
SecFormer: Fast and Accurate Privacy-Preserving Inference for
Transformer Models via SMPC

Anonymous ACL submission

Abstract

With the growing use of Transformer models001
hosted on cloud platforms to offer inference002
services, privacy concerns are escalating, es-003
pecially concerning sensitive data like invest-004
ment plans and bank account details. Secure005
Multi-Party Computing (SMPC) emerges as a006
promising solution to protect the privacy of in-007
ference data and model parameters. However,008
the application of SMPC in Privacy-Preserving009
Inference (PPI) for Transformer models, of-010
ten leads to considerable slowdowns or de-011
clines in performance. This is largely due to012
the multitude of nonlinear operations in the013
Transformer architecture, which are not well-014
suited to SMPC and difficult to circumvent015
or optimize effectively. To address this con-016
cern, we introduce a comprehensive PPI frame-017
work called SecFormer to achieve fast and ac-018
curate PPI for Transformer models. We suc-019
cessfully eliminate the high-cost exponential020
and maximum operations in PPI without sac-021
rificing model performance and developed a022
suite of efficient SMPC protocols by employ-023
ing suitable numerical computation methods to024
boost other complex nonlinear functions in PPI,025
including GeLU, LayerNorm, and a redesigned026
Softmax. Our extensive experiments reveal027
that SecFormer outperforms MPCFormer in028
performance, showing improvements of 3.4%029
and 24.7% for BERTBASE and BERTLARGE, re-030
spectively. In terms of efficiency, SecFormer031
is 3.57 and 3.58 times faster than PUMA for032
BERTBASE and BERTLARGE, demonstrating its033
effectiveness and speed.034

1 Introduction035

Transformer models (Vaswani et al., 2017; Devlin036

et al., 2019; Radford et al., 2019; Brown et al.,037

2020; Raffel et al., 2020; Liu et al., 2019; Lewis038

et al., 2020; Ouyang et al., 2022; OpenAI, 2023)039

demonstrate exceptional performance across di-040

verse downstream tasks and are extensively em-041

ployed in a Model-as-a-Service (MaaS) paradigm042

Softmax

GeLU

LayerNorm Others

54%

23%

10% 13%

(a) Runtime Breakdown

BERTBASE BERTLARGE
Models

0

20

40

60

80

100

120

Pe
rfo

rm
an

ce
 (%

)

79.7 82.1
75.9 79.6

48
36.7

(b) Performance Influence of GeLU & Softmax
GeLU+Softmax
GeLU+2Quad
Quad+2Quad

Figure 1: (a) Runtime breakdown of the BERTBASE
model (12 layers, 512 tokens) based on an SMPC li-
brary. The total runtime for an example is 71 seconds.
(b) Influence of different activation functions on model
performance.

to deliver high-quality inference services to clients. 043

However, this MaaS framework poses a significant 044

privacy risk for inference data and model param- 045

eters. For instance, both Coplit1 and ChatGPT2, 046

which are Transformer-based services, necessitate 047

users to upload plaintext requests. This operational 048

procedure not only poses a threat to users’ privacy 049

but also probably contravenes relevant legal regu- 050

lations such as the EU’s General Data Protection 051

Regulation (GDPR)3. 052

Secure Multi-Party Computation (SMPC) 053

(Shamir, 1979; Yao, 1986; Goldreich et al., 1987), 054

has demonstrated great potential in safeguarding 055

the privacy of both inference data and model 056

weights (Gilad-Bachrach et al., 2016; Liu et al., 057

2017; Mishra et al., 2020; Rathee et al., 2021; 058

Huang et al., 2022). However, conducting Privacy- 059

Preserving Inference (PPI)4 for Transformer 060

models using SMPC proves to be notably slow. To 061

illustrate, BERTBASE (Devlin et al., 2019) takes 71 062

seconds to inference per sample via SMPC, while 063

plain-text inference takes less than 1 second. 064

This inefficiency stems from the limitations of 065

1https://github.com/features/copilot
2https://chat.openai.com
3https://gdpr-info.eu/
4Without confusion, we refer to SMPC-based PPI as PPI

for short in this paper .

1

current SMPC protocols in executing nonlinear op-066

erations in Transformer models. As depicted in067

Fig. 1(a), we find that Softmax and GeLU, which068

account for a small share of the plaintext infer-069

ence overhead, take up 77.03% of the time in PPI.070

This observation aligns with findings in Wang et al.071

(2022); Li et al. (2022). In an effort to mitigate072

this, Li et al. (2022) redesigned the Transformer073

model by substituting Softmax and GeLU with074

some SMPC friendly quadratics, bypassing the075

privacy-preserving computations of the non-linear076

operations (i.e., erf, exponential, and maximum)077

in Softmax and GeLU. This aggressive substitu-078

tion significantly enhances PPI efficiency but un-079

fortunately, substantially diminishes the model’s080

performance and is not scalable to larger models081

(Fig. 1(b)). Some other studies (Dong et al., 2023)082

tried to boost the PPI by designing more efficient083

SMPC protocols, which can preserve the model084

performance but still face expensive PPI overhead.085

In this study, we present a comprehensive PPI086

framework named SecFormer, tailed to achieve087

fast and accurate PPI for Transformer models by088

exploiting the superiorities of both Transformer089

model and SMPC protocol designs. Our investiga-090

tion reveals that preserving accurate computation091

of GeLU significantly improves PPI performance092

(Fig. 1(b)). Building on this insight, SecFormer093

implements model design to bypass the expensive094

nonlinear PPI operations such as exponential and095

maximum in Softmax (Section 3.1). This adap-096

tation, coupled with the strategic use of knowl-097

edge distillation, allows SecFormer to construct a098

Transformer model that is both high-performing099

and compatible with SMPC. To further enhance the100

PPI performance, we turn to protocol design and101

develop a suite of efficient SMPC protocols that102

utilize suitable numerical calculation methods to103

handle other complex nonlinear functions in PPI,104

such as GeLU, LayerNorm, and the redesigned105

Softmax (Section 3.2). To be specific, SecFormer106

introduces a novel SMPC protocol for GeLU based107

on segmented polynomials and Fourier series, facil-108

itating efficient and accurate computation of GeLU.109

In addition, SecFormer deploys efficient privacy-110

preserving square-root inverse and division calcu-111

lation for LayerNorm and Softmax using the Gold-112

schmidt method (Goldschmidt, 1964; Markstein,113

2004), coupled with input deflation techniques to114

bypass the nonlinear initial-value computation.115

We conducted extensive evaluations of Sec-116

Former on various datasets using Transformer mod-117

els BERTBASE and BERTLARGE. The experimen- 118

tal results reveal that SecFormer achieves an aver- 119

age performance improvement of 3.4% and 24.7% 120

for BERTBASE and BERTLARGE, respectively, com- 121

pared to the state-of-the-art approach based on pure 122

model design (Section 4.2), while maintaining com- 123

parable efficiency. In comparison to the approach 124

that only improves the SMPC protocols, SecFormer 125

exhibits a speedup of 3.57 and 3.58 times in PPI 126

(Section 4.3), while sustaining comparable PPI per- 127

formance. 128

2 Background and Related Works 129

2.1 Workflow of SMPC-based Model 130

Inference 131

Secure Multi-Party Computation (SMPC) is a cryp- 132

tographic technique that offers a promising solu- 133

tion for model Privacy-Preserving Inference (PPI) 134

among multiple participants (Gilad-Bachrach et al., 135

2016; Liu et al., 2017; Mishra et al., 2020; Rathee 136

et al., 2021; Huang et al., 2022). Typically, partici- 137

pants adhere to cryptographic primitives like secret 138

sharing (Shamir, 1979; Goldreich et al., 1987) to 139

safeguard the model weights and inference data. 140

This paper mainly introduces the 2-out-of-2 secret 141

sharing scheme due to its efficiency and represen- 142

tativeness. Specifically, the 2-out-of-2 secret shar- 143

ing divides a secret x in the ring of integers ZL 144

into two random shares [[x]] = ([x]0, [x]1) with 145

x = (([x]0 + [x]1) mod L), ensuring that neither 146

share reveals information about x while allowing 147

correct reconstruction of x when the two shares 148

are combined. In constructing the SMPC proto- 149

cols, the shares are owned by two distinct partici- 150

pants. They communicate the masked intermediate 151

results to each other to accomplish the privacy- 152

preserving computation of different functions and 153

get the shares of the computational results. 154

The PPI workflow leveraging 2-out-of-2 secret 155

sharing is depicted in Fig. 2. It involves three 156

essential stakeholders: a model inference service 157

provider that needs to protect model weights, a 158

client that needs to protect inference data, and 159

an SMPC engine that performs model PPI. The 160

SMPC engine contains three non-colluding servers 161

(i.e., participants): two computing servers Sj for 162

j ∈ {0, 1} for shares computation of PPI and an 163

assistant server T for generating random numbers 164

needed to execute the SMPC protocols. Initially, 165

the service provider and client securely transmit the 166

shares of model weights and inference data to S0 167

2

Model Inference Service Provider
model weight

Client

① share0 of model weight

inference data

share0 of inference data ②

inference result

share
0 of inference result

sh
are

1
of

 in
fer

en
ce

 re
su

lt

sh
are

0
of

ran
do

m nm
be

rs

share1
 of random nmbers

SMPC Engine

① share1 of model weight share1 of inference data ②

③

Computing Server S0

Computing Server S1

Assistant
Server T

③

④

④

⑤

Figure 2: Workflow of PPI based on secret sharing.

and S1, respectively (1⃝ and 2⃝). Subsequently, the168

computing servers utilize these shares as input and169

complete PPI by executing the SMPC protocols170

through interactive computation with the assistance171

of T , yielding the shares of the inference results.172

(3⃝). These shares are then relayed to the client173

(4⃝), facilitating the local reconstruction of the in-174

ference result (5⃝). Since each participant has only175

one share of the inputs, outputs, or intermediate re-176

sults, this PPI workflow can guarantee the privacy177

of model weights and inference data.178

2.2 Main Bottlenecks of SMPC-based179

Transformer Model Inference180

Although the above PPI workflow guarantees the181

privacy of model weights and inference data, it182

faces unacceptable communication overhead (Ta-183

ble 1) in implementing some of the nonlinear op-184

erations (i.e., Softmax, GeLU, and LayerNorm),185

which are abundantly present in Transformer mod-186

els and become a main bottleneck in PPI.187

Specifically, for a vector x = (x1, x2, . . . , xn),188

Softmax in Transformer converts it to an n-189

dimensional probability distribution with190

Softmax(x)[i] =
exi−τ∑n

h=1 e
xh−τ

, (1)191

where τ = maxnh=1 xh is used to ensure stable192

numerical computations. As indicated in Table 1,193

there are three obstacles to the SMPC of Softmax:194

exponential, division, and maximum. Note that the195

calculation of maximum needs to call ΠLT opera-196

tion logn times (Knott et al., 2021) and becomes197

the biggest obstacle.198

The function of GeLU is defined as199

GeLU(x) =
x

2

(
1 + erf(

x√
2
)
)
, (2)200

where erf(x) = 2√
π

∫ x
0 e−t2dt. The GeLU func-201

tion’s nonlinear component is derived from the erf202

and there is currently no SMPC protocol for its203

privacy-preserving computation.204

Notation Input Output Comm Round Comm Volume (bit)
ΠAdd ([[x]], [[y]]) [[x+ y]] 0 0
ΠSin [[x]] [[sin(x)]] 1 42
ΠSquare [[x]] [[x2]] 1 128
ΠMul ([[x]], [[y]]) [[xy]] 1 256
ΠMatMul ([[X]], [[Y]]) [[XY]] 1 256n2

ΠLT ([[x]], c) [[(x < c)]] 7 3456
ΠExp [[x]] [[ex]] 8 1024
ΠrSqrt [[x]] [[

√
x]] 9 + 3t 6400

ΠDiv [[x]] [[1/x]] 16 + 2t 10368

Table 1: SMPC protocols from Knott et al. (2021);
Zheng et al. (2023b). t is the number of Newton itera-
tions for implementing the protocol; n is the dimension
of the matrix. These protocols are invoked in a black-
box manner in this paper. The details are provided in
Appendix E.

Given a vector x = (x1, x2, . . . , xn), the Layer- 205

Norm function is defined as 206

LayerNorm(x) = γ · x− x̄√
var(x) + ϵ

+ β, (3) 207

where x̄ =
∑n

h=1 xh/n, var(x) =
∑n

h=1(xh − 208

x̄)2, γ and β are two learnable parameters, and 209

ϵ is a very small decimal used to prevent the de- 210

nominator from being zero. For SMPC, the main 211

bottleneck in computing LayerNorm comes from 212

the division and square root operations. 213

2.3 Efficient PPI for Transformer Models 214

To alleviate the aforementioned bottlenecks, ex- 215

isting works on PPI for Transformer models im- 216

prove the efficiency through either model design 217

or SMPC protocol design. The studies based on 218

model design (Chen et al., 2022; Li et al., 2022; 219

Zeng et al., 2022; Zhang et al., 2023; Liang et al., 220

2023) bypass the high overhead operations in PPI 221

by replacing the SMPC-unfriendly nonlinear oper- 222

ations in Transformer. These schemes substantially 223

increase efficiency but usually lead to a significant 224

degradation in model performance. The studies 225

that design more efficient SMPC protocols (Hao 226

et al., 2022; Zheng et al., 2023a; Gupta et al., 2023; 227

Dong et al., 2023; Hou et al., 2023; Ding et al., 228

2023; Pang et al., 2023) improve the efficiency of 229

PPI by customizing efficient SMPC protocols for 230

the nonlinear operators in the Transformer. These 231

schemes preserve the Transformer model’s perfor- 232

mance but still face expensive computational and 233

communication overheads. 234

As a representative work based on model de- 235

sign, Li et al. (2022) improves the efficiency of 236

PPI by replacing GeLU and Softmax with Quad = 237

0.125x2 + 0.25x+ 0.5 and 238

2Quad(x)[i] =
(xi + c)2∑n
h=1(xh + c)2

, (4) 239

3

LayerNorm LayerNorm

 Q

 K

 V

GeLUQuad2 LayerNorm

GeLUMatMul SoftmaxMatMul MatMul
Q

K

V

 SMPC Friendly Attention

 Self-attention

MatMul

MatMul MatMul MatMul MatMul MatMulLayerNorm GeLUQuad2 LayerNorm

 SMPC Feed Forward

 Feed Forward

MatMul MatMulHidden
State

Shares of
Hidden State

Figure 3: An illustration of our proposed SecFormer framework. In the model design phase, SecFormer
substitutes Softmax with 2Quad to obtain an SMPC-friendly model while preserving model performance. In the
SMPC protocol design stage, SecFormer improves the efficiency of the main bottlenecks in PPI for Transformer
models, i.e., GeLU, LayerNorm, and 2Quad.

respectively, such that the privacy-preserving com-240

putation of erf, exponential, and maximum is by-241

passed. Following this, knowledge distillation is242

employed, with the fine-tuned Transformer model243

acting as the teacher and the approximate Trans-244

former model as the student. Distillation is carried245

out on downstream task data, yielding a Trans-246

former model compatible with SMPC. This ap-247

proach is effective in improving the efficiency of248

PPI, however, it leads to a significant decrease in249

model performance. Our investigation reveals that250

preserving accurate computation of GeLU signif-251

icantly improves PPI performance. Dong et al.252

(2023) achieves the first SMPC protocol for GeLU253

functions by utilizing segmented functions and254

polynomial fitting. However, the computation of255

segmented functions and polynomials requires mul-256

tiple calls of ΠLT and ΠMul, making it inefficient.257

3 SecFormer Framework258

As discussed above, existing efficient PPI studies259

suffer from either performance degradation or high260

inference overhead. To resolve this issue, the Sec-261

Former framework is proposed in this section. We262

begin with an overview of SecFormer in Section 3.1263

and introduce the new efficient SMPC protocols for264

GeLU, LayerNorm, and Softmax in Section 3.2.265

3.1 Overview266

SecFormer enhances the efficiency of PPI for Trans-267

former models, addressing both model and SMPC268

protocol design. The overall depiction of Sec-269

Former is presented in Fig. 3.270

In the model design phase, SecFormer imple-271

ments new strategies to bypass the nonlinear opera-272

tions with the high overhead in PPI, such as expo-273

nential and maximum in Softmax, while preserv-274

ing model performance. Specifically, SecFormer 275

replaces Softmax with 2Quad while retaining the 276

accurate computation of the GeLU. Inspired by (Li 277

et al., 2022), SecFormer further improves the per- 278

formance of PPI inference by incorporating knowl- 279

edge distillation techniques. 280

In the SMPC protocol design phase, SecFormer 281

introduces a suite of efficient SMPC protocols 282

by utilizing appropriate numerical computation 283

methods. Specifically, SecFormer introduces a 284

novel SMPC protocol for GeLU based on seg- 285

mented polynomials and Fourier series, which fa- 286

cilitates the efficient and accurate computation of 287

GeLU. Subsequently, SecFormer deploys stream- 288

lined privacy-preserving calculation for square-root 289

inverse and division using the Goldschmidt method 290

(Goldschmidt, 1964; Markstein, 2004), coupled 291

with input deflation techniques to eliminate the 292

need for nonlinear initial-value computation. 293

3.2 SMPC Protocols of SecFormer 294

We next present new efficient SMPC protocols of 295

GeLU, LayerNorm, and the approximated Softmax 296

designed in SecFormer. These algorithms’ security 297

proofs and communication complexity analysis are 298

presented in Appendix D. 299

Protocol for GeLU. To address the efficiency 300

challenges of GeLU private computations (Sec- 301

tion 2.2), some studies replaced GeLU in (2) with 302

its SMPC-friendly alternatives such as ReLU (Zeng 303

et al., 2022) or quadratics (Li et al., 2022). Al- 304

though this approach can enhance PPI efficiency, it 305

may result in irreversible performance losses. Dong 306

et al. (2023) introduces the first SMPC protocol for 307

GeLU using segmented functions and polynomial 308

fitting whose computation, however, entails multi- 309

4

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x

0

2

4

6

8

10

y
(a) GeLU

GeLU
PP-GeLU

1.5 1.0 0.5 0.0 0.5 1.0 1.5

x
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

(b) erf
erf
PP-erf

Figure 4: Fitting results of GeLU and erf functions.

ple calls of ΠLT and ΠMul, rendering it inefficient.310

To solve the above problems, we design an effi-311

cient SMPC protocol ΠGeLU based on segmented312

polynomials and Fourier series. As shown in Fig. 4,313

the erf function is an odd function symmetric314

about the origin with limx→∞ erf(x) = 1 and315

limx→−∞ erf(x) = −1. Therefore, we can con-316

vert it to the following segmented function317

erf(x) ≈

− 1, x < −1.7

f(x), −1.7 ≤ x ≤ 1.7

1, x > 1.7

, (5)318

where f(x) can be approximated through a Fourier319

series composed of sine functions with a period5 of320

20. Although a greater number of terms enhances321

the accuracy of the fitting outcomes, it concurrently322

leads to increased communication overhead. Here,323

we employ the following 7-term Fourier series:324

f(x) = β ⊙ sin(k ⊙ πx/10), (6)325

where k = (1, 2, 3, 4, 5, 6, 7), β is the Fourier se-326

ries coefficients and ⊙ denotes the element-wise327

multiplication. For i = 1, 2, . . . , 7,328

βi =
1

10

∫ 10

−10
erf(x) sin(

kiπx

10
)dx . (7)329

According to Eq. (7), we can compute the co-330

efficients β = (1.25772, −0.0299154, 0.382155,331

−0.0519123, 0.196033,−0.0624557, 0.118029).332

Based on (5), the computation of the erf func-333

tion is converted into comparison and sine function.334

The precise calculation of GeLU can be accom-335

plished by combining ΠMul with the erf function.336

The specific steps of the SMPC protocol for GeLU337

are shown in Algorithm 1. Specifically, in steps 1-5338

of Algorithm 1, we determine in which interval of339

the segmented function the input x falls by calling340

the ΠLT . Then, in step 7, the privacy-preserving341

5The results of the sine function fitting for different periods
are shown in Appendix F.

Algorithm 1: SMPC Protocol for ΠGeLU

Input: For j ∈ {0, 1}, Sj holds the shares [x]j .
Output: For j ∈ {0, 1}, Sj returns the shares [y]j

with y = GeLU(x).
/* Determine the input interval */

1 [[c0]] = ΠLT ([[x]],−1.7) // (x < −1.7)
2 [[c1]] = ΠLT ([[x]], 1.7) // (x < 1.7)
3 [[z0]] = [[c0]] // (x < −1.7)
4 [[z1]] = [[c1]]− [[z0]] // (−1.7 ≤ x ≤ 1.7)
5 [[z2]] = 1− [[c1]] // (x > 1.7)
/* Compute f(x√

2
) */

6 [[x̂]] = 1√
2
[[x]]

7 [[f(x̂)]] = β ⊙Πsin(k ⊙ π[[x]]/10)

/* Compute erf(x̂)) */
8 [[erf(x̂)]] = [[z0]] + ΠMul([[z1]], [[f(x̂)]]) + [[z2]]
/* Compute GeLU(x) */

9 [[y′]] = 1 + [[erf(x̂))]]
10 [[y]] = ΠMul([[

x
2
]], [[y′]])

computation of f(x) is achieved by utilizing the 342

Πsin presented in (Zheng et al., 2023b). The al- 343

gorithm requires only 1 round of communication, 344

and the specific steps of it is in Appendix E.2. In 345

steps 8-10, we compute the erf function and exe- 346

cute the GeLU calculation by invoking ΠMul. 347

Protocol for LayerNorm. Previous work (Knott 348

et al., 2021) implements the privacy-preserving 349

computation of LayerNorm in (3) by sequentially 350

invoking ΠrSqrt and ΠDiv, resulting in expen- 351

sive computational and communication overheads. 352

Goldschmidt’s method enables the direct conver- 353

sion of square root inverses (i.e., 1√
.) directly into 354

multiple iterations of multiplications. However, 355

achieving a broader convergence range often re- 356

quires complex nonlinear initial value calculations, 357

such as Look-up-table (LUT) (Rathee et al., 2021) 358

or exponentiation (Knott et al., 2021), before the it- 359

eration begins. To resolve this issue, we propose to 360

employ the deflation technique for bypassing these 361

intricate nonlinear initial value calculations that are 362

incompatible with SMPC. The detailed steps of the 363

SMPC protocol for LayerNorm are in Algorithm 2. 364

Specifically, in steps 3-8, we use Goldschmid’s 365

method to compute 1√
q where q = (var(x)+ ϵ)/η. 366

Through division by a constant η (A hyperparam- 367

eter whose value is shown in Appendix G.), we 368

initially deflate the denominator into the inter- 369

val [0.001, 2.99] which ensures fast convergence 370

for linear initial values. Then, we set the ini- 371

tial values p0 = 1, q0 = q, and compute mi = 372

(3−qi−1)/2, pi = pi−1mi, qi = qi−1m
2
i at each it- 373

eration by calling ΠMul and ΠSquare. After t = 11 374

iteration, the value of 1√
q is calculated. 375

5

Algorithm 2: SMPC Protocol for Layer-
Norm ΠLayerNorm

Input: For j ∈ {0, 1}, Sj holds the shares [x]j .
Output: For j ∈ {0, 1}, Sj holds the shares [y]j

with y = LayerNorm(x).
/* Compute the mean and variance */

1 [[x̄]] = 1
n
·
∑n

h=1[[xh]]
2 [[var(x)]] =

∑n
h=1 ΠSquare([[xh]]− [[x̄]])

/* Goldschmidt’s method */
3 p0 = 1, q0 = 1

η
([[var(x)]] + ϵ)

4 for i← 1 to t do
5 [[mi]]← (3− qi−1)/2
6 [[qi]]← ΠMul([[qi−1]],ΠSquare([[mi]]))
7 [[pi]]← ΠMul([[pi−1]], [[mi]])
8 end
9 /* Compute LayerNorm(x) */

10 [[y]] = γ · (1
η
([[x]]− [[x̄]]) · [[pt]]) + β

Protocol for Approximated Softmax. As men-376

tioned in Section 3.1, we follow Li et al. (2022)377

and bypass the privacy-preserving computations of378

exponential and maximum by substituting Softmax379

with 2Quad in (4). However, to preserve the nor-380

malized nature of Softmax, the division operations381

cannot be avoided and thus become a new obstacle.382

To solve this problem, we again use the Gold-383

schmidt’s method to convert the division operation384

to multiplications. Similar to the LayerNorm pro-385

tocol, the complex calculation of initial values is386

avoided by effective deflation. The implementa-387

tion of the SMPC protocol for the approximated388

Softmax (i.e., Π2Quad) is shown in Appendix B.389

4 Experiments390

This section showcases the effectiveness of Sec-391

Former through extensive experiments. We begin392

with the experiment setup in Section 4.1 and then393

report the performance assessment results in Sec-394

tion 4.2 and efficiency evaluations in Section 4.3,395

respectively. We further provide more analysis for396

SecFormer in Section 4.4, including an efficiency397

evaluation for ΠGeLU , ΠLayerNorm and Π2Quad.398

4.1 Experimental Setup399

Implementation. We implemented SecFormer400

using CrypTen6, a semi-honest privacy-preserving401

machine learning framework based on secret shar-402

ing. To simulate the experimental environment, we403

utilized three Tesla V100 servers with a 10GB/s404

bandwidth. The hyperparameters for model fine-405

tuning and distillation follow the settings in (Li406

et al., 2022), see Appendix G for details.407

6https://github.com/facebookresearch/CrypTen

Baselines. We compare SecFormer with state- 408

of-the-art works based on model design (MPC- 409

Former (Li et al., 2022)) and SMPC protocol design 410

(PUMA (Dong et al., 2023)). Specifically, MPC- 411

Former improves the efficiency of PPI by substitut- 412

ing Softmax and GeLU with some SMPC friendly 413

quadratics. PUMA enhances PPI efficiency by de- 414

signing more efficient SMPC protocols for GeLU, 415

LayerNorm and Softmax. Following the setting 416

in MPCFormer, we include the result of the fine- 417

tuned redesigned model as the baseline, denoted as 418

MPCFormerw/o and SecFormerw/o (i.e., fine-tuned 419

without distillation). We also re-implement PUMA 420

on CrypTen for consistency. 421

Models and Datasets. We followed MPCFormer 422

using a representative transformer model BERT, 423

see Appendix G for details. For the reliability of 424

the experimental results, we use datasets with dif- 425

ferent evaluation metrics and sizes, including RTE, 426

MRPC, CoLA, STS-B, and QNLI. In terms of eval- 427

uation metrics, MRPC uses F1 scores, STS-B em- 428

ploys the average of Person and Spearman correla- 429

tions, CoLA uses Matthews correlations, and RTE 430

and QNLI rely on accuracy. 431

4.2 Performance Comparison 432

We validate the performance of Seformer and 433

the main results are shown in Table 2. For the 434

model design framework MPCFormer, SecFormer 435

exhibits a significant performance improvement. 436

Specifically, for BERTBASE, SecFormer outper- 437

forms MPCFormer across all tasks, resulting in 438

a 3.4% average improvement. For BERTLARGE, 439

MPCFormer faces significant performance degrada- 440

tion, including CoLA task failure. In contrast, even 441

without data distillation, SecFormer outperforms 442

MPCFormer. After distillation, SecFormer demon- 443

strates a substantial 24.7% performance improve- 444

ment compared to MPCFormer. This is mainly 445

because SecFormer implements an accurate compu- 446

tation of GeLU instead of replacing it aggressively 447

with a quadratic polynomial. 448

For the protocol design framework PUMA, Sec- 449

Former incurs only a marginal 0.9% and 1.3% per- 450

formance degradation. PUMA does not perform 451

any model design and achieves PPI without per- 452

formance loss. However, this results in PUMA 453

facing unacceptable communication overheads, as 454

detailed in Section 4.3. 455

6

Models Methods
GeLU Softmax QNLI CoLA STS-B MRPC RTE Avg.

Approx. Approx. (108k) (8.5k) (5.7k) (3.5k) (2.5k)

BERTBASE

Plain-text GeLU Softmax 91.7 57.8 89.1 90.3 69.7 79.7

PUMA GeLU Softmax 91.7 57.8 89.1 90.3 69.7 79.7∗

MPCFormerw/o Quad 2Quad 69.8 0.0 36.1 81.2 52.7 48.0

MPCFormer Quad 2Quad 90.6 52.6 80.3 88.7 64.9 75.4

SecFormerw/o GeLU 2Quad 89.3 57.0 86.2 83.8 63.2 75.9

SecFormer GeLU 2Quad 91.2 57.1 87.4 89.2 69.0 78.8∗

BERTLARGE

Plain-text GeLU Softmax 92.4 61.7 90.2 90.6 75.5 82.1

PUMA GeLU Softmax 92.4 61.7 90.2 90.6 75.5 82.1∗

MPCFormerw/o Quad 2Quad 49.5 0.0 0.0 81.2 52.7 36.7

MPCFormer Quad 2Quad 87.8 0.0 52.1 81.4 59.2 56.1

SecFormerw/o GeLU 2Quad 90.8 60.8 89.0 87.6 69.7 79.6

SecFormer GeLU 2Quad 92.0 61.3 89.2 88.7 72.6 80.8∗

Table 2: Performance comparison of BERTBASE and BERTLARGE. Bolded numbers indicate best results; numbers
marked “*” indicate performance loss within 1.5%. For BERTBASE, we directly use the results from (Li et al.,
2022). For BERTLARGE, Li et al. (2022) uses the 2ReLU instead of 2Quad for performance reasons, where
2ReLU(x)[i] = ReLU(x)[i]/

∑n
h=1 ReLU(x). Calculating ReLU requires a call to ΠLT . This results in more

overhead than calculating 2Quad.

4.3 Efficiency Comparison456

We evaluate the efficiency by testing the time457

and communication volume required to perform458

single-sample inference across different frame-459

works. The main results are shown in Table 3.460

We can find that SecFormer is significantly more461

efficient than PUMA. Specifically, for BERTBASE462

and BERTLARGE, SecFormer performs 3.57 and463

3.58 faster than PUMA on the total inference time.464

These advantages stem from that SecFormer uti-465

lizes model design to achieve efficient computation466

of Softmax, and design efficient SMPC protocols467

suitable for the Transformer models for other non-468

linear operators (i.e., GeLU, LayerNorm) by us-469

ing appropriate numerical computation techniques.470

The efficiency of each SMPC protocol is shown in471

Table 3 and will be discussed later in Section 4.4.472

When considering the framework of model de-473

sign, SecFormer is only 1.05 and 1.04 times slower474

than MPCFormer in the scenarios of BERTBASE475

and BERTLARGE, respectively. This result is based476

on the fact that SecFormer spends 41% of its477

time performing privacy-preserving calculations478

for GeLU, while MPCFormer spends only 0.01%479

of its time to implement the privacy-preserving480

calculations for Quad. However, the conclusions481

in Section 4.2 suggest that replacing GeLU with482

quadratic leads to dramatic degradation of model483

performance or even failure on some tasks (i.e.,484

performance with 0 in Table 2).485

In conclusion, experiments with SecFormer re-486

garding performance and efficiency reveal its dual487

1002 10002 50002

Input Dimension

10 1

100

101

Ti
m

es
 (s

ec
on

ds
)

0.126

1.051

23.701

0.072

0.651

14.814

(a) Time Overhead
PUMA
SecFormer

1002 10002 50002

Input Dimension

101

102

103

104

Co
m

m
 V

ol
um

e
(M

B)

15.2

1520

38000

9.4

940

23600

(b) Comm Overhead
PUMA
SecFormer

Figure 5: Comparison of ΠGeLU Time and Communi-
cation Overheads.

advantages, combining strengths from both proto- 488

col design and model design frameworks. 489

4.4 SMPC Protocols Evaluation 490

We compare ΠGeLU with PUMA in terms of time 491

and communication overhead. The comparison re- 492

sults in Fig. 5 show that ΠGeLU is about 1.6 times 493

lower than PUMA in time and communication over- 494

head. This is mainly due to the fact that it invokes 495

fewer ΠLT relative to PUMA. In terms of accuracy, 496

both ΠGeLU and PUMA meet the needs of PPI, 497

while CrypTen can only maintain accuracy over a 498

small range. See Appendix C for details. 499

We compare ΠLayerNorm with CrypTen (Knott 500

et al., 2021) in terms of time and communica- 501

tion overhead. Fig. 6 shows that ΠLayerNorm 502

is up to 4.5 times faster than CrypTen (Knott 503

et al., 2021). This is due to the efficient privacy- 504

preserving square root inverse calculation proposed 505

by SecFormer. As shown in Fig. 7, it is 4.2 times 506

faster than CrypTen and reduces the communica- 507

tion volume by a factor of 2.5. 508

7

Models Methods
GeLU Softmax LayerNorm Others Total

Times(s) Comm(GB) Times(s) Comm(GB) Times(s) Comm(GB) Times(s) Comm(GB) Times(s)

BERTBASE

CrypTen 16.46 28.689 37.25 50.285 6.614 0.492 9.365 3.463 71.097

PUMA 16.343 28.689 42.219 67.837 2.285 0.477 8.781 3.463 69.661

MPCFormer 0.351 0.604 3.129 1.895 6.522 0.497 8.589 3.463 18.591

SecFormer 8.132 17.817 1.362 1.844 1.523 0.468 8.496 3.463 19.513∗

BERTLARGE

CrypTen 27.881 57.378 83.017 134.093 9.105 1.272 19.945 8.565 140.018

PUMA 27.357 57.378 89.938 180.898 4.313 1.254 18.278 8.565 139.954

MPCFormer 0.351 0.604 7.274 5.052 10.864 1.282 19.261 8.565 37.75

SecFormer 14.531 35.635 3.115 4.916 3.122 1.248 18.321 8.565 39.089∗

Table 3: Efficiency Comparison of BERTBASE and BERTLARGE. Bolded numbers indicate the best results; Numbers
marked “*” indicate within 2 seconds slower than the best result. The results are the average of ten runs.

1002 10002 50002

Input Dimension
10 1

100

Ti
m

es
 (s

ec
on

ds
)

0.513

3.161

5.512

0.119

1.026

1.959

(a) Time Overhead
CrypTen
SecFormer

1002 10002 50002

Input Dimension

102

103

Co
m

m
 V

ol
um

e
(M

B)

49.9

1209.7

4819.4

48.6

1202.8

4805.6
(b) Comm Overhead

CrypTen
SecFormer

Figure 6: Comparison of ΠLayerNorm Time and Com-
munication Overheads.

1002 2002 3002 4002 5002 6002 7002 8002 9002 10002

Input Dimension

0

20

40

60

80

Ti
m

es
 (s

ec
on

ds
)

(a) Time Overhead
CrypTen
SecFormer

1002 2002 3002 4002 5002 6002 7002 8002 9002 10002

Input Dimension

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Co
m

m
 V

ol
um

e
(M

B)

(b) Comm Overhead
CrypTen
SecFormer

Figure 7: Comparison of Privacy-preserving Calcula-
tion for Square-root Inverse Time and Communication
Overheads.

We compare Π2Quad with MPCFormer and509

PUMA in terms of time and communication over-510

head. Fig. 8 shows that Π2Quad is 1.26 ∼ 2.09511

times faster than MPCFormer and the commu-512

nication overhead is reduced by 1.04 ∼ 1.12513

times. These enhancements come from the effi-514

cient privacy-preserving division calculation pro-515

posed by SecFormer. As shown in Fig. 9, it is 3.2516

times faster than CrypTen, and the communication517

overhead is reduced by 1.6 times.518

Compared to PUMA, which achieves precise519

privacy-preserving Softmax, Π2Quad gets a drastic520

improvement in efficiency, i.e., 8.24 ∼ 16.8 times521

faster and 30.53 ∼ 36.2 times less communica-522

tion. This is due to the fact that the model design523

performed by SecFormer avoids the calculation of524

exponential and maximum.525

1002 10002 50002

Input Dimension

10 1

100

101

Ti
m

es
 (s

ec
on

ds
)

0.402
0.659

18.931

0.103 0.115

1.421

0.051 0.055

1.127

(a) Time Overhead
PUMA
MPCFormer
SecFormer

1002 10002 50002

Input Dimension

100

101

102

Co
m

m
 V

ol
um

e
(M

B)

7.402

31.279

118.133

0.279

0.95

3.473

0.249

0.891

3.355

(b) Comm Overhead
PUMA
MPCFormer
SecFormer

Figure 8: Comparison of Π2Quad Time and Communi-
cation Overheads.

1002 2002 3002 4002 5002 6002 7002 8002 9002 10002

Input Dimension

0

20

40

60

80

Ti
m

es
 (s

ec
on

ds
)

(a) Time Overhead
CrypTen
SecFormer

1002 2002 3002 4002 5002 6002 7002 8002 9002 10002

Input Dimension

0

200

400

600

800

1000

1200

Co
m

m
 V

ol
um

e
(M

B)

(b) Comm Overhead
CrypTen
SecFormer

Figure 9: Comparison of Privacy-Preserving Division
Calculation Time and Communication Overheads.

5 Conclusion 526

We present SecFormer, a synergistic PPI frame- 527

work that strategically combines the strengths 528

of both SMPC protocol design and Transformer 529

model design. Extensive experiments reveal that 530

SecFormer surpasses existing PPI methods, achiev- 531

ing fast and accurate PPI for Transformer models. 532

It not only matches the performance of approaches 533

that focus exclusively on SMPC protocols but also 534

competes with the efficiency of methods dedicated 535

solely to model design. SecFormer holds signifi- 536

cant potential for enhancing large language models, 537

offering an effective solution that promises to main- 538

tain high performance while ensuring stringent pri- 539

vacy and efficiency standards in increasingly com- 540

plex and expansive linguistic landscapes. 541

8

6 Limitations542

We summarize the limitations of SecFormer as543

follows: (1) SecFormer focuses on implementing544

PPI for the encoder-only Transformer model, such545

as BERT, without extending to other Transformer546

model families like the GPT series. We concentrate547

on the encoder-only Transformer model because548

of its continued prominence in real-world natural549

language understanding tasks, particularly within550

resource-constrained environments like edge com-551

puting. Prior efforts to implement the encoder-552

only Transformer model for PPI have encountered553

obstacles, including slow inference speeds and554

substantial performance degradation. Our work555

addresses these challenges and offers insights to556

guide future optimization efforts concerning PPI557

across diverse Transformer model families. The558

proposed protocols can be applied to implement559

PPI of other transformer-based models straight-560

forwardly and we will consider PPI for decoder561

only Transformer models like GPT in the future.562

(2) Regarding SMPC protocols, SecFormer exe-563

cutes only on CrypTen and does not invoke the564

cutting-edge underlying SMPC protocols. We will565

try to exploit other privacy-preserving frameworks566

with more advanced SMPC protocols to further567

improve the inference efficiency of SecFomer in568

future work. (3) SecFormer only performs model569

design by replacing Softmax with 2Quad and does570

not incorporate other model lighting techniques.571

Other model lightweight techniques such as model572

quantization and pruning are compatible with the573

proposed SMPC protocols and can be combined574

into SecFormer to further improve the PPI effi-575

ciency in the future.576

References577

Tom Brown, Benjamin Mann, Nick Ryder, Melanie578
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind579
Neelakantan, Pranav Shyam, Girish Sastry, Amanda580
Askell, et al. 2020. Language models are few-shot581
learners. Advances in neural information processing582
systems, 33:1877–1901.583

Ran Canetti. 2001. Universally composable security:584
A new paradigm for cryptographic protocols. In585
Proceedings 42nd IEEE Symposium on Foundations586
of Computer Science, pages 136–145. IEEE.587

Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong,588
Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li,589
and Furu Wei. 2022. THE-X: Privacy-preserving590
transformer inference with homomorphic encryption.591

In Findings of the Association for Computational 592
Linguistics, pages 3510–3520. 593

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 594
Kristina Toutanova. 2019. BERT: Pre-training of 595
deep bidirectional transformers for language under- 596
standing. In Proceedings of the 2019 Conference of 597
the North American Chapter of the Association for 598
Computational Linguistics, pages 4171–4186. 599

Yuanchao Ding, Hua Guo, Yewei Guan, Weixin Liu, 600
Jiarong Huo, Zhenyu Guan, and Xiyong Zhang. 601
2023. East: Efficient and accurate secure trans- 602
former framework for inference. arXiv preprint 603
arXiv:2308.09923. 604

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, 605
Derun Zhao, Jin Tan, Zhicong Huang, Cheng Hong, 606
Tao Wei, and Wenguang Cheng. 2023. PUMA: Se- 607
cure inference of LLaMA-7B in five minutes. arXiv 608
preprint arXiv:2307.12533. 609

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, 610
Kristin E. Lauter, Michael Naehrig, and John Werns- 611
ing. 2016. CryptoNets: Applying neural networks 612
to encrypted data with high throughput and accuracy. 613
In Proceedings of the 33nd International Conference 614
on Machine Learning, pages 201–210. 615

Oded Goldreich, Silvio Micali, and Avi Wigderson. 616
1987. How to play any mental game or A complete- 617
ness theorem for protocols with honest majority. In 618
Proceedings of the 19th Annual ACM Symposium on 619
Theory of Computing, pages 218–229. ACM. 620

Robert E Goldschmidt. 1964. Applications of division 621
by convergence. In M.Sc dissertation, Massachusetts 622
Institute of Technology. 623

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nis- 624
hanth Chandran, Divya Gupta, Ashish Panwar, and 625
Rahul Sharma. 2023. SIGMA: Secure GPT infer- 626
ence with function secret sharing. Cryptology ePrint 627
Archive, Paper 2023/1269. 628

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, 629
Guowen Xu, and Tianwei Zhang. 2022. Iron: Pri- 630
vate inference on transformers. Advances in Neural 631
Information Processing Systems, 35:15718–15731. 632

Xiaoyang Hou, Jian Liu, Jingyu Li, Yuhan Li, Wen jie 633
Lu, Cheng Hong, and Kui Ren. 2023. CipherGPT: 634
Secure two-party GPT inference. Cryptology ePrint 635
Archive, Paper 2023/1147. 636

Zhicong Huang, Wenjie Lu, Cheng Hong, and Jiansheng 637
Ding. 2022. Cheetah: Lean and fast secure two-party 638
deep neural network inference. In Proceedings of 639
31st USENIX Security Symposium, pages 809–826. 640

Brian Knott, Shobha Venkataraman, Awni Hannun, 641
Shubho Sengupta, Mark Ibrahim, and Laurens 642
van der Maaten. 2021. CrypTen: Secure multi-party 643
computation meets machine learning. Advances in 644
Neural Information Processing Systems, 34:4961– 645
4973. 646

9

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan647
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,648
Veselin Stoyanov, and Luke Zettlemoyer. 2020.649
BART: Denoising sequence-to-sequence pre-training650
for natural language generation, translation, and com-651
prehension. In Proceedings of the 58th Annual Meet-652
ing of the Association for Computational Linguistics,653
pages 7871–7880.654

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo,655
Eric P Xing, and Hao Zhang. 2022. MPCFormer:656
Fast, performant and private transformer inference657
with MPC. arXiv preprint arXiv:2211.01452.658

Zi Liang, Pinghui Wang, Ruofei Zhang, Nuo Xu, and659
Shuo Zhang. 2023. MERGE: Fast private text gener-660
ation. arXiv preprint arXiv:2305.15769.661

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan.662
2017. Oblivious neural network predictions via min-663
ionn transformations. In Proceedings of the 2017664
ACM SIGSAC conference on computer and commu-665
nications security, pages 619–631.666

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-667
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,668
Luke Zettlemoyer, and Veselin Stoyanov. 2019.669
RoBERTa: A robustly optimized bert pretraining ap-670
proach. arXiv preprint arXiv:1907.11692.671

Peter W. Markstein. 2004. Software division and square672
root using Goldschmidt’s algorithms. In 6th Confer-673
ence on Real Numbers and Computers, pages 146–674
157.675

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-676
vasan, Wenting Zheng, and Raluca Ada Popa. 2020.677
Delphi: A cryptographic inference service for neural678
networks. In Proceedings of 29th USENIX Security679
Symposium, pages 2505–2522.680

OpenAI. 2023. GPT-4 technical report. ArXiv,681
abs/2303.08774.682

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,683
Carroll Wainwright, Pamela Mishkin, Chong Zhang,684
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.685
2022. Training language models to follow instruc-686
tions with human feedback. Advances in Neural687
Information Processing Systems, 35:27730–27744.688

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng,689
and Thomas Schneider. 2023. BOLT: Privacy-690
preserving, accurate and efficient inference for691
transformers. Cryptology ePrint Archive, Paper692
2023/1893.693

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,694
Dario Amodei, Ilya Sutskever, et al. 2019. Language695
models are unsupervised multitask learners. OpenAI696
blog, 1(8):9.697

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-698
ine Lee, Sharan Narang, Michael Matena, Yanqi699
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the700
limits of transfer learning with a unified text-to-text701

transformer. Journal of Machine Learning Research, 702
21(140):1–67. 703

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Ki- 704
ran Goli, Divya Gupta, Rahul Sharma, Nishanth 705
Chandran, and Aseem Rastogi. 2021. SIRNN: A 706
math library for secure RNN inference. In Proceed- 707
ings of 2021 IEEE Symposium on Security and Pri- 708
vacy, pages 1003–1020. 709

Adi Shamir. 1979. How to share a secret. Communica- 710
tions of the ACM, 22(11):612–613. 711

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 712
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 713
Kaiser, and Illia Polosukhin. 2017. Attention is all 714
you need. In Advances in Neural Information Pro- 715
cessing Systems. 716

Yongqin Wang, G Edward Suh, Wenjie Xiong, Ben- 717
jamin Lefaudeux, Brian Knott, Murali Annavaram, 718
and Hsien-Hsin S Lee. 2022. Characterization of 719
MPC-based private inference for transformer-based 720
models. In Proceedings of 2022 IEEE International 721
Symposium on Performance Analysis of Systems and 722
Software, pages 187–197. 723

Andrew Chi-Chih Yao. 1986. How to generate and 724
exchange secrets. In Annual Symposium on Founda- 725
tions of Computer Science, pages 162–167. 726

Wenxuan Zeng, Meng Li, Wenjie Xiong, Wenjie Lu, 727
Jin Tan, Runsheng Wang, and Ru Huang. 2022. 728
MPCViT: Searching for MPC-friendly vision trans- 729
former with heterogeneous attention. arXiv preprint 730
arXiv:2211.13955. 731

Yuke Zhang, Dake Chen, Souvik Kundu, Chenghao Li, 732
and Peter A Beerel. 2023. SAL-ViT: Towards latency 733
efficient private inference on ViT using selective at- 734
tention search with a learnable softmax approxima- 735
tion. In Proceedings of the IEEE/CVF International 736
Conference on Computer Vision, pages 5116–5125. 737

Mengxin Zheng, Qian Lou, and Lei Jiang. 2023a. 738
Primer: Fast private transformer inference on en- 739
crypted data. arXiv preprint arXiv:2303.13679. 740

Yu Zheng, Qizhi Zhang, Sherman SM Chow, Yuxiang 741
Peng, Sijun Tan, Lichun Li, and Shan Yin. 2023b. Se- 742
cure softmax/sigmoid for machine-learning compu- 743
tation. In Proceedings of the 39th Annual Computer 744
Security Applications Conference, pages 463–476. 745

10

A 2-out-of-2 Secret Sharing746

The 2-out-of-2 secret sharing includes arithmetic747

secret sharing and Boolean secret sharing. The748

2-out-of-2 arithmetic secret sharing contains two749

algorithms:750

• Shr(x) → ([x]0, [x]1) is used to generate the751

shares by randomly selecting a number r from752

ZL, letting [x]0 = r, and computing [x]1 = (x−753

r) mod L;754

• Rec([x]0, [x]1) → x is used to reconstruct the755

original value from the shares, which can be done756

by simply calculating ([x]0 + [x]1) mod L.757

Note that due to the randomness of r, neither a758

single [x]0 nor [x]1 can be used to infer the original759

value of x. The arithmetic secret sharing technique760

has been widely used to construct SMPC protocols761

for ML operations (e.g., +, − and ·, etc.) such that762

both the inputs and outputs of the protocol are the763

arithmetic shares of the original inputs and outputs:764

Πf ([inputs]0, [inputs]1) → ([f]0, [f]1), (8)765

where Πf denotes an SMPC protocol of the opera-766

tion f . The shares in Z2 is called Boolean shares,767

and the operations of +, − and · are replaced by768

bit-wise operations ⊕ and ∧. We use [[x]], ⟨⟨x⟩⟩ de-769

notes the arithmetic and boolean shares of x, i.e.,770

[[x]] = ([x]0, [x]1), ⟨⟨x⟩⟩ = (⟨x⟩0, ⟨x⟩1).771

B Protocol for the Approximated772

Privacy-Preserving Softmax773

In this section, we give the specific implementa-774

tion of the SMPC Protocol for the approximated775

Softmax (i.e., 2Quad) as mentioned in Section 3.1.776

In steps 3-8 of Algorithm 3, we first deflate the777

denominator q =
∑n

h=1(x + c)2 into the in-778

terval [0.001, 1.999], which ensures fast conver-779

gence for linear initial values, through division780

by a constant η. Subsequently, we set the ini-781

tial values q0 = q, p0 = (x + c)2, and compute782

mi = 2− qi−1, pi = pi−1mi, qi = qi−1mi at each783

iteration by calling ΠMul. After t = 13 iterations,784
p
q is computed.785

C Accuracy Comparison of786

Privacy-Preserving GeLU Algorithms787

In this section we compare the performance of788

privacy-preserving GeLU with Puma and CrypTen.789

Algorithm 3: SMPC Protocol for Softmax
Π2Quad

Input: For j ∈ {0, 1}, Sj holds the shares [x]j .
Output: For j ∈ {0, 1}, Sj holds the shares [y]j ,

where y = 2quad(x).
/* Compute the numerator */

1 [[p]] = ΠSquare([[x+ c]])
/* Compute the denominator */

2 [[q]] =
∑n

h=1[[p[h]]]
/* Goldschmidt’s method */

3 q0 = 1
η
[[q]], [p0]] =

1
η
[[p]]

4 for i← 1 to t do
5 [[mi]]← 2− [[qi−1]]
6 [[pi]]← ΠMul([[pi−1]], [[mi]])
7 [[qi]]← ΠMul([[qi−1]], [[mi]])
8 end
9 [[y]] = [[pt]]

The specific comparison results are shown in Ta- 790

ble 4. Both SecFormer and Puma achieve privacy- 791

preserving computation within the entire interval 792

of the GeLU function by using segmented polyno- 793

mials. CrypTen, on the other hand, locally fits the 794

erf function using a low-order Taylor expansion 795

and thus can only achieve privacy-preserving com- 796

putation of the GeLU function in a smaller interval. 797

D Security Proof and Communication 798

Complexity Analysis 799

D.1 Security Proof 800

SecFormer adheres to a semi-honest (also known 801

as honest-but-curious) assumption similar to the 802

works of Li et al. (2022) and Dong et al. (2023), 803

where honest participants constitute the major- 804

ity. Under this assumption, the security of Sec- 805

Former can be formally proved within the simu- 806

lation paradigm, specifically against static semi- 807

honest adversaries denoted as A, which can poten- 808

tially corrupt one of the servers. The simulation 809

paradigm delineates two distinct worlds: the real 810

world and the ideal world. In the real world, the 811

servers execute the protocols in the presence of 812

semi-honest adversaries A. In contrast, the ideal 813

world involves the servers transmitting inputs to 814

a trusted dealer capable of correctly executing the 815

protocol. The security of SecFormer necessitates 816

that, for any semi-honest adversary A, the dis- 817

tribution of the real world remains indistinguish- 818

able from that of the ideal world. The definition 819

of privacy-preserving inference protocols (Mishra 820

et al., 2020; Huang et al., 2022; Hao et al., 2022) is 821

as follows: 822

Definition 1 A protocol ΠP between the servers 823

11

Input Interval [−1, 1] [−5, 5] [−10, 10]

Methods CrypTen Puma SecFormer CrypTen Puma SecFormer CrypTen Puma SecFormer

Error Mean 0.001 0.005 0.001 30437.717 0.003 0.005 7480209.5 0.002 0.003

Error Var ±8.37× 10−6 ±6.85× 10−6 ±2.03× 10−6 ±3.28× 109 ±1.01× 10−5 ±3.82× 10−5 ±1.68× 1014 ±7.06× 10−6 ±2.54× 10−5

Table 4: Accuracy Comparison of Privacy-Preserving GeLU Algorithms.

who have the shares of the model weights and the824

inference data is a privacy-preserving protocol if it825

complies with the following criteria: (1) Correct-826

ness: For a model M with weights w and input sam-827

ples x, the client’s output at the end of the protocol828

is the correct inference M (w, x); and (2) Security:829

For a computational server Sj , j ∈ {0, 1} that830

is corrupted by adversary A, there exists a prob-831

abilistic polynomial time simulator SimSj such832

that adversary A cannot distinguish V iewΠP
Sj

(i.e.,833

the view of Sj during the implementation of ΠP)834

from SimSj . Similarly, for a corrupted server T ,835

there exists an efficient simulator SimT such that836

V iewΠP
T is indistinguishable from SimT .837

SecFormer is constructed from the sub-protocols838

outlined in the works of Knott et al. (2021) and839

Zheng et al. (2023b). Leveraging the concept840

of universally composable security established by841

Canetti (2001), we can prove that SecFormer satis-842

fies Definition 1 directly.843

D.2 Communication Complexity Analysis844

The execution of ΠGeLU invokes two ΠLT , one845

ΠSin and one ΠMul. Thus the execution of the846

privacy-preserving GeLU algorithm takes a total847

of 2 logL+4 rounds of online communication and848

transmit 7210 bits.849

The implementation of privacy-preserving Lay-850

erNorm requires calls to ΠMul, ΠSquare and851

privacy-preserving inverse of the square root. The852

inverse of the square root requires one call to853

ΠSquare and two calls to ΠMul in parallel per itera-854

tion, costing 2 rounds of communication and trans-855

ferring 640 bits. Thus performing the square root856

inverse takes a total of 22 rounds of communication857

and transfers 7040 bits and the implementation of858

privacy-preserving LayerNorm takes a total of 24859

rounds of communication and transfers 7424 bits.860

The implementation of approximate privacy-861

preserving Softmax requires calls to ΠMul and862

ΠDiv. The ΠDiv requires two call to ΠMul in par-863

allel per iteration, costing 1 rounds of communica-864

tion and transferring 512 bits. Thus performing the865

ΠDiv takes a total of 13 rounds of communication866

and transfers 6,656 bits and the implementation of867

approximate privacy-preserving Softmax takes a 868

total of 23 rounds of communication and transfers 869

6,784 bits. 870

E Underlying SMPC Protocols 871

In this section, we provide a brief overview of the 872

underlying protocols used and refer to the works 873

of Knott et al. (2021) and Zheng et al. (2023b) for 874

details. Let Sj with j ∈ {0, 1} be two parties that 875

are used to execute the SMPC protocol. Each party 876

Sj will be given one additive share ([u]j , [v]j) ∈ 877

ZL of the operation inputs u and v for j ∈ {0, 1}. 878

E.1 Privacy-Preserving Linear Protocols 879

Privacy-preserving addition is implemented 880

with [u+ v]j = [u]j + [v]j for j ∈ {0, 1}. 881

Privacy-preserving multiplication is imple- 882

mented with Beaver-triples: (a, b, c) where a, b ∈ 883

ZL are randomly sampled from ZL and c = a · b 884

mod L. Specifically, for each j ∈ {0, 1}, Sj 885

first calculates [d]j = [u]j − [a]j and [e]j = 886

[v]j − [b]j . Then, they send the [d]j and [e]j to 887

each other and reconstruct d = Rec([d]0, [d]1) 888

and e = Rec([e]0, [e]1). Finally, the additive 889

share of u · v can be computed using [u · v]j = 890

−jd · e+ [u]j · e+ d · [v]j + [c]j . To complete the 891

SS-based multiplication, both parties need to spend 892

1 round of two-way communication and transmit 893

256 bits. 894

E.2 Privacy-Preserving Non-Linear Protocols 895

Privacy-preserving comparison is implemented 896

by the conversion between the additive shares and 897

the binary shares. Specially, [[z]] = [[x− y]] is con- 898

verted to the binary shares ⟨⟨z⟩⟩ through additive 899

circuit with logL round of communication. Subse- 900

quently, the binary shares of z’s sign bit can be de- 901

termined by ⟨⟨b⟩⟩ = ⟨⟨z⟩⟩ >> (l − 1)7. Finally, the 902

additive shares of x < y can be derived by convert- 903

ing ⟨⟨b⟩⟩ to [[b]] with one round of communication. 904

Thus, the implementation of privacy-preserving 905

compare algorithm cost logL+1 round of commu- 906

nication and transmit 3456 bits. 907

7>> l denote shift l bit to the right.

12

Privacy-preserving maximum of the n-element908

vector x is implemented by calling logn privacy-909

preserving comparisons using the tree reduction910

algorithm (Knott et al., 2021).911

Privacy-preserving exponential is implemented912

using the repeated-squaring method913

ex = limx→∞
(
1 +

x

2n
)2n

, (9)914

which converts exponential calculations into addi-915

tion and square operations. The number of itera-916

tions n is set to 8 in (Knott et al., 2021) by default.917

Privacy-preserving reciprocal is implemented918

by Newton-Raphson method, which converts recip-919

rocal calculations into addition and multiplication920

operations. The iterative formula is921

yn+1 = yn(2− xyn). (10)922

The initial value of the iteration is923

y0 = 3e
1
2
−x + 0.003. (11)924

The number of iterations is set to 10 in (Knott et al.,925

2021) by default.926

Privacy-preserving square root is implemented927

by Newton-Raphson method, which converts expo-928

nential calculations into addition and multiplication929

operations. The iterative formula is930

yn+1 =
1

2
yn(3− xy2n). (12)931

The initial value of the iteration is932

y0 = e−2.2(x
2
+0.2) + 0.198046875. (13)933

The number of iterations is set to 3 in (Knott et al.,934

2021) by default.935

Privacy-preserving sine is implemented on936

trigonometric identities. Specifically, sin(x) =937

sin(δ) cos(t) + cos(δ) sin(t), where δ = x − t.938

With the assistance of the server T , the random939

numbers t, sin(t), cos(t) are generated in the of-940

fline phase, and the share of sin(x) is computed in941

the online phase with only one round of communi-942

cation and transmits 42 bit.8 See Algorithm 4 for943

an implementation of the privacy-preserving sine.944

8CrypTen uses 16-bit computational precision.

Algorithm 4: Privacy-preserving sine
Input: For j ∈ {0, 1}, Sj holds the shares [x]j ;

Same Pseudo-Random Function (PRF) and
key kj .

Output: For j ∈ {0, 1}, Sj returns the shares [y]j ,
where y = sin(x).

/* Offline Phase */
1 S0, T : [t]0, [u]0, [v]0 ← PRF (k0)
2 S1, T : [t]1 ← PRF (k1)
3 T : t = [t]0 + [t]1, [u]1 = sin(t)− [u]0, [v]1 =

cos(t)− [v]0
/* Online Phase */

4 [δ]j = ([x]j − [t]j) mod 20
5 δ = [δ]0 + [δ]1 // reconstruct δ by 1

round of communication
6 p = sin(δ), q = cos(δ)
7 [y]j = p[v]j + q[u]j

F Fourier Series Fitting Results 945

In this section, we give the results of fitting erf(x) 946

using Fourier series composed of different periodic 947

sin functions. Specifically, we fit erf(x) using the 948

7-th order Fourier series composed of sin functions 949

with periods of 10, 20, 30, and 40, respectively, and 950

the specific fitting results are shown in Fig. 10. 951

1.5 1.0 0.5 0.0 0.5 1.0 1.5

x

1.0

0.5

0.0

0.5

1.0

y

Fourier series fitting of erf (x)
erf
fourier_10
fourier_20
fourier_30
fourier_40

Figure 10: Fourier series fitting results for different
periods. “fourier10” denotes that the period of the sin
function in the Fourier series is 10.

G Models and Hyper-parameter 952

Models. In this section, we provide a concise 953

overview of the architecture of the experimental 954

models. For more detailed information, we refer 955

the readers to the HuggingFace Transformers li- 956

brary. 957

• BERTBASE: BERTBASE represents the founda- 958

tional version of the Bert model, comprising 959

12 Transformer encoder layers, a hidden size 960

13

of 768, and 12 heads. With 110 million pa-961

rameters, it undergoes training on a substantial962

corpus of unlabeled text data.963

• BERTLARGE: BERTLARGE serves as an ex-964

panded iteration of BERTBASE, featuring 24965

Transformer encoder layers, a hidden size of966

1024, and 16 heads. Boasting approximately967

340 million parameters, this version exhibits968

increased potency, enabling it to capture intri-969

cate language patterns.970

Hyper-parameter. For LayerNorm and Softmax,971

we set the constants η as 2000 and 5000, respec-972

tively, to ensure that the value of the denominator973

can be deflated to a reasonable range of conver-974

gence. We follow the choice of hyperparameters for975

fine-tuning and distillation in MPCFormer (Li et al.,976

2022). Specifically, in the fine-tuning phase, we use977

a learning rate of [1e− 6, 5e− 6, 1e− 5, 1e− 4], a978

batch size of [64, 256], and epochs of [10, 30, 100].979

We fine-tuned each model with a combination of980

hyperparameters and selected the best performing981

model as teacher. In the distillation phase, we de-982

cide the number of epochs based on the MSE loss983

of the embedding and transformation layer distilla-984

tions. For small datasets (CoLA, MRPC, RTE), the985

batch size is 8; for large datasets (QNLI, STS-B),986

the batch size is 32. Specifically, in the embedding987

and transform layer distillation phases, 10 epochs988

for QNLI, 20 epochs for MRPC, 50 epochs for989

STS-B, 50 epochs for CoLA, and 50 epochs for990

RTE.991

14

	Introduction
	Background and Related Works
	Workflow of SMPC-based Model Inference
	Main Bottlenecks of SMPC-based Transformer Model Inference
	Efficient PPI for Transformer Models

	SecFormer Framework
	Overview
	SMPC Protocols of SecFormer

	Experiments
	Experimental Setup
	Performance Comparison
	Efficiency Comparison
	SMPC Protocols Evaluation

	Conclusion
	Limitations
	2-out-of-2 Secret Sharing
	Protocol for the Approximated Privacy-Preserving Softmax
	Accuracy Comparison of Privacy-Preserving GeLU Algorithms
	Security Proof and Communication Complexity Analysis
	Security Proof
	Communication Complexity Analysis

	Underlying SMPC Protocols
	Privacy-Preserving Linear Protocols
	Privacy-Preserving Non-Linear Protocols

	Fourier Series Fitting Results
	Models and Hyper-parameter

