits ("zero-nine") with
specialized digit prompts 4. Digits ("0-9") with specialized digit prompts 5. Digits ("0-9") with basic
prompt 6. Digits ("0-9") with specialized word prompts

A.4.2 Specialized Word Prompts

These prompts provided detailed descriptions and contexts, significantly enhancing the model’s
ability to recognize and interpret the digits accurately. Examples include:

* "showcasing the digit {}, is this image."

* "this number {} is represented in a handwritten form."

* "the numeral {} is captured in this snapshot."

* "the digit {} is depicted visually in this image."

* "this image is a graphical representation of the number {}."

* "this is an illustration of the digit {}."

* "this image represents the digit { } in a handwritten form."

* "the number {} is sketched as a digit in this image."

* "this is a photograph of the digit {}."

* "the number {} is drawn as a digit in this image."

A.4.3 Specialized Digit Prompts

These prompts explicitly mention the format or style of the digit, aiding in recognition but to a lesser
extent compared to specialized word prompts. Examples include:

* "A photo of the number: ’{}’."

* "A digit drawing of the number: ’{}"."

* "A digit sketch of the number: {}’."

* "A handwritten digit image of: "{}’."

* "A digit illustration of: *{}’."

* "A graphical representation of the number: *{}’."

* "A visual depiction of the digit: "{}’."

* "A snapshot of the numeral: *{}’."

* "A handwritten representation of the number: *{}’."

* "An image showcasing the digit: °{}’."

A.4.4 Basic Prompt

The basic prompt used:

* "a photo of the number: *{}’."
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Figure 10: Median performance of 59 VLMs on MNIST while varying accuracy measure from
top-1 to top-5. The following further shows that VLMs’ performance on MNIST is not due mismatch
between top-1 and top-5 guesses. Blue bars represent the median zero-shot performance of models
and red bars represents the chance-level for benchmarks.

This structured analysis clearly demonstrates how the specificity and relevance of the prompt signifi-
cantly influence the performance of VLMs. We investigated whether the subpar performance could
be attributed to a lack of training images containing digit concepts by analyzing the popular LAION
400M dataset. Our findings reveal a substantial number of captions with both word digits (100k-2M)
and integer digits (15M-48M) in the training captions, suggesting that the poor performance is not
merely due to insufficient training data (see Figure[TT]for exact counts by digit). To further understand
the performance results on MNIST, we compute more generous top-2,-3,-4, and -5 accuracy measures
to understand whether models confuse similar digits. We show in Appendix Figure[I0|that even when
we compute top-5 accuracy (with 50% being chance), VLMs barely reach 90% accuracy suggesting
poor performance is not due to minor confusions among digits.

21



— 6
]
Q
©
|
25
-
=
2 _ 4
n c
c o
o=
S =
Q=3
o=
O
bS]
2
9]
Q
€
S
= 1
0
o W O U £ U X c ¥ o
s c 2z o 2 > 7w 0o £ c
v 5 £ £ O &= S O =
N c =
e} 30}
Label

Figure 11: Frequency of different digits in LAION-400M, showing substantial frequency of
digits in visual diet of VLMs. Left panel counts the number of words of the digits i.e. [zero-nine]
and right panel counts the number of digits in LAION-400M.

A.5 Correlation of ImageNet with Other Benchmarks

ImageNet, often considered a cornerstone in the field of computer vision, has been widely used
as a benchmark to evaluate the performance of image recognition models. Its extensive dataset
and challenging classification tasks have set a standard for algorithm development and comparison.
However, while ImageNet correlates well with many benchmarks, it does not exhibit a universal
correlation across all tasks. Our analysis reveals that for a significant number of benchmarks,
specifically 18 out of the 53 benchmarks analyzed, the performance on ImageNet is poorly or
negatively correlated. This is illustrated in Appendix Figure[I2} which provides a detailed comparison
of benchmark performances. This finding suggests that success on ImageNet does not necessarily
translate to proficiency in all visual tasks.

A.6 A Practical Subset of Benchmarks

While ideally, evaluating VLMs across all 53 benchmarks would provide the most comprehensive
insights, the computational demands and complexity of parsing such extensive data can be overwhelm-
ing (6 million images to evaluate; 2+ hours for one model on an A100 GPU). To streamline evaluation,
we distill the full set of benchmarks in UniBench into seven benchmark types and 17 capabilities.
These categorizations are based on benchmarks that correlate strongly with other benchmarks within
each benchmark type and capability (Tables [3]and ).

A.7 Weighted Average Performance

To account for the varying difficulties across tasks, we compute the weighted average performance
of each model by normalizing their scores relative to the performance of CLIP B/32. We use CLIP
B/32 as a baseline because its performance effectively captures the inherent complexity of each task,
serving as a proxy for task difficulty.

Figure [T3]illustrates the normalization results in lower overall performance scores for all models.
However, it does not affect the relative rankings among them. This consistency suggests that while
task difficulty impacts absolute performance metrics, the comparative effectiveness of the models
remains stable across different levels of task complexity.
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Benchmark Type Most Correlated  Correlation
Benchmark Value
Object recognition ImageNet-1k 0.82
Reasoning (Counting) CountBench 0.76
Reasoning (Spatial) DSPR Position 0.29
Relation VG Attribution 0.57
Texture DTD |
Non-Natural Images Resisc45 0.72
Robustness ImageNet-v2 0.81
Corruption ImageNet-c |

Table 3: Evaluate on a curated list of benchmark types, rather than the full set, to save time.
The list includes benchmarks that correlate strongly with other benchmarks for each benchmark type.

Capabilities M%St Correlated Correlation Value
enchmark
standard object recognition food101 0.85
counting countbench 0.76
spatial understanding dspr y position 0.29
relations vg attribution 0.57
geographic diversity dollar street 0.89
specifies classification flowers102 0.7
depth estimation dmlab 0.42
pose detection smallnorb azimuth 0.57
texture detection dtd 1
satellite eurosat 0.95
character recognition mnist 0.88
imagenet imagenetlk 1
natural transformations imagenet9 0.99
rendition imagenetr 0.97
challenging imagenet imagenetv2 0.65
corruption imagenetc 1
medical retinopathy 0.64
scene recognition sun397 0.99

Table 4: Evaluate on a curated list of capabilities, rather than the full set, to save time. The list
includes benchmarks that correlate strongly with other benchmarks for each capability.
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Mean

Benchmark Type Performance Top Top vs Worst Scale Worst

Model Performance DTrammg Model Size | Performance Model

ataset Size

Challenging Imagenet 47.8 EVAOQ2 ViTE 14 64.4 153 50 5.0 DataComp ViT B 32
Character Recognition 54.8 CLIPA ViT G 14 74.3 85 48 20.5 OpenCLIP ResNet50
Corruption 46.1 EVAQ2 ViTE 14 74.3 153 50 23 DataComp ViT B 32
Counting 314 OpenCOCA ViT L 14 53.1 153 3 115 DataComp ViT B 32
Depth Estimation 20.4 DataComp ViT B 16 27.6 0.6 0.1 12.4 OpenCLIP ViT H 14
Geographic Diversity 33.8 CLIPA ViT G 14 46.8 98 21 53 DataComp ViT B 32
Imagenet 65.7 OpenCLIP ViT H 14 83.1 384 7 39 DataComp ViT B 32
Medical 433 MetaCLIP ViT L 14 68.6 0.3 3 26.8 DataComp ViT B 16
Natural Transformations 56.2 CLIPA ViT G 14 81.7 98 21 2.5 DataComp ViT B 32
Pose Detection 39 OpenCLIP ViT B 32 4.7 5 0.9 33 OpenCLIP ConvNext
Relations 46.7 NegCLIP ViT B 32 66.7 30 1 332 DataComp ViT B 32
Rendition 63.7 CLIPA VIiT G 14 84.2 98 21 3.8 DataComp ViT B 32
Satellite 55.2 EVAQ2 ViTE 14 75.7 153 50 12.3 DataComp ViT B 32
Scene Recognition 53.0 OpenCLIP ViT H 14 61.7 384 7 6.3 DataComp ViT B 32
Spatial Understanding 9.1 MetaCLIP ViT L 14 11.3 1 3 6.3 CLIP ResNet50x4
Specifies Classification 51.7 OpenCLIP ViT H 14 68.9 384 7 2.8 DataComp ViT B 32
Standard Object Recognition 60.0 CLIPA ViT G 14 77.1 98 21 13.8 DataComp ViT B 32
Texture Detection 53.4 MetaCLIP ViT H 14 72.4 192 7 53 DataComp ViT B 32
Overall 44.2 EVAO02 ViTE 14 58.0 | 153 50 | 113 DataComp ViT B 32

Table 5: List of all evaluated capabilities with their corresponding mean performance across models,
the best and the worst performing models. The Top vs. Worst Scale shows the proportion difference
between the worst and best model on the training dataset size and the model size.
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Model Dataset size  Model size ~ Learning objective  Architecture Model name

blip_vitB16_14m|Li et al. 14 86 BLIP vit BLIP ViT B 16
blip_vitL16_129m . 129 307 BLIP vit BLIP ViTL 16
blip_vitB16_129m|L1 et al. 129 86 BLIP vit BLIP ViT B 16
blip_vitB16_coco| 129 86 BLIP vit BLIP ViT B 16
blip_vitB16_flickr|Li et al. 129 86 BLIP vit BLIP ViTB 16
blip_vitL16_coco l 129 307 BLIP vit BLIP ViTL 16
blip_vitL16_flickr|Li et al.[[2022a 129 307 BLIP vit BLIP ViTL 16
eva02_vitE14_plus_2b|Fang et al. 2023b] 2000 4350 Pure Contrastive vit EVAO02 ViTE 14
eva02_vitE14_2b|Fang et al.|[2023b 2000 4350 Pure Contrastive vit EVAO02 ViTE 14
eva02_vitL14_2b|Fang et al.|[2023b 2000 307 Pure Contrastive vit EVAO02 VIiT L 14
eva02_vitB16_2b|Fang et al.||2023b 2000 86 Pure Contrastive vit EVA02 ViTB 16
eva0l_vitG14_plus_2b|Fang et al.|[2022 2000 1011 Pure Contrastive vit EVAOI ViT g 14
eva0l_vitG14_400m|Fang et al. 400 1011 Pure Contrastive vit EVAOI ViT g 14
clipa_vitbigG14|Li et al. 1280 1843 Pure Contrastive vit CLIPA ViT G 14
clipa_vitH14|Li et al. 1280 633 Pure Contrastive vit CLIPA ViTH 14
clipa_vitL14|L1 et al. 1280 307 Pure Contrastive vit CLIPA ViT L 14
siglip_vitL16[Zhai et al.|[2023] 10000 307 Contrastive (sigmoid) vit SigLIP ViTL 16
siglip_vitB16|Zhai et al. ||[2023] R 10000 86 Contrastive (sigmoid) vit SigLIP ViT B 16
openclip_vitB32_metaclip_fullcc|[Xu et al.|[2023 2500 86 Pure Contrastive vit MetaCLIP ViT B 32
openclip_vitB16_metaclip_400m|Xu et al. 2023 400 86 Pure Contrastive vit MetaCLIP ViT B 16
openclip_vitB32_metaclip_400mXu et al. |[2023 400 86 Pure Contrastive vit MetaCLIP ViT B 32
openclip_vitB16_metaclip_fullcc|Xu et al.|[2023 2500 86 Pure Contrastive vit MetaCLIP ViT B 16
openclip_vitL14_dfn2b|Fang et al.[[2023a] — 2000 307 Pure Contrastive vit OpenCLIP ViT L 14
openclip_vitL14_metaclip_: u et al.|[2023 400 307 Pure Contrastive vit MetaCLIP ViT L 14
openclip_vitL14_metaclip_fullcc|Xu et al. 3 2500 307 Pure Contrastive vit MetaCLIP ViT L 14
openclip_vitH14_metaclip_fullcc|Xu et a g| 2500 633 Pure Contrastive vit MetaCLIP ViT H 14
openclip_vitH14_dfn5b|Fang et al. a) 5000 633 Pure Contrastive vit OpenCLIP ViT H 14
openclip_convnext_base|llharco et al. 1 400 88 Pure Contrastive conv OpenCLIP ConvNext
openclip_vitB32_datacomp_s|Gadre et al. 023b! 13 86 Pure Contrastive vit DataComp ViT B 32
openclip_vitB32_datacomp_m|Gadre et al. 128 86 Pure Contrastive vit DataComp ViT B 32
openclip_vitB32_datacomp_xl|Gadre et al.|[2023b 12800 86 Pure Contrastive vit DataComp ViT B 32
openclip_vitB16_datacomp_x1|Gadre et al.|[202! 12800 86 Pure Contrastive vit DataComp ViT B 16
openclip_vitB16_datacomp_l|Gadre et al. 1280 86 Pure Contrastive vit DataComp ViT B 16
openclip_vitH14 Ilharco et al. 2000 633 Pure Contrastive vit OpenCLIP ViT H 14
xvlm_flickr/Zeng et al. 16 86 XVLM Swin XVLM Swin B
flava_full|Singh et al. a 70 86 Other vit FLAVA ViT B 32
openclip_vitLT4_400m lIharco et al.|[2021 400 307 Pure Contrastive vit OpenCLIP ViT L 14
openclip_vitL14_datacomp_xI|Gadre et al.|[2023b 12800 307 Pure Contrastive vit DataComp ViT L 14
openclip_vitL14_2b|Ilharco et al. 2000 307 Pure Contrastive vit OpenCLIP ViT L 14
clip_vitL.14|Radford et al. 400 307 Pure Contrastive vit CLIP ViTL 14
xvlm_coco|Zeng et al. 16 86 XVLM Swin XVLM Swin B
openclip_vitB32_400m|llharco et al.|[2021 400 86 Pure Contrastive vit OpenCLIP ViT B 32
openclip_vitB32_2b/llharco et al.||20! 2000 86 Pure Contrastive vit OpenCLIP ViT B 32
openclip_vitG14_2b|llharco et al.||2021 2000 1011 Pure Contrastive vit OpenCLIP ViT g 14
openclip_vitbigG14_2b|llharco et al.[|2021 2000 1843 Pure Contrastive vit OpenCLIP ViT G 14
openclip_vitB16_2b|Ilharco et al. 2000 86 Pure Contrastive vit OpenCLIP ViT B 16
openclip_vitB16_400m|Ilharco et al.|[2021 400 86 Pure Contrastive vit OpenCLIP ViT B 16
opencoca_vitL14_2b|Yu et al.[[2022a], |[lharco et al. 2000 307 Other vit OpenCOCA ViT L 14
opencoca_vitB32_2b|Yu et al. a‘, arco et al.|[2021] 2000 86 Other vit OpenCOCA ViT B 32
negclip_vitB32|Yuksekgonul et al. 400 86 Negative CLIP vit NegCLIP ViT B 32
clip_vitB16|Radford et al. 400 86 Pure Contrastive vit CLIP ViTB 16
clip_resnet. adtord et al. 400 38 Pure Contrastive conv CLIP ResNet50
openclip_resnetIO1_yfcc|llharco et al.|[2021 15 56 Pure Contrastive conv OpenCLIP ResNet101
openclip_resnet50_yfcc|Ilharco et al. 15 38 Pure Contrastive conv OpenCLIP ResNet50
openclip_resnet50_cc|Ilharco et al. 12 38 Pure Contrastive conv OpenCLIP ResNet50
clip_resnet101|Radford et al. 400 56 Pure Contrastive conv CLIP ResNet101
clip_resnet50x4|Radford et al. 400 87 Pure Contrastive conv CLIP ResNet50x4
clip_resnet50x16|Radford et al. 2021b)| 400 167 Pure Contrastive conv CLIP ResNet50x16
clip_resnet50x64 Radford et al. 2021b| 400 420 Pure Contrastive conv CLIP ResNet50x64
clip_vitB32|Radtord et al.[[2021b] 400 86 Pure Contrastive vit CLIP ViT B 32

Table 6: List of all the models used in evaluations with their corresponding dataset size, model size
(number of parameters), learning objective, and architecture.
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Number of

Benchmark Measure Benchmark Type Capability Curated  Object Centric Classes

caltech101 |Fei-Fei et al. 2004' zero-shot  object recognition  standard object recognition  False True 102
cars |Krause et al.][2013] zero-shot  object recognition  standard object recognition  False True 196
cifar [0 [Krizhevsky etal | zero-shot  object recognition  standard object recognition  False True 10
cifar100 [Krizhevsky et al.|[2009} zero-shot  object recognition  standard object recognition  False True 100
clevr count "W zero-shot reasoning counting True False 8
clevr distance \|W zero-shot reasoning spatial understanding True False 6
coco order 2023] relation relation relations False False 5
countbench |Paiss et al.||2023] zero-shot reasoning counting False False 10
country211 [Radford 2021al zero-shot  object recognition geographic diversity False False 211
cub [Wah et al.[2011] zero-shot  object recognition specifies classification False False 200
dmlab [Zhai et al.|2019] zero-shot reasoning depth estimation True False 6
dollar street [Gaviria Rojas et al., zero-shot  object recognition geographic diversity False True 60
dspr orientation \Iﬂlﬁ zero-shot reasoning pose detection True False 40
dspr x position 2017 zero-shot reasoning spatial understanding True False 32
dspr zero-shot reasoning spatial understanding True False 32
dtd [Cimpoi et al.[[2014] zero-shot texture texture detection True False 47
eurosat [Helber et al.{2019) zero-shot  non-natural images satellite False False 10
fashion mnist |Xiao et al.|[2017] zero-shot  object recognition character recognition True True 10
fgve aircraft [Maji et al.|[2013] zero-shot  object recognition  standard object recognition  False True 100
flickr30k order | Yuksekgonul et al.][2023] relation relation relations False False 5
flowers102 \ zero-shot  object recognition specifies classification False True 102
food101 \lﬂl]ﬂ zero-shot  object recognition  standard object recognition False True 101
gtsrb |'glm zero-shot  object recognition  standard object recognition ~ False True 43
imagenetTk [Deng et al.[[2009 zero-shot  object recognition imagenet False True 1000
imagenet9 |m ) zero-shot robustness natural transformations True True 1000
imagenet sketch [W 12019 zero-shot  non-natural images rendition True True 1000
imageneta Hendgcks et al.! 2021b zero-shot robustness challenging imagenet True True 200
imagenetc [Hendrycks and Dietterich{2019]  zero-shot corruption corruption True True 1000
imagenete [Li et al. C zero-shot robustness natural transformations True True 1000
imageneto [Hendrycks et al.[[2021b] zero-shot robustness challenging imagenet True True 200
imagenetr [Hendrycks et al.[[2021a zero-shot  non-natural images rendition True True 200
imagenetv2 [Recht et al. zero-shot robustness challenging imagenet True True 1000
inaturalist [Van Horn et al. 8 zero-shot  object recognition specifies classification False True 5089
kitti distance |Geiger et al. zero-shot reasoning depth estimation False False 4
mnist[LeCun et al. zero-shot  object recognition character recognition True True 10
objectnet [Barbu et al.[[2019: zero-shot robustness natural transformations False True 113
pcam [[Veeling et al. zero-shot  non-natural images medical True False 2
pets [Parkhi et al. zero-shot  object recognition specifies classification False True 37
places ou et al.|2017 zero-shot  object recognition scene recognition False False 365
pug imagenet [Bordes et al.[[2023 zero-shot  object recognition  standard object recognition  False True 151
renderedsst2 [Radford et al. aj zero-shot  object recognition character recognition True True 2
resisc45[Cheng et al. zero-shot  non-natural images satellite False False 45
retinopathy [Wang and Yang,|2018 zero-shot  non-natural images medical False False 5
smallnorb azimuth [LeCun et al.|[2004 zero-shot reasoning pose detection True False 18
smallnorb elevation [LeCun et al. zero-shot reasoning spatial understanding True False 9
stl10 [Coates et al. zero-shot  object recognition  standard object recognition  False True 10
sugarcrepe |Hsieh et al.|[2024 relation relation relations False False 2
sun397 [Xiao et al. zero-shot  object recognition scene recognition False False 397
svhn [Netzer et al. zero-shot  object recognition character recognition False True 10
vg attribution | Yuksekgonul et al.|[2023 relation relation relations False False 2
vg relation [Yuksekgonul et al. relation relation relations False False 2
voc2007 |Everingham et al. zero-shot  object recognition  standard object recognition  False True 20
winogroun: rush et al.||2022a relation relation relations False False 2

Table 7: List of all the benchmarks used in evaluations with their corresponding dataset type,
capability, number of classes, whether they are curated and whether they are curated object centric.
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