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ABSTRACT
The effectiveness of contrastive-learning-based Knowledge Distilla-
tion (KD) has sparked renewed interest in relational distillation, but
these methods typically focus on angle-wise information from the
penultimate layer. We show that exploiting relational information
derived from intermediate layers further improves the effectiveness
of distillation. We also find that adding distance-wise relational
information to contrastive-learning-based methods negatively im-
pacts distillation quality, revealing an implicit contention between
angle-wise and distance-wise attributes. Therefore, we propose a
Multi-stage Decoupled Relational (MDR) KD framework equipped
with an adaptive stage selection to identify the stages that maxi-
mize the efficacy of transferring the relational knowledge. MDR
framework decouples angle-wise and distance-wise information
to resolve their conflicts while still preserving complete relational
knowledge, thereby resulting in an elevated transferring efficiency
and distillation quality. To evaluate the proposed method, we con-
duct extensive experiments on multiple image benchmarks (i.e.
CIFAR100, ImageNet and Pascal VOC), covering various tasks (i.e.
classification, few-shot learning, transfer learning and object de-
tection). Our method exhibits superior performance under diverse
scenarios, surpassing the state of the art by an average improvement
of 1.22% on CIFAR-100 across extensively utilized teacher-student
network pairs.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
relation-based knowledge distillation, multi-stage, decouple

1 INTRODUCTION
Over the past decades, unprecedented development in neural net-
works has created numerous multimedia applications on vision
and/or language, ranging from image classification [8, 13, 20], object
detection [25], and visual question answering [17]. However, these
neural networks demand substantial computational and storage
resources due to their large model sizes, resulting in expensive and
cumbersome model deployment. To address this limitation, various
model compression techniques have been systematically explored,
such as pruning [10], quantization [7], Neural Architecture Search
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(NAS) [33], and Knowledge Distillation (KD) [12]. Among them, KD
stands out for its compatibility with other compression techniques,
superior generalization ability [2, 19, 42] and model structure flexi-
bility, thus making it vital in applications such as object detection
[3, 36] and Multiple Object Tracking (MOT) [16, 41].

KD aims to transfer knowledge from a heavy-weight model
(teacher) to a light-weight one (student). A straightforward ap-
proach is to align the student’s output probability distribution with
that of the teacher [12]. However, due to the limited scope of infor-
mation in this distribution, subsequent research has shifted towards
matching outputs of intermediate layers [11, 27], which further bi-
furcates into feature-based and relation-based methods. ReviewKD
[2], a feature-based method, exploits the residual structure to selec-
tively refine the outputs of multiple intermediate layers. In compar-
ison, prominent relation-based approaches excel by combining the
relational matrix from multiple samples with contrastive learning
in unsupervised domain. Particularly, SSKD [34], a relation-based
method, transfers knowledge by fitting the angle-wise relational
matrix composed of positive and negative sample pairs.

Despite these successes, we argue that existing contrastive learn-
ing based distillation methods have yet to realize their full potential
for two primary reasons. First, these methods only use single-stage
output features for relationship extraction, thereby overlooking
the utility of multi-stage relational information between samples.
Second, they rely only on angle-wise information, neglecting the
informative distance component for relational representation.

However, leveraging these missed opportunities presents certain
challenges. On one hand, as shown in Fig.1a, the mere incorporation
of multi-stage relational information does not necessarily improve
the distillation efficacy, even when the volume of transferred infor-
mation increases. This suggests that raw multi-stage relational data
may introduce redundant or even harmful information during the
knowledge transfer from the teacher to the student model. On the
other hand, Fig. 1b highlights the limitations of solely relying on
angle-wise relationships. We calculated the length distribution (de-
notes the distance from the origin point) of the penultimate layer’s
output from the student model, in order to eliminate the influence
of angle-wise information. Fig. 1b shows the length distribution of
penultimate features from models trained by various KD methods,
where a larger overlapping area with the teacher’s distribution
implies greater retention of distance information. This observa-
tion reveals that using only the angle-wise relationship between
samples for knowledge distillation leads to evident information
loss of the length distribution. Moreover, as demonstrated by RKD
[22], directly fitting both angle-wise and distance metrics between
samples results in complex, interdependent matrices, and thereby
culminates in sub-optimal performance.

To address these constraints, we introduce the Multi-stage De-
coupled Relational (MDR) knowledge distillation framework. Utiliz-
ing a novel Adaptive Stage Selection (ADSS) strategy, MDR selects

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Experimental results on relational information of samples in CIFAR100.

the most suitable stages for each sample based on the relational
representation capability of both its angle-wise and distance-wise
relational information. In addition, MDR decouples inter-sample
relationships into angle-wise and length-wise dimensions, allow-
ing for a simultaneous and conflict-free transfer of both types of
information. Moreover, in order to prevent Self-supervised Module
(SM) from neglecting length information during feature normal-
ization in contrastive-learning-based methods, we present a novel
training methodology for SMs that replaces the training based on
contrastive learning with an auxiliary classifier. This modification
preserves length attributes while enhancing angle-wise representa-
tion capability. Our evaluation demonstrates that MDR framework
surpasses the state of the art (SOTA) by an average of 1.22% on
CIFAR-100 across extensively utilized network pairs. In summary,
this paper makes the following contributions:

• We present critical insights into the constraints of the exist-
ing contrastive learning based knowledge distillation frame-
works. We delineate the avenues to further improve the
methods through the optimized selection of multi-stage in-
formation and the strategic decoupling of angle-wise and
length-wise relational representation.

• We propose adaptive stage selection to enable multi-stage
information extraction. We also present the concept of re-
lationship decoupling to partition relationships into angle-
wise and length-wise components for a streamlined student
training process. Moreover, we formulate a new SM training
paradigm to compensate for the loss of length-wise infor-
mation and augment its contrastive learning representation
capability.

• We cohesively integrate these innovations into a novel MDR
distillation framework. Our comprehensive evaluation re-
sults show that MDR framework consistently exceeds SOTA
performance across extensively utilized network pairs on
CIFAR-100, with an accuracy improvement up to 1.22%.

2 RELATEDWORK
Knowledge distillation trains a smaller network using the knowl-
edge from a larger network. Based on the types of the knowledge, ex-
isting KD frameworks can be divided into three categories: response-
based, feature-based and relation-based methods [6].

Response-based KD, also known as the classic KD [12], usually
relies on the neural response of the last output layer of the teacher
model. The main idea is to directly mimic the final prediction (log-
its) of the teacher model. DKD [42] proposes a decoupled approach
using the fundamental concept of KD. Unlike our proposed de-
coupled approach, DKD only separates the output categories into
target and non-target classes, and assigns different importance to
them. HSAKD [35] trains separate classifiers for each stage while
transferring multi-stage response-based information.

Featured-based KD, represented by FitNet [27], encourages the
student models to mimic the intermediate-level features from the
hidden layers of teacher models. VID [1] and PKT [23] reformulate
knowledge distillation as a procedure of maximizing the mutual
information between the teacher and the student networks. There
are also other methods using multi-stage information to transfer
knowledge. OFD [11] uses a novel distance function to transfer
knowledge from teacher to student; ReviewKD [2] proposes a new
multi-stage architecture that allows the student to select the ap-
propriate teacher stage for distillation. In contrast, our method
employs an adaptive stage selection strategy to extract the most rel-
evant relational information applicable to distillation for different
samples.

Relation-based KD emphasizes the exploitation of relationships
between distinct layers or samples. FSP [37] guides the student
model by generating a relation matrix between different layers
of the teacher model. SP [32], CC [24], and RKD [22] utilize the
relationships between samples to guide the student in learning
higher-dimensional representations. Leveraging the success of con-
trastive learning in unsupervised tasks [22, 24], many methods
utilize the representation space of contrastive learning to model
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the relationships between samples. CRD [31] pioneered the inte-
gration of contrastive learning into knowledge distillation, SSKD
[34] separately trains the teacher’s SM to extract richer knowledge,
PACKD [38] uses an optimal transport-based positive pair similar-
ity weighting strategy to better transfer discriminative information
from teachers to students. However, all of the existing contrastive-
learning-based methods extract relationships at the penultimate
feature layer. According to our experiments, we found that effec-
tive relational information can also be extracted from intermediate
layers. Therefore, we propose a multi-stage distillation framework
with adaptive stage selection strategy to comprehensively extract re-
lational knowledge between samples. Moreover, our novel method
decouples the relationship between samples into angle and length
difference, compensating information loss in length-wise relation-
ships in the existing contrastive-learning-based methods.

3 METHODOLOGY
In this section, we first provide a brief review of KD and the details
of contrastive-learning-based knowledge distillation methods. In
light of the aforementioned problems and limitations of the existing
methods, we present our proposed framework featuring an adaptive
stage selection strategy, followed by the concept of relationship
decoupling.

3.1 Preliminary
The response-based methods transfer the dark knowledge from the
teacher by approximating the distribution of soft targets, which
can be formulated as:

L𝑘𝑑 = 𝜏2𝐾𝐿(𝜎 (𝒛𝒔 ;𝜏)∥𝜎 (𝒛𝒕 ;𝜏)), (1)

where 𝒛𝒔 and 𝒛𝒕 are the logits from the student and the teacher
respectively; 𝜎 (·) is the softmax function that produces the cate-
gory probabilities from the logits, and 𝜏 is a temperature hyper-
parameter to scale the smoothness of the distribution; 𝐾𝐿 means
Kullback-Leibler divergence, which is the measurement of dissimi-
larity between two categorical distributions.

The main idea of the feature-based KD methods is to mimic the
feature representations between student and teacher, which can be
formulated as the following loss function:

L𝑓 𝑒𝑎𝑡 =
∑︁
𝑘

L𝑓 (T𝑠 (𝐹𝑠𝑘 ),T𝑡 (𝐹
𝑡
𝑘
)), (2)

where for stage 𝑘 , 𝐹𝑠
𝑘
and 𝐹 𝑡

𝑘
denote the feature maps from the

student and the teacher respectively; T𝑠 , T𝑡 denote the student and
the teacher transformation module respectively; L𝑓 (·) denotes the
function which compute the distance between two feature maps.
Using multi-stage information has become the prevailing approach
for feature-based methods [2, 35].

In contrast to the methods that distill knowledge from individual
samples, the relation-based KD methods exploit the relationship
between distinct samples, which can be formulated as:

L𝑟𝑒𝑙𝑎 (𝐹𝑡 , 𝐹𝑠 ) = L𝑅2 (𝜓 (𝑡𝑖 , 𝑡 𝑗 ),𝜓 (𝑠𝑖 , 𝑠 𝑗 )), (3)

where (𝑡𝑖 , 𝑡 𝑗 ) ∈ 𝐹𝑡 and (𝑠𝑖 , 𝑠 𝑗 ) ∈ 𝐹𝑠 , 𝐹𝑡 and 𝐹𝑠 are the sets of fea-
ture representations of samples from the teacher and student re-
spectively;𝜓 (·) denotes the similarity function of (𝑡𝑖 , 𝑡 𝑗 ) or (𝑠𝑖 , 𝑠 𝑗 );

L𝑅2 (·) is the correlation function of the feature representations be-
tween teacher and student (e.g., Huber loss). However, the existing
relation-based methods focus on the design of the relational matrix
and neglect the valuable multi-stage information.

As the predominant relation-based method, contrastive-learning-
based knowledge distillation captures inter-sample relationships
to transfer knowledge by leveraging the cosine similarity within
the representation space. Given a mini-batch containing 𝑁 samples
{𝑥𝑖 }𝑖=1:𝑁 (i.e., anchor set P), we apply strong data augmentation
𝑡 (·), such as Random Rotation [34] or MixUp [38], to each sample
and obtain {𝑥𝑖 }𝑖=1:𝑀 ((i.e., positive set P̃) where𝑀 = 3𝑁 . Both 𝑥𝑖
and 𝑥𝑖 are fed into the teacher or student networks to extract their
representations 𝜙𝑖 = 𝑓 (𝑥𝑖 ), 𝜙𝑖 = 𝑓 (𝑥𝑖 ). The similarities between 𝑥𝑖
and 𝑥𝑖 can be represented by the following matrix A:

A𝑖, 𝑗 = 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑧𝑖 , 𝑧 𝑗 ) =
𝑑𝑜𝑡 (𝑧𝑖 , 𝑧 𝑗 )
| |𝑧𝑖 | |2 | |𝑧 𝑗 | |2

, (4)

where �̃�𝑖 and 𝑧 𝑗 are the outputs of SM, which transforms 𝜙𝑖 and 𝜙𝑖
into a contrastive learning representation space.A𝑖, 𝑗 represents the
similarity between 𝑥𝑖 and 𝑥 𝑗 . (𝑥𝑖 , 𝑥𝑖 ) refers to the positive pair and
(𝑥𝑖 , 𝑥 𝑗 )𝑖≠𝑗 the negative pair. The SM consists of a 2-layer perceptron
with a pooling layer, which is trained by maximizing the similarity
between positive pairs. A commonly used contrastive objective is
defined as:

L𝑐𝑜𝑛 = −
∑︁
𝑖

𝑙𝑜𝑔
exp(A𝑖,𝑖/𝜏)∑
𝑘 exp(A𝑖,𝑘/𝜏)

. (5)

In addition to the angle-wise relational matrix formation, the
distance-wise relational matrix between samples can also be used
to transfer knowledge [22], which can be expressed as:

D𝑖, 𝑗 = | |𝑧𝑖 − 𝑧 𝑗 | |2 . (6)

However, utilizing both the angle-wise and distance-wise matri-
ces simultaneously leads to a degraded performance due to their
strongly coupled relationship.

3.2 Adaptive Stage Selection Strategy
As mentioned in Sec.1, the existing contrastive-learning-based
knowledge distillation methods only use single-stage output fea-
tures for relationship extraction. However, as shown in Fig. 1a,
the output of each stage contains valuable angle-wise relational
information for the student to learn. To better exploit these infor-
mation, we adopt a multi-stage framework to transfer knowledge.
Specifically, for each distillation stage, both teacher and student
networks are equipped with SMs to capture relational informa-
tion. We augment the data set using MixUp and derive the anchor
set P and the positive set P̃. To fully exploit the representation
capability, we incorporate both the angle-wise and distance-wise
information instead of solely relying on angle-wise relationships in
the loss function. Therefore, unlike Eqn. 3, the loss of multi-stage
knowledge transfer is represented as:

L𝑟𝑒𝑙𝑎 =
∑︁
𝑘

∑︁
𝑖∈ P̃, 𝑗∈P

L𝑅2 (B𝑠,𝑘𝑖, 𝑗 ∥B
𝑡,𝑘
𝑖, 𝑗

), (7)

where for 𝑘-th stage, B𝑠 is a probability matrix, consisting of stu-
dent’s similarity matrix A𝑠 (Eqn. 4) or D𝑠 (Eqn. 6) with softmax
(with temperature scale 𝜏 ) along the dimension of all samples from
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Figure 2: Illustration of our proposed MDR framework. ADSS selects the appropriate stage for information transfer (the first
stage is selected in this example). Relational Decoupled Module (RDM) transforms the relational information among multiple
samples within the corresponding stage into angle-wise (e.g. [𝛼1, 𝛼2, 𝛼3]) and length-wise (e.g. [𝑙1, 𝑙2, 𝑙3]) representations. L𝑎𝑛𝑔
and L𝑙𝑒𝑛 are used to transfer decoupled relational information. The red cross indicates that the information at this stage is
filtered in this case.

P in the mini-batch. The same procedure is applied to the teacher
to obtain B𝑡 .

As shown in Fig. 1a, incorporatingmulti-stage relational informa-
tion straightforwardly does not necessarily improve the distillation
efficacy. We argue that every stage contains beneficial information,
but using all stages introduce redundant or even harmful informa-
tion during the knowledge transfer. In order to obtain just enough
relational information effectively, we propose an adaptive stage se-
lection strategy to select the most appropriate stage for angle-wise
knowledge transfer.

Since both the intra-class (positive pairs) and inter-class (neg-
ative pairs) correlation can reflect the representational capability,
it is insufficient to use only the cosine similarity of positive pairs
as a metric. Moreover, the representation capabilities of each stage
are different, and it is not suitable to directly compare the absolute
values of similarity between positive and negative pairs. Therefore,
we use relative numerical ranking instead of absolute cosine simi-
larity. Specifically, we use Eqn. 4 to calculate the cosine similarity
between each positive anchor pair and rank them individually at
each stage of the mini-batch extending the dimensions of the pos-
itive sample. By comparing the order of the similarity between a
positive sample and its corresponding anchor in each stage, we
select the highest-ranking stage for knowledge transfer.

As illustrated in Fig. 2, we exploit distance-wise relationship,
in order to convey more comprehensive information during distil-
lation. As for the stage selection, we use absolute distance as the
criterion and also exploit relative numerical ranking by using the
following formula:

𝐴𝑆 ({𝑀𝑘
𝑖 }
𝐾

𝑘=1) = argmin
𝑘

{𝑅𝑎𝑛𝑘 (𝑀𝑘
𝑖 )}

𝐾

𝑘=1, (8)

where 𝐾 is the number of stages in a network;𝑀𝑘
𝑖
is angle-wise or

distance-wise similarity matrix between positive sample 𝑖 and all
anchor samples in the mini-batch; 𝑅𝑎𝑛𝑘 is the function that sorts
the similarity in descending order.

3.3 Relational Decoupled Module
As shown in Fig. 1b, exclusively depending on angle-wise rela-
tionship during distillation leads to information loss of the length
distribution. Therefore, it is crucial to utilize both angle-wise and
distance-wise information in order to comprehensively capture the
relational information between samples for distillation. Yet, it is
challenging to effectively combine these two types of information.
For example, RKD directly used two types of information, but the
best distillation results are often obtained by taking one of the two.
This is because the distance metric contains both angle and length
(the latter indicating distance from the origin) information, which
may obstruct the comprehension of angle information while learn-
ing distance information. In the feature representation space, the
sample distance does not align with the principles of contrastive
learning as described in Eqn. 5. Specifically, the distance between
the positive pairs does not always need to be close. Therefore, con-
flicts arise when fitting angle-wise and distance-wise relationships
simultaneously.

To solve this problem, we propose the concept of relationship
decoupling. As illustrated in Fig. 2, we decouple the relationship
between samples into angle and length difference, and the latter
can be expressed by the following equation:

D𝑖 𝑓 𝑓𝑖, 𝑗 =
1
𝜇𝑖

�� | |𝑧𝑖 | |2 − ||𝑧 𝑗 | |2
�� , (9)
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where 𝜇 is a normalization factor for length difference. Similar to
RKD, we set 𝜇 to be the average length difference between pairs
from P and P̃ in the mini-batch:

𝜇𝑖 =
1��P2
�� ∑︁
𝑗∈P

�� | |𝑧𝑖 | |2 − ||𝑧 𝑗 | |2
�� . (10)

Unlike the traditional way of transferring angle-wise knowledge,
we directly use MSE loss to fit the length-wise relational matrix.
The length-wise loss and angle-wise loss are defined respectively
as:

L𝑙𝑒𝑛 =
∑︁

𝑖∈ P̃, 𝑗∈P

𝑀𝑆𝐸 (D𝑖 𝑓 𝑓 𝑠,𝑘
𝑖, 𝑗
,D𝑖 𝑓 𝑓 𝑡,𝑘

𝑖, 𝑗
)

s.t. 𝑘 = 𝐴𝑆 ({D𝑡,𝑘
𝑖, 𝑗

}
𝐾

𝑘=1
),

(11)

L𝑎𝑛𝑔 = 𝜏2
∑︁

𝑖∈ P̃, 𝑗∈P

𝐾𝐿(B𝑠,𝑘
𝑖, 𝑗

∥B𝑡,𝑘
𝑖, 𝑗

)

s.t. 𝑘 = 𝐴𝑆 ({B𝑡,𝑘
𝑖, 𝑗

}
𝐾

𝑘=1
) .

(12)

The final loss for the student network is the combination of afore-
mentioned terms, including the original training loss L𝑐𝑙𝑠 , the
response-based loss L𝑘𝑑 , and the relation-based loss L𝑎𝑛𝑔 and
L𝑙𝑒𝑛 :

L = 𝜆1L𝑐𝑙𝑠 + 𝜆2L𝑘𝑑 + 𝜆3L𝑎𝑛𝑔 + 𝜆4L𝑙𝑒𝑛, (13)
where the 𝜆𝑖 is the balancing weight.
Before training the student, we freeze the teacher’s backbone

and train the SM. SM is typically trained by explicitly improving the
representational ability of contrastive learning (Eqn. 5) in existing
methods, which neglect length-wise information during feature
normalization to prioritize angle-wise relationships. To preserve
length-wise information while maintaining the representational
ability of contrastive learning, we place a classifier behind each SM
and directly use cross-entropy (CE) loss. This approach ensures that
the dimensions of the outputs are consistent while retaining the
relational information. Compared with the prior training methods,
the contrastive learning representational ability of SM is further
amplified with CE loss. Moreover, training through a classifier is
more effective for SM to obtain the global information of the data
set, rather than the relational information between samples within
a mini-batch.

4 EXPERIMENTS
To demonstrate the effectiveness of our work, we evaluate MDR
in various tasks: classification, few-shot learning, transfer learning
and object detection. Moreover, we present various ablation study
for the proposed method.

4.1 Experimental Settings
Datasets and CompetitorsWe conduct evaluations on standard
CIFAR-100 [15] and ImageNet [28] benchmarks across the widely
applied network families including ResNet [9], WRN [40], VGG
[30], MobileNet [29], ShuffleNet [21]. CIFAR-100 [15] contains 50K
images for training and 10K images for testing, labeled into 100 fine-
grained categories. The size of each image is 32×32. ImageNet [28]
consists of 1.2M images for training and 50K images for validation,
covering 1,000 categories. All images are resized to 224 × 224 during

training and testing. We report the top-1 and top-5 accuracy on
this dataset for image recognition.

Moreover, we employ the SIL-10 [4] and TinyImagenet [28]
datasets to assess the transferability of learned representations gen-
erated by distillation method. STL-10 [4] is composed of 5K labeled
training images and 8K test images in 10 classes. TinyImageNet
[28] is composed of 100K training images and 10k test images in
200 classes. We evaluate the proposed MDR on this dataset with
image recognition and report the top-1 accuracy.

Following the consistent protocol, we use Pascal VOC [5] train-
val07 + 12 for training and test07 for evaluation. The result set
consists of 16551 training images and 4952 test images in 20 classes.
The image scale is 1000 × 600 pixels during training and inference.
The comparison of detection performance toward average precision
(AP) on individual classes and mean AP (mAP).

We compare MDR with a wide range of representative KD meth-
ods, including KD [12], FitNets [27], AT [39], SP [32], CC [24],
RKD [22], PKT [23], OFD [11], CRD [31], SSKD [34], CRCD [43],
ReviewKD [2], DKD [42], CTKD [18], ML-LD [14].

Implementation detailsWe attach one SM after each convolu-
tional stage. The SM is composed of global average pooling(GAP)
and two fully-connected(FC) layer. For training teacher SMs, we at-
tach one FC layer for CE loss, where the input dimension is same as
the dimension of SM’s output feature (e.g., 128 on CIFAR-100, 1280
on ImageNet) and the output dimension is same as the number of
categories. During the training stage of teacher’s SMs, we connect
a classifier after each SM (composed of a layer of fully connected),
and directly uses category information for supervised learning. In
this process, except for SM and classifier, the backbone part of the
network remains frozen.

On CIFAR-100, the batch size and initial learning rate are set
to 64 and 0.05. We train the models for 240 epochs in total with
SGD optimizer, and decay the learning rate by 0.1 at 150, 180, and
210 epochs. The weight decay and the momentum are set to 5e-4
and 0.9. On ImageNet, we adopt the SGD optimizer to train the
student networks for 100 epochs with a batch size of 512. The initial
learning rate is 0.2 and decayed by 10 when the epoch is 30, 60 and
90. Weight decay and momentum are the same as above. We set 𝜏
in L𝑘𝑑 for P to be 1, P̃ to be 1, 𝜏 in L𝑎𝑛𝑔 and L𝑙𝑒𝑛 to be 0.5. We
set 𝜆1 = 1.0, 𝜆2 = 2.0, 𝜆3 = 300, 𝜆4 = 1.0 in Eqn. 13.

Due to the page limit, we provide more training details in the
supplementary materials.

4.2 Comparison with the State Of The Arts
Results on CIFAR-100.We compare our MDRwith representative
distillation methods using a variety of teacher-student pairs, with
both identical and different architectural styles on the CIFAR-100
dataset. As shown in Table 1, our MDR consistently outperforms
other methods by a significant margin. Specifically, our method
achieves an average of 0.88% accuracy improvement when com-
pared with the existing optimal method for each network pair
configuration. The amount of accuracy improvement is larger than
that of many previous methods. Collectively, there’s an average
improvement of 1.22% in accuracy over the best-performing SSKD
(more experiments in the supplementary materials). These results
indicate that our proposed MDR effectively exploits the decoupled
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Table 1: Top-1 accuracy (%) comparison of SOTA distillation methods across various teacher-student pairs on CIFAR-100. The
numbers in Bold and underline denote the best and the second-best results, respectively.

Teacher WRN40-2 WRN40-2 ResNet56 ResNet110 VGG13 ResNet32×4 ResNet32×4 ResNet50

AvgAcc. 76.41 76.41 73.44 74.07 75.38 79.42 79.42 79.34
Student WRN40-1 WRN16-2 ResNet20 ResNet32 VGG8 ResNet8×4 ShuffleV2 MobileV2
Acc. 71.98 73.26 69.06 71.45 70.68 72.50 71.82 64.60

KD 73.99 75.81 71.31 73.23 73.33 73.69 74.73 68.09 73.02
FitNet 74.44 75.63 71.59 73.26 74.02 75.28 75.30 66.77 73.29
AT 74.67 75.77 71.60 74.03 73.92 75.42 75.51 67.20 73.52
SP 73.91 75.44 71.02 73.88 73.31 74.09 75.20 69.11 73.25
CC 73.98 75.41 71.43 74.30 73.39 74.87 75.44 69.34 73.52
RKD 73.91 75.33 70.74 73.54 73.66 74.85 75.50 68.82 73.29
PKT 74.78 75.42 71.78 73.99 73.65 74.45 76.00 68.72 73.60
CRD 74.45 75.89 71.55 74.24 74.08 75.88 76.46 69.76 74.04
CRCD 74.41 76.07 71.49 73.92 74.31 75.50 76.23 69.99 73.99
SSKD 75.64 75.72 71.34 73.71 74.88 76.01 78.53 71.91 74.72

ReviewKD 75.41 76.42 72.04 74.10 75.03 75.91 78.02 70.21 74.64
DKD 75.02 76.44 72.09 74.39 74.91 76.49 76.58 70.51 74.56
CTKD 74.89 76.20 71.98 74.31 74.99 76.37 76.98 70.89 74.58
ML-LD 74.89 76.45 71.64 73.85 74.68 75.60 76.88 70.79 74.35

Ours 76.79 77.09 72.77 75.18 75.97 77.94 79.27 72.52 75.94

Table 2: Top-1 and Top-5 accuracy (%) comparisons of SOTA distillation methods on ImageNet. Part of the compared results are
from [14]. From left to right, the methods are ordered from oldest to newest.

Acc. Teacher Student KD AT RKD CRD SSKD ReviewKD DKD CTKD ML-LD Ours

Top-1 73.31 69.75 70.66 70.70 71.34 71.38 71.41 71.61 71.70 71.51 71.28 72.03
Top-5 91.42 89.07 89.88 90.00 90.37 90.49 90.44 90.51 90.41 90.47 90.15 90.69

relationship across multiple stages between samples for knowledge
distillation. Note that the student’s accuracy surpasses the teacher’s
in certain identical architecture pairs, such as WRN40-2→WRN40-
1. This underscores our method’s capability to comprehensively
extract more valuable information from teachers.

Results on ImageNet. We further evaluated a teacher-student
pair on the large-scale ImageNet and its downstream task, using
ResNet34 as a teacher and ResNet18 as a student. As shown in
Table 2, our MDR delivers the best accuracy in both Top-1 and Top-
5 categories. Specifically, MDR improves the accuracy by 0.62% over
SSKD for Top-1 accuracy. The accuracy improvement on ImageNet
is less pronounced than on CIFAR100. This can be attributed to
higher class similarity within categories on ImageNet, which is
challenging for the SM training method. Despite this, MDR still
achieves one of the highest incremental gains over existingmethods,
reducing the student-teacher accuracy gap to 1.28% (about 20%
relative improvement) compared to 1.61% for the previous best.
These results highlight MDR’s remarkable effectiveness on large-
scale datasets even in the presence of challenging class structures.

Transferability of Learned Representations. Beyond achiev-
ing superior accuracy on the object dataset, it is imperative for the
student network to produce generalized feature representations
that can exhibit robust transferability to novel semantic recognition
datasets. To this end, we adopt the strategy of freezing the back-
bone 𝑓 𝑆 (·) that has been pre-trained on the upstream CIFAR-100.
We then train two linear classifiers based on the fixed penultimate
features for downstream classification on the STL-10 and Tiny-
ImageNet, respectively [31]. Table 3 shows the ability of transfer
learning using different KD methods. Specifically, our MDR method
outperforms the best-competing DKD by an accuracy gain of 1.41%
on STL-10 and an accuracy gain of 1.14% on TinyImageNet, demon-
strating its superior transferability to various recognition tasks.

Efficiency under Few-shot Scenario.We evaluate our method
against conventional KD, CRD, SSKD and CTKD in a few-shot
learning environment, using retention rates of 25%, 50%, and 75%
of the original training samples. To ensure a fair comparison, we
maintain a consistent data split strategy for each few-shot scenario,
while keeping the original test set intact. Our evaluation utilizes the
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Figure 3: Ablation study on CIFAR100. Student network ResNet8×4, ShuffleV1 and ShuffleV2, are trained under teacher network
ResNet32×4.

Table 3: Linear classification accuracy (%) of transfer learning on the teacher-student pair ResNet32×4→ ResNet8×4.

Transferred Dataset Baseline KD FitNet RKD CRD SSKD ReviewKD DKD Ours

CIFAR100→SIL-10 69.76 69.56 70.94 71.41 70.76 71.89 71.90 72.15 73.56
CIFAR100→TinyImageNet 34.29 34.77 38.07 38.02 38.17 38.56 38.54 38.74 39.88

Table 4: Top-1 accuracy (%) comparison on CIFAR-100 under
few-shot scenario with various percentages of samples.

Percentage KD CRD SSKD CTKD Ours

25% 64.40 64.71 67.82 68.49 69.11
50% 68.37 68.90 70.08 70.61 71.17
75% 69.97 70.86 70.47 71.71 72.35

Table 5: Comparison of detection mAP (%) on Pascal VOC
using ResNet-18 as the backbone pre-trained on ImageNet
by various KD methods.

Baseline KD CRD SSKD DKD CTKD Ours

76.18 77.06 77.36 77.60 77.81 77.78 78.42

ResNet56-ResNet20 pair. As depicted in Table 4, our method con-
sistently outperforms the other techniques by large margins across
various few-shot scenarios. Notably, compared with the baseline
trained on the complete set, our method achieves higher accuracy
with only 25% of the training data. This outcome is attributed to
our method’s ability to effectively learn general relational infor-
mation from limited data. In comparison, the previous methods
typically focus on mimicking inductive biases from intermediate
feature maps or incomplete relationships, which may overfit on the
limited dataset and reduce generalization on the test set.

Transferability for Object Detection.We further evaluate the
student network ResNet-18, which is pre-trained with the teacher

ResNet-34 on ImageNet, as a backbone for downstream object detec-
tion on Pascal VOC. For this evaluation, we adopt the Faster-RCNN
[26] framework, adhering to the standard data pre-processing and
fine-tuning protocols. Table 5 shows our method’s superior detec-
tion performance, surpassing the original baseline by 2.24% mAP
and the best-competing DKD method by 0.61% mAP. These results
underscore our method’s efficacy in guiding a network to achieve
superior feature representations for diverse semantic tasks.

4.3 Ablation Studies
In this section, we provide ablation studies to analyze the effects
of each component of MDR. The experiments are conducted on
CIFAR-100 for classification task.

Effect of Adaptive Stage Selection. As shown in Fig. 3a, MS
means using multi-stage decoupled relational information to trans-
fer, which contains angle-wise and length-wise information in each
stage. Applying angle-wise adaptive stage selection strategy (MS +
ADSS_A) substantially boosts the accuracy upon the original multi-
stage information, indicating that we extract a larger amount of
beneficial angle-wise relationship. As we further add distance-wise
adaptive stage selection strategy (MS + ADSS_A + ADSS_D), an
even higher accuracy is achieved thanks to the positive contribution
of valuable distance-wise information.

Effect of Relational Decoupled Module. To explore the ef-
fectiveness of proposed RDM, we conduct the evaluation in three
variants: only using angle-wise information (L𝑎𝑛𝑔), angle-wise
and distance-wise information (L𝑎𝑛𝑔 +L𝑑𝑖𝑠𝑡 ), both angle-wise and
length-wise information (L𝑎𝑛𝑔 + L𝑙𝑒𝑛) and all three information
(L𝑎𝑛𝑔 + L𝑙𝑒𝑛 + L𝑑𝑖𝑠𝑡 ). The results are shown in Fig. 3b, where
coupled information (L𝑑𝑖𝑠𝑡 ) often have a negative impact on distil-
lation, and RDM boosts the accuracy compared to the others.
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Figure 4: MSE loss of relational matrix between ResNet32×4 and ResNet8×4. We visualize the MSE loss of relational matrix
between the models trained by RKD (left), SSKD (middle), and MDR (right).

Table 6: Ablations on the number of adaptive stages.

Tea-Stu pair info type N = 1 N = 2 N = 3

VGG13→VGG8 angle 75.97 75.88 75.83
VGG13→VGG8 length 75.97 75.81 75.84
Res50→MobV2 angle 72.52 72.32 72.19
Res50→MobV2 length 72.52 72.29 72.33

To assess the impact of CE loss for SM training, we compare
the teacher’s SMP accuracy and student’s accuracy under three
cases: no SM, with contrastive loss, and with CE loss. SMP accuracy
shows the faction of positive samples correctly assigned to the
corresponding anchor. As shown in Fig. 3c, compared with the
no-SM case, training with contrastive loss improves SMP accuracy,
which is further improved by CE loss in both types of accuracy.
Among them, the improvement of SMP accuracy in the early stage
is more obvious with the modification of SM training strategy.

The number of adaptive stages. We validate various number
of adaptive stages based on angle and distance respectively: 1/2/3
with two teacher-student pairs, including identical and distinct
architectures. For the fairness of the comparison, when verifying
the number of adaptive stages based on angle, length-wise one is
fixed to be 1, and vice versa. As shown in Table 6, regardless of
angle-wise or length-wise information, the best result is achieved
when the number of adaptive stages is 1. Combined with stage
selection, the accuracy improves steadily.

Due to the page limitation, more ablation studies and experiment
analysis can be found in the supplementary materials.

4.4 Visualizations
In this part, we present the visualization to show that our MDR
does bridge the teacher-student gap in the relation-level. The ex-
periments are conducted on the sampled CIFAR-100 validation
set (10,000 samples). We compute relational matrix with a batch
size of 25 for the penultimate stage, so these are 400 values for

each experiment. We visualize the MSE loss of relational matrix
between ResNet32×4 and ResNet8×4 in Fig. 4, which is formed by
the addition of normalized angle-wise and length-wise matrix. For
better presentation, we rank these values and organize them as the
heatmap representation. The smaller the value, the more similar the
matrix are. We can find that our MDR significantly improves the
similarity of angle-wise and length-wise relational matrix between
the student and the teacher.

Due to the page limitation, more related visualizations can be
found in the supplementary materials.

4.5 Limitations
Compared with other relational distillation methods that only use
the penultimate layer information for distillation, our method needs
to use the middle layer information, so the teacher and the student
need to have the same number of stages. Therefore, there is a
constraint on the selection of distillable networks.

In addition, similar to other knowledge distillation methods
based on contrastive learning, our method needs to first train the
teacher’s SM module and obtain the relationship matrix of angle
and length, so it takes a longer time than the traditional KD method
(under the same hardware conditions , the training time is 5.2 times
that of traditional KD and 1.1 times that of SSKD).

5 CONCLUSION
In this paper, we propose a novel framework equipped with an
adaptive stage selection strategy for relation-based knowledge dis-
tillation, which enables efficient extraction of relational information
across multiple stages. By decoupling the relationship into angle
and length difference and introducing a novel training method for
the self-supervised module, our approach enables the student to ac-
quire knowledge more effectively. Experiment results show that our
method significantly surpasses SOTA performance on the standard
image classification benchmarks in the field of KD. It also opens
the door for further improvements of knowledge transfer methods
based on relationship.
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