
Pre3: Enabling Deterministic Pushdown Automata for
Faster Structured LLM Generation

Anonymous ACL submission

Abstract

Extensive LLM applications demand efficient001
structured generations, particularly for LR(1)002
grammars, to produce outputs in specified003
formats (e.g., JSON). Existing methods pri-004
marily parse LR(1) grammars into a push-005
down automaton (PDA), leading to runtime006
execution overhead for context-dependent to-007
ken processing, especially inefficient under008
large inference batches. We therefore pro-009
pose Pre3 that exploits deterministic push-010
down automata (DPDA) to optimize the con-011
strained LLM decoding efficiency. First, by012
precomputed prefix-conditioned edges during013
the preprocessing, Pre3 enables additional pre-014
processing optimizations for edges and sup-015
ports parallel transition processing. Second,016
Pre3 proposes an algorithm to transform LR(1)017
transition graphs into DPDA, eliminating the018
need for runtime path exploration, enabling019
edge transitions with minimal overhead. Pre3020
can be seamlessly integrated into standard LLM021
inference frameworks, improving time per out-022
put token (TPOT) by up to 40% and throughput023
by up to 36% in our experiments.024

1 Introduction025

The recent remarkable development of Large Lan-026

guage Models (LLM) has ushered in new oppor-027

tunities for a wide array of intelligent applica-028

tions such as automated external tool invocations029

through function calls (Cai et al., 2023; Li et al.,030

2024a; Zhuo et al., 2024), chain of thoughts (Wei031

et al., 2022; Wang et al., 2022; OpenAI, 2024; Guo032

et al., 2025), embodied AI (Duan et al., 2022; Bro-033

han et al., 2023; Yang et al., 2024b) et al. These034

applications created substantial demand for LLM035

systems to perform structured generation and pro-036

duce outputs adhering to specific formats, such as037

JSON or other structures. Downstream applications038

can accordingly utilize these structured outputs to039

engage in downstream system interactions (Cho040

et al., 2023).041

Constrained decoding (Hu et al., 2019; Scholak 042

et al., 2021) is a widely used method in structured 043

generation tasks (Willard and Louf, 2023b; Dong 044

et al., 2023; Rückstieß et al., 2024) that excludes in- 045

valid tokens at each step by applying a probability 046

mask to zero out their sample possibility. Flexible 047

mechanisms like LR(1) grammars (Francis, 1961; 048

Knuth, 1965) are often employed to handle diverse 049

and complex structural constraints, as they allow re- 050

cursive rule definitions that surpass the limitations 051

of regular expressions. However, this flexibility 052

comes at the cost of degraded efficiency: Each de- 053

coding step requires parsing the grammar for all 054

candidate tokens in a potentially large vocabulary. 055

Additionally, tokens generated by LLM may con- 056

sist of multiple characters that span across grammar 057

rule boundaries, further complicating the genera- 058

tion process and demanding dedicated execution 059

stack management. Both of them lead to significant 060

computational overhead. These challenges raise the 061

need to optimize constrained decoding efficiency 062

without affecting LLM generation fidelity, making 063

it more applicable in real-world applications. 064

Current state-of-the-art (SOTA) methods for con- 065

strained decoding acceleration, such as XGram- 066

mar (Dong et al., 2024), primarily focus on pars- 067

ing LR(1) grammars into a pushdown automaton 068

(PDA) (Nederhof and Satta, 1996). A PDA consists 069

of multiple finite state automata (FSA), each rep- 070

resenting a grammar rule, with the stack handling 071

recursive rule expansions. These methods achieve 072

substantial speedups by precomputing masks while 073

managing transitions through pushdown automata. 074

However, they overlook the inherent properties of 075

LR(1) grammars, which can be equivalently trans- 076

formed into a deterministic pushdown automaton 077

(DPDA) (Valiant, 1973, 1975). 078

The primary issue with traditional PDA-based 079

approaches (Koo et al., 2024; Park et al., 2025a; 080

Dong et al., 2022; Willard and Louf, 2023a; Li 081

et al., 2024b) stems from the non-deterministic na- 082

1

ture of the PDA’s edges. Although these methods083

precompute masks based on the PDA structure, this084

design introduces two critical limitations. First, the085

non-deterministic edges depend on runtime con-086

textual information to resolve transitions, result-087

ing in incomplete precomputed masks for context-088

dependent tokens. The computation of context-089

dependent tokens necessitates backtracking, spec-090

ulative operations, and the maintenance of a per-091

sistent stack (merges all past stacks into a tree,092

with each stack as a root-to-node path) during run-093

time. As batch sizes increase, the overhead from094

these runtime computations grows significantly,095

severely degrading decoding efficiency. Second,096

previous methods cannot effectively optimize non-097

deterministic transitions during preprocessing for098

they will dynamically change during runtime. This099

limitation hinders their ability to fully exploit the100

potential of the parsing method, leading to subopti-101

mal performance.102

To address these challenges, we propose Pre3, a103

constrained LLM decoding approach based on a104

deterministic pushdown automaton (DPDA). Un-105

like traditional methods , we design an algorithm106

to directly build a DPDA from the LR(1) grammar.107

Leveraging the deterministic nature of the DPDA’s108

edges, our approach resolves the aforementioned109

limitations. First, the determined transitions in the110

DPDA eliminate the context-dependent tokens, fur-111

ther entirely eliminating the need for backtracking,112

speculative exploration, and the maintenance of a113

persistent stack. This fundamentally reduces the114

runtime computational overhead associated with115

transitions. Second, since all transition edges in116

the DPDA are available during preprocessing, we117

can perform comprehensive optimizations on the118

automaton in advance. Additionally, for the stack-119

matched transition mechanism of the DPDA, we120

design a parallel verification method for transitions,121

which accelerates inference. Together, these in-122

novations result in a more efficient and scalable123

constrained decoding framework.124

In summary, the paper’s main contributions are:125

• We firstly propose an algorithm to transform126

LR(1) state transition graphs into DPDA, elim-127

inating runtime exploration and enabling edge128

transitions with minimal overhead.129

• We enables additional optimizations for edges130

and supports parallel transition processing by pre-131

computing prefix-conditioned edges.132

• We integrate Pre3 into mainstream LLM infer-133

ence systems and achieve up to 40% improve- 134

ment in time per output token (TPOT) and in- 135

crease throughput by up to 36% with high scala- 136

bility into large batch sizes. 137

2 Preliminaries and Background 138

2.1 LLM Constrained Decoding 139

Constrained decoding (Hu et al., 2019) enforces 140

strict adherence to predefined structural grammars 141

by aligning the LLM’s output with syntactic rules. 142

At each decoding step, it assigns a probability of 143

negative infinity to tokens that violate the grammar, 144

ensuring valid token selection. This guarantees 145

structurally compliant outputs but faces challenges 146

like grammar diversity, large vocabulary sizes, and 147

complex token-to-text mappings, which compli- 148

cate implementation and increase computational 149

overhead. 150

Several constrained decoding implementations 151

have been proposed, but most exhibit limitations 152

in large batch-size inference scenarios. For exam- 153

ple, frameworks like llama.cpp (Gerganov, 2023) 154

inefficiently verify tokens during runtime, caus- 155

ing computational bottlenecks. Approaches like 156

Outlines (Willard and Louf, 2023b) and Syn- 157

Code (Ugare et al., 2024) suffer from boundary 158

mismatch issues and suboptimal efficiency. The 159

current SOTA work XGrammer (Dong et al., 2024) 160

excels in correctness and speed for batch size=1, 161

but its overhead increases with larger batch sizes. 162

GreatGramma (Park et al., 2025b) efficiently sup- 163

ports complex grammars but only discusses sce- 164

nario where batch size equals 1. 165

2.2 LR(1) Grammar and State Transition 166

Graphs 167

In constrained decoding scenarios, most grammars 168

can be classified as LR(1) grammars, which are fun- 169

damental to bottom-up parsing and align naturally 170

with the token-by-token generation process of large 171

language models (LLMs). LR(1) grammars are a 172

powerful subset of context-free grammars capable 173

of describing the syntax of most programming lan- 174

guages. They are characterized by their ability to 175

handle deterministic parsing with a single looka- 176

head symbol, making them highly expressive and 177

widely applicable. Nearly all context-free gram- 178

mars can be converted into LR(1) form, which 179

ensures their versatility in modeling structured 180

languages. This property, combined with their 181

alignment with bottom-up parsing methods, makes 182

2

LR(1) grammars a cornerstone in constrained de-183

coding and syntactic analysis tasks.184

LR(1) items are tuples of the form [A → α ·185

Bβ, a], where A → α ·Bβ represents the parsing186

progress of a production rule, and a is a looka-187

head symbol used to determine when a reduction188

should occur. The closure operation constructs189

LR(1) item sets by adding items for non-terminals190

and their productions, ensuring all possible deriva-191

tions are considered. The Goto function generates192

the LR(1) state transition graph by moving the dot193

in items past a grammar symbol X and computing194

the closure of the resulting items, thereby connect-195

ing states to form the LR(1) automata. This process196

continues until no new states are generated, creat-197

ing a complete parsing structure for the grammar.198

2.3 Pushdown Automata and Deterministic199

Pushdown Automata200

Pushdown automata (PDA) are a class of abstract201

machines that extend finite automata with an un-202

bounded stack memory, enabling them to recog-203

nize context-free languages (CFLs) (Hopcroft et al.,204

2001). Formally, a PDA is defined as a 7-tuple205

(Q,Σ,Γ, δ, q0, Z0, F), where Q is a finite set of206

states, Σ is the input alphabet, Γ is the stack al-207

phabet, δ : Q × (Σ ∪ {ϵ}) × Γ → P(Q × Γ∗) is208

the transition function, q0 is the initial state, Z0 is209

the initial stack symbol, and F ⊆ Q is the set of210

accepting states. The non-deterministic transition211

function δ allows PDAs to handle ambiguous struc-212

tures inherent to context-free grammars (CFGs),213

such as nested parentheses or recursive syntactic214

patterns.215

A deterministic pushdown automaton (DPDA)216

is a restricted variant where, for every state q ∈ Q,217

input symbol a ∈ Σ, and stack symbol Z ∈ Γ,218

the transition function δ(q, a, Z) yields at most one219

possible move, and ϵ-transitions (stack operations220

without consuming input) are permitted only if221

no input-consuming transition is available (Sipser,222

1996). This determinism ensures unique computa-223

tion paths, making DPDAs equivalent to the class224

of deterministic context-free languages (DCFLs),225

which are unambiguous and efficiently parsable.226

As mentioned earlier, the vast majority of gram-227

mars in the constrained decoding scenario can be228

represented by LR(1), which is a true subset of229

DCFL and can be recognized by DPDA (ASU86230

et al., 1986; Sipser, 1996). Compared to PDA,231

DPDA avoided backtracking and non-deterministic232

search overhead, which can significantly improve233

the efficiency of constrained decoding. 234

3 Pre3 Design 235

Our proposed method, Pre3, is a DPDA-based con- 236

strained decoding solution that leverages a novel 237

approach for constructing a DPDA from a given 238

LR(1) grammar. The method operates by first trans- 239

forming the LR(1) grammar into an LR(1) state 240

transition graph, which is then converted into a 241

DPDA using the techniques introduced in this sec- 242

tion. This DPDA can be directly utilized for con- 243

strained decoding, enabling efficient and effective 244

decoding. The complete workflow of our method 245

is illustrated in Figure 1. 246

In Section 3.1, we introduce the Prefix- 247

conditioned Edge, a novel mechanism ensuring 248

uniqueness by matching both prefix information 249

and input symbols, unlike traditional PDA tran- 250

sitions. In Section 3.2, we design an algorithm 251

to compute all LR(1) state transitions, incorporat- 252

ing Prefix-conditioned Edge and addressing cyclic 253

structures, successfully constructing a DPDA. In 254

Section 3.3, we optimize the DPDA’s structure and 255

performance through preprocessing, leveraging its 256

pre-determined edges. 257

3.1 Prefix-conditioned Edges 258

Constrained decoding with LLMs faces challenges 259

due to non-deterministic transitions in PDA, where 260

the same input symbol can trigger multiple transi- 261

tions based on prior symbol sequences. This non- 262

determinism complicates computation by requiring 263

speculative exploration, backtracking, and a per- 264

sistent stack to store historical context, increasing 265

overhead. To resolve these issues, eliminating non- 266

determinism in transitions is crucial for enabling 267

preprocessing optimizations and efficient runtime 268

computation. 269

A fundamental property of LR(1) grammars is 270

that the current stack configuration and a single 271

lookahead symbol are sufficient to uniquely de- 272

termine the next action. This property provides 273

a theoretical foundation for introducing determin- 274

ism into the automaton’s transition edges. Building 275

on this insight, we propose the Prefix-conditioned 276

Edge, as illustrated in Figure 2. 277

By simultaneously considering the input symbol 278

and the prefix of accepted symbols (represented 279

by the stack’s state), we uniquely determine the 280

target state for each transition. To achieve this, 281

our method enhances each edge with three key 282

3

DPDA Optimization (§3.3)

1 2Edge
Aggregation

1 3
Edge
Merging 2

'a'

'b'

['a', 'b']

'a' 'b'

'a'+'b'

DPDA Construction (§3.2)

Handling Cycles

Adding
Acceptance Edges

Adding
Reduction Edges

1

2

4

5

1

LR(1) Grammar

1

2

3

4

…

root ::= object

array ::=
 "[" ws (
 value
 ("," ws value)*
)? "]" ws

ws ::= | " " | "\n"
[\t]{0,20}

State-Transition
Graph

3

3

2

1

5
push

4
push

…

2

4

1

pop

2

3

DPDA Based Generation

LLM
Probs.

DPDA
Mask

+=

Output

3

4

…

P
a
ra

ll
e
le

d

Applying
prefix-conditioned
edge (§3.1)

Figure 1: Overview of Pre3: The figure depicts the workflow from LR(1) grammar to DPDA-based generation,
encompassing DPDA construction and optimization steps.

1

42
'a'

3

5

6

7

Runtime
Route
Judging

1

42

3

5

6

7

… 1match

w/o Prefix-conditioned Edges

with Prefix-conditioned Edges

+'a'

… 2match +'a'

… 3match +'a'

Figure 2: This diagram illustrates prefix-conditioned
edges: above shows the case before calculation, where
‘a’ is a context-dependent token requiring runtime con-
text for transition; below shows the precomputed case,
where each edge includes a stack-matching condition,
uniquely determining the transition path via the condi-
tion and transition symbol.

components:283

• Accepted Symbol: The input symbol that trig-284

gers the transition.285

• Stack Matching Condition: The specific prefix286

of the stack required for the transition to be valid.287

• Stack Operations: Actions such as push to up-288

date the stack during the transition, which is both289

required by PDAs and DPDAs.290

Notably, although the additional stack-matching291

conditions introduced to the edges increase com-292

plexity, we address this challenge by implementing293

a parallel algorithm capable of simultaneously ver-294

ifying multiple stack-matching conditions, effec-295

tively resolving this issue.296

3.2 Cycle-aware Deterministic Pushdown 297

Automata Construction 298

To avoid the additional exploration overhead at 299

runtime, we aim to construct a DPDA based on 300

LR(1) grammars. However, building a DPDA is 301

non-trivial and requires a systematic approach. In 302

this section, we introduce our step-by-step algo- 303

rithm for constructing a DPDA from an LR(1) state 304

transition graph, leveraging the prefix-conditioned 305

edge to ensure determinism. 306

3.2.1 DPDA Structure 307

We begin our algorithm with the state transition 308

graph generated from the LR(1) grammar, where 309

the nodes represent the LR(1) item set family and 310

the edges indicate the acceptance of a symbol when 311

traversing from one node to another. Building on 312

this foundation, we construct the DPDA by retain- 313

ing the node definitions from the LR(1) transition 314

graph but redefining the edges into two distinct 315

types: acceptance edges and reduction edges, as 316

shown in Figure 3. 317

• Acceptance Edges are the simplest type of tran- 318

sition in our DPDA. These edges are directly de- 319

rived from the original state transition graph of 320

the LR(1) grammar. In the context of LR(1) pars- 321

ing, an acceptance edge corresponds to a shift 322

operation, where the automaton consumes an in- 323

put symbol from the input stream and pushes it 324

onto the stack while transitioning to a new state. 325

This operation reflects the fundamental step of 326

recognizing and accepting a terminal symbol in 327

the input, advancing the parsing process. 328

• Reduction Edges model reduction operations in 329

4

1

2

3

':'

4

judge

't'

'r'

5

'u'

'e'
6

7

'f'

'a'

8

'l'

's'

string
array…

…

0

…

…

4

3

5

pop

2

1

…

0

2push

3push

4push

5push

6push

7push

8push

1push

Figure 3: This diagram shows the two edge types for
DPDA computation: blue edges are acceptance edges
(existing in the original LR(1) graph, handling stack
operations for acceptance); orange edges are reduction
edges (added to the DPDA, matching and popping stack
operations for reductions); gray edges depict LR(1) re-
duction paths, demonstrating fewer nodes needed for
reduction after state machine construction.

LR(1) parsing. In traditional LR(1) parsing, re-330

ductions involve replacing a sequence of terminal331

symbols with a non-terminal symbol according332

to the grammar rules. However, nested grammar333

rules often require multiple reduction steps, lead-334

ing to inefficiencies. Reduction edges address335

this by directly encoding reduction operations as336

single-step transitions during the pre-processing337

phase. These edges connect reduction targets, en-338

abling the automaton to handle nested reductions339

efficiently.340

3.2.2 Acceptance Edges and Reduction Edges341

Integration342

The state transition graph alone cannot function343

as a DPDA because it only supports shift opera-344

tions (i.e., symbol acceptance) and lacks reduc-345

tion operations, while some edges also suffer from346

nondeterminism. To address these issues, we not347

only compute all possible transition edges, in-348

cluding both shift and reduction edges, to com-349

plete the missing reduction paths, but also lever-350

age prefix-conditioned edges to incorporate stack351

conditions into each transition, resolving nondeter-352

minism and enabling the transformation of the non-353

deterministic state transition graph into a DPDA.354

Adding Acceptance Edges: Acceptance edges355

do not need to consider determinism because the356

construction of the LR(1) state transition graph357

ensures that no node will have two identical tran-358

sitions. As a result, when an acceptance edge is 359

encountered, the target node’s state information 360

is simply pushed onto the runtime stack. The al- 361

gorithmic flow of this operation is described in 362

Algorithm 1, lines 6–8. 363

Adding Reduction Edges: Based on the defini- 364

tion of reduction edges, we can employ a two-step 365

method to add all necessary reduction edges to the 366

automaton, which is described in Algorithm 1, lines 367

9–18. 368

First, we identify ϵ-reduction transitions, rep- 369

resenting unconditional reductions, and add them 370

to the automaton to handle mandatory reductions. 371

These transitions backtrack along their path, pop- 372

ping states until reaching the reduction endpoint. 373

However, their lack of accept symbols introduces 374

ambiguity, violating the DPDA’s determinism. To 375

ensure completeness, this process is applied recur- 376

sively, generating all necessary reduction edges by 377

traversing the state transition graph. 378

Second, we resolve indeterminism by merging ϵ- 379

reduction edges with compatible acceptance edges, 380

ensuring aligned stack operations and reduction 381

targets, and assigning appropriate accept tokens to 382

satisfy the Prefix-condition. 383

3.2.3 Solving Issues with Automaton Cycles 384

LR(1) grammars are highly expressive and can han- 385

dle complex language constructs, including the ac- 386

ceptance of cyclic symbol sequences. However, 387

cycles introduce significant challenges when con- 388

structing a DPDA. 389

During the precomputation of reduction edges, 390

cycles create a critical issue: repeatedly traversing 391

a cycle generates an infinite number of potential re- 392

duction paths. This makes it computationally infea- 393

sible to add all necessary reduction edges. Figure 4 394

visually illustrates how cycles in the automaton can 395

lead to infinite reduction paths. 396

Through further observation, we note that during 397

the reduction process, specifying an entry node and 398

an exit node uniquely determines the path along 399

which the reduction occurs. This property allows 400

us to disregard the number of cycle traversals, as 401

even a single traversal of the cycle does not need 402

to be explicitly recorded. 403

We propose a solution that simplifies the re- 404

duction process as follows: Suppose we have a 405

detected cycle with the reduction problem C = 406

(s1, s2, s3, . . . , sn, s1). We define the back-edge 407

as sn → s1. While handling the cycle, we mod- 408

ify this back-edge by introducing an additional 409

5

1 2 5

34

1

push
1 2 5

34

3push1push

2

push

5

push

4

push

…pop 1 2 5

Infinite reduction edges!

(a)

(b)

…

2

1

3

…

2

1

match pop

4

3

4

+

back-edge

Figure 4: (a) illustrates pushdown automaton with an
infinite cycle between State 1, 2, 3, 4, leading to an
infinite number of possible paths and indeterminable
transition paths when adding reduction edges at State 5.
(b) shows how our method handles the cycle issue: The
back-edge from State 4 to State 1 is modified to check
for complete cycle traversal information (e.g., [1, 2, 3,
4]) in the stack. If detected, it pops the redundant state
(e.g., [1, 2, 3, 4]), ensuring reduction edges at State 5
only need to account for traversals without cycles.

stack operation: a pop operation for the sequence410

(s1, s2, . . . , sn). This modification enables effi-411

cient handling of cyclic traversals.412

Furthermore, by checking whether all vertices413

traversed in a single cycle are fully present in the414

execution stack, we ensure that the stack retains415

only the necessary information from outside the416

cycle traversal. Specifically, if a complete traver-417

sal of the cycle is detected, the stack information418

corresponding to the current traversal is popped419

immediately. This guarantees that the stack never420

accumulates redundant context from repeated cycle421

traversals.422

This approach, described in Algorithm 1, lines423

1–5, guarantees that the system reverts to an equiv-424

alent state after each complete traversal, avoiding425

infinite reduction edges. As a result, the automaton426

can handle cycles efficiently without compromising427

determinism or computational feasibility.428

3.3 Edge Optimization with Prefix-condition429

Building on the DPDA constructed in Section 3.2,430

we can further perform various optimizations.431

Since all transition edges in the DPDA are deter-432

ministic and can be uniquely resolved by matching433

Algorithm 1: Construct DPDA from LR(1)
Transition Graph

Input: LR(1) State Transition Graph G = (S,E)
Output: Deterministic Pushdown Automata (DPDA)

/* Step 1: Cycle Handling */
1 C ←Detect cycles with reduction problem in G
2 foreach detected cycle C = (s1, s2, ..., sn, s1) do
3 if C corresponds to recursive reduction of

non-terminal A then
4 Define the back-edge: sn

back−−→ s1
5 Modify the back-edge to check for complete

cycle traversal in the stack: match and pop
(s1, s2, ..., sn), push(s1)

/* Step 2: Acceptance Edge Generation */
6 foreach state si ∈ S do
7 foreach valid transition si

X−→ sj in E do
8 Add stack operation: push(sj)
/* Step 3: Reduction Edge Generation */

9 Function GenerateReductionEdges(state si):
10 foreach reduction sequence

si
reduce A−−−−→ sj

reduce B−−−−→ sk do
11 Merge into a direct transition:

si
reduce A→B−−−−−−−→ sk

12 Validate stack compatibility
13 GenerateReductionEdges(sk)
14 foreach ϵ-reduction edge from si do
15 Merge the ϵ-reduction edge with appropriate

acceptance edges that share the same stack
operations

16 Assign suitable accept tokens to ensure the
Prefix-condition is matched

17 GenerateReductionEdges(target state of
the merged edge)

18 GenerateReductionEdges(initial state s0)

1 2

0 1match +'a'

0 1match +'b'

0 1match +'c'

1
0 1match

+['a','b','c']
2

Edge aggregation

Edge merging

1

'a'

2

3
3push

'b'

2push

0 1

match

0 1

match

2

1

'a'

2

3

'b'

2push

0 1

match

3push

'ab'

Figure 5: Two different types of edge optimization.

both the stack state and input symbols, we are able 434

to analyze and optimize the automaton’s structure 435

6

during the preprocessing phase. In contrast, tradi-436

tional methods based on non-deterministic push-437

down automata (PDA) cannot achieve such opti-438

mizations during preprocessing due to the ambi-439

guity of transition edges—where the same input440

symbol may lead to multiple possible transition441

targets. As a result, we can aggregate and merge442

transition edges as shown in Figure 5.443

• Edge Aggregation: Edges with the same stack444

prefix condition and stack operations but differ-445

ent accepted symbols can be combined. For ex-446

ample, in grammars describing numbers, edges447

for digits 0-9 can be merged into a single edge448

accepting all digits to simplify the automaton.449

• Edge Merging: If two edges share the matched450

stack prefix condition and operations, we con-451

nect them directly, skip intermediate states, and452

reduce transitions. This is important for LLM453

with large vocabularies, as it allows “jumping”454

to the desired state in fewer steps, leveraging the455

LLM’s vocabulary for efficient parallel valida-456

tion of transition conditions.457

These optimizations are enabled by precomputed458

prefix-conditioned edges for all stack conditions, so459

eliminate runtime decisions. By combining these460

techniques, we further optimize the DPDA, achiev-461

ing deterministic and efficient grammar parsing.462

4 Evaluation463

4.1 Experiment Setup464

Implementation: We implemented our approach465

in 2,000 lines of Python code and about 1,000 lines466

of C++ code, and we seamlessly integrated with467

LightLLM (ModelTC, 2023), a popular LLM infer-468

ence framework.469

Hardware Setup: All the experiments are470

tested on a server with Intel(R) Xeon(R) Gold471

6448Y CPU and 8 NVIDIA H800 GPUs. Depend-472

ing on the scale of the experiment, we use different473

numbers of GPUs.474

Baselines: We choose the following representa-475

tive works on LR(1) grammar constraint decoding.476

• XGrammar: An open-source library for struc-477

tured generation in large-language models. It478

significantly enhances performance in tasks like479

JSON grammar generation with reduced latency480

and storage.481

• Outlines: A text generation library, it offers a482

Python tool for grammar-guided generation, of-483

fering a fast generation method. We use vLLM484

(1-a) (1-b) (2-a) (2-b)

Method

100

101

102

103

104

L
og

O
ve

rh
ea

d
(m

s)

Pre3

XGrammar

Llama.cpp

Outlines

Figure 6: Per-step decoding overhead cross different
grammar and models. Outlines incurs an overhead of
up to several seconds per step. Experiments contain (1)
Chain-of-Thought grammar (2) JSON grammar. Models
contain (a) Meta-Llama-3-8B on 1×H800 (b) Meta-
Llama-2-70B on 4×H800.

integrated with Outlines for evaluation. 485

• Llama.cpp: A C/C++-based LLM inference tool, 486

and also includes support for LR(1) grammar 487

constraint decoding. 488

Datasets: In our experiments, we utilized the 489

JSON-mode-eval (NousResearch, 2024) dataset 490

from NousResearch and jsonschemabench (Geng 491

et al., 2025) from guided-ai as prompts. As there 492

is a scarcity of datasets for structured output, we 493

collected some private data additionally and incor- 494

porated it into the test dataset. 495

4.2 Per-step Decoding Efficiency 496

To evaluate the improvement of our system, we first 497

examine the per-step decoding overhead, which is 498

defined by subtracting the original decoding time 499

from the grammar-based decoding time. We de- 500

sign four experiment setups including two mod- 501

els, Meta-Llama-3-8B and Meta-Llama-2-70B, and 502

two grammars, JSON and chain-of-thought. For 503

comparison, we benchmark our method against 504

several state-of-the-art and popular structure gener- 505

ation engines, including XGrammar, Outlines, and 506

llama.cpp-Grammar, to demonstrate the efficiency 507

of our system at a per-step scale. 508

The results are shown in Figure 6 and Table 2. 509

Pre3 demonstrates a superiority over Outlines and 510

llama.cpp with approximately 1000× reduction, 511

and Pre3 remains a consistent advantage over 512

XGrammar. The results indicate that Pre3 intro- 513

duces less overhead than previous SOTA systems. 514

4.3 Large-batch Inference Efficiency 515

In real-world serving scenarios, inference often 516

handles large batches of requests simultaneously, 517

making large-batch efficiency crucial for deploy- 518

ing language models at scale. We evaluate per- 519

formance in such settings, where efficiency gains 520

7

Table 1: Decode batch inference time comparison between our method and XGrammar. The “-” marker stands for
the batch size cannot be executed on the given hardware setup.

Batch Size 16 32 64 128 256 512 1024

Llama-3-8B (Dubey et al., 2024) XGrammar (ms) 15.19 43.69 52.07 65.21 90.98 147.64 272.77
Pre3 (ms) 11.77 31.12 35.88 45.32 64.42 104.46 201.16

2×H800 Reduction ↓22.49% ↓28.78% ↓30.09% ↓30.50% ↓29.20% ↓29.24% ↓26.25%

DeepSeek-V2-Lite-Chat (Liu et al., 2024) XGrammar (ms) 51.76 59.45 77.74 104.06 121.46 - -
Pre3 (ms) 49.91 53.71 54.41 61.63 75.47 - -

15.7B 2×H800 Reduction ↓3.57% ↓9.65% ↓30.01% ↓40.78% ↓37.86% - -

Qwen2-14B (Yang et al., 2024a) XGrammar (ms) 16.77 47.94 57.05 74.54 98.64 162.47 285.42
Pre3 (ms) 16.52 47.94 47.89 65.50 90.20 143.83 232.18

INT8 2×H800 Reduction ↓1.52% ↓0.12% ↓2.37% ↓12.14% ↓8.55% ↓11.47% ↓18.65%

Llama-2-70B (Touvron et al., 2023) XGrammar (ms) 28.75 55.12 56.94 68.79 85.92 - -
Pre3 (ms) 27.20 54.24 54.18 62.27 75.72 - -

4×H800 Reduction ↓5.39% ↓1.60% ↓4.85% ↓9.48% ↓11.87% - -

64 128 256 512

20

30

40

50

60

↑15.9%

↑12.8%

↑19.9% ↑10.1%

Pre3

XGrammar

Origin

32 64 128 256

5

10

15

20

↑6.0%

↑5.9%

↑11.4%

↑2.6%

Pre3

XGrammar

Origin

32 64 128 256

10

20

30

40

↑21.2%

↑26.4%

↑34.3%

↑36.8%

Pre3

XGrammar

Origin

Degree of parallelism

T
hr

ou
gh

pu
t

(r
eq

/s
)

Figure 7: System throughput based on different models and concurrency levels. Left: Llama3-8B, Middle: Llama2-
70B, Right: DeepSeek-V2-Lite-Chat.

Table 2: Per-step decode time comparison between our
method and XGrammar.

Llama-3-8B Llama-2-70B

Batchsize Pre3 XGrammar Pre3 XGrammar
1 0.5172 0.5531 0.2163 0.3030
4 0.6537 0.9327 0.2407 0.3310

significantly impact system performance.521

We benchmark Pre3 against the state-of-the-art522

XGrammar, using the JSON grammar for its com-523

plexity and challenging recursive structures (e.g.,524

lists and dictionaries). This tests the robustness525

and scalability of our method under demanding526

conditions.527

Our experiments are conducted on multiple mod-528

els of varying sizes and architectures. Specifi-529

cally, we conducted experiments on Llama3-8B530

and Deepseek-V2 (15.7B) on a 2×H800 setup, and531

Llama2-70B on a 4×H800 setup. The maximum532

batch size goes to 1024, large enough to test the533

scalability of our method. In this experiment, we534

also measured the average time taken for each step,535

but the requests are batched in number to test the536

system’s ability to process large batches.537

The result is shown in Table 1. The results show538

that Pre3 consistently outperforms XGrammar in539

all scenarios with latency reduction by up to 30%.540

The advantage is more significant at larger batch541

sizes, demonstrating the scalability of Pre3.542

4.4 Realworld Deployment 543

To evaluate the throughput in real-world service 544

environments, we compare the performance of 545

XGrammar and our method, Pre3 under varying 546

system concurrency levels. We conducted experi- 547

ments on Meta-Llama-3-8B (2×H800) and Meta- 548

Llama-2-70B (4×H800), measuring the through- 549

put in terms of requests per second across different 550

levels of concurrency. 551

The results are shown in Figure 7. Both Pre3 and 552

XGrammar have lower throughput than the Origi- 553

nal system due to the added overhead introduced by 554

constraint decoding, while Pre3 demonstrated a sig- 555

nificant improvement over XGrammar, achieving 556

up to 20% higher throughput at higher concurrency 557

levels, showing that Pre3 provides higher through- 558

put in end-to-end deployment. 559

5 Conclusion 560

In this work, we address the limitations of existing 561

structured generation approaches by proposing a 562

DPDA-based methodology (Pre3), which integrates 563

Cycle-aware Deterministic Pushdown Automata 564

Construction and Prefix-conditioned Edge Opti- 565

mization, Pre3 significantly outperforms existing 566

SOTA baselines by up to 40% in throughput and 567

demonstrates greater advantages with large batch 568

sizes. 569

8

Limitation570

While our work demonstrates significant improve-571

ments in constrained LLM decoding efficiency, sev-572

eral limitations and potential areas for improvement573

remain.574

Firstly, our method is designed and optimized575

for LR(1) grammars, which are sufficient for many576

structured generation tasks. However, it may face577

challenges when scaling to more complex or am-578

biguous grammars, such as those requiring LR(k)579

parsing (where k > 1). These grammars involve580

more intricate state transitions and lookahead mech-581

anisms, which could increase the complexity of582

constructing and processing deterministic push-583

down automata (DPDA). Extending the approach584

to handle such grammars while maintaining effi-585

ciency remains an open challenge. Future work586

could explore hybrid parsing strategies or adap-587

tive mechanisms to dynamically adjust grammar588

complexity based on the input.589

Secondly, our current implementation is primar-590

ily a research prototype and has not yet been fully591

engineered for production-level performance. The592

method is implemented in Python, which, while593

suitable for rapid development and experimenta-594

tion, does not leverage the full potential of low-595

level optimizations or hardware acceleration. For596

instance, critical components such as transition pro-597

cessing and stack operations could benefit from598

parallelization on GPUs or specialized hardware.599

Additionally, the lack of fine-tuned memory man-600

agement and efficient data structures limits the601

method’s ability to scale to larger workloads. By602

reimplementing the approach in a systems-level lan-603

guage like C++ or Rust and incorporating hardware-604

aware optimizations, we could achieve even greater605

acceleration and performance gains.606

Addressing these limitations could unlock addi-607

tional performance improvements and broaden the608

applicability of our approach.609

References 610

AV ASU86, R Sethi Aho, and Ullman JD. 1986. Com- 611
pilers: Principles, techniques, and tools. 612

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen 613
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli 614
Ding, Danny Driess, Avinava Dubey, Chelsea Finn, 615
et al. 2023. Rt-2: Vision-language-action models 616
transfer web knowledge to robotic control. arXiv 617
preprint arXiv:2307.15818. 618

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, 619
and Denny Zhou. 2023. Large language models as 620
tool makers. arXiv preprint arXiv:2305.17126. 621

Sukmin Cho, Soyeong Jeong, Jeong yeon Seo, and Jong 622
Park. 2023. Discrete prompt optimization via con- 623
strained generation for zero-shot re-ranker. In Find- 624
ings of the Association for Computational Linguis- 625
tics: ACL 2023, pages 960–971, Toronto, Canada. 626
Association for Computational Linguistics. 627

Yihong Dong, Xue Jiang, Yuchen Liu, Ge Li, and Zhi 628
Jin. 2022. Codepad: Sequence-based code gener- 629
ation with pushdown automaton. arXiv preprint 630
arXiv:2211.00818. 631

Yihong Dong, Ge Li, and Zhi Jin. 2023. Codep: gram- 632
matical seq2seq model for general-purpose code gen- 633
eration. In Proceedings of the 32nd ACM SIGSOFT 634
International Symposium on Software Testing and 635
Analysis, pages 188–198. 636

Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang 637
Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen. 2024. 638
Xgrammar: Flexible and efficient structured gener- 639
ation engine for large language models. Preprint, 640
arXiv:2411.15100. 641

Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, 642
and Cheston Tan. 2022. A survey of embodied ai: 643
From simulators to research tasks. IEEE Transac- 644
tions on Emerging Topics in Computational Intelli- 645
gence, 6(2):230–244. 646

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 647
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 648
Akhil Mathur, Alan Schelten, Amy Yang, Angela 649
Fan, et al. 2024. The llama 3 herd of models. arXiv 650
preprint arXiv:2407.21783. 651

John GF Francis. 1961. The qr transformation a uni- 652
tary analogue to the lr transformation—part 1. The 653
Computer Journal, 4(3):265–271. 654

Saibo Geng, Hudson Cooper, Michał Moskal, Samuel 655
Jenkins, Julian Berman, Nathan Ranchin, Robert 656
West, Eric Horvitz, and Harsha Nori. 2025. Generat- 657
ing structured outputs from language models: Bench- 658
mark and studies. arXiv preprint arXiv:2501.10868. 659

Georgi Gerganov. 2023. llama.cpp. LLM inference in 660
C/C++. 661

9

https://doi.org/10.18653/v1/2023.findings-acl.61
https://doi.org/10.18653/v1/2023.findings-acl.61
https://doi.org/10.18653/v1/2023.findings-acl.61
https://arxiv.org/abs/2411.15100
https://arxiv.org/abs/2411.15100
https://arxiv.org/abs/2411.15100
https://github.com/ggerganov/llama.cpp

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,662
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,663
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-664
centivizing reasoning capability in llms via reinforce-665
ment learning. arXiv preprint arXiv:2501.12948.666

John E Hopcroft, Rajeev Motwani, and Jeffrey D667
Ullman. 2001. Introduction to automata theory,668
languages, and computation. Acm Sigact News,669
32(1):60–65.670

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick671
Xia, Tongfei Chen, Matt Post, and Benjamin672
Van Durme. 2019. Improved lexically constrained673
decoding for translation and monolingual rewriting.674
In Proceedings of the 2019 Conference of the North675
American Chapter of the Association for Computa-676
tional Linguistics: Human Language Technologies,677
Volume 1 (Long and Short Papers), pages 839–850,678
Minneapolis, Minnesota. Association for Computa-679
tional Linguistics.680

Donald E. Knuth. 1965. On the translation of languages681
from left to right. Information and Control, 8(6):607–682
639.683

Terry Koo, Frederick Liu, and Luheng He. 2024.684
Automata-based constraints for language model de-685
coding. arXiv preprint arXiv:2407.08103.686

Zekun Li, Zhiyu Zoey Chen, Mike Ross, Patrick Hu-687
ber, Seungwhan Moon, Zhaojiang Lin, Xin Luna688
Dong, Adithya Sagar, Xifeng Yan, and Paul A Crook.689
2024a. Large language models as zero-shot dialogue690
state tracker through function calling. arXiv preprint691
arXiv:2402.10466.692

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and693
Yongfeng Zhang. 2024b. Formal-llm: Integrating for-694
mal language and natural language for controllable695
llm-based agents. arXiv preprint arXiv:2402.00798.696

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,697
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong698
Ruan, Damai Dai, Daya Guo, et al. 2024.699
Deepseek-v2: A strong, economical, and efficient700
mixture-of-experts language model. arXiv preprint701
arXiv:2405.04434.702

ModelTC. 2023. Lightllm. https://github.com/703
ModelTC/lightllm.704

Mark-Jan Nederhof and Giorgio Satta. 1996. Efficient705
tabular lr parsing. arXiv preprint cmp-lg/9605018.706

NousResearch. 2024. Nousresearch/json-mode-eval.707

OpenAI. 2024. Learning to reason with llms.708

Kanghee Park, Timothy Zhou, and Loris D’Antoni.709
2025a. Flexible and efficient grammar-constrained710
decoding. arXiv preprint arXiv:2502.05111.711

Kanghee Park, Timothy Zhou, and Loris D’Antoni.712
2025b. Flexible and efficient grammar-constrained713
decoding. Preprint, arXiv:2502.05111.714

Thomas Rückstieß, Alana Huang, and Robin Vujanic. 715
2024. Origami: A generative transformer architec- 716
ture for predictions from semi-structured data. arXiv 717
preprint arXiv:2412.17348. 718

Torsten Scholak, Nathan Schucher, and Dzmitry Bah- 719
danau. 2021. Picard: Parsing incrementally for 720
constrained auto-regressive decoding from language 721
models. arXiv preprint arXiv:2109.05093. 722

Michael Sipser. 1996. Introduction to the theory of 723
computation. ACM Sigact News, 27(1):27–29. 724

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 725
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 726
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 727
Bhosale, et al. 2023. Llama 2: Open founda- 728
tion and fine-tuned chat models. arXiv preprint 729
arXiv:2307.09288. 730

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Mi- 731
sailovic, and Gagandeep Singh. 2024. Syncode: Llm 732
generation with grammar augmentation. Preprint, 733
arXiv:2403.01632. 734

Leslie Valiant. 1973. Decision procedures for families 735
of deterministic pushdown automata. Ph.D. thesis, 736
University of Warwick. 737

Leslie G Valiant. 1975. Regularity and related problems 738
for deterministic pushdown automata. Journal of the 739
ACM (JACM), 22(1):1–10. 740

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 741
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 742
Denny Zhou. 2022. Self-consistency improves chain 743
of thought reasoning in language models. arXiv 744
preprint arXiv:2203.11171. 745

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 746
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 747
et al. 2022. Chain-of-thought prompting elicits rea- 748
soning in large language models. Advances in neural 749
information processing systems, 35:24824–24837. 750

Brandon T Willard and Rémi Louf. 2023a. Efficient 751
guided generation for large language models. arXiv 752
preprint arXiv:2307.09702. 753

Brandon T. Willard and Rémi Louf. 2023b. Effi- 754
cient guided generation for large language models. 755
Preprint, arXiv:2307.09702. 756

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 757
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 758
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5 759
technical report. arXiv preprint arXiv:2412.15115. 760

Yijun Yang, Tianyi Zhou, Kanxue Li, Dapeng Tao, Lu- 761
song Li, Li Shen, Xiaodong He, Jing Jiang, and Yuhui 762
Shi. 2024b. Embodied multi-modal agent trained by 763
an llm from a parallel textworld. In Proceedings of 764
the IEEE/CVF Conference on Computer Vision and 765
Pattern Recognition, pages 26275–26285. 766

10

https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.18653/v1/N19-1090
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1016/S0019-9958(65)90426-2
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://huggingface.co/datasets/NousResearch/json-mode-eval
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2502.05111
https://arxiv.org/abs/2502.05111
https://arxiv.org/abs/2502.05111
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,767
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani768
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.769
2024. Bigcodebench: Benchmarking code genera-770
tion with diverse function calls and complex instruc-771
tions. arXiv preprint arXiv:2406.15877.772

11

	Introduction
	Preliminaries and Background
	LLM Constrained Decoding
	LR(1) Grammar and State Transition Graphs
	Pushdown Automata and Deterministic Pushdown Automata

	Pre3 Design
	Prefix-conditioned Edges
	Cycle-aware Deterministic Pushdown Automata Construction
	DPDA Structure
	Acceptance Edges and Reduction Edges Integration
	Solving Issues with Automaton Cycles

	Edge Optimization with Prefix-condition

	Evaluation
	Experiment Setup
	Per-step Decoding Efficiency
	Large-batch Inference Efficiency
	Realworld Deployment

	Conclusion

