
Under review as a conference paper at ICLR 2024

GRAPH NEURAL NETWORKS PROVABLY BENEFIT
FROM STRUCTURAL INFORMATION: A FEATURE
LEARNING PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) have shown remarkable capabilities in learn-
ing from graph-structured data, outperforming traditional multilayer perceptrons
(MLPs) in numerous graph applications. Despite these advantages, there has been
limited theoretical exploration into why GNNs are so effective, particularly from
the perspective of feature learning. This study aims to address this gap by exam-
ining the role of graph convolution in feature learning theory under a specific data
generative model. We undertake a comparative analysis of the optimization and
generalization between two-layer graph convolutional networks (GCNs) and their
convolutional neural network (CNN) counterparts. Our findings reveal that graph
convolution significantly enhances the regime of low test error over CNNs. This
highlights a substantial discrepancy between GNNs and MLPs in terms of gener-
alization capacity, a conclusion further supported by our empirical simulations on
both synthetic and real-world datasets.

1 INTRODUCTION

Graph neural networks (GNNs) have recently demonstrated remarkable capability in learning graph
representations, yielding superior results across various downstream tasks, such as node classifi-
cations (Kipf & Welling, 2016a; Veličković et al., 2017; Hamilton et al., 2017), graph classifica-
tions (Xu et al., 2018; Gilmer et al., 2017; Lee et al., 2019; Yuan & Ji, 2020) and link predic-
tions (Kipf & Welling, 2016b; Zhang & Chen, 2018; Kumar et al., 2020), etc. However, the the-
oretical understanding of why GNNs can achieve such success is still in its infancy. Compared
to multilayer perceptron (MLPs), GNNs enhance representation learning with an added message
passing operation (Zhou et al., 2020). Take graph convoluational network (GCN) (Kipf & Welling,
2016a) as an example, it aggregates a node’s attributes with those of its neighbors through a graph
convolution operation. This operation, which leverages the structural information (adjacency ma-
trix) of graph data, forms the core distinction between GNNs and MLPs. Empirical evidence from
three node classification tasks, as shown in Figure 1, suggests GCNs outperform MLPs. Motivated
by the superior performance of GNNs, we pose a critical question about graph convolution:

What role does graph convolution play during gradient descent training, and what mechanism
enables a GCN to exhibit better generalization after training?

Several recent studies have embarked on a theoretical exploration of graph convolution’s role in
GNNs. For instance, Baranwal et al. (2021) considered a setting of linear classification of data gen-
erated from a contextual stochastic block model (Deshpande et al., 2018). Their findings indicate
that graph convolution extends the regime where data is linearly separable by a factor of approxi-
mately 1/

√
D compared to MLPs, with D denoting a node’s expected degree. Baranwal et al. (2023)

further investigated the impact of graph convolutions in multi-layer networks, showcasing improved
non-linear separability. While insightful, these studies assume the Bayes optimal classifier of GNNs,
thereby missing a comprehensive characterization of the GNNs’ optimization process. This leaves
a notable gap in understanding of the optimization and generalization capabilities of GNNs, a gap
that existing theoretical explorations have yet to adequately address.

1

Under review as a conference paper at ICLR 2024

Figure 1: Performance comparison be-
tween GCN and MLP on node classifi-
cation tasks.

To respond to the growing demand for a comprehensive
theoretical understanding of graph convolution, we delve
into the feature learning analysis (Cao et al., 2022; Allen-
Zhu & Li, 2022) for graph neural networks. In our study,
we introduce a data generation model—termed SNM-
SBM—that combines a signal-noise model (Cao et al.,
2022; Allen-Zhu & Li, 2020) for feature creation and a
stochastic block model (Abbe et al., 2015) for graph con-
struction. Our analysis is centered on the convergence and
generalization attributes of two-layer graph convolution
networks (GCNs) when trained via gradient descent, com-
pared with the established outcomes for two-layer convo-
lutional neural networks (CNNs) as presented by Cao et al. (2022). While both GCNs and CNNs
demonstrate to achieve near-zero training error, our study effectively sheds light on the discrepan-
cies in their generalization abilities. We emphasize the crucial contribution of graph convolution to
the enhanced performance of GNNs. Our study’s key contributions are as follows:

• We establish global convergence guarantees for graph neural networks training on data drawn
from SNM-SBM model by characterizing the signal learning and noise memorization in feature
learning. We demonstrate that, despite the nonconvex optimization landscape, GCNs can achieve
zero training error after a polynomial number of iterations.

• We further establish population loss bounds of overfitted GNN models trained by gradient descent.
We show that under certain conditions on the signal-to-noise ratio, GNNs trained by gradient
descent can achieve near zero test error.

• We show a contrast in the generalization of GCNs and CNNs. We identify a regime where GCNs
can attain nearly zero test error, whereas the test error of CNNs is greater than a constant. This
conclusion is further supported by empirical verification on synthetic and real-world datasets.

2 RELATED WORK

Role of Graph Convolution in GNNs. Enormous empirical studies of various GNNs models with
graph convolution (Chen et al., 2017; Ma et al., 2021; Zhang et al., 2019; He et al., 2020; Wu et al.,
2019; Wang et al., 2023) have been demonstrating that graph convolutions can enhance the per-
formance of traditional classification methods, such as a multi-layer perceptron (MLP). Towards
theoretically understanding the role of graph convolution, Xu et al. (2020) identify conditions under
which MLPs and GNNs extrapolate, thereby highlighting the superiority of GNNs for extrapolation
problems. Their theoretical analysis leveraged the concept of the over-parameterized networks and
the neural tangent kernel (Jacot et al., 2018). Huang et al. (2021) use a similar approach to exam-
ine the role of graph convolution in deep GNNs within a node classification setting. They discover
that excessive graph convolution layers can hamper the optimization and generalization of GNNs,
corroborating the well-known over-smoothing issue in deep GNNs (Li et al., 2018). Another work
by Hou et al. (2022) propose two smoothness metrics to measure the quantity and quality of infor-
mation derived from graph data, along with a novel attention-based framework. Some rent works
(Baranwal et al., 2021; 2023; Ma et al., 2021) have demonstrated that graph convolution broadens the
regime in which a multi-layer network can classify nodes, compared to methods that do not utilize
the graph structure, especially when the graph is dense and exhibits homophily. Yang et al. (2022)
attribute the major performance gains of GNNs to their inherent generalization capability through
graph neural tangent kernel (GNTK) and extrapolation analysis . As for neural network theory, these
works either gleaned insights from GNTK (Du et al., 2019; Huang et al., 2021; Sabanayagam et al.,
2022) or studied the role of graph convolution within a linear neural network setting. Unlike them,
our work is beyond NTK and investigates a more realistic setting concerning the convergence and
generalization of neural networks in terms of feature learning.

Feature Learning in Neural Networks. This work builds upon a growing body of research on
how neural networks learn features. Allen-Zhu & Li (2020) formulated a theory illustrating that
when data possess a “multi-view” feature, ensembles of independently trained neural networks can
demonstrably improve test accuracy. Further, Allen-Zhu & Li (2022) demonstrated that adversarial

2

Under review as a conference paper at ICLR 2024

training can purge certain small dense mixtures from the hidden weights during the training pro-
cess of a neural network, thus refining the hidden weights. Ba et al. (2022) established that the
initial gradient update contains a rank-1 ‘spike’, which leads to an alignment between the first-layer
weights and the linear component feature of the teacher model. Cao et al. (2022) investigated the
benign overfitting phenomenon in training a two-layer convolutional neural network (CNN), illus-
trating that under certain conditions related to the signal-to-noise ratio, a two-layer CNN trained by
gradient descent can achieve exceedingly low test loss through feature learning. Alongside related
works (Yang & Hu, 2020; Zou et al., 2021; Wen & Li, 2021; Damian et al., 2022; Zou et al., 2023;
Chen et al., 2023; Meng et al., 2023; Jelassi et al., 2022; Kou et al., 2023), all these studies have
highlighted the existence of feature learning in neural networks during gradient descent training,
forming a critical line of inquiry that this work continues to explore.

3 PROBLEM SETUP AND PRELIMINARY

3.1 NOTATIONS

We use lower bold-faced letters for vectors, upper bold-faced letters for matrices, and non-bold-
faced letters for scalars. For a vector v, its ℓ2-norm is denoted as ∥v∥2. For a matrix A, we use
∥A∥2 to denote its spectral norm and ∥A∥F for its Frobenius norm. We employ standard asymptotic
notations such as O(·), o(·), Ω(·), and Θ(·) to describe the limiting behavior. We use Õ(·), Ω̃(·), and
Θ̃(·) to hide logarithmic factors in these notations respectively. Moreover, we denote an = poly(bn)
if an = O((bn)

p) for some positive constant p and an = polylog(bn) if an = poly(log(bn)). Lastly,
sequences of integers are denoted as [m] = {1, 2, . . . ,m}.

3.2 DATA MODEL

In our approach, we utilize a signal-noise model for feature generation, combined with a stochastic
block model for graph structure generation. Specifically, we define the feature matrix as X ∈
Rn×2d, with n representing the number of samples and 2d being the feature dimensionality. Each
feature associated with a data point is generated from a signal-noise model (SNM), conditional on
the Rademacher random variable y ∈ {−1, 1}, and a latent vector µ ∈ Rd:

x = [x(1),x(2)] = [yµ, ξ], (1)

where x(1),x(2) ∈ Rd, and ξ ∼ N (0, σ2
p · (I − ∥µ∥−2

2 · µµ⊤)) is a Gaussian with σ2
p as the

variance. The term I−∥µ∥−2
2 ·µµ⊤ is employed to guarantee that the noise vector is orthogonal to

the signal vector µ. The signal-noise model we have adopted is inspired by the structure of an image
composed of multiple patches, where we consider a two-patch model for simplicity. The first patch
x(1), represented by the signal vector, corresponds to the target in an image. The second patch x(2),
represented by the noise vector, corresponds to the background. It’s worth mentioning that a series
of recent works (Allen-Zhu & Li, 2020; Cao et al., 2022; Zou et al., 2021; Shen et al., 2022) have
explored similar signal-noise models to illustrate the feature learning process of neural networks.

Moreover, we implement a stochastic block model with inter-class edge probability p and intra-
class edge probability s. Specifically, the entry of adjacency matrix A = (aij)n×n is Bernoulli
distributed, with aij ∼ Ber(p) when yi = yj , and aij ∼ Ber(s) when yi = −yj . The
combination of a stochastic block model with the signal-noise model (1) is represented as
SNM− SBM(n, p, s,µ, σp, d). Note that when p = s = 0, SNM− SBM reduces to a SNM,
and its samples are used in MLP. In the SBM framework, the inter-class probability p and intra-class
probability s are explicitly modeled, allowing us to analyze different graph structures based on the
relationship between p and s. When p is significantly greater than s, the graph structure exhibits
homophily. This means that the labels of neighboring nodes are likely to be similar to the label
of the central node. Conversely, a heterophily graph structure is observed when s is significantly
greater than p. In this situation, nodes are more likely to connect with nodes of different labels.

3.3 NEURAL NETWORK MODEL

In this section, we present two distinct types of neural network models: a two-layer convolutional
neural network (CNN), and a Graph Convolutional Neural Network (GCN) (Kipf & Welling, 2016a).

3

Under review as a conference paper at ICLR 2024

CNN. We introduce a two-layer CNN model, denoted as f , which utilizes a non-linear activation
function, σ(·). Specifically, we employ a polynomial ReLU activation function defined as σ(z) =
max{0, z}q , where q > 2 is a hyperparameter. Mathematically, given the input data x, the CNN’s
output is represented as f(W,x) = F+1(W+1,x) − F−1(W−1,x), where F+1(W+1,x) and
F−1(W+1,x) are defined as follows:

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(w⊤

j,rx
(1)) + σ(w⊤

j,rx
(2))
]
, (2)

where m is the width of hidden layer, the second layer parameters are fixed as either +1 or −1,
and wj,r ∈ Rd refers to the weight of the first layer’s r-th. The symbol W collectively represents
the model’s weights. Moreover, each weight in the first layer is initialized from a random draw of
a Gaussian random variable, wj,r ∼ N (0, σ2

0 · Id×d) for all r ∈ [m] and j ∈ {−1, 1}, with σ0

regulating the initialization magnitude for the first layer’s weight.

Upon receiving training data S ≜ {xi, yi}ni=1 drawn from SNM− SBM(n, p = 0, s = 0,µ, σp, d),
we aim to learn the parameter W by minimizing the empirical cross-entropy loss function:

LCNN
S (W) =

1

n

n∑
i=1

ℓ(yi · f(W,xi)), (3)

where ℓ(y ·f(W,x)) = log(1+exp(−f(W,x) ·y)). The update rule for the gradient descent used
in the CNN is then given as:

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,r

LCNN
S (W(t))

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, ξi⟩) · jyiξi −
η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yiµ⟩) · jµ, (4)

where we define the loss derivative as ℓ′i ≜ ℓ′(yi ·fi) = − exp(−yi·fi)
1+exp(−yi·fi) . It’s important to clarify that

the model we use for the MLP part is a CNN. We categorize it as an MLP for comparison purposes.

GCN. Graph neural network (GNNs) fuse graph structure information and node features to learn
representation of nodes. Consider a two-layer GCN f with graph convolution operation on the
first layer. The output of the GCN is given by f(W, x̃) = F+1(W+1, x̃) − F−1(W−1, x̃), where
F+1(W+1, x̃) and F−1(W+1, x̃) are defined as follows:

Fj(Wj , x̃) =
1

m

m∑
r=1

[
σ(w⊤

j,rx̃
(1)) + σ(w⊤

j,rx̃
(2))
]
. (5)

Here, X̃ ≜ [x̃1, x̃2, · · · , x̃n]
⊤ = D̃−1ÃX ∈ Rn×2d with Ã = A + In representing the adjacency

matrix with self-loop, and D̃ is a diagonal matrix that records the degree of each node, namely,
D̃ii =

∑
j Ãij . For simplicity we denote Di ≜ D̃ii. Therefore, in contrast to the CNN model (2),

the GCNs (5) incorporate the normalized adjacency matrix D̃−1Ã, also termed as graph convolu-
tion, which serves as a pivotal component.

Note that the use of a polynomial ReLU activation function and fixing the second layer aligns with
related studies (Allen-Zhu & Li, 2020; 2022; Cao et al., 2022; Zou et al., 2021; Kou et al., 2023)
that investigate neural network feature learning.

With the training data S ≜ {xi, yi}ni=1 and A ∈ Rn×n drawn from SNM− SBM(n, p, s,µ, σp, d),
we consider to learn the parameter W by optimizing the empirical cross-entropy loss function:

LGCN
S (W) =

1

n

n∑
i=1

ℓ(yi · f(W, x̃i)). (6)

The gradient descent update for the first layer weight W in GCN can be expressed as:

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,rL

GCN
S (W(t))

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨wb

(t)
j,r, ỹiµ⟩) · jỹiµ− η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ξ̃i⟩) · jyiξ̃i, (7)

4

Under review as a conference paper at ICLR 2024

where we define “aggregated label” ỹi = D−1
i

∑
k∈N (i) yk and “aggregated noise vector” ξ̃i =

D−1
i

∑
k∈N (i) ξk, with N (i) being a set that contains all the neighbor of node i.

In this study, our primary objective is to demonstrate the enhanced feature learning capabilities of
GNNs in comparison to CNNs. This is achieved by examining the generalization ability of the GNN
model through the lens of test error (population loss), which is defined based on unseen test data.
Given n training data points and the corresponding graph structure, we train a GNN model. We
then generate a new test data point following the SNM− SBM distribution. Its connection in the
graph to the training data points are still following the stochastic block model, forming an adjacency
matrix A′ ∈ R(n+1)×(n+1). We specifically study the population loss by taking the expectation over
the randomness of the new test data, which is formulated as follows:

LGCN
D (W) = E(x,y,A′)∼SNM−SBMℓ(y · f(W,x)). (8)

4 THEORETICAL RESULTS

In this section, we introduce our key theoretical findings that explain the optimization and general-
ization processes of feature learning in GCNs. Through the application of the gradient descent rule
outlined in Equation (7), we observe that the gradient descent iterate w(t)

j,r is a linear combination of

its random initialization w
(0)
j,r , the signal vector µ and the noise vectors in the training data ξi

1 for
i ∈ [n] (Cao et al., 2022). Consequently, for r ∈ [m], the decomposition of weight can be expressed:

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi +

n∑
i=1

ρ(t)
j,r,i

· ∥ξi∥−2
2 · ξi. (9)

where γ
(t)
j,r and ρ

(t)
j,r,i = {ρ(t)j,r,i, ρ

(t)
j,r,i

} serve as coefficients. To facilitate a fine-grained anal-

ysis for the evolution of coefficients, we introduce the notations ρ
(t)
j,r,i ≜ ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≥ 0),

ρ(t)
j,r,i

≜ ρ
(t)
j,r,i1(ρ

(t)
j,r,i ≤ 0). We refer to Equation (9) as the signal-noise decomposition of w(t)

j,r.

The normalization factors ∥µ∥−2
2 and ∥ξi∥−2

2 are introduced to ensure that γ(t)
j,r ≈ ⟨w(t)

j,r,µ⟩, and

ρ
(t)
j,r,i ≈ ⟨w(t)

j,r, ξi⟩. We employ γ
(t)
j,r to characterize the process of signal learning and ρ

(t)
j,r,i to char-

acterize the noise memorization. If certain γ
(t)
j,r values are sufficiently large while all |ρ(t)j,r,i| are

relatively small, this indicates that the neural network is primarily learning the label through signle
learning. Conversely, if some |ρ(t)j,r,i| values are relatively large while all γ(t)

j,r are small, the neural
network will focus on noise memorization. Our analysis is based on the following assumptions:
Assumption 4.1. Suppose that

1. The dimension d is sufficiently large: d = Ω̃(m2∨[4/(q−2)]n4∨[(2q−2)/(q−2)]).

2. The size of training sample n and width of GCNs m adhere to n,m = Ω(polylog(d)).

3. The learning rate η satisfies η ≤ Õ(min{∥µ∥−2
2 , σ−2

p d−1}).

4. The edge probability p, s = Ω(
√
log(n)/n) and Ξ ≜ p−s

p+s is a positive constant.

5. The standard deviation of Gaussian initialization σ0 is chosen such that σ0 ≤
Õ(m−2/(q−2)n−[1/(q−2)]∨1 ·min{(σp

√
d/(n(p+ s)))−1,Ξ−1∥µ∥−1

2 } .
Remark 4.2. (1) The requirement for a high dimension in our assumptions is specifically aimed
at ensuring that the learning occurs in a sufficiently over-parameterized setting when the second
layer remains fixed. (2) This condition ensures certain statistical properties of the training data and
weight initialization hold with a probability of at least 1− d−1. (3) The condition on η is to ensure
that gradient descent can effectively minimize the training loss. (4) The assumption regarding edge
probability guarantees a sufficient level of concentration in the degree and an adequate display

1By referring to Equation (7), we assert that the gradient descent update moves in the direction of ξ̃i for
each i ∈ [n]. Then we can apply the definition of ξ̃i = D−1

i

∑
k∈N (i) ξk.

5

Under review as a conference paper at ICLR 2024

of homophily of graph data. (5) Lastly, the conditions imposed on initialization strength σ0 are
intended to guarantee that the training loss can effectively converge to a sufficiently small value and
to discern the differential learning speed between signal and noise.

Finally, we introduce a critical quantity called signal-to-noise ratio (SNR), which can measure the
relative learning speed between signal and noise, as is calculated through SNR = ∥µ∥2/(σp

√
d).

To prepare for our main result, we provide an effective SNR for GNNs, defiend as SNRG =
∥µ∥2/(σp

√
d) · (n(p + s))(q−2)/(2q). Given the above assumptions and definitions of SNR, we

present our main result for GNN as follows:

Theorem 4.3. Let T = Θ̃(η−1mσ
−(q−2)
0 Ξ−q∥µ∥−q

2 + η−1ϵ−1m3∥µ∥−2
2). Under Assumption 4.1,

if n · SNRq
G = Ω̃(1), then with probability at least 1− d−1, there exists a 0 ≤ t ≤ T such that:

• The GCN learns the signal: maxr γ
(t)
j,r = Ω̃(1) for j ∈ {±1}.

• The GCN does not memorize the noises in the training data: maxj,r,i |ρ(T)
j,r,i| =

Õ(σ0σp

√
d/n(p+ s)).

• The training loss converges to ϵ, i.e., LGCN
S (W(t)) ≤ ϵ.

• The trained GCN achieves a small test loss: LGCN
D (W(t)) ≤ c1ϵ+ exp(−c2n

2).

where c1 and c2 are positive constants.

Figure 2: Illustration of performance
comparison between GNN and CNN.
The orange band highlights where
GNN can outperform CNN.

Theorem 4.3 reveals that, provided n · SNRq
G = Ω̃(1), the

GCN can learn the signal by achieving maxr γ
(t)
j,r = Ω(1),

and on the other hand, the noise memorization during gra-
dient descent training is suppressed by maxj,r,i |ρ(T)

j,r,i| =
Õ(σ0σp

√
d/n(p+ s)), given that σ0σp

√
d/n(p+ s) ≪

1 according to assumption 4.1. Because the signal learned
by the network is large enough and much stronger than
the noise memory, it can generalize well to test sam-
ple. Consequently, the learned neural network can achieve
both small training and test losses. It’s worth noting that
when the graph’s degree is reduced to 1, the effective
SNR for GNNs converges to the vanilla SNR, namely
SNRG = SNR. This reduces to the CNN, whose feature
learning is established by Cao et al. (2022).

Our result show that whether a neural network learns the
signal or noise depends on the SNR, and the number of
samples n. According to Cao et al. (2022), CNNs can focus on the signal learning and generalize
well on the unseen data when n · SNRq = Ω̃(1). On the other hand, when n · SNRq = Õ(1), CNNs
mainly memorize the noise from data, thus achieve a large test error. To highlight the differences in
generalization between GNNs and CNNs, we show that, if n ·SNRq

G = Ω̃(1) and n ·SNRq = Õ(1),
then the trained GNNs achieve small test error, given by LGCN

D (W(t)) = o(1). In contrast, the
trained CNNs achieve large test error, LCNN

D (W(t)) ≥ C. The first condition n ·SNRq
G = Ω̃(1) is

by Theorem 4.3, while second the condition n · SNRq
G = Ω̃(1) is based on the findings of Cao et al.

(2022) for CNN. As a conclusion, we clearly provide a condition that GNNs can generalize better
than CNNs. This observation is further visualized in Figure 2. Through the precise characterization
of feature learning from optimization to generalization for GNN, we have successfully demonstrated
that the graph neural network can gain superiority with the help of graph convolution.

5 PROOF SKETCHES

In this section, we present proof sketches inspired by the study of feature learning in CNNs (Cao
et al., 2022). This foundation allows us to extend and adapt these concepts to a novel context for

6

Under review as a conference paper at ICLR 2024

GNNs. We discuss the primary challenges encountered during the study of GNN, and illustrate the
key techniques we employed in our proofs to overcome these challenges. These main techniques are
elaborated in the following sections, and detailed proofs can be found in the appendix.

5.1 ITERATIVE OF COEFFICIENTS UNDER GRAPH CONVOLUTION

To analyze the feature learning process of graph neural networks during gradient descent training, we
introduce an iterative methodology, based on the signal-noise decomposition in decomposition (9)
and gradient descent update (7). The following lemma offers us a means to monitor the iteration of
the signal learning and noise memorization under graph convolution:

Lemma 5.1. The coefficients γ
(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

in decomposition (9) adhere to the following equa-
tions:

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0, (10)

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµi⟩)yiỹi∥µ∥22, (11)

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = j), (12)

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = −j). (13)

Lemma 5.1 simplifies the analysis of the feature learning in GCNs by reducing it to the examination
of the discrete dynamical system expressed by Equations (11 - 13). Our proof strategy emphasizes
an in-depth evaluation of the coefficient values γ(t)

j,r , ρ
(t)
j,r,i, ρ

(t)
j,r,i

throughout the training. Note that
graph convolution aggregates information from neighboring nodes to the central node, which often
leads to the loss of statistical stability for the aggregated noise vectors and labels. To overcome this
challenge, we utilize a dense graph input, achieved by setting the edge probability as stated in 4.1.

5.2 A TWO-PHASE DYNAMICS ANALYSIS

We then provide a two-stage dynamics analysis based on the behavior of loss derivative to track the
trajectory of coefficients for signal learning and noise memorization:

Stage 1. Intuitively, the initial neural network weights are small enough so that the neural network
at initialization has constant level cross-entropy loss derivatives on all the training data: ℓ

′(0)
i =

ℓ′[yi ·f(W(0), x̃i)] = Θ(1) for all i ∈ [n]. This is guaranteed under Condition 4.1 on σ0. Motivated
by this, the dynamics of the coefficients in Equations (11 - 13) can be greatly simplified by replacing
the ℓ

′(t)
i factors by their constant upper and lower bounds. The following lemma summarizes our

main conclusion at stage 1 for signal learning:
Lemma 5.2. Under the same conditions as Theorem 4.3, there exists T1 =

Õ(η−1mσ2−q
0 Ξ−q∥µ∥−q

2) such that maxr γ
(T1)
j,r = Ω(1) for j ∈ {±1}, and |ρ(t)j,r,i| =

O
(
σ0σp

√
d/
√

n(p+ s)
)

for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.

The proof can be found in Appendix C.1. Lemmas 5.2 leverages the period of training when the
derivatives of the loss function are of a constant order. It’s important to note that graph convolution
plays a significant role in diverging the learning speed between signal learning and noise memoriza-
tion in this first stage. Note that graph convolution can potentially cause unstable iterative dynamics
of coefficients during the feature learning process. To mitigate this issue, we introduce “homophily”
by setting p > s, which helps in stabilizing the coefficient iterations.

Originally, the learning speeds are roughly determined by ∥µ∥2 and ∥ξ∥2 respectively without graph
convolution (Cao et al., 2022). Instead, with graph convolution, the learning speeds are approxi-
mately determined by |ỹ|∥µ∥2 and ∥ξ̃∥2 respectively. Here, |ỹ|∥µ∥2 is close to ∥µ∥2, but ∥ξ̃∥2 is
much smaller than ∥ξ∥2 (see Figure 6 for an illustration). This means that graph convolution can
slow down noise memorization, thus enabling GNNs to focus more on signal learning.

7

Under review as a conference paper at ICLR 2024

Stage 2. Building on the results from the first stage, we then move to the second stage of the
training process. In this stage, the loss derivatives are no longer constant, and we demonstrate that
the training error can be minimized to an arbitrarily small value. Importantly, the scale differences
established during the first stage of learning continue to be maintained throughout the second stage:
Lemma 5.3. Under the same conditions as Theorem 4.3, for any t ∈ [T1, T], it holds that
maxr γ

(T1)
j,r ≥ 2,∀j ∈ {±1} and |ρ(t)j,r,i| ≤ σ0σp

√
d/(n(p+ s)) for all j ∈ {±1}, r ∈ [m]

and i ∈ [n]. Moreover, we have LGCN
S (W(t)) ≤ ϵ.

Lemma 5.3 presents two primary outcomes. Firstly, throughout this training phase, it ensures that
the coefficients of noise vectors, denoted as ρ(t)j,r,i, retain a significantly small value while coefficients

of feature vector, denoted as γ(t)
j,r can achieve large value. Furthermore, it offers a convergence for

GNN, showing the training loss will tend to receive an arbitrarily small value.

5.3 TEST ERROR ANALYSIS

Finally, it is a challenge for the generalization analysis of graph neural networks. To address this
issue, we introduce an expectation over the distribution for a single data point. We consider a new
data point (x, y) drawn from the distribution SNM-SBM. The lemma below further gives an upper
bound on the test loss of GNNs post-training:
Lemma 5.4. Let T be defined in Theorem 4.3. Under the same conditions as Theorem 4.3, for any
t ≤ T with LGCN

S (W(t)) ≤ 1, it holds that LGCN
D (W(t)) ≤ c1 · LGCN

S (W(t)) + exp(−c2n
2).

The proof is presented in the appendix. Lemma 5.4 demonstrates that GNNs achieve a small test
error (benign overfitting) and completes the last step of feature learning theory.

6 EXPERIMENTS

In this section, we validate our theoretical findings through numerical simulations using synthetic
data, specifically generated according to the SNM-SBM model. We set the signal vector, µ, to
drawn from a standard normal distribution N (0, I). The noise vector, ξ, is drawn from a Gaussian
distribution N (0, σ2

pI). We train a two-layer CNN defined as per equation (2) and a two-layer GNN
as per equation (5) with polynomial ReLU q = 3. We used the gradient descent method with a
learning rate of η = 0.03. The primary task we focused on was node classification, where the goal
was to predict the class labels of nodes in a graph.

Feature learning dynamics. Firstly, we display the training loss, test loss, training accuracy, and
test accuracy for both the CNN and GNN in Figure 3. In this case, we further set the training data
size to n = 250, input dimension to d = 500, noise strength to σp = 20, and edge probability
to p = 0.5, s = 0.08. We observe that both the GNN and CNN can achieve zero training error.
However, while the GNN obtains nearly zero test error, the CNN fails to generalize effectively to
the test set. This simulation result serves to validate our theoretical results in Theorem 4.3.

Figure 3: Training loss, testing loss, training accuracy, and testing accuracy for both CNN and
GNN over a span of 100 training epochs. Five experimental runs are conducted, with shaded areas
highlighting error bars for variability.

Verification via real-world data. We conducted an experiment using real-world data, specifically
by replacing the synthetic feature with MNIST input features. We select numbers 1 and 2 from the
ten digital numbers, and applied both CNN and GNN models as described in our paper. Detailed

8

Under review as a conference paper at ICLR 2024

results and visualizations can be found in the Figure 4. The results were consistent with our theoret-
ical conclusions, reinforcing the insights derived from our analysis. We believe that this experiment
adds a valuable dimension to our work, bridging the gap between theory and practice.

Phase diagram. We then explore a range of Signal-to-Noise Ratios (SNRs) from 0.045 to 0.98,
and a variety of sample sizes, n, ranging from 200 to 7200. Based on our results, we train the neural
network for 200 steps for each combination of SNR and sample size n. After training, we calculate
the test accuracy for each run. The results are presented as a heatmap in Figure 5. Compared to
CNNs, GCNs demonstrate a perfect accuracy score of 1 across a more extensive range in the SNR
and n plane, indicating that GNNs have a broader benign overfitting regime with high test accuracy.
This further validates our theoretical findings.

Figure 4: The verification of our theoretical result with a real-world data. The input feature is form
MNIST dataset, where we select number 1 and 2 as two classes. The graph structure is sampled
form stochastic block model, with edge probability p = 0.75, s = 0.05. We show the training loss,
testing loss, training accuracy, and testing accuracy for both CNN and GNN over a span of 100
training epochs. The results confirm the benefit of GNN over CNN on the real world dataset. Five
experimental runs are conducted, with shaded areas highlighting error bars for variability.

(a) CNN (b) GCN

Figure 5: Test accuracy heatmap for CNNs and GCNs after training.

7 CONCLUSION AND LIMITATIONS

This paper utilizes a signal-noise decomposition to study the signal learning and noise memoriza-
tion process in training a two-layer GCN. We provide specific conditions under which a GNN will
primarily concentrate on signal learning, thereby achieving low training and testing errors. Our re-
sults theoretically demonstrate that GCNs, by leveraging structural information, outperform CNNs
in terms of generalization ability across a broader benign regime. As a pioneering work that studies
feature learning of GNNs, our theoretical framework is constrained to examining the role of graph
convolution within a specific two-layer GCN and a certain data generalization model. In fact, the
feature learning of a neural network can be influenced by a myriad of other factors, such as the depth
of GNN, activation function, optimization algorithm, and data model (Kou et al., 2023; Zou et al.,
2021; 2023). Future work can extend our framework to consider the influence of a wider array of
factors on feature learning within GCNs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block
model. IEEE Transactions on information theory, 62(1):471–487, 2015.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
arXiv preprint arXiv:2205.01445, 2022.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Graph convolution for semi-
supervised classification: Improved linear separability and out-of-distribution generalization.
arXiv preprint arXiv:2102.06966, 2021.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Effects of graph convolutions in
multi-layer networks. In The Eleventh International Conference on Learning Representations,
2023.

Yuan Cao, Zixiang Chen, Mikhail Belkin, and Quanquan Gu. Benign overfitting in two-layer con-
volutional neural networks. arXiv preprint arXiv:2202.06526, 2022.

Yongqiang Chen, Wei Huang, Kaiwen Zhou, Yatao Bian, Bo Han, and James Cheng. Towards under-
standing feature learning in out-of-distribution generalization. arXiv preprint arXiv:2304.11327,
2023.

Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised community detection with line graph neural
networks. arXiv preprint arXiv:1705.08415, 2017.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Yash Deshpande, Andrea Montanari, Elchanan Mossel, and Subhabrata Sen. Contextual stochastic
block models. arXiv preprint arXiv:1807.09596, 2018.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
neural information processing systems, 32, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in neural information processing systems, pp. 1024–1034, 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard TB Ma, Hongzhi Chen, and Ming-Chang
Yang. Measuring and improving the use of graph information in graph neural networks. arXiv
preprint arXiv:2206.13170, 2022.

Wei Huang, Yayong Li, Weitao Du, Richard Yi Da Xu, Jie Yin, Ling Chen, and Miao Zhang.
Towards deepening graph neural networks: A gntk-based optimization perspective. arXiv preprint
arXiv:2103.03113, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

10

Under review as a conference paper at ICLR 2024

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting for two-layer
relu networks. arXiv preprint arXiv:2303.04145, 2023.

Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas. Link prediction tech-
niques, applications, and performance: A survey. Physica A: Statistical Mechanics and its Appli-
cations, 553:124289, 2020.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. arXiv preprint
arXiv:1904.08082, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021.

Xuran Meng, Yuan Cao, and Difan Zou. Per-example gradient regularization improves learning
signals from noisy data. arXiv preprint arXiv:2303.17940, 2023.

Mahalakshmi Sabanayagam, Pascal Esser, and Debarghya Ghoshdastidar. Representation power of
graph convolutions: Neural tangent kernel analysis. arXiv preprint arXiv:2210.09809, 2022.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Ruoqi Shen, Sebastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipulation.
In International Conference on Machine Learning, pp. 19773–19808. PMLR, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Kun Wang, Guohao Li, Shilong Wang, Guibin Zhang, Kai Wang, Yang You, Xiaojiang Peng, Yuxuan
Liang, and Yang Wang. The snowflake hypothesis: Training deep gnn with one node one receptive
field. arXiv preprint arXiv:2308.10051, 2023.

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122.
PMLR, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Keyulu Xu, Mozhi Zhang, Jingling Li, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
How neural networks extrapolate: From feedforward to graph neural networks. arXiv preprint
arXiv:2009.11848, 2020.

Chenxiao Yang, Qitian Wu, Jiahua Wang, and Junchi Yan. Graph neural networks are inherently
good generalizers: Insights by bridging gnns and mlps. arXiv preprint arXiv:2212.09034, 2022.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

11

Under review as a conference paper at ICLR 2024

Hao Yuan and S. Ji. Structpool: Structured graph pooling via conditional random fields. In ICLR,
2020.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: a
comprehensive review. Computational Social Networks, 6(1):1–23, 2019.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. The benefits of mixup for feature learning.
arXiv preprint arXiv:2303.08433, 2023.

A PRELIMINARY LEMMAS

In this section, we present preliminary lemmas which form the foundation for the proofs to be
detailed in the subsequent sections. The proof will be developed after the lemmas presented.

A.1 PRELIMINARY LEMMAS WITHOUT GRAPH CONVOLUTION

In this section, we introduce necessary lemmas that will be used in the analysis without graph con-
volution, following the study of feature learning in CNN (Cao et al., 2022). In particular, Lemma
A.1 states that noise vectors are “almost orthogonal” to each other and Lemma A.2 indicates that
random initialization results in a controllable inner product between the weights at initialization and
the data vectors.
Lemma A.1. (Cao et al., 2022) Suppose that δ > 0 and d = Ω(log(4n/δ)). Then with probability
at least 1− δ,

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√
d log(4n2/δ),

for all i, i′ ∈ [n].
Lemma A.2. (Cao et al., 2022) Suppose that d = Ω(log(nm/δ)), m = Ω(log(1/δ)). Then with
probability at least 1− δ,

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(8m/δ) · σ0∥µ∥2,

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(8mn/δ) · σ0σp

√
d,

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. Moreover,

σ0∥µ∥2/2 ≤ max
r∈[m]

j · ⟨w(0)
j,r ,µ⟩ ≤

√
2 log(8m/δ) · σ0∥µ∥2,

σ0σp

√
d/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξi⟩ ≤ 2
√

log(8mn/δ) · σ0σp

√
d,

for all j ∈ {±1} and i ∈ [n].

A.2 PRELIMINARY LEMMAS ON GRAPH PROPERTIES

We now introduce important lemmas that are critical to our analysis. The key idea to ensure a
relatively dense graph. In a sparser graph, the concentration properties of graph degree (Lemma
A.3), the graph convoluted label (A.4), the graph convoluted noise vector (Lemma A.7 and Lemma
A.5) are no longer guaranteed. This lack of concentration affects the behavior of coefficients during
gradient descent training, leading to deviations from our current main results.

12

Under review as a conference paper at ICLR 2024

Lemma A.3 (Degree concentration). Let p, s = Ω

(√
log(n/δ)

n

)
and δ > 0, then with probability

at least 1− δ, we have

n(p+ s)/4 ≤ Di ≤ 3n(p+ s)/4.

Proof. It is known that the degrees are sums of Bernoulli random variables.

Di = 1 +

n∑
j ̸=i

aij ,

where aij = [A]ij . Hence, by the Hoeffding’s inequality, with probability at least 1− δ/n

|Di − E[Di]| <
√
log(n/δ)(n− 1).

Note that aii = 1 is a fixed value, which means that it is not a random variable, thus the denominator
in the exponential part is n− 1 instead of n. Now we calculate the expectation of degree:

E[Dii] = 1 +
n

2
s+ (

n

2
− 1)p = n(p+ s)/2 + 1− p,

then we have

|Di − n(p+ s)/2 + 1− p| ≤
√
n log(n/δ).

Because that p, s = Ω

(√
log(n/δ)

n

)
, we further have,

n(p+ s)/4 ≤ Di ≤ 3n(p+ s)/4.

Applying a union bound over i ∈ [n] conclude the proof.

Lemma A.4. Suppose that δ > 0 and n ≥ 8 p+s
(p−s)2 log(4/δ). Then with probability at least 1− δ,

1

2

p− s

p+ s
|yi| ≤ |ỹi| ≤

3

2

p− s

p+ s
|yi|.

Proof of Lemma A.4. By Hoeffding’s inequality, with probability at least 1− δ/2, we have∣∣∣∣∣ 1Di

∑
k∈N (i)

yk − p− s

p+ s
yi

∣∣∣∣∣ ≤
√

log(4/δ)

2n(p+ s)
.

Therefore, as long as n ≥ 8 p+s
(p−s)2 log(4/δ), we have:

1

2

p− s

p+ s
|yi| ≤ |ỹi| ≤

3

2

p− s

p+ s
|yi|.

This proves the result for the stability of sign of graph convoluted label.

Lemma A.5. Suppose that δ > 0 and d = Ω(n2(p + s)2 log(4n2/δ)). Then with probability at
least 1− δ,

σ2
pd/(4n(p+ s)) ≤ ∥ξ̃i∥22 ≤ 3σ2

pd/(4n(p+ s)),

for all i ∈ [n].

Proof of Lemma A.5. It is known that:

∥ξ̃i∥22 =
1

D2
i

d∑
j=1

(
Di∑
k=1

ξjk

)2

=
1

D2
i

d∑
j=1

Di∑
k=1

ξ2jk +
1

D2
i

d∑
j=1

Di∑
k ̸=k′

ξjk′ξjk.

13

Under review as a conference paper at ICLR 2024

By Bernstein’s inequality, with probability at least 1− δ/(2n) we have∣∣∣∣∣∣
d∑

j=1

Di∑
k=1

ξ2jk − σ2
pdDi

∣∣∣∣∣∣ = O(σ2
p ·
√
dDi log(4n/δ)).

Therefore, as long as d = Ω(log(4n/δ)/(n(p+ s))), we have

3σ2
pdDi/4 ≤

d∑
j=1

Di∑
k=1

ξ2jk ≤ 5σ2
pdDi/4.

By Lemma A.3, we have,

2σ2
pd/(4n(p+ s)) ≤ 1

D2
i

d∑
j=1

Di∑
k=1

ξ2jk ≤ 6σ2
pd/(4n(p+ s)).

Moreover, clearly ⟨ξk, ξk′⟩ has mean zero. For any k, k′ with k ̸= k′, by Bernstein’s inequality,
with probability at least 1− δ/(2n2) we have

|⟨ξk, ξk′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ).

Applying a union bound we have that with probability at least 1− δ,

|⟨ξk, ξk′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ).

Therefore, as long as d = Ω(n2(p+ s)2 log(4n2/δ)), we have

σ2
pd/(4n(p+ s)) ≤ ∥ξ̃i∥22 ≤ 3σ2

pd/(4n(p+ s)).

Remark A.6. We compare the noise vector both before and after applying graph convolution. By
examining Lemma A.1 and Lemma A.5, we discover that the expectation of the ℓ2 norm of noise
vector is reduced by a factor of

√
n(p+ s)/2. This factor represents the square root of the expected

degree of the graph, indicating a significant change in the noise characteristics as a result of the
graph convolution process. We provide a demonstrative visualization in Figure 6.

Figure 6: An illustrative example of noise vector before and after graph aggregation. In this example,
we consider d = 3 and all degree are 1. The black vectors stand for noise vectors ξ before graph
convolution. Each of them are orthogonal to each other. The red vectors represent noise vectors
after graph convolution ξ̃. They are graph convoluted noise vectors of two original noise vectors.
Note that the ℓ2 norm between two kinds of vector follows ∥ξ̃∥2 =

√
2
2 ∥ξ∥2. This plot demonstrates

how graph convolution shrinks the ℓ2 norm of noise vectors.

14

Under review as a conference paper at ICLR 2024

Lemma A.7. Suppose that d = Ω(n(p+ s) log(nm/δ)), m = Ω(log(1/δ)). Then with probability
at least 1− δ,

|⟨w(0)
j,r , ξ̃i⟩| ≤ 4

√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)),

σ0σp

√
d/(n(p+ s))/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξ̃i⟩ ≤ 2
√

log(8mn/δ) · σ0σp

√
d/(n(p+ s)),

for all j ∈ {±1} and i ∈ [n].

Proof of Lemma A.7. According to the fact that the weight wj,r(0) and noise vector ξ are sampled
from Gaussian distribution, we know that ⟨w(0)

j,r , ξ̃i⟩ is also Gaussian. By Lemma A.5, with proba-
bility at least 1− δ/4, we have that

σp

√
d/(n(p+ s))/

√
2 ≤ ∥ξ̃i∥2 ≤

√
3/2 · σp

√
d/(n(p+ s))

holds for all i ∈ [n]. Therefore, applying the concentration bound for Gaussian variable, we obtain
that

|⟨w(0)
j,r , ξ̃i⟩| ≤ 4

√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)).

Next we finish the argument for the lower bound of maximum through the follow expression:

P (max⟨w(0)
j,r , ξ̃i⟩ ≥ σ0σp

√
d/(n(p+ s))/4) = 1− P (max⟨w(0)

j,r , ξ̃i⟩ < σ0σp

√
d/(n(p+ s))/4)

= 1− P (max⟨w(0)
j,r , ξ̃i⟩ < σ0σp

√
d/(n(p+ s))/4)2m

≥ 1− δ/4.

Together with Lemma A.5, we finally obtain that

σ0σp

√
d/(n(p+ s))/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξ̃i⟩ ≤ 2
√

log(8mn/δ) · σ0σp

√
d/(n(p+ s)).

B GENERAL LEMMAS FOR ITERATIVE COEFFICIENT ANALYSIS

In this section, we deliver lemmas that delineate the iterative behavior of coefficients under gradient
descent. We commence with proving the coefficient update rules as stated in Lemma 5.1 in Section
B.1. Subsequently, we establish the scale of training dynamics in Section B.2.

B.1 COEFFICIENT UPDATE RULE

Lemma B.1 (Restatement of Lemma 5.1). The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

defined in Eq. (9) satisfy
the following iterative equations:

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0,

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµ⟩)yiỹi∥µ∥
2
2,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

− η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = −j),

for all r ∈ [m], j ∈ {±1} and i ∈ [n].
Remark B.2. This lemma serves as a foundational element in our analysis of dynamics. Initially,
the study of neural network dynamics under gradient descent required us to monitor the fluctuations
in weights. However, this Lemma enables us to observe these dynamics through a new lens, focusing
on two distinct aspects: signal learning and noise memorization. These are represented by the

15

Under review as a conference paper at ICLR 2024

variables γ(t)
j,r and ρ

(t)
j,r,i, respectively. Furthermore, the selection of our data model was a conscious

decision, designed to clearly separate the signal learning from the noise memorization aspects of
learning. By maintaining a clear distinction between signal and noise, we can conduct a precise
analysis of how each model learns the signal and memorizes the noise. This approach not only
simplifies our understanding but also enhances our ability to dissect the underlying mechanisms of
learning.

Proof of Lemma B.1. Basically, the iteration of coefficients is derived based on gradient descent
rule equation 7 and weight decomposition equation 9. We first consider γ̂(0)

j,r , ρ̂
(0)
j,r,i = 0 and

γ̂
(t+1)
j,r = γ̂

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµi⟩)yiỹi∥µ∥22,

ρ̂
(t+1)
j,r,i = ρ̂

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · yk,

Taking above equations into Equation equation 7, we can obtain that

w
(t)
j,r = w

(0)
j,r + j · γ̂(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ̂
(t)
j,r,i∥ξi∥

−2
2 · ξi.

This result verifies that the iterative update of the coefficients is directly driven by the gradient
descent update process. Furthermore, the uniqueness of the decomposition leads us to the precise
relationships γ

(t)
j,r = γ̂

(t)
j,r and ρ

(t)
j,r,i = ρ̂

(t)
j,r,i. Next, we examine the stability of the sign associated

with noise memorization by employing the following telescopic analysis. This method allows us
to investigate the continuity and consistency of the noise memorization process, providing insights
into how the system behaves over successive iterations.

ρ
(t)
j,r,i = −

t−1∑
s=0

∑
k∈N (i)

D−1
k

η

nm
· ℓ′(s)k · σ′(⟨w(s)

j,r , ξ̃k⟩) · ∥ξi∥
2
2 · jyk.

Recall the sign of loss derivative is given by the definition of the cross-entropy loss, namely, ℓ′(t)i <
0. Therefore,

ρ
(t)
j,r,i = −

t−1∑
s=0

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = j), (14)

ρ(t)
j,r,i

= −
t−1∑
s=0

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = −j). (15)

Writing out the iterative versions of equation 14 and equation 15 completes the proof.

Remark B.3. The proof strategy follows the study of feature learning in CNN as described in (Cao
et al., 2022). However, compared to CNNs, the decomposition of weights in GNN is notably more
intricate. This complexity is particularly evident in the dynamics of noise memorization, as repre-
sented by Equations 14) and 15). The reason for this increased complexity lies in the additional
graph convolution operations within GNNs. These operations introduce new interaction and depen-
dencies, making the analysis of weight dynamics more challenging and nuanced.

B.2 SCALE OF TRAINING DYNAMICS

Our proof hinges on a meticulous evaluation of the coefficient values γ
(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

throughout
the entire training process. In order to facilitate a more thorough analysis, we first establish the
following bounds for these coefficients, which are maintained consistently throughout the training
period.

Consider training the Graph Neural Network (GNN) for an extended period up to T ∗. We aim to
investigate the scale of noise memorization in relation to signal learning.

16

Under review as a conference paper at ICLR 2024

Let T ∗ = η−1poly(ϵ−1, ∥µ∥−1
2 , d−1σ−2

p , σ−1
0 , n,m, d) be the maximum admissible iterations. De-

note α = 4 log(T ∗). In preparation for an in-depth analysis, we enumerate the necessary conditions
that must be satisfied. These conditions, which are essential for the subsequent examination, are
also detailed in Condition 4.1:

η = O
(
min{nm/(qσ2

pd), nm/(q2q+2αq−2σ2
pd), nm/(q2q+2αq−2∥µ∥22)}

)
, (16)

σ0 ≤ [16
√

log(8mn/δ)]−1 min
{
Ξ−1∥µ∥−1

2 , (σp

√
d/(n(p+ s)))−1

}
, (17)

d ≥ 1024 log(4n2/δ)α2n2. (18)

Denote β = 2maxi,j,r{|⟨w(0)
j,r , ỹi · µ⟩|, |⟨w

(0)
j,r , ξ̃i⟩|}, it is straightforward to show the following

inequality:

4max

{
β, 8n

√
log(4n2/δ)

d
α

}
≤ 1. (19)

First, by Lemma A.4 with probability at least 1− δ, we can upper bound β by 4
√
log(8mn/δ) ·σ0 ·

max{Ξ∥µ∥2, σp

√
d/(n(p+ s))}. Combined with the condition equation 17, we can bound β by 1.

Second, it is easy to check that 8n
√

log(4n2/δ)
d α ≤ 1 by inequality equation 18.

Having established the values of α and β at hand, we are now in a position to assert that the following
proposition holds for the entire duration of the training process, specifically for 0 ≤ t ≤ T ∗.

Proposition B.4. Under Condition 4.1, for 0 ≤ t ≤ T ∗, where T ∗ =
η−1poly(ϵ−1, ∥µ∥−1

2 , d−1σ−2
p , σ−1

0 , n,m, d), we have that

0 ≤ γ
(t)
j,r , ρ

(t)
j,r,i ≤ α, (20)

0 ≥ ρ(t)
j,r,i

≥ −α, (21)

for all r ∈ [m], j ∈ {±1} and i ∈ [n], where α = 4 log(T ∗).

To establish Proposition B.4, we will employ an inductive approach. Before proceeding with the
proof, we need to introduce several technical lemmas that are fundamental to our argument.

We note that although the setting is slightly different from the case in (Cao et al., 2022). With the
same analysis, we can obtain the following result.

Lemma B.5 ((Cao et al., 2022)). For any t ≥ 0, it holds that ⟨w(t)
j,r − w

(0)
j,r ,µ⟩ = j · γ(t)

j,r for all
r ∈ [m], j ∈ {±1}.

In the subsequent three lemmas, our proof strategy is guided by the approach found in (Cao et al.,
2022). However, we extend this methodology by providing a fine-grained analysis that takes into
account the additional complexity introduced by the graph convolution operation.

Lemma B.6. Under Condition 4.1, suppose equation 20 and equation 21 hold at iteration t. Then

ρ̂
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α ≤ ⟨w(t)

j,r −w
(0)
j,r , ξ̃i⟩ ≤ ρ̂

(t)
j,r,i + 8n

√
log(4n2/δ)

d
α,

where ρ̂j,r,i ≜
∑

k∈N (i) D
−1
i

∑
i′ ̸=k ρ

(t)
j,r,i′ , for all r ∈ [m], j ∈ {±1} and i ∈ [n].

Remark B.7. Lemma B.6 asserts that the inner product between the updated weight and the graph
convolution operation closely approximates the graph-convoluted noise memorization.

17

Under review as a conference paper at ICLR 2024

Proof of Lemma B.6. It is known that,

⟨w(t)
j,r −w

(0)
j,r , ξ̃i⟩ =

n∑
i′=1

ρ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξ̃i⟩+

n∑
i′=1

ρ(t)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξ̃i⟩

=

n∑
i′=1

∑
k∈N (i)

D−1
i ρ

(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξk⟩+

n∑
i′=1

∑
k∈N (i)

D−1
i ρ(t)

j,r,i′
∥ξi′∥−2

2 · ⟨ξi′ , ξk⟩

≤ 4

√
log(4n2/δ)

d

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

|ρ(t)j,r,i′ |+ 4

√
log(4n2/δ)

d

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

|ρ(t)
j,r,i′

|

+
∑

k∈N (i)

D−1
i

∑
i′ ̸=k

ρ
(t)
j,r,i′ +

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

ρ(t)
j,r,i′

≤ ρ̂
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α,

where we define ρ̂j,r,i ≜
∑

k∈N (i) D
−1
i

∑
i′ ̸=k ρ

(t)
j,r,i′ the second inequality is by Lemma A.1 and

the last inequality is by |ρ(t)j,r,i′ |, |ρ
(t)
j,r,i′ | ≤ α in equation 20.

Similarly, we can show that:

⟨w(t)
j,r −w

(0)
j,r , ξ̃i⟩ =

n∑
i′=1

ρ
(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξ̃i⟩+

n∑
i′=1

ρ(t)
j,r,i′

∥ξi′∥−2
2 · ⟨ξi′ , ξ̃i⟩

=

n∑
i′=1

∑
k∈N (i)

D−1
i ρ

(t)
j,r,i′∥ξi′∥

−2
2 · ⟨ξi′ , ξk⟩+

n∑
i′=1

∑
k∈N (i)

D−1
i ρ(t)

j,r,i′
∥ξi′∥−2

2 · ⟨ξi′ , ξk⟩

≥ −4

√
log(4n2/δ)

d

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

|ρ(t)j,r,i′ | − 4

√
log(4n2/δ)

d

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

|ρ(t)
j,r,i′

|

+
∑

k∈N (i)

D−1
i

∑
i′ ̸=k

ρ
(t)
j,r,i′ +

∑
k∈N (i)

D−1
i

∑
i′ ̸=k

ρ(t)
j,r,i′

≥ ρ̂
(t)
j,r,i − 8n

√
log(4n2/δ)

d
α,

where the first inequality is by Lemma A.1 and the second inequality is by |ρ(t)j,r,i′ |, |ρ
(t)
j,r,i′ | ≤ α in

equation 20, which completes the proof.

Lemma B.8. Under Condition 4.1, suppose equation 20 and equation 21 hold at iteration t. Then

⟨w(t)
j,r, ỹiµ⟩ ≤ ⟨w(0)

j,r , ỹiµ⟩,

⟨w(t)
j,r, ξ̃i⟩ ≤ ⟨w(0)

j,r , ξ̃i⟩+ 8n

√
log(4n2/δ)

d
α,

for all r ∈ [m] and j ̸= yi. If max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we further have that Fj(W

(t)
j , x̃i) = O(1).

Remark B.9. Lemma B.8 further establishes that the update in the direction of ξ̃ can be constrained
within specific bounds when j ̸= yi. As a result, the output function remains controlled and does
not exceed a constant order.

Proof of Lemma B.8. For j ̸= yi, we have that

⟨w(t)
j,r, ỹiµ⟩ = ⟨w(0)

j,r , ỹiµ⟩+ ỹi · j · γ(t)
j,r ≤ ⟨w(0)

j,r , ỹiµ⟩, (22)

18

Under review as a conference paper at ICLR 2024

where the inequality is by γ
(t)
j,r ≥ 0 and Lemma A.4 stating that sign(yi) = sign(ỹi) with a high

probability. In addition, we have

⟨w(t)
j,r, ξ̃i⟩ = ⟨w(0)

j,r , ξ̃i⟩+
∑

k∈N (i)

D−1
i

n∑
i′=1

ρj,r,i′⟨ξk, ξi′⟩∥ξi′∥−2
2

≤ ⟨w(0)
j,r , ξ̃i⟩+D−1

i

∑
yk ̸=j

ρ(t)
j,r,i

+
∑
yk=j

ρ
(t)
j,r,i

+ 8n

√
log(4n2/δ)

d
α

≤ ⟨w(0)
j,r , ξ̃i⟩+ 8n

√
log(4n2/δ)

d
α, (23)

where the first inequality is by Lemma B.6 and the second inequality is due to ρ̂
(t)
j,r,i ≤ 0 based on

Lemma A.4. Then we can get that

Fj(W
(t)
j , x̃i) =

1

m

m∑
r=1

[σ(⟨w(t)
j,r, ỹi · µ⟩) + σ(⟨w(t)

j,r, ξ̃i⟩)]

=
1

m

m∑
r=1

[σ(⟨w(t)
j,r, ỹi · µ⟩) + σ(⟨w(t)

j,r, D
−1
i

∑
k∈N (i)

ξk⟩)]

=
1

m

m∑
r=1

[σ(⟨w(0)
j,r , ỹi · µ⟩) + σ(⟨w(0)

j,r , ξ̃i⟩+ ⟨w(t)
j,r −w

(0)
j,r , D

−1
i

∑
k∈N (i)

ξk⟩)]

≤ 1

m

m∑
r=1

[σ(⟨w(0)
j,r , ỹi · µ⟩) + σ(⟨w(0)

j,r , ξ̃i⟩+ 8n

√
log(4n2/δ)

d
α+ ρ̂

(t)
j,r,i)]

≤ 2q+1 max
j,r,i

{
|⟨w(0)

j,r , ỹi · µ⟩|, |⟨w
(0)
j,r , ξ̃i⟩|, 8n

√
log(4n2/δ)

d
α

}q

≤ 1,

where the first inequality is by equation 22, equation 23 and the second inequality is by equation 19
and max{γ(t)

j,r , ρ
(t)
j,r,i} = O(1).

Lemma B.10. Under Condition 4.1, suppose equation 20 and equation 21 hold at iteration t. Then

⟨w(t)
j,r, ỹiµ⟩ = ⟨w(0)

j,r , ỹiµ⟩+ γ
(t)
j,r ,

⟨w(t)
j,r, ξ̃i⟩ ≤ ⟨w(0)

j,r , ξ̃i⟩+ ρ̂
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α

for all r ∈ [m], j = yi and i ∈ [n]. If max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we further have that

Fj(W
(t)
j , x̃i) = O(1).

Remark B.11. Lemma B.10 further establishes that the update in the direction of µ and ξ̃ can be
constrained within specific bounds when j = yi. As a result, the output function remains controlled
and does not exceed a constant order with an additional condition.

Proof of Lemma B.10. For j = yi, we have that

⟨w(t)
j,r, ỹiµ⟩ = ⟨w(0)

j,r , ỹiµ⟩+ γ
(t)
j,r , (24)

where the equation is by Lemma B.5. We also have that

⟨w(t)
j,r, ξ̃i⟩ ≤ ⟨w(0)

j,r , ξ̃i⟩+ ρ̂
(t)
j,r,i + 8n

√
log(4n2/δ)

d
α, (25)

19

Under review as a conference paper at ICLR 2024

where the inequality is by Lemma B.6. If max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we have following bound

Fj(W
(t)
j , x̃i) =

1

m

m∑
r=1

[σ(⟨w(t)
j,r, ỹi · µ) + σ(⟨w(t)

j,r, ξ̃i⟩)]

≤ 2 · 3q max
j,r,i

{
γ
(t)
j,r , |ρ̂

(t)
j,r,i|, |⟨w

(0)
j,r , ỹi · µ)⟩|, |⟨w

(0)
j,r , ξ̃i⟩|, 8n

√
log(4n2/δ)

d
α

}q

= O(1),

where ρ̂
(t)
j,r,i = 1

Di

∑
k∈N (i) ρ

(t)
j,r,k1(yk = j) + ρ

(t)
j,r,k1(yk ̸= j), the first inequality is by equa-

tion 24, equation 25. Then the second inequality is by equation 19 where β = 2maxi,j,r{|⟨w(0)
j,r , ỹi ·

µ⟩|, |⟨w(0)
j,r , ξ̃i⟩|} ≤ 1 and condition that max{γ(t)

j,r , ρ
(t)
j,r,i} = O(1).

Equipped with Lemmas B.5 - B.10, we are now prepared to prove Proposition B.4. These lemmas
provide the foundational building blocks and insights necessary for our proof, setting the stage for a
rigorous and comprehensive demonstration of the proposition

Proof of Proposition B.4. Following a similar approach to the proof found in (Cao et al., 2022), we
employ an induction method. This technique allows us to build our argument step by step, drawing
on established principles and extending them to our specific context, thereby providing a robust and
systematic demonstration.

At the initial time step t = 0, the outcome is clear since all coefficients are set to zero.

Next, we hypothesize that there exists a time T̃ less that T ∗ during which Proposition B.4 holds true
for every moment within the range 0 ≤ t ≤ T̃ − 1. Our objective is to show that this proposition
remains valid at t = T̃ .

We aim to validate that equation equation 21 is applicable at t = T̃ , meaning that,

ρ(t)
j,r,i

≥ −β − 16n

√
log(4n2/δ)

d
α,

for the given parameters. It’s important to note that ρ(t)
j,r,i

= 0 when j = yi. So we only need to
consider instances where j ̸= yi.

1) Under condition

ρ(T̃−1)
j,r,i

≤ −0.5β − 8n

√
log(4n2/δ)

d
α,

Lemma B.6 leads us to the following relationships:

⟨w(T̃−1)
j,r , ỹiµ⟩ ≤ ρ̂

(T̃−1)
j,r,i + ⟨w(0)

j,r , ỹiµ⟩+ 8n

√
log(4n2/δ)

d
α ≤ 0,

and thus

ρ(T̃)
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm

∑
k

D−1
k · ℓ′(T̃−1)

k · σ′(⟨w(T̃−1)
j,r , ξ̃k⟩) · 1(yk = −j)∥ξi∥22

= ρ(T̃−1)
j,r,i

≥ −β − 16n

√
log(4n2/δ)

d
α,

with the final inequality being supported by the induction hypothesis.

20

Under review as a conference paper at ICLR 2024

2) Given the condition ρ(T̃−1)
j,r,i

≥ −0.5β − 8n
√

log(4n2/δ)
d α, we can derive the following:

ρ(T̃)
j,r,i

= ρ(T̃−1)
j,r,i

+
η

nm
·
∑

k∈N (i)

D−1
k ℓ

′(T̃−1)
k · σ′(⟨w(T−1)

j,r , ξ̃k⟩) · 1(yk = −j)∥ξi∥22

≥ −0.5β − 8n

√
log(4n2/δ)

d
α−O

(
ησ2

pd

nm

)
σ′
(
0.5β + 8n

√
log(4n2/δ)

d
α

)
≥ −0.5β − 8n

√
log(4n2/δ)

d
α−O

(
ηqσ2

pd

nm

)(
0.5β + 8n

√
log(4n2/δ)

d
α

)
≥ −β − 16n

√
log(4n2/δ)

d
α,

where we apply the inequalities ℓ
′(T̃−1)
i ≤ 1 and ∥ξi∥2 = O(σ2

pd), and use the conditions η =

O
(
nm/(qσ2

pd)
)

and 0.5β + 8n
√

log(4n2/δ)
d α ≤ 1, as specified in equation 16.

Next, we aim to show that equation 20 is valid for t = T̃ . We can express:

|ℓ′(t)i | = 1

1 + exp{yi · [F+1(W
(t)
+1, x̃i)− F−1(W

(t)
−1, x̃i)]}

≤ exp{−yi · [F+1(W
(t)
+1, x̃i)− F−1(W

(t)
−1, x̃i)]}

≤ exp{−Fyi
(W(t)

yi
, x̃i) + 1}. (26)

with the last inequality being a result of Lemma B.8. Additionally, we recall the update rules for
γ
(t+1)
j,r and ρ

(t+1)
j,r,i :

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, ỹi · µ⟩)yiỹi∥µ∥
2
2,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k ℓ

′(t)
k · σ′(⟨w(t)

j,r, ξ̃k⟩) · 1(yk = j)∥ξi∥22.

We define tj,r,i as the final moment t < T ∗ when ρ
(t)
j,r,i ≤ 0.5α.

We can express ρ(T̃)
j,r,i as follows:

ρ
(T̃)
j,r,i = ρ

(tj,r,i)
j,r,i − η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(tj,r,i)k · σ′(⟨w(tj,r,i)

j,r , ξ̃k⟩) · 1(yk = j)∥ξi∥22︸ ︷︷ ︸
I1

−
∑

tj,r,i<t<T

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · 1(yk = j)∥ξi∥22︸ ︷︷ ︸
I2

. (27)

Next, we aim to establish an upper bound for I1:

|I1| ≤ 2qn−1m−1η

(
max

k
ρ̂
(tj,r,i)
j,r,k + 0.5β + 8n

√
log(4n2/δ)

d
α

)q−1

σ2
pd

≤ q2qn−1m−1ηαq−1σ2
pd ≤ 0.25α,

where we apply Lemmas B.6 and A.1 for the first inequality, utilize the conditions β ≤
0.1α and 8n

√
log(4n2/δ)

d α ≤ 0.1α for the second inequality, and finally, the constraint η ≤
nm/(q2q+2αq−2σ2

pd) for the last inequality.

21

Under review as a conference paper at ICLR 2024

Second, we bound I2. For tj,r,i < t < T̃ and yk = j, we can lower bound ⟨w(t)
j,r, ξ̃k⟩ as follows,

⟨w(t)
j,r, ξ̃k⟩ ≥ ⟨w(0)

j,r , ξ̃k⟩+ ρ̂
(t)
j,r,k − 8n

√
log(4n2/δ)

d
α

≥ −0.5β +
1

4

p− s

p+ s
α− 8n

√
log(4n2/δ)

d
α

≥ 0.25α,

where the first inequality is by Lemma B.6, the second inequality is by ρ̂
(t)
j,r,i > 1

4
p−s
p+sα and

⟨w(0)
j,r , ξ̃i⟩ ≥ −0.5β due to the definition of tj,r,i and β, the last inequality is by β ≤ 0.1α and

8n
√

log(4n2/δ)
d α ≤ 0.1α. Similarly, for tj,r,i < t < T̃ and yk = j, we can also upper bound

⟨w(t)
j,r, ξ̃k⟩ as follows,

⟨w(t)
j,r, ξ̃k⟩ ≤ ⟨w(0)

j,r , ξ̃k⟩+ ρ̂
(t)
j,r,k + 8n

√
log(4n2/δ)

d
α

≤ 0.5β +
3

4

p− s

p+ s
α+ 8n

√
log(4n2/δ)

d
α

≤ 2α,

where the first inequality is by Lemma B.6, the second inequality is by induction hypothesis ρ̂(t)j,r,i ≤

α, the last inequality is by β ≤ 0.1α and 8n
√

log(4n2/δ)
d α ≤ 0.1α.

Hence, we can derive the following expression for I2:

|I2| ≤
∑

tj,r,i<t<T̃

η

nm
·
∑

k∈N (i)

D−1
k exp(−σ(⟨w(t)

j,r, ξ̃k⟩) + 1) · σ′(⟨w(t)
j,r, ξ̃k⟩) · 1(yk = j)∥ξi∥22

≤ eq2qηT ∗

n
exp(−αq/4q)αq−1σ2

pd

≤ 0.25T ∗ exp(−αq/4q)α

≤ 0.25T ∗ exp(− log(T ∗)q)α

≤ 0.25α,

where we apply equation 26 for the first inequality, utilize Lemma A.1 for the second, employ the
constraint η = O

(
nm/(q2q+2αq−2σ2

pd)
)

in equation 16 for the third, and finally, the conditions
α = 4 log(T ∗) and log(T ∗)q ≥ log(T ∗) for the subsequent inequalities. By incorporating the
bounds of I1 and I2 into equation 27, we conclude the proof for ρ.

In a similar manner, we can establish that γ(T̃)
j,r ≤ α by using η = O

(
nm/(q2q+2αq−2∥µ∥22)

)
in

equation 16. Thus, Proposition B.4 is valid for t = T̃ , completing the induction process. As a corol-
lary to Proposition B.4, we identify a crucial characteristic of the loss function during training within
the interval 0 ≤ t ≤ T ∗. This characteristic will play a vital role in the subsequent convergence
analysis.

C TWO STAGE DYNAMICS ANALYSIS

In this section, we employ a two-stage dynamics analysis to investigate the behavior of coefficient
iterations. During the first stage, the derivative of the loss function remains almost constant due to
the small weight initialization. In the second stage, the derivative of the loss function ceases to be
constant, necessitating an analysis that meticulously takes this into account.

22

Under review as a conference paper at ICLR 2024

C.1 FIRST STAGE: FEATURE LEARNING VERSUS NOISE MEMORIZATION

Lemma C.1 (Restatement of Lemma 5.2). Under the same conditions as Theorem 4.3, in particular
if we choose

n · SNRq · (n(p+ s))q/2−1 ≥ C log(6/σ0∥µ∥2)22q+6[4 log(8mn/δ)](q−1)/2, (28)

where C = O(1) is a positive constant, there exists time T1 = C log(6/σ0∥µ∥2)2
q+1m

ησq−2
0 ∥µ∥q

2Ξ
q

such that

• maxr γ
(T1)
j,r ≥ 2 for j ∈ {±1}.

• |ρ(t)j,r,i| ≤ σ0σp

√
d/(n(p+ s))/2 for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.

Remark C.2. In this lemma, we establish that the rate of signal learning significantly outpaces that
of noise memorization within GNNs. After a specific number of iterations, the GNN is able to learn
the signal from the data at a constant or higher order, while only memorizing a smaller order of
noise.

Proof of Lemma C.1. Let us define

T+
1 =

nmη−1σ2−q
0 σ−q

p d−q/2(n(p+ s))(q−2)/2

2q+4q[4 log(8mn/δ)](q−2)/2
. (29)

We will begin by establishing the outcome related to noise memorization. Let Ψ(t) be the maximum
value over all j, r, i of |ρ(t)j,r,i|, that is, Ψ(t) = maxj,r,i{ρ(t)j,r,i,−ρ(t)

j,r,i
}. We will employ an inductive

argument to demonstrate that

Ψ(t) ≤ σ0σp

√
d/(n(p+ s)) (30)

is valid for the entire range 0 ≤ t ≤ T+
1 . By its very definition, it is evident that Ψ(0) = 0. Assuming

that there exists a value T̃ ≤ T+
1 for which equation equation 30 is satisfied for all 0 < t ≤ T̃ − 1,

we can proceed as follows.

Ψ(t+1) ≤ Ψ(t) +
η

nm

∑
k∈N (i)

D−1
k · |ℓ′(t)k |·

σ′

(
⟨w(0)

j,r , ξ̃k⟩+
n∑

i′=1

Ψ(t) · |⟨ξi
′ , ξ̃k⟩|

∥ξi′∥22
+

n∑
i′=1

Ψ(t) · |⟨ξi
′ , ξ̃k⟩|

∥ξi′∥22

)
· ∥ξi∥22

≤ Ψ(t) +
η

nm
·
∑

k∈N (i)

D−1
k σ′

(
⟨w(0)

j,r , ξ̃k⟩+ 2 ·
n∑

i′=1

Ψ(t) · |⟨ξi
′ , ξ̃k⟩|

∥ξi′∥22

)
· ∥ξi∥22

= Ψ(t) +
η

nm
·
∑

k∈N (i)

D−1
k ·

σ′

(
⟨w(0)

j,r , ξ̃k⟩+ 2Ψ(t) + 2 ·
n∑

i′ ̸=k′

Ψ(t) ·D−1
k

∑
k′∈N (k)

|⟨ξi′ , ξk′⟩|
∥ξi′∥22

)
· ∥ξi∥22

≤ Ψ(t) +
ηq

nm
·
∑

k∈N (i)

D−1
k

[
2 ·
√

log(8mn/δ) · σ0σp

√
d/(n(p+ s))

+

(
2 +

4nσ2
p ·
√
d log(4n2/δ)

σ2
pd

)
·Ψ(t)

]q−1

· 2σ2
pd

≤ Ψ(t) +
ηq

nm
·
(
2 ·
√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)) + 4Ψ(t)

)q−1 · 2σ2
pd

≤ Ψ(t) +
ηq

nm
·
(
4 ·
√
log(8mn/δ) · σ0σp

√
d/(n(p+ s))

)q−1 · 2σ2
pd,

23

Under review as a conference paper at ICLR 2024

where the second inequality is due to the constraint |ℓ′(t)i | ≤ 1, the third inequality is de-
rived from Lemmas A.1 and A.7, the fourth inequality is a consequence of the condition d ≥
16Dn2 log(4n2/δ), and the final inequality is a result of the inductive assumption equation 30.
Summing over the sequence t = 0, 1, . . . , T̃ − 1, we obtain

Ψ(T̃) ≤ T̃ · ηq

nm
·
(
4 ·
√

log(8mn/δ) · σ0σp

√
d/(n(p+ s))

)q−1 · 2σ2
pd

≤ T+
1 · ηq

nm
·
(
4 ·
√
log(8mn/δ) · σ0σp

√
d/(n(p+ s))

)q−1 · 2σ2
pd

≤
σ0σp

√
d/(n(p+ s))

2
,

where the second inequality is justified by T̃ ≤ T+
1 in our inductive argument. Hence, by induction,

we conclude that Ψ(t) ≤ σ0σp

√
d/n(p+ s)/2 for all t ≤ T+

1 .

Next, we can assume, without loss of generality, that j = 1. Let T1,1 represent the final time for t
within the interval [0, T+

1] such that maxr γ
(t)
1,r ≤ 2, given σ0 ≤

√
n(p+ s)/d/σp. For t ≤ T1,1,

we have maxj,r,i{|ρ(t)j,r,i|} = O(σ0σp

√
d/(n(p+ s))) = O(1) and maxr γ

(t)
1,r ≤ 2. By applying

Lemmas B.8 and B.10, we deduce that F−1(W
(t)
−1, x̃i), F+1(W

(t)
+1, x̃i) = O(1) for all i with yi = 1.

Consequently, there exists a positive constant C1 such that −ℓ
′(t)
i ≥ C1 for all i with yi = 1.

By equation 11, for t ≤ T1,1 we have

γ
(t+1)
1,r = γ

(t)
1,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i · σ′(ỹi · ⟨w(0)

1,r,µ⟩+ ỹi · γ(t)
1,r) · ỹi∥µ∥22

≥ γ
(t)
1,r +

C1η

nm
·
∑
yi=1

σ′(yiΞ · ⟨w(0)
1,r,µ⟩+ yiΞ · γ(t)

1,r) ·
p− s

p+ s
∥µ∥22.

Denote γ̂
(t)
1,r = γ

(t)
1,r + ⟨w(0)

1,r,µ⟩ and let A(t) = maxr γ̂
(t)
1,r. Then we have

A(t+1) ≥ A(t) +
C1η

nm
·
∑
yi=1

σ′(ΞA(t)) · Ξ∥µ∥22

≥ A(t) +
C1ηq∥µ∥22

4m

[
ΞA(t)

]q−1

Ξ

≥
(
1 +

C1ηq∥µ∥22
4m

[
A(0)

]q−2
Ξq

)
A(t)

≥
(
1 +

C1ηqσ
q−2
0 ∥µ∥q2
2qm

Ξq

)
A(t),

where the second inequality arises from the lower bound on the quantity of positive data as estab-
lished in Lemma A.4, the third inequality is a result of the increasing nature of the sequence A(t), and
the final inequality is derived from A(0) = maxr⟨w(0)

1,r,µ⟩ ≥ σ0∥µ∥2/2, as proven in Lemma A.7.
Consequently, the sequence A(t) exhibits exponential growth, and we can express it as

A(t) ≥
(
1 +

C1ηqσ
q−2
0 ∥µ∥q2
2qm

Ξq

)t

A(0)

≥ exp

(
C1ηqσ

q−2
0 ∥µ∥q2

2q+1m
Ξqt

)
A(0)

≥ exp

(
C1ηqσ

q−2
0 ∥µ∥q2

2q+1m
Ξqt

)
σ0∥µ∥2

2
,

where the second inequality is justified by the relation 1 + z ≥ exp(z/2) for z ≤ 2 and our specific
conditions on η and σ0 as listed in Condition 4.1. The last inequality is a consequence of Lemma A.7

24

Under review as a conference paper at ICLR 2024

and the definition of A(0). Thus, A(t) will attain the value of 2 within T1 iterations, defined as

T1 =
log(6/σ0∥µ∥2)2q+1m

C1ηqσ
q−2
0 ∥µ∥q2Ξq

.

Since maxr γ
(t)
1,r ≥ A(t) − 1, maxr γ

(t)
1,r will reach 2 within T1 iterations. Next, we can confirm that

T1 ≤
nmη−1σ2−q

0 σ−q
p d−q/2(n(p+ s))(q−2)/2

2q+5q[4 log(8mn/δ)](q−1)/2
= T+

1 /2,

where the inequality is consistent with our SNR condition in equation 28. Therefore, by the defini-
tion of T1,1, we deduce that T1,1 ≤ T1 ≤ T+

1 /2, utilizing the non-decreasing property of γ. The
proof for j = −1 follows a similar logic, leading us to the conclusion that maxr γ

(T1,−1)
−1,r ≥ 2 while

T1,−1 ≤ T1 ≤ T+
1 /2, thereby completing the proof.

C.2 SECOND STAGE: CONVERGENCE ANALYSIS

After the first stage and at time step T1 we know that:

w
(T1)
j,r = w

(0)
j,r + j · γ(T1)

j,r · µ

∥µ∥22
+

n∑
i=1

ρ
(T1)
j,r,i ·

ξi
∥ξi∥22

+

n∑
i=1

ρ(T1)
j,r,i

· ξi
∥ξi∥22

.

And at the beginning of the second stage, we have following property holds:

• maxr γ
(T1)
j,r ≥ 2,∀j ∈ {±1}.

• maxj,r,i |ρ(T1)
j,r,i | ≤ β̂ where β̂ = σ0σp

√
d/(n(p+ s))/2.

Lemma 5.1 implies that the learned feature γ
(t)
j,r will not get worse, i.e., for t ≥ T1, we have that

γ
(t+1)
j,r ≥ γ

(t)
j,r , and therefore maxr γ

(t)
j,r ≥ 2. Now we choose W∗ as follows:

w∗
j,r = w

(0)
j,r + 2qm log(2q/ϵ) · j · µ

∥µ∥22
.

While the context of CNN presents subtle differences from the scenario described in CNN (Cao
et al., 2022), we can adapt the same analytical approach to derive the following two lemmas:

Lemma C.3 ((Cao et al., 2022)). Under the same conditions as Theorem 4.3, we have that ∥W(T1)−
W∗∥F ≤ Õ(m3/2∥µ∥−1

2).
Lemma C.4 ((Cao et al., 2022)). Under the same conditions as Theorem 4.3, we have that

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(t))− ηϵ

for all T1 ≤ t ≤ T ∗.
Lemma C.5 (Restatement of Lemma 5.3). Under the same conditions as Theorem 4.3, let T =

T1 +
⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
= T1 + Õ(m3η−1ϵ−1∥µ∥−2

2). Then we have maxj,r,i |ρ(t)j,r,i| ≤ 2β̂ =

σ0σp

√
d/(n(p+ s)) for all T1 ≤ t ≤ T . Besides,

1

t− T1 + 1

t∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(t− T1 + 1)
+

ϵ

2q − 1

for all T1 ≤ t ≤ T , and we can find an iterate with training loss smaller than ϵ within T iterations.

Proof of Lemma C.5. We adapt the convergence proof for CNN(Cao et al., 2022) to extend the anal-
ysis to GNN. By invoking Lemma C.4, for any given time interval t ∈ [T1, T], we can deduce
that

∥W(s) −W∗∥2F − ∥W(s+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(s))− ηϵ,

25

Under review as a conference paper at ICLR 2024

which is valid for s ≤ t. Summing over this interval, we arrive at

t∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F + ηϵ(t− T1 + 1)

(2q − 1)η
. (31)

This inequality holds for all T1 ≤ t ≤ T . Dividing both sides of equation 31 by (t − T1 + 1), we
obtain

1

t− T1 + 1

t∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(t− T1 + 1)
+

ϵ

2q − 1
.

By setting t = T , we find that

1

T − T1 + 1

T∑
s=T1

LS(W
(s)) ≤ ∥W(T1) −W∗∥2F

(2q − 1)η(T − T1 + 1)
+

ϵ

2q − 1
≤ 3ϵ

2q − 1
< ϵ,

where we utilize the condition that q > 2 and the specific choice of T = T1 +
⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
.

Since the mean value is less than ϵ, it follows that there must exist a time interval T1 ≤ t ≤ T for
which LS(W

(t)) < ϵ.

Finally, we aim to demonstrate that maxj,r,i |ρ(t)j,r,i| ≤ 2β̂ holds for all t ∈ [T1, T]. By inserting

T = T1 +
⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
into equation equation 31, we obtain

T∑
s=T1

LS(W
(s)) ≤ 2∥W(T1) −W∗∥2F

(2q − 1)η
= Õ(η−1m3∥µ∥22), (32)

where the inequality is a consequence of ∥W(T1) − W∗∥F ≤ Õ(m3/2∥µ∥−1
2) as shown in

Lemma C.3.

Let’s define Ψ(t) = maxj,r,i |ρ(t)j,r,i|. We will employ induction to prove Ψ(t) ≤ 2β̂ for all t ∈
[T1, T]. At t = T1, by the definition of β̂, it is clear that Ψ(T1) ≤ β̂ ≤ 2β̂.

Assuming that there exists T̃ ∈ [T1, T] such that Ψ(t) ≤ 2β̂ for all t ∈ [T1, T̃ − 1], we can consider
t ∈ [T1, T̃ − 1]. Using the expression:

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k ℓ

′(t)
k

σ′

(
⟨w(0)

j,r , ξ̃k⟩+
n∑

i′=1

ρ
(t)
j,r,i′

⟨ξi′ , ξ̃k⟩
∥ξi′∥22

+

n∑
i′=1

ρ(t)
j,r,i′

⟨ξi′ , ξ̃k⟩
∥ξi′∥22

)
· ∥ξi∥22 (33)

26

Under review as a conference paper at ICLR 2024

we can proceed to analyze:

Ψ(t+1) ≤ Ψ(t) +max
j,r,i

{
η

nm
·
∑

k∈N (i)

D−1
k |ℓ′(t)k | · σ′

(
⟨w(0)

j,r , ξ̃k⟩+ 2

n∑
i′=1

Ψ(t) · |⟨ξi
′ , ξ̃k⟩|

∥ξi′∥22

)
· ∥ξi∥22

}

= Ψ(t) +max
j,r,i

{
η

nm
·
∑

k∈N (i)

D−1
k |ℓ′(t)k |·

σ′

(
⟨w(0)

j,r , ξ̃k⟩+ 2Ψ(t) + 2

n∑
i′ ̸=k′

Ψ(t) ·D−1
k

∑
k′∈N (k)

|⟨ξi′ , ξk′⟩|
∥ξi′∥22

)
· ∥ξi∥22

}

≤ Ψ(t) +
ηq

nm
·max

i

∑
k∈N (i)

D−1
k |ℓ′(t)k | ·

[
2 ·
√
log(8mn/δ) · σ0σp

√
d/(n(p+ s))

+

(
2 +

4nσ2
p ·
√
d log(4n2/δ)

σ2
pd/2

)
·Ψ(t)

]q−1

· 2σ2
pd

≤ Ψ(t) +
ηq

nm
·max

i

∑
k∈N (i)

D−1
k |ℓ′(t)k |·

(
2 ·
√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)) + 4 ·Ψ(t)

)q−1 · 2σ2
pd.

The second inequality is derived from Lemmas A.1 and A.7, while the final inequality is based
on the assumption that d ≥ 16n2 log(4n2/δ). By taking a telescoping sum, we can express the
following:

Ψ(T)
(i)

≤ Ψ(T1) +
ηq

nm

T̃−1∑
s=T1

max
i

∑
k∈N (i)

D−1
k |ℓ′(t)k |Õ(σ2

pd)β̂
q−1

(ii)

≤ Ψ(T1) +
ηq

nm
Õ(σ2

pd)β̂
q−1

T̃−1∑
s=T1

max
i

∑
k∈N (i)

D−1
k ℓ

(s)
k

(iii)

≤ Ψ(T1) + Õ(ηm−1σ2
pd)β̂

q−1
T̃−1∑
s=T1

LS(W
(s))

(iv)

≤ Ψ(T1) + Õ(m2SNR−2)β̂q−1

(v)

≤ β̂ + Õ(m2n2/q(n(p+ s))1−2/qβ̂q−2)β̂

(vi)

≤ 2β̂,

where (i) follows from our induction assumption that Ψ(t) ≤ 2β̂, (ii) is derived from the relationship
|ℓ′| ≤ ℓ, (iii) is obtained by the sum of maxi

∑
k∈N (i) D

−1
k ≤

∑
i ℓ

(s)
i = nLS(W

(s)), (iv) is

due to the summation of
∑T̃−1

s=T1
LS(W

(s)) ≤
∑T

s=T1
LS(W

(s)) = Õ(η−1m3∥µ∥22) as shown in
equation 32, (v) is based on the condition nSNRq ·(n(p+s))q/2−1 ≥ Ω̃(1), and (vi) follows from the
definition of β̂ = σ0σp

√
d/(n(p+ s))/2 and Õ(m2n2/q(n(p+s))1−2/qβ̂q−2) = Õ(m2n2/q(n(p+

s))1−2/q(σ0σp

√
d/(n(p+ s)))q−2) ≤ 1.

Thus, we conclude that Ψ(T̃) ≤ 2β̂, completing the induction and establishing the desired result.

C.3 POPULATION LOSS

Consider a new data point (x, y) drawn from the SNM-SBM distribution. Without loss of generality,
we suppose that the first patch is the signal patch and the second patch is the noise patch, i.e., x =

27

Under review as a conference paper at ICLR 2024

[y · µ, ξ]. Moreover, by the signal-noise decomposition, the learned neural network has parameter:

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r ·
µ

∥µ∥22
+

n∑
i=1

ρ
(t)
j,r,i ·

ξi
∥ξi∥22

+

n∑
i=1

ρ(t)
j,r,i

· ξi
∥ξi∥22

for j ∈ {±1} and r ∈ [m].

Although the framework of CNN diverges in certain nuances from the situation of CNN outlined in
(Cao et al., 2022), we are able to employ a similar analytical methodology to deduce the subsequent
two lemmas:

Lemma C.6. Under the same conditions as Theorem 4.3, we have that maxj,r |⟨w(t)
j,r, ξ̃i⟩| ≤ 1/2

for all 0 ≤ t ≤ T , and i ∈ [n].

Lemma C.7. Under the same conditions as Theorem 4.3, with probability at least 1 − 4mT ·
exp(−C−1

2 σ−2
0 σ−2

p d−1n(p + s)), we have that maxj,r |⟨w(t)
j,r, ξ̃⟩| ≤ 1/2 for all 0 ≤ t ≤ T , where

C2 = Õ(1).

Lemma C.8 (Restatement of Lemma 5.4). Let T be defined in Lemma 5.2 respectively. Under the
same conditions as Theorem 4.3, for any 0 ≤ t ≤ T with LS(W

(t)) ≤ 1, it holds that LD(W
(t)) ≤

c1 · LS(W
(t)) + exp(−c2n

2).

Proof of Lemma C.8. Consider the occurrence of event E , defined as the condition under which
Lemma C.7 is satisfied. We can then express the loss LD(W

(t)) as a sum of two components:

E
[
ℓ
(
yf(W(t), x̃)

)]
= E[1(E)ℓ

(
yf(W(t), x̃)

)
]︸ ︷︷ ︸

Term I1

+E[1(Ec)ℓ
(
yf(W(t), x̃)

)
]︸ ︷︷ ︸

Term I2

. (34)

Next, we proceed to establish bounds for I1 and I2.

Bounding I1: Given that LS(W
(t)) ≤ 1, there must be an instance (x̃i, yi) for which

ℓ
(
yif(W

(t), x̃i)
)
≤ LS(W

(t)) ≤ 1, leading to yif(W
(t), x̃i) ≥ 0. Hence, we obtain:

exp(−yif(W
(t), x̃i))

(i)

≤ 2 log
(
1 + exp(−yif(W

(t), x̃i))
)
= 2ℓ

(
yif(W

(t), x̃i)
)
≤ 2LS(W

(t)),
(35)

where (i) follows from the inequality z ≤ 2 log(1 + z),∀z ≤ 1. If event E occurs, we deduce:

|yf(W(t), x̃(2))− yif(W
(t), x̃

(2)
i)| ≤ 1

m

∑
j,r

σ(⟨wj,r, ξ̃i⟩) +
1

m

∑
j,r

σ(⟨wj,r, ξ̃⟩)

≤ 1. (36)

Here, f(W(t), x̃(2)) refers to the input x̃ = [0, x̃(2)]. The second inequality is justified by Lem-
mas C.7 and C.6. Consequently, we have:

I1 ≤ E[1(E) exp(−yf(W(t), x̃))]

= E[1(E) exp(−yif(W
(t), x̃(1))) exp(−yif(W

(t), x̃(2)))]

≤ 2e · C · E[1(E) exp(−yif(W
(t), x̃

(1)
i)) exp(−yif(W

(t), x̃
(2)
i))]

≤ 2e · E[1(E)LS(W
(t))],

where the inequalities follow from the properties of cross-entropy loss, equation 36, Lemma A.4,
and equation 35. The constant c1 encapsulates the factors in the derivation.

28

Under review as a conference paper at ICLR 2024

Estimating I2: We now turn our attention to the second term I2. By selecting an arbitrary training
data point (xi′ , yi′) with yi′ = y, we can derive the following:

ℓ
(
yf(W(t), x̃)

)
≤ log(1 + exp(F−y(W

(t), x̃)))

≤ 1 + F−y(W
(t), x̃)

= 1 +
1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ỹµ⟩) +

1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ξ̃⟩)

≤ 1 + F−yi
(W−yi′ , x̃i′) +

1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ξ̃⟩)

≤ 2 +
1

m

∑
j=−y,r∈[m]

σ(⟨w(t)
j,r, ξ̃⟩)

≤ 2 + Õ((σ0

√
d)q)∥ξ̃∥q, (37)

where the inequalities follow from the properties of the cross-entropy loss and the constraints defined
in Lemma B.8. The last inequality is a result of the boundedness of the inner product with ξ̃.
Continuing, we have:

I2 ≤
√

E[1(Ec)] ·
√
E
[
ℓ
(
yf(W(t), x̃)

)2]
≤
√
P(Ec) ·

√
4 + Õ((σ0

√
d)2q)E[∥ξ̃∥2q2]

≤ exp

[
−Ω̃

(
σ−2
0 σ−2

p

d−1n(p+ s)

)
+ polylog(d)

]
≤ exp(−c1n

2),

where c1 is a constant, the first inequality is by Cauchy-Schwartz inequality, the sec-
ond inequality is by equation 37, the third inequality is by Lemma C.7 and the fact that√
4 + Õ((σ0

√
d)2q)E[∥ξ̃∥2q2] = O(poly(d)), and the last inequality is by our condition σ0 ≤

Õ(m−2/(q−2)n−1) · (σp

√
d/(n(p+ s)))−1 in Condition 4.1. Plugging the bounds of I1, I2 com-

pletes the proof.

D ADDITIONAL EXPERIMENTAL PROCEDURES AND RESULTS

D.1 DATASET IN NODE CLASSIFICATION

In Figure 1, we execute node classification experiments on three frequently used citation networks:
Cora, Citeseer, and Pubmed Kipf & Welling (2016a). Detailed information about these datasets is
provided below and summarized in Table 1.

Table 1: Details of Datasets

Dataset Nodes Edges Classes Features Train/Val/Test

Cora 2,708 5,429 7 1,433 0.05/0.18/0.37
Citeseer 3,327 4,732 6 3,703 0.04/0.15/0.30
Pubmed 19,717 44,338 3 500 0.003/0.03/0.05

• The Cora dataset includes 2,708 scientific publications, each categorized into one of seven
classes, connected by 5,429 links. Each publication is represented by a binary word vector,
which denotes the presence or absence of a corresponding word from a dictionary of 1,433
unique words.

29

Under review as a conference paper at ICLR 2024

Figure 7: Test accuracy heatmap for GCNs after training.

• The Citeseer dataset comprises 3,312 scientific publications, each classified into one of six
classes, connected by 4,732 links. Each publication is represented by a binary word vector,
indicating the presence or absence of a corresponding word from a dictionary that includes
3,703 unique words.

• The Pubmed Diabetes dataset includes 19,717 scientific publications related to diabetes,
drawn from the PubMed database and classified into one of three classes. The citation
network is made up of 44,338 links. Each publication is represented by a TF-IDF weighted
word vector from a dictionary consisting of 500 unique words.

D.2 PARALLELS BETWEEN OUR DATA MODEL AND REAL-WORLD DATASET

These datasets (Cora, Citeseer, and Pubmed) employ a bag-of-words feature representation, typ-
ically represented by one-hot vectors, thereby ensuring orthogonality between features. We can
conceptually divide words into two categories: label-relevant and label-irrelevant. For example,
words like “algorithm” or “neural network” are label-relevant to the subject of computer science,
while general words like “study” or “approach” are label-irrelevant. In our SNM, µ represents
label-relevant features, while ξ represents label-irrelevant ones.

Furthermore, the datasets Wiki-CS, Amazon-Computers, Amazon-Photo, Coauthor-CS, and
Coauthor-Physics Shchur et al. (2018) also parallels with our theoretical model and we provide
the more discussion as follows:

• Coauthor CS (Computer Science) & Coauthor Physics (Coauthor Phy.): The dataset typi-
cally includes features based on the keywords of an author’s papers, and the task is often
to predict each author’s research field or interests based on their publication record and
collaboration network.

• Amazon Computers & Amazon Photo: Node features are derived from product reviews,
and the classification task involves predicting product categories based on the co-purchase
relationships and review data.

• WikiCS Node features could be derived from the text of the articles, such as word vectors.
The classification task usually involves categorizing articles into different areas or subjects
within Computer Science based on their content and the article network structure.

We have broadened our analysis to include the measurement of cosine similarity between two equal-
sized parts of node features (excluding the final feature for odd-sized representations) across a di-
verse range of datasets. This extended analysis bolsters the orthogonality relation posited in our
model. The results are presented in Table 2.

30

Under review as a conference paper at ICLR 2024

Dataset Feature Dimension Cossin Similarity
Cora 1433 1.57× 10−5

Citeseer 3703 3.99× 10−6

Pubmed 500 2.00× 10−4

Coauthor CS 6805 2.28× 10−6

Coauthor Phy. 8451 1.08× 10−6

Amazon Comp. 767 9.00× 10−4

Amazon Photo 745 9.00× 10−4

WikiCS 300 1.00× 10−4

Table 2: Cosine similarity analysis of node features across various datasets.

D.3 PHASE TRANSITION IN GCN

In Figure 5, we illustrated the variance in test accuracy between CNN and GCN within a chosen
range of SNR and sample numbers, where GCN was shown to achieve near-perfect test accuracy.
Here, we broaden the SNR range towards the smaller end and display the corresponding phase
diagram of GCN in Figure 7. When the SNR is exceedingly small, we observe that GCNs return
lower test accuracy, suggesting the possibility of a phase transition in the test accuracy of GCNs.

D.4 SOFTWARE AND HARDWARE

We implement our methods with PyTorch. For the software and hardware configurations, we ensure
the consistent environments for each datasets. We run all the experiments on Linux servers with
NVIDIA V100 graphics cards with CUDA 11.2.

31

	Introduction
	Related Work
	Problem Setup and Preliminary
	Notations
	Data model
	Neural network model

	Theoretical Results
	Proof Sketches
	Iterative of coefficients under graph convolution
	A two-phase dynamics analysis
	Test error analysis

	Experiments
	Conclusion and Limitations
	Preliminary Lemmas
	Preliminary Lemmas without Graph Convolution
	Preliminary Lemmas on Graph Properties

	General Lemmas for Iterative Coefficient Analysis
	Coefficient update rule
	Scale of training dynamics

	Two Stage Dynamics Analysis
	First stage: feature learning versus noise memorization
	Second stage: convergence analysis
	Population loss

	Additional Experimental Procedures and Results
	Dataset in Node Classification
	Parallels between our data model and real-world dataset
	Phase transition in GCN
	Software and hardware

