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Abstract

User language data can contain highly sensi-001
tive personal content. As such, it is impera-002
tive to offer users a strong and interpretable003
privacy guarantee when learning from their004
data. In this work, we propose SentDP: pure005
local differential privacy at the sentence level006
for a single user document. We propose a007
novel technique, DeepCandidate, that com-008
bines concepts from robust statistics and lan-009
guage modeling to produce high-dimensional,010
general-purpose ε-SentDP document embed-011
dings. This guarantees that any single sen-012
tence in a document can be substituted with013
any other sentence while keeping the embed-014
ding ε-indistinguishable. Our experiments in-015
dicate that these private document embeddings016
are useful for downstream tasks like sentiment017
analysis and topic classification and even out-018
perform baseline methods with weaker guaran-019
tees like word-level Metric DP.020

1 Introduction021

Language models have now become ubiquitous022

in NLP (Devlin et al., 2019; Liu et al., 2019b;023

Alsentzer et al., 2019), pushing the state of the art024

in a variety of tasks (Strubell et al., 2018; Liu et al.,025

2019a). While language models capture meaning026

and various linguistic properties of text (Jawahar027

et al., 2019; Yenicelik et al., 2020), an individual’s028

written text can include highly sensitive informa-029

tion. Even if such details are not needed or used,030

sensitive information has been found to be vulnera-031

ble and detectable to attacks (Pan et al., 2020; Ab-032

dalla et al., 2020; Carlini et al., 2020). Reconstruc-033

tion attacks (Xie and Hong, 2021) have even suc-034

cessfully broken through private learning schemes035

that rely on encryption-type methods (Huang et al.,036

2020).037

As of now, there is no broad agreement on038

what constitutes good privacy for natural language039

(Kairouz et al., 2019). Huang et al. (2020) ar-040

gue that different applications and models require041

Figure 1: x and x′ yield z ∈ Rd with similar probability.

different privacy definitions. Several emerging 042

works propose to apply Metric Differential Privacy 043

(Alvim et al., 2018) at the word level (Feyisetan 044

et al., 2019; Feyisetan and Kasiviswanathan, 2021; 045

Carvalho et al., 2021; Qu et al., 2021; Yue et al., 046

2021; Xu et al., 2021) . They propose to add noise 047

to word embeddings, such that they are indistin- 048

guishable from nearby word embeddings. 049

At the document level, however, the above defi- 050

nition has two areas for improvement. First, it may 051

not offer the level of privacy desired. Having each 052

word indistinguishable with similar words may not 053

hide higher level concepts in the document, and 054

may not be satisfactory for many users. Second, 055

it may not be very interpretable or easy to com- 056

municate to end-users, since the privacy definition 057

relies fundamentally on the choice of embedding 058

model to determine which words are indistinguish- 059

able with a given word. This may not be clear and 060

precise enough for end-users to grasp. 061

In this work, we propose a new privacy defini- 062

tion for documents: sentence privacy. This guaran- 063

tee is both strong and interpretable: any sentence 064

in a document must be indistinguishable with any 065

other sentence. A document embedding is sentence- 066

private if we can replace any single sentence in the 067

document and have a similar probability of produc- 068

ing the same embedding. As such, the embedding 069

only stores limited information unique to any given 070

sentence. This definition is easy to communicate 071

and strictly stronger than word-level definitions, as 072

modifying a sentence can be changing one word. 073
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Figure 2: DeepCandidate generates a private embedding z of document x by selecting from a set F of public, non-private
document embeddings. Sentences from x are encoded by G′. The privacy mechanism MTD, then privately samples from F , with
a preference for candidates with high Tukey Depth, ‘deep candidates’. G′ is trained beforehand to ensure that deep candidates
are likely to exist and are relevant to x.

Although this definition is strong, we are able074

to produce unsupervised, general embeddings of075

documents that are useful for downstream tasks076

like sentiment analysis and topic classification. To077

achieve this we propose a novel privacy mecha-078

nism, DeepCandidate, which privately samples a079

high-dimensional embedding from a preselected080

set of candidate embeddings derived from public,081

non-private data. DeepCandidate works by first pre-082

tuning a sentence encoder on public data such that083

semantically different document embeddings are084

far apart from each other. Then, we approximate085

each candidate’s Tukey Depth within the private086

documents’ sentence embeddings. Deeper candi-087

dates are the most likely to be sampled to represent088

the private document. We evaluate DeepCandidate089

on three illustrative datasets, and show that these090

unsupervised private embeddings are useful for091

both sentiment analysis and topic classification as092

compared to baselines.093

In summary, this work makes the following con-094

tributions to the language privacy literature:095

1. A new, strong, and interpretable privacy defi-096

nition that offers complete indistinguishability097

to each sentence in a document.098

2. A novel, unsupervised embedding technique,099

DeepCandidate, to generate sentence-private100

document embeddings.101

3. An empirical assessment of DeepCandidate,102

demonstrating its advantage over baselines,103

delivering strong privacy and utility.104

2 Background and Related Work105

Setting. We denote a ‘document’ as a sequence of106

sentences. Let s ∈ S be any finite-length sentence.107

Then, the space of all documents is X = S∗ and108

document x ∈ X is written as x = (s1, s2, . . . , sk)109

for any non-negative integer k of sentences. In 110

this work, we focus on cohesive documents of sen- 111

tences written together like reviews or emails, but 112

our methods and guarantees apply to any sequence 113

of sentences, such as a collection of messages writ- 114

ten by an individual over some period of time. 115

Our task is to produce an embedding z ∈ Rd of 116

any document x ∈ X such that any single sentence 117

si ∈ x is indistinguishable with every other sen- 118

tence s′i ∈ S\si. That is, if one were to replace any 119

single sentence in the document si ∈ x with any 120

other sentence s′i ∈ S\si, the probability of pro- 121

ducing a given embedding z is similar. To achieve 122

this, we propose a randomized embedding function 123

(the embedding mechanism)M : X → Rd, that 124

generates a private embedding z = M(x) that is 125

useful for downstream tasks. 126

2.1 Differential Privacy 127

The above privacy notion is inspired by Differential 128

Privacy (DP) (Dwork, 2006). It guarantees that — 129

whether an individual participates (dataset D) or 130

not (dataset D′) — the probability of any output 131

only chances by a constant factor. 132

Definition 2.1 (Differential Privacy). Given any 133

pair of datasets D,D′ ∈ D that differ only in the 134

information of a single individual, we say that the 135

mechanism A : D → O, satisfies ε-DP if 136

Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O] 137

for any event O ⊆ O. 138

Note that we take probability over the random- 139

ness of the mechanism A only, not the data distri- 140

bution. DP has several nice properties that make 141

it easy to work with including closure under post- 142

processing, an additive privacy budget (composi- 143

tion), and closure under group privacy guarantees 144
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(guarantees to a subset of multiple participants).145

See Dwork et al. 2014 for more details.146

When our output space is a discrete and fi-147

nite set of alternatives to choose from O =148

(o1, o2, . . . , on), we may use the exponential mech-149

anism to satisfy ε-DP (McSherry and Talwar, 2007).150

To do so, we specify a utility function over in-151

put/output pairs, u : D × O → R. The utility152

of choosing alternative o ∈ O when the input is153

dataset D ∈ D is then given by u(D, o). The154

sensitivity of u(·, ·) is the worst-case change in155

utility over pairs of neighboring datasets, ∆u =156

maxD,D′,o |u(D, o)− u(D′, o)|.157

Definition 2.2. The exponential mechanism AExp :158

D → O is a randomized algorithm with output159

distribution160

Pr[AExp(D) = o] ∝ exp
(εu(x, r)

2∆u

)
.161

2.2 Related Work162

Natural Language Privacy. Previous work has163

demonstrated that NLP models and embeddings164

are vulnerable to reconstruction attacks (Carlini165

et al., 2020; Abdalla et al., 2020; Pan et al., 2020).166

In response there have been various efforts to de-167

sign privacy-preserving techniques and definitions168

across NLP tasks. A line of work focuses on how169

to make NLP model training satisfy DP (Kerrigan170

et al., 2020; Bagdasaryan et al., 2019). This is dis-171

tinct from our work in that it satisfies central DP172

– where data is first aggregated non-privately and173

then privacy preserving algorithms (i.e. training)174

are run on that data. We model this work of the175

local version of DP (Dwork et al., 2006), wherein176

each individual’s data is made private before cen-177

tralizing. Our definition guarantees privacy to a178

single document as opposed to a single individual.179

A line of work more comparable to our approach180

makes documents locally private by generating a181

randomized version of a document that satisfies182

some formal privacy definition. As with the private183

embedding of our work, this generates a locally184

private representation of a given document x. The185

overwhelming majority of these methods satisfy an186

instance of Metric-DP (Alvim et al., 2018) at the187

word level (Feyisetan et al., 2019; Feyisetan and188

Kasiviswanathan, 2021; Carvalho et al., 2021; Qu189

et al., 2021; Yue et al., 2021; Xu et al., 2021). As190

discussed in the introduction, this guarantees that191

a document x is indistinguishable with any other192

document x′ produced by swapping a single word193

in x with a similar word. Two words are ‘similar’194

if they are close in the word embeddings space (e.g. 195

GloVe). This guarantee is strictly weaker than our 196

proposed definition, SentDP, which offers indistin- 197

guishability to any two documents that differ in an 198

entire sentence. 199

Privacy-preserving embeddings. There is a 200

large body of work on non-NLP privacy-preserving 201

embeddings, as these embeddings have been shown 202

to be vulnerable to attacks (Song and Raghunathan, 203

2020). Li and Clifton (2021) attempt to generate 204

locally private embeddings by bounding the em- 205

bedding space, and we compare with this method 206

in our experiments. Kamath et al. (2019) propose 207

a method for privately publishing the average of 208

embeddings, but their algorithm is not suited to op- 209

erate on the small number of samples (sentences) a 210

given document offers. Finally, Beimel et al. (2019) 211

propose a method for privately learning halfspaces 212

in Rd, which is relevant to private Tukey Medi- 213

ans, but their method would restrict input examples 214

(sentence embeddings) to a finite discrete set in Rd, 215

a restriction we cannot tolerate. 216

3 Sentence-level Privacy 217

We now introduce our simple, strong privacy defi- 218

nition, along with concepts we use to satisfy it. 219

3.1 Definition 220

In this work, we adopt the local notion of DP 221

(Dwork et al., 2006), wherein each individual’s data 222

is guaranteed privacy locally before being reported 223

and centralized. Our mechanism M receives a 224

single document from a single individual, x ∈ X . 225

We require that M provides indistinguishability 226

between documents x, x′ differing in one sentence. 227

Definition 3.1 (Sentence Privacy, SentDP). Given 228

any pair of documents x, x′ ∈ X that differ only in 229

one sentence, we say that a mechanism 230

M : X → O satisfies ε-SentDP if 231

Pr[M(x) ∈ O] ≤ eε Pr[M(x′) ∈ O] 232

for any event O ⊆ O. 233

We focus on producing an embedding of the 234

given document x, hence the output space is 235

O = Rd. For instance, consider the neighbor- 236

ing documents x = (s1, s2, . . . , sk) and x′ = 237

(s1, s
′
2, . . . , sk) that differ in the second sentence, 238

i.e. s2, s
′
2 can be any pair of sentences in S2. This 239

is a strong notion of privacy in comparison to ex- 240

isting definitions across NLP tasks. However, we 241
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show that we can guarantee SentDP while still pro-242

viding embeddings that are useful for downstream243

tasks like sentiment analysis and classification. In244

theory, a SentDP private embedding z should be245

able to encode any information from the document246

that is not unique to a small subset of sentences.247

For instance, z can reliably encode the sentiment248

of x as long as multiple sentences reflect the senti-249

ment. By the group privacy property of DP, which250

SentDP retains, two documents differing in α sen-251

tences are αε indistinguishable. So, if more sen-252

tences reflect the sentiment, the moreM can en-253

code this into z without compromising on privacy.254

3.2 Sentence Mean Embeddings255

Our approach is to produce a private version of256

the average of general-purpose sentence embed-257

dings. By the post-processing property of DP, this258

embedding can be used repeatedly in any fashion259

desired without degrading the privacy guarantee.260

Our method makes use of existing pre-trained sen-261

tence encoding models. We denote this general262

sentence encoder as G : S → Rd. We show in our263

experiments that the mean of sentence embeddings,264

g(x) =
∑
si∈x

G(si) , (1)265

maintains significant information unique to the doc-266

ument and is useful for downstream tasks like clas-267

sification and sentiment analysis.268

We call g(x) the document embedding since it269

summarizes the information in document x. While270

there exist other definitions of document embed-271

dings (Yang et al., 2016; Thongtan and Phien-272

thrakul, 2019; Bianchi et al., 2020), we decide to273

use averaging as it is a simple and established em-274

bedding technique (Bojanowski et al., 2017; Gupta275

et al., 2019; Li et al., 2020).276

3.3 Tukey Depth277

Depth is a concept in robust statistics used to de-278

scribe how central a point is to a distribution. We279

borrow the definition proposed by Tukey (1975):280

Definition 3.2. Given a distribution P over Rd, the281

Tukey Depth of a point y ∈ Rd is282

TDP (y) = inf
w∈Rd

P{y′ : w · (y′ − y) ≥ 0} .283

In other words, take the hyperplane orthogonal284

to vector w, hw, that passes through point y. Let285

Pw1 be the probability under P that a point lands on286

one side of hw and let Pw2 be the probability that a 287

point lands on the other side, so Pw1 +Pw2 = 1. y is 288

considered deep if min(Pw1 , P
w
2 ) is close to a half 289

for all vectors w (and thus all h passing through y). 290

The Tukey Median of distribution P , TMED(P ), is 291

the set of all points with maximal Tukey Depth, 292

TMED(P ) = arg max
y∈Rd

TDP (y) . (2) 293

We only access the distribution P through a finite 294

sample of i.i.d. points, Y = {y1, y2, . . . , yn}. The 295

Tukey Depth w.r.t. Y is given by 296

TDY (y) = inf
w∈Rd

|{y′ ∈ Y : w · (y′ − y) ≥ 0}| , 297

and the median, TMED(Y ), maximizes the depth 298

and is at most half the size of our sample
⌊
n
2

⌋
. 299

Generally, finding a point in TMED(Y ) is hard; 300

SOTA algorithms have an exponential dependency 301

in dimension (Chan, 2004), which is a non-starter 302

when working with high-dimensional embeddings. 303

However, there are efficient approximations which 304

we will take advantage of. 305

4 DeepCandidate 306

While useful and general, the document em- 307

bedding g(x) does not satisfy SentDP. We now 308

turn to describing our privacy-preserving tech- 309

nique, DeepCandidate, which generates general, 310

ε-SentDP document embeddings that preserve rele- 311

vant information in g(x), and are useful for down- 312

stream tasks. To understand the nontrivial nature 313

of this problem, we first analyze why the simplest, 314

straightfoward approaches are insufficient. 315

Motivation. Preserving privacy for high dimen- 316

sional objects is known to be challenging (Kamath 317

et al., 2019; Feyisetan and Kasiviswanathan, 2021; 318

Zhou et al., 2009) . For instance, adding Laplace 319

noise directly to g(x), as done to satisfy some pri- 320

vacy definitions (Feyisetan et al., 2019; Alvim et al., 321

2018), does not guarantee SentDP for any ε. Recall 322

that the embedding space is all of Rd. A change 323

in one sentence can lead to an unbounded change 324

in g(x), since we do not put any restrictions on 325

the general encoder G. Thus, no matter how much 326

noise we add to g(x) we cannot satisfy SentDP. 327

A straightforward workaround might be to sim- 328

ply truncate embeddings such that they all lie in 329

a limited set such as a sphere or hypercube as 330

done in prior work (Li and Clifton, 2021; Abadi 331

et al., 2016). In doing so, we bound how far 332
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apart embeddings can be for any two sentences,333

‖G(si) − G(s′i)‖1, thus allowing us to satisfy334

SentDP by adding finite variance noise. However,335

such schemes offer poor utility due to the high di-336

mensional nature of useful document embeddings337

(we confirm this in our experiments). We must add338

noise with standard deviation proportional to the339

dimension of the embedding, thus requiring an un-340

tenable degree of noise for complex encoders like341

BERT which embed into R768.342

Our method has three pillars: (1) sampling from343

a candidate set of public, non-private document344

embeddings to represent the private document, (2)345

using the Tukey median to approximate the docu-346

ment embedding, and (3) pre-training the sentence347

encoder, G, to produce relevant candidates with348

high Tukey depth for private document x.349

4.1 Taking advantage of public data:350

sampling from candidates351

Instead of having our mechanism select a private352

embedding z from the entire space of Rd, we focus353

the mechanism to select from a set of m candi-354

date embeddings, F , generated by m public, non-355

private documents. We assume the document x is356

drawn from some distribution µ over documents X .357

For example, if we know x is a restaurant review, µ358

may be the distribution over all restaurant reviews.359

F is then a collection of document embeddings360

from m publicly accessible documents xi ∼ µ,361

F = {fi = g(xi) : x1, . . . , xm
iid∼ µ} .362

We denote the corresponding distribution over fi363

as g(µ). By selecting documents F to be similar364

in nature to the private document x, we inject an365

advantageous inductive bias into our mechanism,366

which is critical to satisfy strong privacy while367

preserving meaningful information relevant to x.368

4.2 Approximating the document embedding:369

The Tukey Median370

We now propose a novel mechanismMTD, which371

approximates g(x) by sampling a candidate embed-372

ding from F . MTD works by concentrating prob-373

ability on candidates with high Tukey Depth w.r.t.374

the set of sentence embeddings Sx = {G(si) :375

si ∈ x}. We model sentences si from document376

x as i.i.d. draws from distribution νx. Then, Sx is377

k draws from g(νx), the distribution of sentences378

from νx passing throughG. Deep points are a good379

approximation of the mean under light assumptions.380

If g(νx) belongs to the set of halfspace-symmetric 381

distributions (including all elliptic distributions e.g. 382

Gaussians), we know that its mean lies in the Tukey 383

Median (Zhu et al., 2020). 384

Formally,MTD is an instance of the exponential 385

mechanism (Definition 2.2), and is defined by its 386

utility function. We set the utility of a candidate 387

document embedding fi ∈ F to be an approxima- 388

tion of its depth w.r.t. sentence embeddings Sx, 389

u(x, fi) = T̂DSx(fi) . (3) 390

The approximation T̂DSx , which we detail in the 391

Appendix, is necessary for computational effi- 392

ciency. If the utility of fi is high, we call it a 393

‘deep candidate’ for sentence embeddings Sx. 394

The more candidates sampled (higher m), the 395

higher the probability that at least one has high 396

depth. Without privacy, we could report the deep- 397

est candidate, z = arg max
fi∈F

T̂DSx(fi). However, 398

when preserving privacy withMTD, increasing m 399

has diminishing returns. To see this, fix a set of sen- 400

tence embeddings Sx for document x and the i.i.d. 401

distribution over candidate embeddings fi ∼ g(µ). 402

This induces a multinomial distribution over depth, 403

404

uj = Pr[u(x, fi) = j],

b k
2
c∑

j=0

uj = 1 , 405

406where randomness is taken over draws of fi. 407

For candidate set F and sentence embeddings 408

Sx, the probability ofMTD’s selected candidate, z, 409

having (approximated) depth j∗ is given by 410

Pr[u(x, z) = j∗] =
aj∗e

εj∗/2∑b k
2
c

j=0 aje
εj/2

(4) 411

where aj is the fraction of candidates in F with 412

depth j. For m sufficiently large, aj concentrates 413

around uj . Thus, while increasing m may increase 414

the likelihood of a deep candidate existing, it does 415

not increase the probability of sampling a deep 416

candidate. 417
Table 1: Conditions for deep candidates

ε b j∗

3 55 5
6 25 3
10 5 2
23 1 1

For numerical intuition, suppose m = 5000 (as 418

in our experiments), ≥ b candidates have depth 419
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Figure 3: G′ is trained to encourage similar documents to
embed close together and different documents to embed far
apart. We first compute embeddings of all (public, non-private)
training set documents T with pretrained encoder G, TG =
{ti = g(xi) : xi ∈ T} (blue dots). We run k-means to define
nc clusters, and label each training document embedding ti ∈
TG with its cluster c. We then train H to recode sentences to
S′x such that their mean g′(x) can be used by a linear model L
to predict cluster c. Our training objective is the cross-entropy
loss of the linear model L in predicting c.

≥ j∗, and all other candidates have depth 0,MTD420

will sample one of these deep candidates w.p. ≥421

0.95 under the settings in Table 1.422

For low ε < 10 (high privacy), about 1% of can-423

didates need to have high depth (≥ 3) in order to be424

reliably sampled. Note that this is only possible for425

documents with ≥ 6 sentences. For higher ε ≥ 10,426

MTD will reliably sample low depth candidates427

even if there are only a few.428

From these remarks we draw two insights on429

how DeepCandidate can achieve high utility.430

(1) More sentences A higher k enables greater431

depth, and thus a higher probability of sampling432

deep candidates with privacy. We explore this ef-433

fect in our experiments.434

(2) Tuned encoder By tuning the sentence encoder435

G for a given domain, we can modify the distribu-436

tion over document embeddings g(µ) and sentence437

embeddings g(νx) to encourage deep candidates438

(high probability uj for deep j) that are relevant to439

document x.440

4.3 Taking advantage of structure:441

cluster-preserving embeddings442

So far, we have identified that deep candidates from443

F can approximate g(x). To produce a good ap-444

proximation, we need to ensure that 1) there re-445

liably exist deep candidates for any given set of446

sentence embeddings Sx, and 2) that these deep447

candidates are good representatives of document448

x. The general sentence encoder G used may not449

satisfy this ‘out of the box’. If the distribution450

on document embeddings g(µ) is very scattered 451

around the instance space R768, it can be exceed- 452

ingly unlikely to have a deep candidate fi among 453

sentence embeddings Sx. On the other hand, if 454

distribution g(µ) is tightly concentrated in one re- 455

gion (e.g. ‘before training’ in Figure 3), then we 456

may reliably have many deep candidates, but sev- 457

eral will be poor representatives of the document 458

embedding g(x). 459

To prevent this, we propose an unsupervised, effi- 460

cient, and intuitive modification to the (pretrained) 461

sentence encoder G. We freeze the weights of G 462

and add additional perceptron layers mapping into 463

the same embeddings space H : Rd → Rd, pro- 464

ducing the extended encoder G′ = H ◦G. Broadly, 465

we train H to place similar document embeddings 466

close together, and different embeddings far part. 467

To do so, we leverage the assumption that a given 468

domain’s distribution over document embeddings 469

g(µ) can be parameterized by nc clusters, visu- 470

alized as the black circles in Figure 3. H’s aim 471

is to recode sentence embeddings such that docu- 472

ment embedding clusters are preserved, but spaced 473

apart from each other. By preserving clusters, we 474

are more likely to have deep candidates (increased 475

probability uj for high depth j). By spacing clus- 476

ters apart, these deep candidates are more likely 477

to come from the same or a nearby cluster as doc- 478

ument x, and thus be good representatives. Note 479

that H is domain-specific: we train separate H 480

encoders for each dataset. 481

4.4 Sampling Algorithm 482

The final component of DeepCandidate is comput- 483

ing the approximate depth of a candidate for use 484

as utility in the exponential mechanism as in Eq. 485

(3). We use a version of the approximation al- 486

gorithm proposed in Gilad-Bachrach and Burges 487

2012. Intuitively, our algorithm computes the one- 488

dimensional depth of each fi among x’s sentence 489

embeddings Sx on each of p random projections. 490

The approximate depth of fi is then its lowest depth 491

across the p projections. We are guaranteed that 492

T̂DSx(fi) ≥ TDSx(fi). Due to space constraints, 493

we leave the detailed description of the algorithm 494

for the Appendix. 495

Theorem 4.1. MTD satisfies ε-Sentence Privacy 496

Proof follows from the fact that T̂DSx(fi) has 497

bounded sensitivity (changing one sentence can 498

only change depth of fi by one). We expand on 499

this, too, in the Appendix. 500
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(a) 20 News: Sweep ε (b) GoodReads: Sweep ε (c) IMDB: Sweep ε

(d) 20 News: Sweep k (e) GoodReads: Sweep k (f) IMDB: Sweep k

Figure 4: Comparison of our mechanism with two baselines: truncation (Li and Clifton, 2021) and word-level Metric DP
(Feyisetan et al., 2019) for both sentiment analysis (IMDB) and topic classification (GoodReads, 20News) on private, unsupervised
embeddings. All plots show test-set macro F1 scores. The top row shows performance vs. privacy parameter ε (lower is better
privacy). The bottom row shows performance vs. number of sentences k with ε = 10. DeepCandidate outperforms both baselines
across datasets and tasks. Note that at a given ε, word-level Metric-DP is a significantly weaker privacy guarantee.

5 Experiments501

5.1 Datasets502

We produce private, general embeddings of docu-503

ments from three English-language datasets:504

Good Reads (Wan and McAuley, 2018) 60k505

book reviews from four categories: fantasy, his-506

tory, romance, and childrens literature. Train-48k |507

Val-8k | Test-4k508

20 News Groups (Lang, 1995) 11239 corre-509

spondences from 20 different affinity groups.510

Due to similarity between several groups511

(e.g. comp.os.ms-windows.misc and512

comp.sys.ibm.pc.hardware), the dataset513

is partitioned into nine categories. Train-6743k |514

Val-2247k | Test-2249k515

IMDB (Maas et al., 2011) 29k movie reviews516

from the IMDB database, each labeled as a positive517

or negative review. Train-23k | Val-2k | Test-4k518

To evaluate utility of these unsupervised, private519

embeddings, we check if they are predictive of520

document properties. For the Good Reads and 20521

News Groups datasets, we evaluate how useful the522

embeddings are for topic classification. For IMDB523

we evaluate how useful the embeddings are for524

sentiment analysis (positive or negative review).525

Our metric for performance is test-set macro F1526

score.527

5.2 Training Details & Setup528

For the general encoder, G : S → R768, we use529

SBERT (Reimers and Gurevych, 2019), a version530

of BERT fine-tuned for sentence encoding. Sen- 531

tence embeddings are generated by mean-pooling 532

output tokens. In all tasks, we freeze the weights of 533

SBERT. The cluster-preserving recoder, H , as well 534

as every classifier is implemented as an instance 535

of a 4-layer MLP taking 768-dimension inputs and 536

only differing on output dimension. We denote an 537

instance of this MLP with output dimension o as 538

MLPo. We run 5 trials of each experiment with ran- 539

domness taken over the privacy mechanisms, and 540

plot the mean along with a ± 1 standard deviation 541

envelope. 542

DeepCandidate: The candidate set F consists 543

of 5k document embeddings from the training set, 544

each containing at least 8 sentences. To train G′, 545

we find nc = 50 clusters with k-means. We train a 546

classifier Cdc = MLPr on document embeddings 547

g′(x) to predict class, where r is the number of 548

classes (topics or sentiments). 549

5.3 Baselines 550

We compare the performance of DeepCandidate 551

with 4 baselines: Non-private, Truncation, Word- 552

level Metric-DP, and Random Guesser. 553

Non-private: This demonstrates the usefulness 554

of non-private sentence-mean document embed- 555

dings g(x). We generate g(x) for every document 556

using SBERT, and then train a classifier Cnonpriv = 557

MLPr to predict x’s label from g(x). 558

Truncation: We adopt the method from Li and 559

7



Clifton 2021 to truncate (clip) sentence embed-560

dings within a box in R768, thereby bounding sen-561

sitivity as described at the beginning of Section562

4. Laplace noise is then added to each dimension.563

Documents with more sentences have proportion-564

ally less noise added due to the averaging operation565

reducing sensitivity.566

Word Metric-DP (MDP): The method from567

Feyisetan et al. 2019 satisfies ε-word-level metric568

DP by randomizing words. We implement MDP to569

produce a randomized document x′, compute g(x′)570

with SBERT, and predict class using Cnonpriv.571

Random Guess: To set a bottom-line, we show572

the theoretical performance of a random guesser573

only knowing the distribution of labels.574

5.4 Results & Discussion575

How does performance change with privacy pa-576

rameter ε?577

This is addressed in Figures 4a to 4c. Here, we578

observe how the test set macro F1 score changes579

with privacy parameter ε (a lower ε offers stronger580

privacy). Generally speaking, for local differen-581

tial privacy, ε < 10 is taken to be a strong privacy582

regime, 10 ≤ ε < 20 is moderate privacy, and583

ε ≥ 25 is weak privacy. The truncation baseline584

mechanism does increase accuracy with increasing585

ε, but never performs much better than the random586

guesser. This is to be expected with high dimension587

embeddings, since the standard deviation of noise588

added increases linearly with dimension.589

The word-level MDP mechanism performs sig-590

nificantly better than truncation, achieving rela-591

tively good performance for ε ≥ 30. There are592

two significant caveats, however. First, is the pri-593

vacy definition: as discussed in the Introduction,594

for the same ε, word-level MDP is strictly weaker595

than SentDP. The second caveat is the level of ε596

at which privacy is achieved. Despite a weaker597

privacy definition, the MDP mechanism does not598

achieve competitive performance until the weak-599

privacy regime of ε. We suspect this is due to two600

reasons. First, is the fact that the MDP mechanism601

does not take advantage of contextual information602

in each sentence as our technique does; randomiz-603

ing each word independently does not use higher604

level linguistic information. Second, is the fact605

that the MDP mechanism does not use domain-606

specific knowledge as our mechanism does with607

use of relevant candidates and domain specific sen-608

tence encodings.609

In comparison, DeepCandidate offers strong util- 610

ity across tasks and datasets for relatively low val- 611

ues of ε, even into the strong privacy regime. Be- 612

yond ε = 25, the performance of DeepCandidate 613

tends to max out, approximately 10-15% below 614

the non-private approach. This is due to the fact 615

that DeepCandidate offers a noisy version of an 616

approximation of the document embedding g(x) 617

– it cannot perform any better than deterministi- 618

cally selecting the deepest candidate, and even this 619

candidate may be a poor representative of x. We 620

consider this room for improvement, since there 621

are potentially many other ways to tune G′ and se- 622

lect the candidate pool F such that deep candidates 623

are nearly always good representatives of a given 624

document x. 625

How does performance change with the number 626

of sentences k? 627

This is addressed in Figures 4d to 4f. We limit 628

the test set to those documents with k in the listed 629

range on the x-axis. We set ε = 10, the limit of 630

the strong privacy regime. Neither baseline offers 631

performance above that of the random guesser at 632

this value of ε. DeepCandidate produces precisely 633

the performance we expect to see: documents with 634

more sentences result in sampling higher quality 635

candidates, confirming the insights of Section 4.2. 636

Across datasets and tasks, documents with more 637

than 10-15 sentences tend to have high quality em- 638

beddings. 639

6 Conclusions and Future Work 640

We introduce a strong and interpretable local pri- 641

vacy guarantee for documents, SentDP, along with 642

DeepCandidate, a technique that combines princi- 643

ples from NLP and robust statistics to generate 644

general ε-SentDP embeddings. Our experiments 645

confirm that such methods can outperform exist- 646

ing approaches even with with more relaxed pri- 647

vacy guarantees. Previous methods have argued 648

that it is “virtually impossible” to satisfy pure lo- 649

cal DP (Feyisetan et al., 2019; Feyisetan and Ka- 650

siviswanathan, 2021) at the word level while cap- 651

turing linguistic semantics. Our work appears to 652

refute this notion at least for documents. 653

To follow up, we plan to explore other ap- 654

proaches (apart from k-means) of capturing the 655

structure of the embedding distribution g(µ) to en- 656

courage better candidate selection. We also plan to 657

experiment with decoding private embeddings back 658

to documents by using novel candidates produced 659

by a generative model trained on F . 660
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A Appendix878

A.1 Privacy Mechanism879

We now describe in detail our instance of the expo-880

nential mechanismMTD. Recall from Definition881

2.2 that the exponential mechanism samples candi-882

date fi ∈ F with probability883

Pr[M(x) = fi] ∝ exp
(εu(x, fi)

2∆u

)
.884

Thus,MTD is fully defined by its utility function,885

which, as listed in Equation (3), is approximate886

Tukey Depth,887

u(x, fi) = T̂DSx(fi) .888

Our approximation of Tukey Depth T̂DSx(fi) is889

described in Algorithm 1 which is an adaptation890

of the general median hypothesis algorithm pro-891

posed by Gilad-Bachrach and Burges (2012). As892

an abuse of notation, we write si to be the sentence893

embedding written as G(si) in the main paper.894

Note that we can precompute the projections on895

line 10. The runtime is O(mkp): for each of m896

candidates and on each of p projections, we need897

to compute the scalar difference with k sentence898

embeddings. Sampling from the multinomial dis-899

tribution defined by PF then takes O(m) time.900

Additionally note from lines 13 and 15 that util-901

ity has a maximum of 0 and a minimum of −k
2 ,902

which is a semantic change from the main paper903

where maximum utility is k
2 and minimum is 0.904

A.2 Proof of Privacy905

Theorem 4.1 MTD satisfies ε-Sentence Privacy906

Proof. It is sufficient to show that the sensitivity,907

∆u = max
x,x′,fi

|u(x, fi)− u(x′, fi)| ≤ 1 .908

Let us expand the above expression using the terms909

in Algorithm 1.910

∆u = max
x,x′,fi

|max
j∈[p]

uj(x, fi)− max
j′∈[p]

uj′(x
′, fi)|911

= max
x,x′,fi

|max
j∈[p]

∣∣hj(x, fi)− k

2

∣∣912

− max
j′∈[p]

∣∣hj′(x′, fi)− k

2

∣∣|913

≤ max
fi
|max
j∈[p]

∣∣hj(x, fi)− k

2

∣∣914

−
(

max
j′∈[p]

∣∣hj′(x, fi)− k

2

∣∣+ 1
)
|915

≤ 1916

Algorithm 1:MTD compute probabilities
Input :m candidates F ,

sentence embs. Sx = (s1, . . . , sk),
number of projections p

Output :probability of sampling each
candidate PF = [Pf1 , . . . , Pfm ]

1 v1, . . . , vp ← random vecs. on unit sphere
2 // Project all embeddings

3 for i ∈ [k] do
4 for j ∈ [p] do
5 sji ← sᵀi vj
6 end for
7 end for
8 for i ∈ [m] do
9 for j ∈ [p] do

10 f ji ← fᵀi vj
11 /* Compute depth of fi on

projection vj */

12 hj(x, fi)← #{sjl : sjl ≥ f
j
i , l ∈

[k]}
13 uj(x, fi)←

∣∣hj(x, fi)− k
2

∣∣
14 end for
15 u(x, fi)← −maxj∈[p] uj(x, fi)

P̂fi ← exp(εu(x, fi)/2)

16 end for
17 Ψ←

∑m
i=1 P̂fi

18 for i ∈ [m] do
19 Pfi ← 1

Ψ P̂fi
20 end for
21 return PF
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The last step follows from the fact that |hj(x, fi)−917

hj(x
′, fi)| ≤ 1 for all j ∈ [p]. In other words, by918

modifying a single sentence embedding, we can919

only change the number of embeddings greater920

than f ji on projection j by 1. So, the distance921

of hj(x, fi) from k
2 can only change by 1 on922

each projection. In the ‘worst case’, the distance923 ∣∣hj(x, fi)− k
2

∣∣ increases (or reduces) by 1 on every924

projection vj . Even then, the maximum distance925

from k
2 across projections (the worst case depth)926

can only change by 1, giving us a sensitivity of927

1.928

A.3 Experimental Details929

Here, we provide an extended, detailed version of930

section 5.931

For the general encoder, G : S → R768, we use932

SBERT (Reimers and Gurevych, 2019), a version933

of BERT fine-tuned for sentence encoding. Sen-934

tence embeddings are generated by mean-pooling935

output tokens. In all tasks, we freeze the weights of936

SBERT. The cluster-preserving recoder, H , as well937

as every classifier is implemented as an instance938

of a 4-layer MLP taking 768-dimension inputs and939

only differing on output dimension. We denote an940

instance of this MLP with output dimension o as941

MLPo. We run 5 trials of each experiment with ran-942

domness taken over the privacy mechanisms, and943

plot the mean along with a ± 1 standard deviation944

envelope.945

Non-private: For our non-private baseline, we946

demonstrate the usefulness of sentence-mean docu-947

ment embeddings. First, we generate the document948

embeddings g(xi) for each training, validation, and949

test set document using SBERT, G. We then train950

a classifier Cnonpriv = MLPr to predict each docu-951

ment’s topic or sentiment, where r is the number952

of classes. The number of training epochs is deter-953

mined with the validation set.954

DeepCandidate: We first collect the candidate955

set F by sampling 5k document embeddings from956

the subset of the training set containing at least 8957

sentences. We run k-means with nc = 50 clus-958

ter centers, and label each training set document959

embedding ti ∈ TG with its cluster. The sentence960

recoder, H = MLP768 is trained on the training set961

along with the linear model L with the Adam opti-962

mizer and cross-entropy loss. For a given document963

x, its sentence embeddings Sx are passed through964

H , averaged together, and then passed to L to pre-965

dict x’s cluster. L’s loss is then back-propagated966

through H . A classifier Cdc = MLPr is trained 967

in parallel using a separate instance of the Adam 968

optimizer to predict class from the recoded em- 969

beddings, where r is the number of classes (topics 970

or sentiments). The number of training epochs is 971

determined using the validation set. At test time, 972

(generating private embeddings usingMTD), the 973

optimal number of projections p is empirically cho- 974

sen for each ε using the validation set. 975

Truncation: The truncation baseline (Li and 976

Clifton, 2021) requires first constraining the em- 977

bedding instance space. We do so by computing 978

the 75% median interval on each of the 768 di- 979

mensions of training document embeddings TG. 980

Sentence embeddings are truncated at each dimen- 981

sion to lie in this box. In order to account for this 982

distribution shift, a new classifier Ctrunc = MLPr 983

is trained on truncated mean embeddings to predict 984

class. The number of epochs is determined with 985

the validation set. At test time, a document’s sen- 986

tence embeddings Sx are truncated and averaged. 987

We then add Laplace noise to each dimension with 988

scale factor 768w
kε , where w is the width of the box 989

on that dimension (sensitivity in DP terms). Note 990

that the standard deviation of noise added is in- 991

versely proportional to the number of sentences 992

in the document, due to the averaging operation 993

reducing sensitivity. 994

Word Metric-DP: Our next baseline satisfies ε- 995

word-level metric DP and is adopted from (Feyise- 996

tan et al., 2019). The corresponding mechanism 997

MDP : X → X takes as input a document x and 998

returns a private version, x′, by randomizing each 999

word individually. For comparison, we generate 1000

document embeddings by first randomizing the doc- 1001

ument x′ = MDP(x) as prescribed by (Feyisetan 1002

et al., 2019), and then computing its document em- 1003

bedding g(x′) using SBERT. At test time, we clas- 1004

sify the word-private document embedding using 1005

Cnonpriv. 1006

Random Guess: To set a bottom-line, we show 1007

the theoretical performance of a random guesser. 1008

The guesser chooses class i with probability qi 1009

equal to the fraction of i labels in the training set. 1010

The performance is then given by
∑r

i=1 q
2
i . 1011

A.4 Reproducability Details 1012

We plan to publish a repo of code used to gener- 1013

ate the exact figures in this paper (random seeds 1014

have been set) with the final version. Since we do 1015
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not train the BERT base model G, our algorithms1016

and training require relatively little computational1017

resouces. Our system includes a single Nvidia1018

GeForce RTX 2080 GPU and a single Intel i9 core.1019

All of our models complete an epoch training on1020

all datasets in less than one minute. We never do1021

more than 20 epochs of training. All of our clas-1022

sifier models train (including linear model) have1023

less than 11 million parameters. The relatively1024

low amount of parameters is due to the fact that we1025

freeze the underlying language model. The primary1026

hyperparameter tuned is the number of projections1027

p. We take the argmax value on the validation set1028

between 10 and 100 projections. We repeat this for1029

each value of ε.1030

Dataset preprocessing: For all datasets, we limit1031

ourselves to documents with at least 2 sentences.1032

IMDB: This dataset has pre-defined train/test1033

splits. We use the entire training set and form the1034

test set by randomly sampling 4,000 from the test1035

set provided. We do this for efficiency in comput-1036

ing the Metric-DP baseline, which is the slowest1037

of all algorithms performed. Since the Metric-DP1038

baseline randomizes first, we cannot precompute1039

the sentence embeddings G(si) – we need to com-1040

pute the sentence embeddings every single time we1041

randomize. Since we randomize for each sentence1042

of each document at each ε and each k over 5 trials1043

– this takes a considerable amount of time.1044

Good Reads: This dataset as provided is quite1045

large. We randomly sample 15000 documents from1046

each of 4 classes, and split them into 12K training1047

examples, 2K validation examples, and 1K test1048

examples per class.1049

20 News Groups: We preprocess this dataset to1050

remove all header information, which may more1051

directly tell information about document class, and1052

only provide the model with the sentences from the1053

main body. We use the entire dataset, and form the1054

Train/Val/Test splits by random sampling.1055
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