
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC INFLUENCE TRACKER: ESTIMATING SAM-
PLE INFLUENCE IN SGD-TRAINED MODELS ACROSS
ARBITRARY TIME WINDOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding how training samples affect models improves model interpretabil-
ity, optimization strategies, and anomaly detection. However, existing methods
for estimating sample influence provide only static assessments, rely on restric-
tive assumptions, and require high computational costs. We propose Dynamic
Influence Tracker (DIT), a novel method to estimate time-varying sample influ-
ence in models trained with Stochastic Gradient Descent (SGD). DIT enables
fine-grained analysis of sample influence within arbitrary time windows during
training through a two-phase algorithm. The training phase efficiently captures
and stores necessary information about the SGD trajectory, while the inference
phase computes the influence of samples on the model within a specified time
window. We provide a theoretical error bound for our estimator without assuming
convexity, showing its reliability across various learning scenarios. Our exper-
imental results reveal the evolution of sample influence throughout the training
process, enhancing understanding of learning dynamics. We show DIT’s effec-
tiveness in improving model performance through anomalous sample detection
and its potential for advancing curriculum learning.

1 INTRODUCTION

Deep neural networks, optimized via Stochastic Gradient Descent (SGD) (Bottou, 2010), have
achieved remarkable success across various domains. Despite these achievements, it is challenging
to estimate the dynamic influence of training samples on the learning process. This understanding
is key to enhancing model interpretability, improving optimization strategies, designing effective
curriculum learning (Bengio et al., 2009), and enabling early anomaly detection (Chandola et al.,
2009).

Existing methods for estimating sample influence, such as influence functions (Koh & Liang, 2017)
and SGD-influence (Hara et al., 2019), provide foundational insights but face several limitations:
First, existing methods can only estimate the overall impact of samples on the final model. They
provide a single, static estimate of influence for the entire training process, failing to capture how
the influence evolves throughout different stages of the training process. Second, they often rely
on strong assumptions about loss convergence, convexity or model optimality. These conditions are
rarely met in modern deep learning environments featuring complex, non-convex loss landscapes.
This can lead to inaccurate influence assessments. Third, most methods involve computationally in-
tensive operations, such as retraining the model multiple times (Ghorbani & Zou, 2019) or inverting
the Hessian matrix (Koh & Liang, 2017). The high computational costs limit practical applicability
and make real-time influence analysis infeasible. Collectively, these limitations obscure the time-
varying nature of sample influence, thus restricting the utility and applicability of existing models in
real-world scenarios.

To address these challenges, we propose the Dynamic Influence Tracker (DIT) to estimate the time-
varying influence of training samples on models trained using SGD. Our method enables to estimate
sample influence within arbitrary time windows through a two-phase algorithm. The training phase,
executed only once, captures and stores necessary information about the SGD process, particularly
focusing on the evolution of the model’s parameters over time. The inference phase utilizes the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

stored information to compute the influence of selected samples within specified time windows,
enabling efficient and flexible analysis.

Compared with existing works, DIT offers the following advantages:

1) Real-Time and Dynamic Influence Tracking. DIT provides granular real-time sample in-
fluence estimates within arbitrary time windows during model training, capturing dynamic
influence fluctuations. Our experiments show that DIT can identify important samples
early in training, optimizing the process and enhancing performance in applications such
as mislabeled sample detection.

2) Robustness to Non-Convergence and Non-Convexity. DIT handles non-convex loss
landscapes effectively by utilizing gradient analysis and Hessian-vector approximations
without assuming convergence or global optimality. We provide theoretical guarantees on
the accuracy of our estimates, showing that estimation errors grow controllably with the
training interval, ensuring reliable results even in non-convex settings.

3) Query-Based Multifaceted Influence Measure. Our query-based algorithm enables mul-
tifaceted analysis of model behavior by projecting parameter changes to specific directions.
This approach allows for targeted estimation of how training samples impact loss gradients,
predictions, and other model properties, providing a comprehensive understanding of sam-
ple influence.

2 PRELIMINARIES

Let Z = X × Y denote the space of observations, where X ⊆ Rd is the input space and Y is the
output space. Given a training set D = {zi}Ni=1 of i.i.d. observations zi = (xi, yi) ∈ Z , a model
f : X ×Θ→ Y parameterized by θ ∈ Θ ⊆ Rp, and a loss function ` : Z ×Θ→ R, we formulate
the learning problem as:

θ̂ = arg min
θ∈Θ

1

N

N∑
i=1

`(zi; θ). (1)

Definition 1 (Stochastic Gradient Descent (SGD)). Let g(z; θ) = ∇θ`(z; θ), and SGD starts from
θ[0]. The update rule for mini-batch SGD at step t is:

θ[t+1] = θ[t] − ηt
|St|

∑
i∈St

g(zi; θ
[t]), 0 ≤ t ≤ T − 1, (2)

where St ⊆ {1, ..., N} represents the mini-batch of indices at step t, ηt is the learning rate at step t,
and T denotes the total number of SGD steps.
Definition 2 (Influence Function Koh & Liang (2017)). The influence function measures the im-
pact of removing a single training point zj on the optimal model parameters θ̂. It is defined as
θ̂−j − θ̂, where θ̂−j = arg minθ

∑N
i=1,i6=j `(zi; θ). For strongly convex loss functions, it can be

approximated as:
θ̂−j − θ̂ ≈ −Ĥ−1∇θ`(zj ; θ̂), (3)

where Ĥ = 1
N

∑
z∈D∇2`(z; θ̂) is the Hessian of the loss at the optimal parameters.

Definition 3 (Counterfactual SGD). The counterfactual SGD process is used to understand the in-
fluence of a specific training sample on the learning process by excluding the j-th training sample.
Starting from θ

[0]
−j = θ[0], the parameters are updated at each step t using:

θ[t+1] = θ[t] − ηt
|St|

∑
i∈St\{j}

g(zi; θ
[t]
−j), 0 ≤ t ≤ T − 1. (4)

Definition 4 (SGD-Influence (Hara et al., 2019)). The SGD-influence of training sample zj ∈ D
within t steps is defined as θ[t]

−j − θ[t].

While the influence function (Koh & Liang, 2017) provides insights at the optimum, SGD-
Influence (Hara et al., 2019) measures the impact of excluding a specific training instance zj
throughout the SGD training process. In the following sections, we will introduce our method for
estimating sample influence efficiently for arbitrary time windows during training.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PARAMETER CHANGE IN TIME WINDOW

3.1 PROBLEM FORMULATION

Our goal is to estimate the impact of training samples during an arbitrary time window [t1, t2]
within the overall training process [0, T], where 0 ≤ t1 < t2 ≤ T . We formalize this goal with a
counterfactual question: how would the model’s parameters change during the interval [t1, t2] if a
specific sample zj is not used?
Definition 5 (Parameter Change in Time Window). For a time window [t1, t2] during SGD training,
the parameter change estimates the contribution of a training sample zj as:

∆θ
[t1,t2]
−j = (θ

[t2]
−j − θ

[t1]
−j)− (θ[t2] − θ[t1]), (5)

where (θ[t2]−θ[t1]) represents the parameter changes under standard SGD within [t1, t2], and (θ
[t2]
−j −

θ
[t1]
−j) represents the parameter changes over the same interval when excluding sample zj .

For the special case [0, t], starting from the beginning of training, this simplifies to:

∆θ
[0,t]
−j = (θ

[t]
−j − θ

[0]
−j)− (θ[t] − θ[0]) = θ

[t]
−j − θ

[t]. (6)

For brevity, we denote ∆θ
[0,t]
−j = ∆θ

[t]
−j .

3.2 ESTIMATION OF PARAMETER CHANGE IN TIME WINDOW

We aim to estimate the parameter change due to the absence of sample zj over the time window
[t1, t2], where 0 ≤ t1 < t2 ≤ T :

∆θ
[t1,t2]
−j = (θ

[t2]
−j − θ

[t1]
−j)− (θ[t2] − θ[t1]) = (θ

[t2]
−j − θ

[t2])− (θ
[t1]
−j − θ

[t1]). (7)

Consider the normal SGD update for step t (0 ≤ t ≤ T − 1) (including all samples):

θ[t+1] = θ[t] − ηt
|St|

∑
i∈St

g(zi; θ
[t]). (8)

Consider the SGD update excluding sample zj :

θ
[t+1]
−j = θ

[t]
−j −

ηt
|St|

∑
i∈St\{j}

g(zi; θ
[t]
−j). (9)

Calculate the difference between the two updates:

θ
[t+1]
−j − θ[t+1] = (θ

[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St

g(zi; θ
[t])). (10)

Approximate the gradient differences using a first-order Taylor expansion:

g(zi; θ
[t]
−j)− g(zi; θ

[t]) ≈ ∇θg(zi; θ
[t])T (θ

[t]
−j − θ

[t]), (11)

where∇θg(zi; θ
[t]) is the gradient of g(zi; θ) with respect to θ, evaluated at θ[t]. Define the approxi-

mate Hessian matrixH [t] as the average of the outer products of these gradients over the mini-batch:

H [t] =
1

|St|
∑
i∈St

∇θg(zi; θ
[t])T , (12)

Using this definition in Eq.(12) and Eq.(11), we have:
1

|St|
∑
i∈St

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) ≈ H [t](θ
[t]
−j − θ

[t]). (13)

Substituting this approximation into Eq. (10), we have:

θ
[t+1]
−j − θ[t+1] ≈ (I − ηtH [t])(θ

[t]
−j − θ

[t]) + 1j∈St

ηt
|St|

g(zj ; θ
[t]), (14)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where 1j∈St
is an indicator function that equals 1 if j ∈ St, otherwise 0. The complete derivation is

provided in Appendix A.2.3. Let Zt = I − ηtH [t], 1̃[t]
j = 1j∈St

ηt
|St|g(zj ; θ

[t]) and recursively apply
this relation over the interval [t1, t2]:

θ
[t2]
−j − θ

[t2] ≈ Zt2−1Zt2−2 . . . Zt1(θ
[t1]
−j − θ

[t1]) +

t2−1∑
t=t1

Zt2−1Zt2−2 . . . Zt+11̃
[t]
j . (15)

Combining Eq. (7) and Eq. (15), we can get:

∆θ
[t1,t2]
−j ≈

(
t2−1∏
k=t1

Zk − I

)
(θ

[t1]
−j − θ

[t1]) +

t2−1∑
t=t1

(
t2−1∏
k=t+1

Zk

)
1̃

[t]
j . (16)

We use Eq. (16) for the interval [0, t1] with θ[0]
−j = θ[0] to get (θ

[t1]
−j − θ[t1]):

∆θ
[0,t1]
−j = θ

[t1]
−j − θ

[t1] ≈
t1−1∑
t=0

(
t1−1∏
k=t+1

Zk

)
1̃

[t]
j . (17)

Substituting this Eq. (17) back into Eq. (16), we obtain:

∆θ
[t1,t2]
−j ≈

(
t2−1∏
k=t1

Zk − I

)(
t1−1∑
t=0

(
t1−1∏
k=t+1

Zk

)
1̃

[t]
j

)
+

t2−1∑
t=t1

(
t2−1∏
k=t+1

Zk

)
1̃

[t]
j .

We define the estimated parameter change as:

∆̂θ
[t1,t2]

−j =

(
t2−1∏
k=t1

Zk − I

)(
t1−1∑
t=0

(
t1−1∏
k=t+1

Zk

)
1̃

[t]
j

)
+

t2−1∑
t=t1

(
t2−1∏
k=t+1

Zk

)
1̃

[t]
j .

3.3 ESTIMATION ERROR ANALYSIS WITHOUT CONVEXITY ASSUMPTIONS

We derive an upper bound on the estimation error ‖∆θ[t1,t2]
−j − ∆̂θ

[t1,t2]

−j ‖ for our proposed esti-

mator ∆̂θ
[t1,t2]

−j over an arbitrary training interval [t1, t2]. Under standard non-convex optimization
assumptions, we establish the following error bound:

E
[∥∥∥∥∆θ

[t1,t2]
−j − ∆̂θ

[t1,t2]

−j

∥∥∥∥] ≤ B̃

MH

(
eMHηmax(t2+1) + eMHηmax(t1+1) − 2

)
, (18)

whereMH is the upper bound on the norm of the Hessian matrixH [t], ηmax is the maximum learning
rate, B̃ = LHM

2

2 + εHM encapsulates constants related to the Hessian’s Lipschitz continuity and
approximation error. For detailed derivations and assumptions, see Appendix A.4.

Note that DIT applies to non-converged and non-convex models. The exponential form arises from
the recursive nature of error propagation, where each SGD step compounds previous errors multi-
plicatively. Our analysis is the first to guarantee error bounds for non-converged, non-convex models
during arbitrary time windows. The bounds are mathematical guarantees for the worst case, and ex-
perimental results show that DIT achieves near-zero errors empirically.

4 DYNAMIC INFLUENCE TRACKER: A QUERY-BASED APPROACH

Section 3 discusses how samples affect model parameters, but their impact also extends to loss
gradients and predictions. This section introduces DIT, a flexible, query-based method for a com-
prehensive evaluation of sample effects on model performance.

4.1 QUERY-BASED DIT

The core idea of DIT is to project parameter changes onto specific directions in the parameter space,
each represe nted by a query vector. This projection enables us to focus on particular aspects of
model behavior, reduce the dimensionality of the analysis, and provide interpretable measures of
influence. By carefully choosing query vectors, we can investigate how a training sample’s influence
affects various model aspects.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 6 (Query-based Dynamic Influence Tracker). Let q : [0, T] → Rp be a query function
that maps time t to a query vector q(t) ∈ Rp. The Query-based Dynamic Influence Tracker for a
training sample zj over the time window [t1, t2] is defined as:

Q
[t1,t2]
−j (q) = 〈q(t2),∆θ

[t2]
−j 〉 − 〈q(t1),∆θ

[t1]
−j 〉, (19)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t] represents the parameter change at time t and 〈·, ·〉 denotes the standard

inner product in Rp.

This measure estimates the influence of sample zj on the model’s behavior as projected onto the
query directions. For example, by setting q(t) = ∇θ`(ztest; θ

[t]), we can measure the impact of a
training sample on the model’s loss for a test point ztest:

Q
[t1,t2]
−j (q) = 〈∇θ`(ztest; θ

[t2]),∆θ
[t2]
−j 〉 − 〈∇θ`(ztest; θ

[t1]),∆θ
[t1]
−j 〉

≈ [`(ztest; θ
[t2]
−j)− `(ztest; θ

[t1]
−j)]− [`(ztest; θ

[t2])− `(ztest; θ
[t1])].

(20)

Different choices of q enable analysis of various model characteristics. We can set q =
∇θf(xtest; θ

[t]) measures prediction changes, q = ei (standard basis vector) examines individual
parameter importance, and q = ∇θ`(zj ; θ[t]) assesses gradient alignments. A detailed analysis of
these query vectors is in Appendix A.3.

4.2 TRAINING PHASE OF DIT

The training phase captures SGD informa-
tion in a selectable storage window W (see
Algorithm 1).

Empirically, setting W to the first epoch
steps achieves better accuracy than baselines
while reducing storage from O(T (|St|+ p))
to O(|W |(|St| + p)), where T is total steps,
|W | is window size, |St| is batch size, and
p is parameter count. The computation com-
plexity remainsO(T · |St| ·p). Periodic com-
pression can further reduce storage overhead.

Algorithm 1 Training Phase of DIT

Require: Training dataset D = {zn}Nn=1, learn-
ing rate ηt, batch size |St|, training steps T ,
selectable storage window W

Ensure: Stored information A
1: Initialize model parameters θ[0]

2: Initialize an empty sequence A
3: for t = 1 to T do
4: St = SampleBatch(D, |St|)
5: θ[t+ 1] = θ[t]− ηt

|St|
∑
i∈St

g(zi; θ[t])

6: if t ∈W then A[t] = {St, ηt, θ[t+ 1]}
7: end for
8: return A

4.3 INFERENCE PHASE OF DIT

The inference phase computes sample in-
fluence on queries for any time window
[t1, t2] using information stored in window
W , where [t1, t2] is inside W .

Algorithm 2 utilizes two key variables, u[t]
2

and u
[t]
1 , which propagate q(t2) and q(t1)

backwards through time while incorporating
the Zk matrices. The algorithm computes Q
by summing the inner products of (u

[t]
2 −u

[t]
1)

with 1̃
[t]
j at each time step. When expanded,

this sum precisely matches the structure of
Q

[t1,t2]
−j (q) as defined, with the accumulated

terms corresponding to ∆θ
[t2]
−j and ∆θ

[t1]
−j .

This approach efficiently computes the influ-
ence without explicitly performing large ma-
trix multiplications. See Appendix A.5 for a
detailed proof.

Algorithm 2 Inference Phase of DIT

Require: Stored information A, query function q,
time window [t1, t2], specified sample zj

Ensure: Estimated influence Q for sample zj
1: Initialize Q← 0, u[t2−1]

1 ← 0

2: Initialize u[t2−1]
2 ← q(t2)

3: for t = t2 − 1 downto 0 do
4: if j ∈ St then

5: Q← Q+

〈
(u

[t]
2 − u

[t]
1),

ηt
|St|

g(zj ; θ
[t])

〉
6: end if
7: u

[t−1]
1 ← u

[t]
1 − ηtH [t]u

[t]
1

8: u
[t−1]
2 ← u

[t]
2 − ηtH [t]u

[t]
2

9: if t = t1 then u
[t−1]
1 ← q(t1)

10: end for
11: return Q

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Its time complexity is O(t2|St|p) and space complexity is O(p). DIT avoids the computationally
intensive direct computation and storage of the Hessian matrix, which typically requires O(Tp2)
operations. Instead, DIT efficiently computes Hessian-vector products H [t]u = ∇θ〈u, g(z; θ[t])〉,
requiring only O(|St|p) operations per iteration. This optimization effectively handles large models
and datasets in modern machine-learning contexts.

5 EXPERIMENTS

We evaluate DIT through a series of experiments designed to answer the following questions:

• How do training sample influences evolve throughout the learning process?

• How accurately does DIT estimate sample influence compared to existing methods?

• What can we learn by analyzing how influence evolves across various training stages?

• Can time window analysis of sample influence improve practical ML tasks?

5.1 EXPERIMENTAL SETUP

We evaluate DIT across diverse datasets and model architectures, comparing it against leading in-
fluence estimation methods. Our experimental setup included eight Nvidia RTX A5000 GPUs, each
equipped with 24 GB of memory. These were supported by dual Intel Xeon Gold 6342 CPUs run-
ning at 2.80GHz with 96 cores in total and 503 GB of RAM. The software environment comprised
Ubuntu 22.04.3 LTS (64-bit), PyTorch v2.4.1, CUDA 12.4, and Python 3.11.9. Code and data are
available at https://github.com/dynamic-infl-tracker/DIT.

Datasets We used four datasets spanning different domains and complexities: Adult (tabular)
(Dua & Graff, 2019), 20Newsgroups (text) (Lang, 1995), MNIST (LeCun et al., 2010) and EM-
NIST (Cohen et al., 2017) (grayscale images). Details are in Appendix A.6.1.

Models We used three model architectures of varying complexity: 1) Logistic Regression (LR), a
simple linear model serving as a convex baseline; 2) Deep Neural Network (DNN), with two hidden
layers using ReLU activations; and 3) Convolutional Neural Network (CNN), with two convolutional
layers followed by a fully connected layer. The DNN and CNN represent non-convex scenarios.
All models are optimized using the binary cross-entropy loss with logits, which combines sigmoid
activation with binary cross-entropy loss for binary classification tasks. Input and output dimensions
were adapted to each dataset. Detailed specifications are provided in Appendix A.6.1.

Comparison Methods We evaluate DIT against two established methods.

Leave-One-Out (LOO) directly measures the influence of removing a training sample zj by retrain-
ing models. ∆`LOO(zj) = 1

M

∑M
i=1 (`(zi, θ−j)− `(zi, θ)), where zi ∈ Dtest, M is the size of the

test set Dtest = {zi}Mi=1. While LOO provides a robust ground truth baseline, it is computationally
intensive.

Influence Functions (IF) (Koh & Liang, 2017) estimates the influence of removing a
training sample zj on the model’s overall loss for a test set Dtest: I(zj , Dtest) =

− 1
M

∑M
i=1∇θ`(zi, θ)TH−1∇θ`(zj , θ), where H is the Hessian of the model’s loss at θ.

For DIT, we estimate influence by setting q(t) = 1
M

∑M
i=1∇θ`(zi; θ[t]), measuring the impact on

test set Dtest loss across time window [t1, t2]: Q[t1,t2]
−j (q) ≈ 1

M

∑M
i=1

[
`(zi; θ

[t2]
−j)− `(zi; θ[t1]

−j)
]
−

1
M

∑M
i=1

[
`(zi; θ

[t2])− `(zi; θ[t1])
]
.

To ensure the reproducibility and robustness of our results, we present them as the mean ± standard
deviation calculated over 16 runs, and each initialized with a different random seed.

6

https://github.com/dynamic-infl-tracker/DIT

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.2 PATTERNS OF SAMPLE INFLUENCE DYNAMICS

While existing methods typically provide a static estimate of sample influence for the entire training
process, our study shows that sample influence on model performance is dynamic and evolves over
time. To uncover this, we conducted a preliminary exploration using LOO, as it provides a ground
truth assessment of each sample’s influence on model performance. Our methodology involved
randomly selecting 256 training samples and using LOO to evaluate their loss change at each epoch
during model training. For each sample and each epoch, we temporarily removed the sample from
the training set, retrained the model for that epoch, and recorded the resulting change in loss. This
process generated a time series of sample influences, allowing us to track how the importance of
each sample evolved throughout the training process.

As the model converges during training, the loss change decreases with increasing epochs. To
identify patterns of sample influence rather than relative influences, we normalized the values within
each epoch using StandardScaler. We then used linear regression to analyze trends in influence
changes. Figure 1 shows four distinct influence evolution patterns, displaying centroid values for
each group. Detailed experimental settings are provided in Appendix A.6.2.

Figure 1: Illustration of influence dynamics patterns for MNIST training using DNN

• Stable Influencers: Consistent influence throughout training.

• Early Influencers: Significant early impact that diminishes over time.

• Late Bloomers: Gain influence as training progresses.

• Highly Fluctuating Influencers: Large variations in influence across training.

We further analyzed the pattern distribution across datasets and models, as shown in Table 1.

Table 1: Distribution of influence dynamic patterns across datasets and models (percentage)

Model Dataset Stable Influencer Early Influencers Late Bloomers Highly Fluctuating

LR
Adult 64.75± 7.20 11.67± 3.27 20.15± 5.87 3.42± 1.82
20News 85.94± 5.38 1.17± 1.28 5.57± 1.26 7.32± 4.24
MNIST 80.16± 12.10 0.79± 0.96 10.78± 9.35 8.27± 3.36
EMNIST 75.49± 8.40 0.70± 0.53 13.77± 6.77 10.04± 2.75

DNN
Adult 97.91± 2.66 0.313± 1.12 1± 1.55 0.78± 0.89
20News 79.03± 7.78 8.44± 4.11 11.41± 3.90 1.13± 0.83
MNIST 66.56± 13.26 10.34± 4.65 20.59± 9.44 2.5± 0.93
EMNIST 78.16± 14.48 7.09± 7.678 7.47± 9.87 7.28± 3.55

CNN MNIST 83.76± 19.91 0.34± 0.42 11.74± 16.60 4.15± 3.94
EMNIST 86.50± 7.50 1.87± 5.15 1.59± 3.91 10.03± 2.48

These results show several key insights. 1) All datasets and models show diverse influence pat-
terns, with Stable Influencers dominating but other patterns consistently present. This underscores

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the dynamic nature of sample influence throughout the training process. 2) The consistent pres-
ence of Early Influencers and Late Bloomers highlights the importance of time-varying analysis in
understanding sample influence. DIT’s ability to capture these temporal dynamics provides a signif-
icant advantage over static influence estimation methods. 3) The varying distributions of influence
patterns across different model-dataset combinations show a complex interplay between data char-
acteristics and model architecture. This complexity further emphasizes the necessity of a flexible,
query-based approach like DIT, which can adapt to different scenarios and provide targeted insights.

5.3 INFLUENCE ESTIMATION ACCURACY

To validate DIT’s accuracy in estimating influence, we compared DIT against IF using LOO as
ground truth. We employed DIT’s full-time window [0, T] for a fair comparison with IF, which
can only measure overall sample influence on the final model. To evaluate how closely DIT and
IF approximate LOO, we adopted four metrics: Pearson and Spearman correlations for linear and
monotonic relationships, respectively, Kendall’s tau for ordinal relationships, and Jaccard similarity
for the top 30% influencers. Detailed metric descriptions are in Appendix A.6.1.

Table 2: Performance comparison of DIT and IF for Logistic Regression and Deep Neural Network

Model Dataset Pearson Spearman Kendall’s Tau Jaccard

DIT IF DIT IF DIT IF DIT IF

LR
Adult 0.99±0.01 0.91±0.04 0.99±0.01 0.93±0.02 0.95±0.01 0.79±0.04 0.91±0.04 0.71±0.06

20News 0.99±0.01 0.90±0.13 0.99±0.01 0.94±0.08 0.97±0.01 0.84±0.13 0.95±0.03 0.78±0.16
MNIST 0.93±0.10 0.76±0.14 0.98±0.01 0.61±0.22 0.95±0.02 0.49±0.21 0.91±0.05 0.48±0.14

DNN
Adult 0.95±0.02 0.88±0.04 0.95±0.03 0.86±0.04 0.83±0.06 0.69±0.05 0.75±0.08 0.56±0.07

20News 0.85±0.07 0.77±0.05 0.85±0.08 0.80±0.06 0.71±0.08 0.62±0.07 0.67±0.08 0.55±0.07
MNIST 0.90±0.07 0.25±0.28 0.98±0.01 0.26±0.33 0.90±0.03 0.19±0.24 0.85±0.05 0.27±0.19

Table 2 shows several key findings: First, DIT consistently surpasses IF in accuracy across all
datasets, model architectures, and evaluation metrics. Second, DIT’s advantage is most signifi-
cant in complex settings like non-convex DNN and complex MNIST. Third, DIT shows superior
robustness and reliability, with lower standard deviations across runs compared to IF.

(a) LR, adult (b) LR, 20news (c) LR, mnist

(d) DNN, adult (e) DNN, 20news (f) DNN, MNIST

Figure 2: Comparison of influence estimates for DIT and IF vs. LOO ground truth across datasets using LR
and DNN. The x-axis represents the ground truth influence values obtained from the LOO method. The y-axis
shows DIT (blue) and IF (red) estimates.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

These results are visually shown in Figure 2. DIT estimates closely align with the y = x line,
indicating superior accuracy to IF, especially with non-convex models and complex datasets.

Furthermore, we analyzed the effectiveness of DIT on samples of different patterns. Due to page
limitations, the results are listed in Table 5 in Appendix A.6.2.

5.4 INFLUENCE DYNAMICS AND SIMILARITY ACROSS TRAINING STAGES

After validating DIT’s accuracy in estimating sample influence, we used it to analyze the similarity
of different training stages. The training process was adaptively divided into early, middle, and late
stages using change points identified in the overall training loss trajectory. Detailed experimental
settings are provided in Appendix A.6.3. Then, we set time windows based on stages and used
DIT to compute sample influence within these windows. We then used Kendall’s tau correlation to
quantify the similarity of influence rankings between stages, with higher values indicating greater
stability. Table 3 presents these correlations.

Table 3: Kendall’s Tau correlations across training stages

Model Dataset Early-Middle Early-Late Middle-Late Early-Full Middle-Full Late-Full

LR
Adult 0.64 ± 0.14 0.62 ± 0.08 0.79 ± 0.14 0.81 ± 0.05 0.82 ± 0.12 0.79± 0.05
20News 0.79 ± 0.12 0.78 ± 0.10 0.79 ± 0.09 0.91 ± 0.02 0.88± 0.10 0.86± 0.12
MNIST 0.43 ± 0.14 0.15 ± 0.12 0.35 ± 0.14 0.71 ± 0.08 0.72± 0.09 0.30 ± 0.14
EMNIST 0.73 ± 0.04 0.40 ± 0.16 0.51 ± 0.18 0.83 ± 0.03 0.89± 0.02 0.49 ± 0.17

DNN
Adult 0.61 ± 0.11 0.41 ± 0.15 0.70 ± 0.06 0.7 ± 0.09 0.87 ± 0.04 0.69 ± 0.08
20news 0.66 ± 0.06 0.57± 0.07 0.76 ± 0.05 0.81 ± 0.03 0.82 ± 0.04 0.76 ± 0.04
MNIST 0.56 ± 0.06 0.18 ± 0.21 0.20 ± 0.25 0.74 ± 0.03 0.81± 0.04 0.20 ± 0.25
EMNIST 0.60 ± 0.12 0.40 ± 0.20 0.59 ± 0.21 0.69 ± 0.11 0.84± 0.07 0.63± 0.17

Table 3 shows several key insights. First, sample influence evolves significantly throughout train-
ing, as evidenced by the consistently low correlations between early and late stages (Early-Late
column). This challenges the static influence measurement methods and highlights the necessity for
time-aware methods like DIT. Second, mid-training influence strongly correlates with full-training
influence across all datasets and models. This suggests that influential samples can be identified
before convergence. Mid-training analysis may suffice for estimating full-training sample influence,
potentially reducing computational costs. These insights have significant implications for data selec-
tion and curriculum learning strategies. Third, for a given dataset, the patterns of influence ranking
changes at different stages are similar across different model architectures when accounting for stan-
dard deviations. This consistency suggests that the influence of samples is largely determined by the
inherent dataset rather than being heavily model-dependent.

5.5 APPLICATIONS OF DYNAMIC INFLUENCE TRACKER

Flipped label Sample Detection To show the practical utility of DIT, we applied it to detecting
flipped labels in a binary classification problem using the MNIST dataset (distinguishing between
digits ‘1’ and ‘7’). We randomly selected and flipped labels for 5%, 10%, 15%, and 20% of the
training data, corresponding to 12, 25, 38, and 51 samples, respectively. Models were then trained
on these partially corrupted datasets. We calculated influence using six methods: full-process DIT,
IF, LOO, and epoch-specific DIT (first, middle, and last epochs). For each method, we ranked
training samples by their negative influence and evaluated the top-k samples, where k equals the
number of deliberately flipped samples. This approach allows us to assess each method’s ability to
identify mislabeled samples accurately. Table 4 presents results averaged over 16 runs.

First, DIT consistently outperforms IF across all scenarios, often matching or closely approach-
ing the LOO performance. DIT maintains its performance advantage across varying levels of label
noise (5% to 20%). Second, the performance gap between DIT and IF widens as model complexity
increases (LR < DNN < CNN), highlighting DIT’s robustness to non-convexity. Third, later train-
ing stages generally yield better detection accuracy, particularly for complex models. As models
converge, the influence of mislabeled samples becomes more distinguishable relative to correctly
labeled ones. These findings collectively show DIT’s effectiveness as a powerful tool for enhanc-
ing model robustness and sample quality assessment, particularly in complex, real-world machine
learning scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Number of correctly identified flipped samples

Flipped Model IF Full DIT LOO First Epoch DIT Mid Epoch DIT Last Epoch DIT

5%
LR 10.50 ± 0.50 10.94 ± 0.90 10.94 ± 0.90 10.56 ± 1.22 10.88 ± 0.78 10.88 ± 0.78

DNN 2.94 ± 2.01 9.06 ± 1.85 8.81 ± 1.98 8.25 ± 2.33 8.88 ± 2.09 9.38 ± 1.98
CNN 5.88 ± 2.26 10.50 ± 1.32 10.44 ± 1.32 8.75 ± 2.11 10.69 ± 1.16 11.06 ± 1.32

10%
LR 23.44 ± 0.93 23.50 ± 1.00 23.50 ± 1.00 22.56 ± 1.54 23.50 ± 1.06 23.38 ± 1.00

DNN 7.50 ± 3.34 20.75 ± 3.01 19.94 ± 3.77 20.31 ± 2.78 20.50 ± 3.22 21.31 ± 3.77
CNN 15.00 ± 2.83 21.81 ± 3.11 21.75 ± 3.11 18.44 ± 4.37 22.19 ± 2.81 23.56 ± 3.11

15%
LR 36.06 ± 0.97 36.06 ± 1.14 36.06 ± 1.14 35.38 ± 1.62 35.69 ± 1.69 35.13 ± 1.14

DNN 12.63 ± 4.62 32.81 ± 3.47 32.50 ± 3.72 32.19 ± 3.40 32.56 ± 3.61 33.31 ± 3.72
CNN 23.44 ± 4.68 34.19 ± 4.17 34.19 ± 4.17 29.75 ± 5.93 34.56 ± 3.98 36.31 ± 4.17

20%
LR 48.63 ± 1.11 48.69 ± 1.16 48.69 ± 1.16 47.94 ± 1.52 46.56 ± 3.12 42.94 ± 1.16

DNN 22.31 ± 6.14 45.31 ± 3.29 43.94 ± 5.20 44.13 ± 3.64 45.19 ± 3.30 45.56 ± 5.20
CNN 31.00 ± 5.79 46.19 ± 4.33 46.25 ± 4.35 41.50 ± 7.66 47.13 ± 3.35 48.69 ± 4.35

6 RELATED WORKS

Estimating the influence of individual training samples on machine learning models is important
for optimization and interpretability. While the Leave-One-Out (LOO) method is straightforward,
it’s computationally prohibitive for large datasets or complex models. Influence functions (Koh &
Liang, 2017) offer a more feasible alternative, estimating the impact of removing a single training
sample on model performance at convergence. However, their effectiveness is limited in non-convex
scenarios common in deep learning (Basu et al., 2021). Recent extensions (Guo et al., 2021;
Schioppa et al., 2022; Choe et al., 2024) still provide static, full-process influence measures, failing
to capture dynamic sample influence during training.

Shapley Value-based approaches (Ghorbani & Zou, 2019) provide a robust, equitable valuation of
individual sample contributions by considering all possible subsets of training data. Efficient approx-
imation algorithms (Jia et al., 2019; 2021; Xu et al., 2021) and domain-specific extensions (Schoch
et al., 2022; Sun et al., 2023; Fan et al., 2022) have improved scalability, but remain computationally
expensive for large-scale problems.

Data cleansing and pruning focus on removing noisy or irrelevant data. SGD-influence (Hara et al.,
2019) analyzes the gradient descent process and estimates sample influence across the entire training
trajectory. Our proposed DIT extends this approach, enabling influence estimation within arbitrary
time windows during training, providing more flexible error bound analysis and detailed experimen-
tal evaluation. Forgetting events (Toneva et al., 2018) and early-training scores (Paul et al., 2021)
enable efficient data pruning. MOSO (Tan et al., 2024) identifies less informative samples via
gradient deviations, and YOCO (He et al., 2023) enables flexible resizing of condensed datasets.

Despite these advancements, analyzing sample influence within arbitrary time windows during train-
ing remains a challenge. DIT addresses this gap by providing a flexible, computationally efficient
method for fine-grained influence tracking without relying on strong convexity assumptions. It
enables multidimensional influence measurement with a single training process, offering a compre-
hensive understanding of sample importance throughout the learning trajectory.

7 CONCLUSION

This paper introduces Dynamic Influence Tracker (DIT), a novel approach for fine-grained estima-
tion of individual training sample influence within arbitrary time windows in SGD-trained models.
Our method’s query-based design enables multifaceted analysis of sample influence on various as-
pects of model performance effectively. Our theoretical analysis provides error bounds without
assuming convexity. Extensive experimental results reveal patterns in influence dynamics and show
that DIT consistently outperforms existing methods in influence estimation accuracy, particularly
for complex models and datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

S Basu, P Pope, and S Feizi. Influence functions in deep learning are fragile. In International
Conference on Learning Representations (ICLR), 2021.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, Au-
gust 22-27, 2010 Keynote, Invited and Contributed Papers, pp. 177–186. Springer, 2010.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM com-
puting surveys (CSUR), 41(3):1–58, 2009.

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang, Youngseog Chung, Adithya
Pratapa, Willie Neiswanger, Emma Strubell, Teruko Mitamura, et al. What is your data worth
to GPT? LLM-scale data valuation with influence functions. arXiv preprint arXiv:2405.13954,
2024.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: Extending
MNIST to handwritten letters. Proceedings of the International Joint Conference on Neural Net-
works, 2017.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2019. URL http://archive.ics.uci.
edu/ml.

Zhenan Fan, Huang Fang, Zirui Zhou, Jian Pei, Michael P Friedlander, Changxin Liu, and Yong
Zhang. Improving fairness for data valuation in horizontal federated learning. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE), pp. 2440–2453. IEEE, 2022.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242–2251. PMLR, 2019.

Han Guo, Nazneen Rajani, Peter Hase, Mohit Bansal, and Caiming Xiong. FastIF: Scalable in-
fluence functions for efficient model interpretation and debugging. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 10333–10350, 2021.

Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models trained with SGD.
Advances in Neural Information Processing Systems, 32, 2019.

Yang He, Lingao Xiao, and Joey Tianyi Zhou. You only condense once: Two rules for pruning
condensed datasets. Advances in Neural Information Processing Systems, 36:39382–39394, 2023.

Paul Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist, 11(2):37–50, 1912.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167–1176. PMLR, 2019.

Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura, Ce Zhang, Bo Li, and
Dawn Song. Scalability vs. utility: Do we have to sacrifice one for the other in data importance
quantification? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8239–8247, 2021.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Ken Lang. Newsweeder: Learning to filter netnews. Proceedings of the Twelfth International
Conference on Machine Learning, pp. 331–339, 1995.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yann LeCun, Corinna Cortes, Chris Burges, et al. MNIST handwritten digit database. http://yann.
lecun.com/exdb/mnist, 2010.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
Finding important examples early in training. Advances in neural information processing systems,
34:20596–20607, 2021.

Karl Pearson. Note on regression and inheritance in the case of two parents. proceedings of the
royal society of London, 58(347-352):240–242, 1895.

Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence func-
tions. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8179–
8186, 2022.

Stephanie Schoch, Haifeng Xu, and Yangfeng Ji. Cs-shapley: class-wise shapley values for data
valuation in classification. Advances in Neural Information Processing Systems, 35:34574–34585,
2022.

Charles Spearman. The proof and measurement of association between two things. The American
journal of psychology, 100(3/4):441–471, 1987.

Qiheng Sun, Xiang Li, Jiayao Zhang, Li Xiong, Weiran Liu, Jinfei Liu, Zhan Qin, and Kui Ren.
Shapleyfl: Robust federated learning based on shapley value. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2096–2108, 2023.

Haoru Tan, Sitong Wu, Fei Du, Yukang Chen, Zhibin Wang, Fan Wang, and Xiaojuan Qi. Data
pruning via moving-one-sample-out. Advances in Neural Information Processing Systems, 36,
2024.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations, 2018.

Xinyi Xu, Zhaoxuan Wu, Chuan Sheng Foo, and Bryan Kian Hsiang Low. Validation free and repli-
cation robust volume-based data valuation. Advances in Neural Information Processing Systems,
34:10837–10848, 2021.

12

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PATTERN-SPECIFIC INFLUENCE ESTIMATION

Our experimental analysis in Section 5.2 revealed that sample influence exhibits distinct temporal
patterns throughout the training process, categorized as Stable Influencers, Early Influencers, Late
Bloomers, and Highly Fluctuating Influencers. To rigorously evaluate DIT’s effectiveness across
these diverse influence patterns, we conducted a pattern-specific performance analysis comparing
DIT against IF with LOO as ground truth using the MNIST dataset with DNN architecture. Table 5
presents the comparative results across multiple metrics. Results show mean±std across 16 runs.

Table 5: Pattern-specific performance comparison between DIT and IF using MNIST-DNN.

Sample Pattern Pearson Spearman Kendall’s Tau Jaccard
DIT IF DIT IF DIT IF DIT IF

Stable Influencers 0.95±0.03 0.23±0.39 0.96±0.03 0.16±0.40 0.87±0.05 0.13±0.28 0.82±0.12 0.26±0.16
Early Influencers 0.94±0.04 0.35±0.29 0.98±0.01 0.35±0.30 0.92±0.03 0.26±0.23 0.89±0.07 0.29±0.20
Late Bloomers 0.98±0.02 0.23±0.46 0.98±0.02 0.19±0.38 0.90±0.05 0.15±0.27 0.85±0.10 0.27±0.21

Highly Fluctuating 0.76±0.18 -0.10±0.54 0.72±0.18 -0.08±0.48 0.63±0.21 -0.09±0.40 0.52±0.34 0.15±0.17

The pattern-specific analysis reveals several key insights:

1) Substantial Performance Gap: DIT shows remarkable improvements over IF across all
patterns. For Stable Influencers, DIT achieves a 4.1× improvement (Pearson: 0.95±0.03 vs
0.23±0.39), for Late Bloomers, DIT shows a 4.3× improvement (0.98±0.02 vs 0.23±0.46),
and for Early Influencers, DIT maintains a 2.7× advantage (0.94±0.04 vs 0.35±0.29). Even
in the challenging case of Highly Fluctuating samples, DIT maintains positive correlations
(0.76±0.18) while IF shows negative correlations (-0.10±0.54).

2) Consistency and Stability: DIT shows remarkable stability in its performance metrics.
Linear correlations (Pearson) and rank-based correlations (Spearman, Kendall’s Tau) show
strong agreement, with variations typically within ±0.05. The standard deviations for DIT
are consistently lower than IF, indicating significantly more reliable estimates.

3) Pattern-Specific Excellence: DIT excels at capturing influence patterns across different
temporal stages. The method achieves near-perfect correlations (> 0.94) for Stable, Early,
and Late patterns, with a particularly strong performance for Late Bloomers (0.98±0.02).
This shows DIT’s unique capability to adapt to varying temporal dynamics throughout the
training process.

4) Robustness to Volatility: Even under challenging conditions with Highly Fluctuating sam-
ples, DIT maintains meaningful positive correlations (Pearson: 0.76±0.18). This contrasts
sharply with IF’s negative correlations (-0.10±0.54), highlighting DIT’s robust performance
even in volatile scenarios. While performance shows some expected degradation compared
to stable patterns, DIT continues to provide reliable influence estimates.

These comprehensive results show DIT’s effectiveness in handling diverse influence patterns while
maintaining high estimation accuracy. The method’s robust performance across both architectural
complexity and temporal influence patterns, particularly in challenging scenarios involving non-
convex models and fluctuating influences, establishes its practical utility for real-world deep learning
applications. The consistent outperformance of IF across all patterns and metrics further validates
DIT’s advantages in capturing dynamic sample influence.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 DISCUSSIONS

A.2.1 KEY FINDINGS AND IMPLICATIONS

Our investigation of Dynamic Influence Tracker (DIT) reveals several important insights about the
nature of sample influence in deep learning. We first present a comprehensive comparison of differ-
ent sample influence analysis methods:

Table 6: Comprehensive Comparison of Different Sample Influence Analysis Methods

Aspect Full-DIT First-Epoch DIT Influence Functions Leave-One-Out

Space Complexity O(T (|St|+ p)) O(E(|St|+ p)) O(p2) O(p)
Time Complexity O(T |St|p) O(E|St|p) O(p3 +Np2) O(NT |St|p)
Robustness to Non-convergence Yes Yes No No
Robustness to Non-convexity Yes Yes No Yes
Robustness to Global Optimality Yes Yes No Yes
Adaptability Flexible Flexible Static Static
T = total steps, E = steps per epoch, p = parameters, |St| = batch size

This comparison highlights several key findings:

1) Our results show that sample influence is not static but evolves significantly throughout the
training process. The identification of four distinct influence patterns (Stable Influencers,
Early Influencers, Late Bloomers, and Highly Fluctuating Influencers) challenges the tra-
ditional static view of sample importance.

2) The strong correlation between mid-training and full-training influence measures suggests
that influential samples can be identified well before model convergence. This finding has
practical implications for efficient training protocols and early intervention strategies.

3) The consistency of influence patterns across different model architectures for the same
dataset suggests that sample influence is more intrinsically tied to data characteristics than
model architecture.

A.2.2 APPLICATIONS IN MODERN DEEP LEARNING

There are two particularly promising applications of DIT: large language model fine-tuning and
curriculum learning.

In the context of large pre-trained models, DIT addresses several fundamental challenges that have
previously limited influence analysis methods. The method’s assumption-free nature makes it partic-
ularly suitable for fine-tuning scenarios, as it requires no constraints on global optimality or conver-
gence. By treating the pre-trained model’s parameters as the initial state θ0, DIT naturally integrates
with existing fine-tuning workflows without requiring complete retraining cycles.

Moreover, the scalability of DIT’s model-agnostic design presents a significant advantage for large-
scale applications. Whether applied to full model fine-tuning or specific architectural components
like adapters, the query-based approach efficiently tracks parameter influence while maintaining
computational feasibility. This scalability is further enhanced by DIT’s shown ability to identify
influential samples in early training stages, enabling effective analysis of large language models
while minimizing storage requirements through targeted early-stage tracking.

DIT also offers novel approaches to curriculum learning by providing data-driven methods for sam-
ple ordering and difficulty assessment. The identification of distinct influence patterns naturally in-
forms curriculum design: Early Influencers serve as optimal starting points for initial training stages,
while Late Bloomers naturally align with curriculum progression. Stable Influencers provide con-
sistent anchoring points across different training phases, enabling automatic difficulty assessment
without relying on manual labeling techniques.

This approach to curriculum learning is supported by our empirical findings on cross-stage influence
correlations. The strong correlation between early and full training influence enables reliable early
identification of important samples. Simultaneously, the observed low correlation between early and
late stages provides empirical support for the necessity of progressive learning approaches. These

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

relationships establish a robust theoretical foundation for dynamic curriculum design, offering a
data-driven framework for optimizing training trajectories.

A.2.3 DETAILED DERIVATION OF PARAMETER CHANGE ESTIMATION

We start from Eq.(10), which establishes the relationship:

θ
[t+1]
−j − θ[t+1] = (θ

[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St

g(zi; θ
[t])) (21)

= (θ
[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St\{j}

g(zi; θ
[t])− 1j∈St

g(zi; θ
[t])) (22)

= (θ
[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St\{j}

g(zi; θ
[t])) +

ηt
|St|

1j∈Stg(zi; θ
[t]) (23)

= (θ
[t]
−j − θ

[t])− ηt
|St|

∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) +
ηt
|St|

1j∈St
g(zi; θ

[t]), (24)

where 1j∈St
is an indicator function that equals 1 if j ∈ St, otherwise 0.

Using Eq.(12), we have:∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) ≈
∑

i∈St\{j}

∇θg(zi; θ
[t])T (θ

[t]
−j − θ

[t]), (25)

Following Eq.(11) and Assumption (A4) detailed in Appendix A.4, we have:∑
i∈St\{j}

∇θg(zi; θ
[t])T (θ

[t]
−j − θ

[t]) = |St|H [t]
−j(θ

[t]
−j − θ

[t]) ≈ |St|H [t](θ
[t]
−j − θ

[t]). (26)

Combining Eq.(25) and Eq.(26), we have:∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) ≈ |St|H [t](θ
[t]
−j − θ

[t]). (27)

Applying Eq. (27) to Eq. (21), we have the final result:

θ
[t+1]
−j − θ[t+1] = (θ

[t]
−j − θ

[t])− ηt
|St|

∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) +
ηt
|St|

1j∈Stg(zi; θ
[t])

(28)

≈ (θ
[t]
−j − θ

[t])− ηt
|St|

(|St|H [t](θ
[t]
−j − θ

[t])) +
ηt
|St|

1j∈St
g(zi; θ

[t]) (29)

= (θ
[t]
−j − θ

[t])− ηtH [t](θ
[t]
−j − θ

[t]) +
ηt
|St|

1j∈St
g(zi; θ

[t]) (30)

= (I − ηtH [t])(θ
[t]
−j − θ

[t]) +
ηt
|St|

1j∈St
g(zi; θ

[t]). (31)

This derivation confirms the correctness of Eq. (14), including the last term.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 DIT TOOLKIT

The flexibility of query-based DIT allows for its application to a wide range of machine learning
challenges. In this section, we provide a toolkit of query vectors that enables targeted investiga-
tions into critical aspects of model behavior, including gradient value, prediction changes, feature
importance, and parameter importance.

A.3.1 DIT FOR LOSS VALUE

Theorem 7 (DIT for Loss Value). Given a loss function `(z; θ), a time window [t1, t2], a train-
ing sample zj , and a test sample ztest, the Dynamic Influence Tracker with query function q(t) =

(∇θ`(ztest; θ
[t]) can be approximated as:

Q
[t1,t2]
−j (q) ≈ [`(ztest; θ

[t2]
−j)− `(ztest; θ

[t1]
−j)]− [`(ztest; θ

[t2])− `(ztest; θ
[t1])], (32)

where θ[t]
−j denotes the model parameters at time t when trained without sample zj , and θ[t] denotes

the parameters when trained with all samples.

Proof. We begin with the definition of the Query-Based Dynamic Influence Tracker:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
(33)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ∇θ`(ztest; θ
[t]) into Eq. (33):

Q
[t1,t2]
−j (q) =

〈
∇θ`(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
−
〈
∇θ`(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
. (34)

Apply the first-order Taylor expansion of `(ztest; θ) around θ[t2] and θ[t1]:

`(ztest; θ
[t2]
−j) ≈ `(ztest; θ

[t2]) + 〈∇θ`(ztest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 (35)

`(ztest; θ
[t1]
−j) ≈ `(ztest; θ

[t1]) + 〈∇θ`(ztest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 (36)

Rearranging Eq. (35) and Eq. (36):

〈∇θ`(ztest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 ≈ `(ztest; θ
[t2]
−j)− `(ztest; θ

[t2]) (37)

〈∇θ`(ztest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 ≈ `(ztest; θ
[t1]
−j)− `(ztest; θ

[t1]) (38)
Substituting these approximations back into Eq. (34):

Q
[t1,t2]
−j (q) ≈ [`(ztest; θ

[t2]
−j)− `(ztest; θ

[t2])]− [`(ztest; θ
[t1]
−j)− `(ztest; θ

[t1])] (39)

= [`(ztest; θ
[t2]
−j)− `(ztest; θ

[t1]
−j)]− [`(ztest; θ

[t2])− `(ztest; θ
[t1])] (40)

This completes the proof of Theorem 7.

This theorem provides a foundation for understanding how individual training samples affect the
model’s loss on specific test points over time. The right-hand side of Eq. (32) represents the differ-
ence between the loss changes with and without sample zj , offering a direct measure of the sample’s
influence on model performance.

Extension to Test Sets: We can extend this concept to consider an entire test set Dtest =
{z1, . . . , zM}. Define the query function as:

q(t) =
1

M

M∑
i=1

∇θ`(zi; θ[t]), zi ∈ Dtest. (41)

With this choice, the DIT approximates the change in average test loss:

Q
[t1,t2]
−j (q) ≈ 1

M

M∑
i=1

[
`(zi; θ

[t2]
−j)− `(zi; θ[t1]

−j)
]
− 1

M

M∑
i=1

[
`(zi; θ

[t2])− `(zi; θ[t1])
]

=
[
Ltest(θ

[t2]
−j)− Ltest(θ

[t1]
−j)

]
−
[
Ltest(θ

[t2])− Ltest(θ
[t1])

]
,

(42)

where Ltest(θ
[t]) = 1

M

∑M
i=1 `(zi; θ

[t]) is the average test loss.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3.2 DIT FOR PREDICTION CHANGES

Theorem 8 (DIT for Prediction Changes). Given a model function f(x; θ), a time window [t1, t2],
a training sample zj , and a test input xtest, the Dynamic Influence Tracker with query function
q(t) = ∇θf(xtest; θ

[t]) can be approximated as:

Q
[t1,t2]
−j (q) ≈

[
f(xtest; θ

[t2]
−j)− f(xtest; θ

[t1]
−j)

]
−
[
f(xtest; θ

[t2])− f(xtest; θ
[t1])

]
, (43)

where θ[t]
−j denotes the model parameters at time t when trained without sample zj , and θ[t] denotes

the parameters when trained with all samples.

Proof. We begin with the definition of the Query-Based Dynamic Influence Tracker:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
(44)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ∇θf(ztest; θ
[t]) into Eq. (44):

Q
[t1,t2]
−j (q) =

〈
∇θf(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
−
〈
∇θf(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
. (45)

We apply the first-order Taylor approximation of the model function around θ[t2] and θ[t1]:

f(xtest; θ
[t2]
−j) ≈ f(xtest; θ

[t2]) + 〈∇θf(xtest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 (46)

f(xtest; θ
[t1]
−j) ≈ f(xtest; θ

[t1]) + 〈∇θf(xtest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 (47)

Rearranging these equations:

〈∇θf(xtest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 ≈ f(xtest; θ
[t2]
−j)− f(xtest; θ

[t2]) (48)

〈∇θf(xtest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 ≈ f(xtest; θ
[t1]
−j)− f(xtest; θ

[t1]) (49)

Substituting these approximations back into Eq. (45):

Q
[t1,t2]
−j (q) ≈ [f(xtest; θ

[t2]
−j)− f(xtest; θ

[t2])]− [f(xtest; θ
[t1]
−j)− f(xtest; θ

[t1])] (50)

= [f(xtest; θ
[t2]
−j)− f(xtest; θ

[t1]
−j)]− [f(xtest; θ

[t2])− f(xtest; θ
[t1])] (51)

This completes the proof of Theorem 8.

This theorem provides a formal justification for using DIT to analyze how excluding sample zj
influences the model’s predictions on a test input xtest over the interval [t1, t2]. Compared to Theorem
7, which focuses on the loss value, Theorem 8 focuses on specific model outputs. It enables the
identification of influential training samples for specific predictions, aids in understanding model
behavior on particular inputs, and can help detect potential outliers or mislabeled data.

A.3.3 DIT FOR FEATURE IMPORTANCE

Theorem 9 (DIT for Feature Importance). Given a loss function `(z; θ), a training sample z =
(x, y), and a test sample ztest = (xtest, ytest), the Dynamic Influence Tracker for Feature Importance
with query function q(t) = ∇x∇θ`(ztest; θ

[t]) can be approximated as:

Q
[t1,t2]
−j (q) ≈ [∇x`(ztest; θ

[t2]
−j)−∇x`(ztest; θ

[t1]
−j)]− [∇x`(ztest; θ

[t2])−∇x`(ztest; θ
[t1])], (52)

where θ[t]
−j denotes the model parameters at time t when trained without sample zj , and θ[t] denotes

the parameters when trained with all samples.

Proof. We start with the definition of the Query-Based Dynamic Influence Tracker:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
, (53)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ∇x∇θ`(ztest; θ
[t]):

Q
[t1,t2]
−j (q) =

〈
∇θ∇x`(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
−
〈
∇θ∇x`(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
. (54)

We apply the first-order Taylor approximation of∇x`(ztest; θ) around θ[t2] and θ[t1]:

∇x`(ztest; θ
[t2]
−j) ≈ ∇x`(ztest; θ

[t2]) +∇θ∇x`(ztest; θ
[t2])

(
θ

[t2]
−j − θ

[t2]
)
, (55)

∇x`(ztest; θ
[t1]
−j) ≈ ∇x`(ztest; θ

[t1]) +∇θ∇x`(ztest; θ
[t1])

(
θ

[t1]
−j − θ

[t1]
)
. (56)

Rearranging these equations:〈
∇θ∇x`(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
≈ ∇x`(ztest; θ

[t2]
−j)−∇x`(ztest; θ

[t2]), (57)〈
∇θ∇x`(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
≈ ∇x`(ztest; θ

[t1]
−j)−∇x`(ztest; θ

[t1]). (58)

Substituting these approximations back into Eq.(54):

Q
[t1,t2]
−j (q) ≈

[
∇x`(ztest; θ

[t2]
−j)−∇x`(ztest; θ

[t2])
]
−
[
∇x`(ztest; θ

[t1]
−j)−∇x`(ztest; θ

[t1])
]

=
[
∇x`(ztest; θ

[t2]
−j)−∇x`(ztest; θ

[t1]
−j)

]
−
[
∇x`(ztest; θ

[t2])−∇x`(ztest; θ
[t1])

]
. (59)

This completes the proof.

This theorem shows how DIT measures the impact of excluding a training sample zj on the gradient
of the loss with respect to the input features at the test point ztest over the interval [t1, t2]. This
provides insights into how the importance of different input features evolves during training and
how individual training samples influence this feature importance.

A.3.4 DIT FOR PARAMETER IMPORTANCE

Theorem 10 (DIT for Parameter Importance). Given a model with parameters θ ∈ Rp, a time
window [t1, t2], a training sample zj , and the i-th standard basis vector ei ∈ Rp, the Dynamic
Influence Tracker with query function q(t) = (ei) is exactly:

Q
[t1,t2]
−j (q) =

(
θ

[t2]
−j,i − θ

[t1]
−j,i

)
−
(
θ

[t2]
i − θ[t1]

i

)
, (60)

where θ[t]
−j,i denotes the i-th component of the model parameters at time t when trained without

sample zj , and θ[t]
i denotes the i-th component of the parameters when trained with all samples.

Proof. We start with the definition of the Query-Based Dynamic Influence Tracker:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
, (61)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ei, which is constant over time:

Q
[t1,t2]
−j (q) =

〈
ei, θ

[t2]
−j − θ

[t2]
〉
−
〈
ei, θ

[t1]
−j − θ

[t1]
〉
. (62)

Since ei is the i-th standard basis vector, the inner product selects the i-th component:

Q
[t1,t2]
−j (q) =

(
θ

[t2]
−j,i − θ

[t2]
i

)
−
(
θ

[t1]
−j,i − θ

[t1]
i

)
=
(
θ

[t2]
−j,i − θ

[t1]
−j,i

)
−
(
θ

[t2]
i − θ[t1]

i

)
. (63)

This matches the expression in Eq. (60), completing our proof.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

This theorem allows us to isolate the influence of a training sample zj on specific model parameters
over the interval [t1, t2]. A large absolute value of Q[t1,t2]

−j (q) indicates that sample zj has a signifi-
cant influence on the i-th parameter during the specified time window. This is particularly useful for
identifying which parameters are most affected by specific training samples and understanding the
localized effects of training samples on the model.

By analyzing how Q
[t1,t2]
−j (q) changes over different time windows, we can understand how the

influence of a training sample on specific parameters evolves throughout the training process.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.4 ESTIMATION ERROR ANALYSIS WITHOUT CONVEXITY ASSUMPTIONS

Theorem 11 (Error Bound for DIT Parameter Change). Let ∆θ
[t1,t2]
−j be the true influence of exclud-

ing sample zj on the model parameters over the interval [t1, t2] during SGD training. Let ∆̂θ
[t1,t2]

−j
be its approximation using DIT. Under the following assumptions:

(A1) Lipschitz Continuity of Gradient: The gradient∇`(zi; θ) is Lipschitz continuous with con-
stant Lg: ‖∇`(zi; θ1)−∇`(zi; θ2)‖ ≤ Lg‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ,∀i.

(A2) Lipschitz Continuity of Hessian: The Hessian∇2`(zi; θ) is Lipschitz continuous with con-
stant LH : ‖∇2`(zi; θ1)−∇2`(zi; θ2)‖ ≤ LH‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ,∀i.

(A3) Learning Rate Bound: The learning rate satisfies ηt ≤ 1
LH

for all t.

(A4) Hessian Approximation Error: The Hessian approximation error is bounded: ‖H [t] −
H

[t]
−j‖ ≤ εH , ∀t, where H [t]

−j = 1
|St\{j}|

∑
i∈St\{j}∇

2`(zi; θ
[t]) is the empirical Hessian

over the mini-batch.

(A5) Gradient Norm Bound: For all θ ∈ Θ and all zi: ‖∇`(zi; θ)‖ ≤ G.

(A6) Parameter Difference Bound: There exists a constant M > 0 such that: ‖θ[t]
−j − θ[t]‖ ≤M ,

∀t ∈ [t1, t2].

(A7) Bounded Hessian Norm: For all θ ∈ Θ and all zi: ‖∇2`(zi; θ)‖ ≤MH .

Then, the expected estimation error is bounded as follows:

E
[∥∥∥∥∆θ

[t1,t2]
−j − ∆̂θ

[t1,t2]

−j

∥∥∥∥] ≤ B̃

MH

(
eMHηmax(t2+1) + eMHηmax(t1+1) − 2

)
(64)

where: ηmax = maxt∈[t1,t2] ηt, B̃ = LHM
2

2 + εHM , n is the total number of samples in the dataset.

Proof. Step 1: Derivation of the Error Update Equation

Define the error at iteration t:
e[t] = (θ

[t]
−j − θ

[t])− ∆̂θ
[t]

−j (65)

where ∆̂θ
[t]

−j = ∆̂θ
[0,t]

−j is the approximation of the true parameter change ∆θ
[t]
−j using the DIT

method.

Our aim is to derive a recursive relation for e[t] and then bound its expected norm.

Consider the updates for θ[t], θ[t]
−j , and θ̂[t]

−j :

Original SGD Update:

θ[t+1] = θ[t] − ηtg̃[t], g̃[t] =
1

|St|
∑
i∈St

∇`(zi; θ[t]). (66)

Leave-One-Out SGD Update:

θ
[t+1]
−j = θ

[t]
−j − ηtg̃

[t]
−j , g̃

[t]
−j =

1

|St|
∑

i∈St\{j}

∇`(zi; θ[t]
−j). (67)

Approximate Leave-One-Out Update (DIT Method):

θ̂
[t+1]
−j = θ̂

[t]
−j − ηt

(
g̃[t] +H [t](θ̂

[t]
−j − θ

[t])− 1{j∈St}
1

|St|
∇`(zj ; θ[t])

)
. (68)

We derive the error update equation as follows:

e[t] − e[t−1] = ηt−1δ
[t−1], (69)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where:

δ[t−1] =
(
g̃

[t−1]
−j − g̃[t−1]

)
−H [t−1]∆̂θ

[t−1]

−j + 1{j∈St−1}
1

|St−1|
∇`(zj ; θ[t−1]). (70)

or equivalently:

δ[t] =
(
g̃

[t]
−j − g̃

[t]
)
−H [t]∆̂θ

[t]

−j + 1{j∈St}
1

|St|
∇`(zj ; θ[t]). (71)

Step 2: Bounding ‖δ[t]‖

We decompose δ[t] and bound each term:

1. Difference in Stochastic Gradients:

g̃
[t]
−j − g̃

[t] =
1

|St|

 ∑
i∈St\{j}

(
∇`(zi; θ[t]

−j)−∇`(zi; θ
[t])
)
− 1{j∈St}∇`(zj ; θ

[t])

 . (72)

Applying a first-order Taylor expansion to∇`(zi; θ[t]
−j) for i 6= j:

∇`(zi; θ[t]
−j)−∇`(zi; θ

[t]) = ∇2`(zi; θ
[t])(θ

[t]
−j − θ

[t]) + r
[t]
i,j , (73)

where, by Assumption (A2):

‖r[t]
i,j‖ ≤

LH
2
‖θ[t]
−j − θ

[t]‖2 (74)

Thus, we have:

g̃
[t]
−j − g̃

[t] =
1

|St|
∑

i∈St\{j}

∇2`(zi; θ
[t])(θ

[t]
−j − θ

[t]) + r
[t]
i,j − 1{j∈St}∇`(zj ; θ

[t])

=
1

|St|

 ∑
i∈St\{j}

r
[t]
i,j − 1{j∈St}∇`(zj ; θ

[t])

+H
[t]
−j(θ

[t]
−j − θ

[t]) (75)

2. Hessian Approximation Error:

‖(H [t]
−j −H

[t])(θ
[t]
−j − θ

[t])‖ ≤ εH‖θ[t]
−j − θ

[t]‖. (76)

according to Assumption (A4).

3. Combining Terms: Substitute the approximations back into δ[t]:

δ[t] =
(
g̃

[t]
−j − g̃

[t]
)
−H [t]∆̂θ

[t]

−j + 1{j∈St}
1

|St|
∇`(zj ; θ[t])

=
(
g̃

[t]
−j − g̃

[t]
)
−H [t]

−j(θ
[t]
−j − θ

[t]) +
(
H

[t]
−j −H

[t]
)

(θ
[t]
−j − θ

[t]) + 1{j∈St}
1

|St|
∇`(zj ; θ[t])

=
1

|St|
∑

i∈St\{j}

r
[t]
i,j + (H

[t]
−j −H

[t])(θ
[t]
−j − θ

[t]) +H [t]((θ
[t]
−j − θ

[t])−∆θ̂
[t]
−j)

=
1

|St|
∑

i∈St\{j}

r
[t]
i,j + (H

[t]
−j −H

[t])(θ
[t]
−j − θ

[t]) +H [t]e[t]. (77)

4. Bounding ‖δ[t]‖:

• First Term: ∥∥∥∥∥∥ 1

|St|
∑

i∈St\{j}

r
[t]
i,j

∥∥∥∥∥∥ < LHM
2

2
. (78)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Second Term: ∥∥∥(H
[t]
−j −H

[t])(θ
[t]
−j − θ

[t])
∥∥∥ ≤ εHM. (79)

• Third Term: ∥∥∥H [t]e[t]
∥∥∥ ≤MH‖e[t]‖. (80)

Combining bounds, we can have:

‖δ[t]‖ < LHM
2

2
+ εHM +MH‖e[t]‖. (81)

Step 3: Error Update Equation

Using the error update:
e[t] = e[t−1] − ηtδ[t−1], (82)

we have:

‖e[t]‖ ≤ ‖e[t−1]‖+ ηt‖δ[t−1]‖ < ‖e[t−1]‖+ ηt

(
LHM

2

2
+ εHM +MH‖e[t−1]‖

)
. (83)

Define:

at = 1 + ηtMH , bt = ηt

(
LHM

2

2
+ εHM

)
. (84)

Then:
‖e[t]‖ < at‖e[t−1]‖+ bt. (85)

Step 4: Taking Expectations

Taking expectations over the mini-batch sampling:

E
[
‖e[t]‖

]
< atE

[
‖e[t−1]‖

]
+ bt. (86)

Define:

B̃ =
LHM

2

2
+ εHM. (87)

Then:
E
[
‖e[t]‖

]
< atE

[
‖e[t−1]‖

]
+ ηtB̃. (88)

Step 5: Solving the Recurrence Relation

Unfolding the recurrence:

E
[
‖e[t]‖

]
≤

t∏
k=0

ak · E
[
‖e[0]‖

]
+

t∑
s=0

(
t∏

k=s+1

ak

)
bs. (89)

Since e[0] = 0, we have:

E
[
‖e[t]‖

]
≤

t∑
s=0

(
t∏

k=s+1

ak

)
bs. (90)

Assuming ak ≤ eMHηmax , we get:
t∏

k=s+1

ak ≤ eMHηmax(t−s). (91)

Therefore:

E
[
‖e[t]‖

]
≤ B̃ηmax

t∑
s=0

eMHηmax(t−s). (92)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Approximating the sum:

E
[
‖e[t]‖

]
≤ B̃ηmax ·

eMHηmax(t+1) − 1

eMHηmax − 1
. (93)

For small MHηmax, eMHηmax − 1 ≈MHηmax, yielding:

E
[
‖e[t]‖

]
≤ B̃

MH

(
eMHηmax(t+1) − 1

)
. (94)

Substitute t with t1 and t2 respectively:

E
[
‖e[t2]‖

]
≤ B̃

MH

(
eMHηmax(t2+1) − 1

)
, (95)

E
[
‖e[t1]‖

]
≤ B̃

MH

(
eMHηmax(t1+1) − 1

)
. (96)

Step 6: Final Bound

The estimation error is:

E
[∥∥∥∥∆θ

[t1,t2]
−j − ∆̂θ

[t1,t2]

−j

∥∥∥∥] ≤ E
[
‖e[t2]‖

]
+ E

[
‖e[t1]‖

]
≤ B̃

MH

(
eMHηmax(t2+1) + eMHηmax(t1+1) − 2

)
(97)

This completes the proof.

Remark 12. The error bound provides several key insights:

• The error grows at most exponentially with both t1 and t2, highlighting the challenge of
long-range influence estimation. The impact of t2 is generally more significant as it repre-
sents the end of the time window.

• The Hessian approximation error εH directly impacts the overall error, emphasizing the
importance of accurate Hessian estimation.

• The maximum learning rate ηmax affects the error bound exponentially, suggesting that
smaller learning rates might help control the estimation error.

• The bound depends on the Lipschitz constants of the gradient and Hessian (Lg and LH),
indicating that smoother loss landscapes lead to more reliable influence estimates.

This theorem provides a theoretical foundation for understanding the limitations of influence estima-
tion without assuming convexity and guides practical considerations in its application to large-scale
machine learning problems.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

A.5 PROOF OF ALGORITHM 2

We begin by recalling the definition:

Q
[t1,t2]
−j (q) = 〈q(t2),∆θ

[t2]
−j 〉 − 〈q(t1),∆θ

[t1]
−j 〉 (98)

where ∆θ
[t]
−j ≈

∑t−1
s=0

(∏t−1
k=s+1 Zk

)
1̃

[s]
j , and Zt = I − ηtH [t], 1̃[t]

j = 1j∈St

ηt
|St|g(zj ; θ

[t]).

Note that Zt is self-adjoint matrix, adhering to 〈x, Zty〉 = 〈Ztx, y〉 for all vectors x, y.

According to the update rules for u1 and u2 in the algorithm:

u
[t−1]
i = u

[t]
i − ηtH

[t]u
[t]
i = (I − ηtH [t])u

[t]
i = Ztu

[t]
i , i ∈ {1, 2} (99)

By recursive application of this update rule, we obtain for s < t:

u
[s]
i =

(
t−1∏

k=s+1

Zk

)
u

[t]
i , i ∈ {1, 2} (100)

According to the accumulation of Q in the algorithm, at each time step t, if j ∈ St, we have:

∆Qt =

〈
(u

[t]
2 − u

[t]
1),

ηt
|St|

g(zj ; θ
[t])

〉
(101)

The algorithm initializes u[t2−1]
2 = q(t2) and sets u[t1−1]

1 = q(t1) at time t1. Importantly, u1 is not
updated beyond t1. Using the result from Eq. (100), we can express u[t]

2 and u[t]
1 as:

u
[t]
2 =

t2−1∏
k=t+1

Zkq(t2), for 0 ≤ t < t2 (102)

u
[t]
1 =

{∏t1−1
k=t+1 Zkq(t1) for 0 ≤ t < t1

0 for t1 ≤ t < t2
(103)

Note that u[t]
1 = 0 for t1 ≤ t < t2 because u1 is not updated beyond t1, effectively removing its

contribution to ∆Qt in this range.

Substituting these expressions into Eq.(101):

∆Qt =


〈∏t2−1

k=t+1 Zkq(t2)−
(∏t1−1

k=t+1 Zkq(t1)
)
, 1̃

[t]
j

〉
for 0 ≤ t < t1〈∏t2−1

k=t+1 Zkq(t2), 1̃
[t]
j

〉
for t1 ≤ t < t2

(104)

The total Q is the sum of all ∆Qt: Q =
∑t2−1
t=0 ∆Qt.

Expanding this sum and recalling that Zt is self-adjoint, we get:

Q =

〈
q(t2),

t2−1∑
t=0

(
t2−1∏
k=t+1

Zk

)
1̃

[t]
j

〉
−

〈
q(t1),

t1−1∑
t=0

(
t1−1∏
k=t+1

Zk

)
1̃

[t]
j

〉
(105)

Note that u[t]
2 contributes to the first term over the entire interval [0, t2), while u[t]

1 only contributes
to the second term over [0, t1). This distinction arises from the algorithm’s design, where u1 is not
updated beyond t1.

Combined Eq. (105) are precisely the definitions of ∆θ
[t2]
−j and ∆θ

[t1]
−j , we have:

Q = 〈q(t2),∆θ
[t2]
−j 〉 − 〈q(t1),∆θ

[t1]
−j 〉 = Q

[t1,t2]
−j (q) (106)

Thus, we have rigorously demonstrated that the algorithm’s output Q is equivalent to the defined
Q

[t1,t2]
−j (q) in Eq. (98) under the stated assumption on ηt.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.6 EXPERIMENTAL SUPPLEMENT

A.6.1 EXPERIMENTAL SETUP

Datasets We employed four diverse datasets spanning various domains and complexities to eval-
uate the robustness and generalizability of DIT.

• Adult (Dua & Graff, 2019): A dataset for income prediction containing 48,842 instances
with 14 mixed categorical and numerical features. The dataset is preprocessed by handling
missing values, normalizing numerical features, and applying one-hot encoding to cate-
gorical features. The task is a binary classification of predicting whether income exceeds
$50K/year.

• 20 Newsgroups (Lang, 1995): A text classification dataset. Text data is converted
to TF-IDF vectors, and stop words are removed for cleaner feature representation.
We focus on binary classification between categories comp.sys.ibm.pc.hardware and
comp.sys.mac.hardware. The task is to classify posts into one of the two hardware cat-
egories.

• MNIST (LeCun et al., 2010): A dataset of 70,000 handwritten digit images, each 28x28
pixels in grayscale. Binary classification is conducted between digits 1 and 7, where the
pixel intensities are normalized.

• EMNIST (Cohen et al., 2017): An extended MNIST dataset for handwritten letters. The
grayscale images are normalized to ensure uniformity in the input space. We focus on
binary classification between letters A and B.

Model Architectures We implemented three model architectures of varying complexity to evalu-
ate the performance of DIT across different learning paradigms. In all models, the final layer outputs
a single value for binary classification, and all use binary cross-entropy loss with logits.

• Logistic Regression (LR): Implemented as a single-layer neural network without hidden
layers. The input dimension is flattened to accommodate various input shapes.

• Deep Neural Network (DNN): The architecture comprises two hidden layers, each with
eight units followed by a ReLU activation function. The second layer outputs a single value
for binary classification. The input is flattened, similar to logistic regression.

• Convolutional Neural Network (CNN): This architecture is used for image datasets like
MNIST and EMNIST. It consists of two convolutional layers, with 32 and 64 filters, re-
spectively, each followed by ReLU activation and max-pooling. The final output from the
convolutional layers is flattened and passed through a linear layer to output a binary classi-
fication value.

For non-image data like Adult and 20 Newsgroups, the input is a vector, while image data like
MNIST and EMNIST is reshaped into a single dimension for LR and DNN models. The CNN
processes image data in its original 2D format.

Evaluation Metrics To comprehensively evaluate the performance of DIT, we employed a suite of
statistical metrics, each capturing different aspects of the relationship between compared methods:

• Pearson Correlation Coefficient (r) (Pearson, 1895): The Pearson correlation coefficient
measures the linear relationship between two variables. For two sets of data, X and Y, it is
calculated as:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ)√∑n

i=1(Xi − X̄)2
∑n
i=1(Yi − Ȳ)2

where X̄ and Ȳ are the means of X and Y respectively, and n is the number of samples.
This metric is valuable for identifying direct proportional or inversely proportional rela-
tionships within the data. r ranges from -1 to 1, where 1 indicates a perfect positive linear
relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear
relationship.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• Spearman’s Rank Correlation Coefficient (ρ) (Spearman, 1987): Spearman’s rank cor-
relation assesses monotonic relationships by comparing the rank orders of samples:

ρ = 1−
6
∑n
i=1 d

2
i

n(n2 − 1)

where di is the difference between the ranks of corresponding values Xi and Yi, and n is
the number of samples. ρ ranges from -1 to 1, with values close to 1 or -1 indicating strong
monotonic relationships (positive or negative, respectively) and values close to 0 indicating
weak monotonic relationships.

• Kendall’s Tau (τ) (Kendall, 1938): Kendall’s Tau evaluates ordinal relationships by mea-
suring the number of concordant and discordant pairs:

τ =
2(nc − nd)
n(n− 1)

where nc is the number of concordant pairs, nd is the number of discordant pairs, and n
is the total number of pairs. τ ranges from -1 to 1, with 1 indicating perfect agreement
between two rankings, -1 indicating perfect disagreement, and 0 indicating no relationship.

• Jaccard Similarity (J) (Jaccard, 1912): The Jaccard similarity coefficient compares the
overlap between the top 30% of influential points as determined by different methods:

J(A,B) =
|A ∩B|
|A ∪B|

where A and B are the sets of top 30% influential points identified by different methods. J
ranges from 0 to 1, with 1 indicating perfect overlap between the sets and 0 indicating no
overlap.

By capturing linear relationships (Pearson), monotonic relationships (Spearman), ordinal relation-
ships (Kendall’s Tau), and set-based similarities (Jaccard), we ensure a multifaceted evaluation of
influence estimation methods.

To ensure transparency and reproducibility, all code, including detailed hyperparameter settings and
training procedures, is available on our GitHub repository. This repository contains scripts and
configuration files that define the exact setup for each model used in our experiments, encompassing
learning rates, batch sizes, regularization strategies, and any other model-specific training details.

A.6.2 SAMPLE INFLUENCE DYNAMICS METHODOLOGY

The methodology for analyzing sample influence dynamics consists of several key steps.

1) Sampling and Influence Tracking: We randomly select 256 training points and track their
influence, measured as loss change via LOO, over 20 epochs of training. This fine-grained
sampling provides detailed influence trajectories for each point.

2) Standardization and Trend Analysis: We standardize the influence values using Stan-
dardScaler to normalize the value across different epochs. For each sample, a linear re-
gression is performed on its standardized influence values over time. The slope of this
regression line indicates the overall trend direction (increasing or decreasing influence).
The p-value of the regression determines whether this trend is statistically significant.

3) Adaptive Pattern Categorization: Each sample is categorized based on its statistical prop-
erties, including a) Trend significance (determined by the p-value) b) Trend direction (pos-
itive or negative slope) c) Standard deviation of influence values (a measure of fluctuation).

4) Pattern Analysis: We calculate the proportion of samples in each category and compute
the centroid of each category by averaging the standardized influence values of all points
within that category.

A.6.3 IDENTIFICATION OF TRAINING STAGES

To identify stages in the training process, we utilized the following method:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

1) Modeling Loss Trajectory: We analyzed the loss trajectory across epochs by fitting an
exponential decay model. This approach helps to smooth out fluctuations and emphasize
underlying trends in the training loss.

2) Residual Calculation: Residuals were computed as the differences between the actual loss
values and the values predicted by the exponential model. These residuals highlight where
the actual training deviates from the predicted trend.

3) Change Point Detection: We identified peaks in the absolute residuals as change points.
A minimum distance criterion was applied to ensure these change points were evenly dis-
tributed across the training timeline.

4) Stage Segmentation: Based on the identified change points, the training process was di-
vided into three stages: early, middle, and late.

27

	Introduction
	Preliminaries
	Parameter Change in Time Window
	Problem Formulation
	Estimation of Parameter Change in Time Window
	Estimation Error Analysis without Convexity Assumptions

	Dynamic Influence Tracker: A Query-Based Approach
	Query-Based DIT
	Training Phase of DIT
	Inference Phase of DIT

	Experiments
	Experimental Setup
	Patterns of Sample Influence Dynamics
	Influence Estimation Accuracy
	Influence Dynamics and Similarity across Training Stages
	Applications of Dynamic Influence Tracker

	Related Works
	Conclusion
	Appendix
	Pattern-Specific Influence Estimation
	Discussions
	Key Findings and Implications
	Applications in Modern Deep Learning
	Detailed Derivation of Parameter Change Estimation

	 DIT Toolkit
	DIT for Loss Value
	DIT for Prediction Changes
	DIT for Feature Importance
	DIT for Parameter Importance

	Estimation Error Analysis without Convexity Assumptions
	Proof of Algorithm 2
	Experimental Supplement
	Experimental Setup
	Sample Influence Dynamics Methodology
	Identification of Training Stages

