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ABSTRACT

Understanding how training samples affect models improves model interpretabil-
ity, optimization strategies, and anomaly detection. However, existing methods
for estimating sample influence provide only static assessments, rely on restric-
tive assumptions, and require high computational costs. We propose Dynamic
Influence Tracker (DIT), a novel method to estimate time-varying sample influ-
ence in models trained with Stochastic Gradient Descent (SGD). DIT enables
fine-grained analysis of sample influence within arbitrary time windows during
training through a two-phase algorithm. The training phase efficiently captures
and stores necessary information about the SGD trajectory, while the inference
phase computes the influence of samples on the model within a specified time
window. We provide a theoretical error bound for our estimator without assuming
convexity, showing its reliability across various learning scenarios. Our exper-
imental results reveal the evolution of sample influence throughout the training
process, enhancing understanding of learning dynamics. We show DIT’s effec-
tiveness in improving model performance through anomalous sample detection
and its potential for advancing curriculum learning.

1 INTRODUCTION

Deep neural networks, optimized via Stochastic Gradient Descent (SGD) (Bottou, 2010), have
achieved remarkable success across various domains. Despite these achievements, it is challenging
to estimate the dynamic influence of training samples on the learning process. This understanding
is key to enhancing model interpretability, improving optimization strategies, designing effective
curriculum learning (Bengio et al., 2009), and enabling early anomaly detection (Chandola et al.,
2009).

Existing methods for estimating sample influence, such as influence functions (Koh & Liang, 2017)
and SGD-influence (Hara et al., 2019), provide foundational insights but face several limitations:
First, existing methods can only estimate the overall impact of samples on the final model. They
provide a single, static estimate of influence for the entire training process, failing to capture how
the influence evolves throughout different stages of the training process. Second, they often rely
on strong assumptions about loss convergence, convexity or model optimality. These conditions are
rarely met in modern deep learning environments featuring complex, non-convex loss landscapes.
This can lead to inaccurate influence assessments. Third, most methods involve computationally in-
tensive operations, such as retraining the model multiple times (Ghorbani & Zou, 2019) or inverting
the Hessian matrix (Koh & Liang, 2017). The high computational costs limit practical applicability
and make real-time influence analysis infeasible. Collectively, these limitations obscure the time-
varying nature of sample influence, thus restricting the utility and applicability of existing models in
real-world scenarios.

To address these challenges, we propose the Dynamic Influence Tracker (DIT) to estimate the time-
varying influence of training samples on models trained using SGD. Our method enables to estimate
sample influence within arbitrary time windows through a two-phase algorithm. The training phase,
executed only once, captures and stores necessary information about the SGD process, particularly
focusing on the evolution of the model’s parameters over time. The inference phase utilizes the
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stored information to compute the influence of selected samples within specified time windows,
enabling efficient and flexible analysis.

Compared with existing works, DIT offers the following advantages:

1) Real-Time and Dynamic Influence Tracking. DIT provides granular real-time sample in-
fluence estimates within arbitrary time windows during model training, capturing dynamic
influence fluctuations. Our experiments show that DIT can identify important samples
early in training, optimizing the process and enhancing performance in applications such
as mislabeled sample detection.

2) Robustness to Non-Convergence and Non-Convexity. DIT handles non-convex loss
landscapes effectively by utilizing gradient analysis and Hessian-vector approximations
without assuming convergence or global optimality. We provide theoretical guarantees on
the accuracy of our estimates, showing that estimation errors grow controllably with the
training interval, ensuring reliable results even in non-convex settings.

3) Query-Based Multifaceted Influence Measure. Our query-based algorithm enables mul-
tifaceted analysis of model behavior by projecting parameter changes to specific directions.
This approach allows for targeted estimation of how training samples impact loss gradients,
predictions, and other model properties, providing a comprehensive understanding of sam-
ple influence.

2 PRELIMINARIES

Let Z = X × Y denote the space of observations, where X ⊆ Rd is the input space and Y is the
output space. Given a training set D = {zi}Ni=1 of i.i.d. observations zi = (xi, yi) ∈ Z , a model
f : X ×Θ→ Y parameterized by θ ∈ Θ ⊆ Rp, and a loss function ` : Z ×Θ→ R, we formulate
the learning problem as:

θ̂ = arg min
θ∈Θ

1

N

N∑
i=1

`(zi; θ). (1)

Definition 1 (Stochastic Gradient Descent (SGD)). Let g(z; θ) = ∇θ`(z; θ), and SGD starts from
θ[0]. The update rule for mini-batch SGD at step t is:

θ[t+1] = θ[t] − ηt
|St|

∑
i∈St

g(zi; θ
[t]), 0 ≤ t ≤ T − 1, (2)

where St ⊆ {1, ..., N} represents the mini-batch of indices at step t, ηt is the learning rate at step t,
and T denotes the total number of SGD steps.
Definition 2 (Influence Function Koh & Liang (2017)). The influence function measures the im-
pact of removing a single training point zj on the optimal model parameters θ̂. It is defined as
θ̂−j − θ̂, where θ̂−j = arg minθ

∑N
i=1,i6=j `(zi; θ). For strongly convex loss functions, it can be

approximated as:
θ̂−j − θ̂ ≈ −Ĥ−1∇θ`(zj ; θ̂), (3)

where Ĥ = 1
N

∑
z∈D∇2`(z; θ̂) is the Hessian of the loss at the optimal parameters.

Definition 3 (Counterfactual SGD). The counterfactual SGD process is used to understand the in-
fluence of a specific training sample on the learning process by excluding the j-th training sample.
Starting from θ

[0]
−j = θ[0], the parameters are updated at each step t using:

θ[t+1] = θ[t] − ηt
|St|

∑
i∈St\{j}

g(zi; θ
[t]
−j), 0 ≤ t ≤ T − 1. (4)

Definition 4 (SGD-Influence (Hara et al., 2019)). The SGD-influence of training sample zj ∈ D
within t steps is defined as θ[t]

−j − θ[t].

While the influence function (Koh & Liang, 2017) provides insights at the optimum, SGD-
Influence (Hara et al., 2019) measures the impact of excluding a specific training instance zj
throughout the SGD training process. In the following sections, we will introduce our method for
estimating sample influence efficiently for arbitrary time windows during training.

2
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3 PARAMETER CHANGE IN TIME WINDOW

3.1 PROBLEM FORMULATION

Our goal is to estimate the impact of training samples during an arbitrary time window [t1, t2]
within the overall training process [0, T ], where 0 ≤ t1 < t2 ≤ T . We formalize this goal with a
counterfactual question: how would the model’s parameters change during the interval [t1, t2] if a
specific sample zj is not used?
Definition 5 (Parameter Change in Time Window). For a time window [t1, t2] during SGD training,
the parameter change estimates the contribution of a training sample zj as:

∆θ
[t1,t2]
−j = (θ

[t2]
−j − θ

[t1]
−j )− (θ[t2] − θ[t1]), (5)

where (θ[t2]−θ[t1]) represents the parameter changes under standard SGD within [t1, t2], and (θ
[t2]
−j −

θ
[t1]
−j ) represents the parameter changes over the same interval when excluding sample zj .

For the special case [0, t], starting from the beginning of training, this simplifies to:

∆θ
[0,t]
−j = (θ

[t]
−j − θ

[0]
−j)− (θ[t] − θ[0]) = θ

[t]
−j − θ

[t]. (6)

For brevity, we denote ∆θ
[0,t]
−j = ∆θ

[t]
−j .

3.2 ESTIMATION OF PARAMETER CHANGE IN TIME WINDOW

We aim to estimate the parameter change due to the absence of sample zj over the time window
[t1, t2], where 0 ≤ t1 < t2 ≤ T :

∆θ
[t1,t2]
−j = (θ

[t2]
−j − θ

[t1]
−j )− (θ[t2] − θ[t1]) = (θ

[t2]
−j − θ

[t2])− (θ
[t1]
−j − θ

[t1]). (7)

Consider the normal SGD update for step t (0 ≤ t ≤ T − 1) (including all samples):

θ[t+1] = θ[t] − ηt
|St|

∑
i∈St

g(zi; θ
[t]). (8)

Consider the SGD update excluding sample zj :

θ
[t+1]
−j = θ

[t]
−j −

ηt
|St|

∑
i∈St\{j}

g(zi; θ
[t]
−j). (9)

Calculate the difference between the two updates:

θ
[t+1]
−j − θ[t+1] = (θ

[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St

g(zi; θ
[t])). (10)

Approximate the gradient differences using a first-order Taylor expansion:

g(zi; θ
[t]
−j)− g(zi; θ

[t]) ≈ ∇θg(zi; θ
[t])T (θ

[t]
−j − θ

[t]), (11)

where∇θg(zi; θ
[t]) is the gradient of g(zi; θ) with respect to θ, evaluated at θ[t]. Define the approxi-

mate Hessian matrixH [t] as the average of the outer products of these gradients over the mini-batch:

H [t] =
1

|St|
∑
i∈St

∇θg(zi; θ
[t])T , (12)

Using this definition in Eq.(12) and Eq.(11), we have:
1

|St|
∑
i∈St

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) ≈ H [t](θ
[t]
−j − θ

[t]). (13)

Substituting this approximation into Eq. (10), we have:

θ
[t+1]
−j − θ[t+1] ≈ (I − ηtH [t])(θ

[t]
−j − θ

[t]) + 1j∈St

ηt
|St|

g(zj ; θ
[t]), (14)

3
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where 1j∈St
is an indicator function that equals 1 if j ∈ St, otherwise 0. The complete derivation is

provided in Appendix A.2.3. Let Zt = I − ηtH [t], 1̃[t]
j = 1j∈St

ηt
|St|g(zj ; θ

[t]) and recursively apply
this relation over the interval [t1, t2]:

θ
[t2]
−j − θ

[t2] ≈ Zt2−1Zt2−2 . . . Zt1(θ
[t1]
−j − θ

[t1]) +

t2−1∑
t=t1

Zt2−1Zt2−2 . . . Zt+11̃
[t]
j . (15)

Combining Eq. (7) and Eq. (15), we can get:

∆θ
[t1,t2]
−j ≈

(
t2−1∏
k=t1

Zk − I

)
(θ

[t1]
−j − θ

[t1]) +

t2−1∑
t=t1

(
t2−1∏
k=t+1

Zk

)
1̃

[t]
j . (16)

We use Eq. (16) for the interval [0, t1] with θ[0]
−j = θ[0] to get (θ

[t1]
−j − θ[t1]):

∆θ
[0,t1]
−j = θ

[t1]
−j − θ

[t1] ≈
t1−1∑
t=0

(
t1−1∏
k=t+1

Zk

)
1̃

[t]
j . (17)

Substituting this Eq. (17) back into Eq. (16), we obtain:

∆θ
[t1,t2]
−j ≈

(
t2−1∏
k=t1

Zk − I

)(
t1−1∑
t=0

(
t1−1∏
k=t+1

Zk

)
1̃

[t]
j

)
+

t2−1∑
t=t1

(
t2−1∏
k=t+1

Zk

)
1̃

[t]
j .

We define the estimated parameter change as:

∆̂θ
[t1,t2]

−j =

(
t2−1∏
k=t1

Zk − I

)(
t1−1∑
t=0

(
t1−1∏
k=t+1

Zk

)
1̃

[t]
j

)
+

t2−1∑
t=t1

(
t2−1∏
k=t+1

Zk

)
1̃

[t]
j .

3.3 ESTIMATION ERROR ANALYSIS WITHOUT CONVEXITY ASSUMPTIONS

We derive an upper bound on the estimation error ‖∆θ[t1,t2]
−j − ∆̂θ

[t1,t2]

−j ‖ for our proposed esti-

mator ∆̂θ
[t1,t2]

−j over an arbitrary training interval [t1, t2]. Under standard non-convex optimization
assumptions, we establish the following error bound:

E
[∥∥∥∥∆θ

[t1,t2]
−j − ∆̂θ

[t1,t2]

−j

∥∥∥∥] ≤ B̃

MH

(
eMHηmax(t2+1) + eMHηmax(t1+1) − 2

)
, (18)

whereMH is the upper bound on the norm of the Hessian matrixH [t], ηmax is the maximum learning
rate, B̃ = LHM

2

2 + εHM encapsulates constants related to the Hessian’s Lipschitz continuity and
approximation error. For detailed derivations and assumptions, see Appendix A.4.

Note that DIT applies to non-converged and non-convex models. The exponential form arises from
the recursive nature of error propagation, where each SGD step compounds previous errors multi-
plicatively. Our analysis is the first to guarantee error bounds for non-converged, non-convex models
during arbitrary time windows. The bounds are mathematical guarantees for the worst case, and ex-
perimental results show that DIT achieves near-zero errors empirically.

4 DYNAMIC INFLUENCE TRACKER: A QUERY-BASED APPROACH

Section 3 discusses how samples affect model parameters, but their impact also extends to loss
gradients and predictions. This section introduces DIT, a flexible, query-based method for a com-
prehensive evaluation of sample effects on model performance.

4.1 QUERY-BASED DIT

The core idea of DIT is to project parameter changes onto specific directions in the parameter space,
each represe nted by a query vector. This projection enables us to focus on particular aspects of
model behavior, reduce the dimensionality of the analysis, and provide interpretable measures of
influence. By carefully choosing query vectors, we can investigate how a training sample’s influence
affects various model aspects.

4
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Definition 6 (Query-based Dynamic Influence Tracker). Let q : [0, T ] → Rp be a query function
that maps time t to a query vector q(t) ∈ Rp. The Query-based Dynamic Influence Tracker for a
training sample zj over the time window [t1, t2] is defined as:

Q
[t1,t2]
−j (q) = 〈q(t2),∆θ

[t2]
−j 〉 − 〈q(t1),∆θ

[t1]
−j 〉, (19)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t] represents the parameter change at time t and 〈·, ·〉 denotes the standard

inner product in Rp.

This measure estimates the influence of sample zj on the model’s behavior as projected onto the
query directions. For example, by setting q(t) = ∇θ`(ztest; θ

[t]), we can measure the impact of a
training sample on the model’s loss for a test point ztest:

Q
[t1,t2]
−j (q) = 〈∇θ`(ztest; θ

[t2]),∆θ
[t2]
−j 〉 − 〈∇θ`(ztest; θ

[t1]),∆θ
[t1]
−j 〉

≈ [`(ztest; θ
[t2]
−j )− `(ztest; θ

[t1]
−j )]− [`(ztest; θ

[t2])− `(ztest; θ
[t1])].

(20)

Different choices of q enable analysis of various model characteristics. We can set q =
∇θf(xtest; θ

[t]) measures prediction changes, q = ei (standard basis vector) examines individual
parameter importance, and q = ∇θ`(zj ; θ[t]) assesses gradient alignments. A detailed analysis of
these query vectors is in Appendix A.3.

4.2 TRAINING PHASE OF DIT

The training phase captures SGD informa-
tion in a selectable storage window W (see
Algorithm 1).

Empirically, setting W to the first epoch
steps achieves better accuracy than baselines
while reducing storage from O(T (|St|+ p))
to O(|W |(|St| + p)), where T is total steps,
|W | is window size, |St| is batch size, and
p is parameter count. The computation com-
plexity remainsO(T · |St| ·p). Periodic com-
pression can further reduce storage overhead.

Algorithm 1 Training Phase of DIT

Require: Training dataset D = {zn}Nn=1, learn-
ing rate ηt, batch size |St|, training steps T ,
selectable storage window W

Ensure: Stored information A
1: Initialize model parameters θ[0]

2: Initialize an empty sequence A
3: for t = 1 to T do
4: St = SampleBatch(D, |St|)
5: θ[t+ 1] = θ[t]− ηt

|St|
∑
i∈St

g(zi; θ[t])

6: if t ∈W then A[t] = {St, ηt, θ[t+ 1]}
7: end for
8: return A

4.3 INFERENCE PHASE OF DIT

The inference phase computes sample in-
fluence on queries for any time window
[t1, t2] using information stored in window
W , where [t1, t2] is inside W .

Algorithm 2 utilizes two key variables, u[t]
2

and u
[t]
1 , which propagate q(t2) and q(t1)

backwards through time while incorporating
the Zk matrices. The algorithm computes Q
by summing the inner products of (u

[t]
2 −u

[t]
1 )

with 1̃
[t]
j at each time step. When expanded,

this sum precisely matches the structure of
Q

[t1,t2]
−j (q) as defined, with the accumulated

terms corresponding to ∆θ
[t2]
−j and ∆θ

[t1]
−j .

This approach efficiently computes the influ-
ence without explicitly performing large ma-
trix multiplications. See Appendix A.5 for a
detailed proof.

Algorithm 2 Inference Phase of DIT

Require: Stored information A, query function q,
time window [t1, t2], specified sample zj

Ensure: Estimated influence Q for sample zj
1: Initialize Q← 0, u[t2−1]

1 ← 0

2: Initialize u[t2−1]
2 ← q(t2)

3: for t = t2 − 1 downto 0 do
4: if j ∈ St then

5: Q← Q+

〈
(u

[t]
2 − u

[t]
1 ),

ηt
|St|

g(zj ; θ
[t])

〉
6: end if
7: u

[t−1]
1 ← u

[t]
1 − ηtH [t]u

[t]
1

8: u
[t−1]
2 ← u

[t]
2 − ηtH [t]u

[t]
2

9: if t = t1 then u
[t−1]
1 ← q(t1)

10: end for
11: return Q

5
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Its time complexity is O(t2|St|p) and space complexity is O(p). DIT avoids the computationally
intensive direct computation and storage of the Hessian matrix, which typically requires O(Tp2)
operations. Instead, DIT efficiently computes Hessian-vector products H [t]u = ∇θ〈u, g(z; θ[t])〉,
requiring only O(|St|p) operations per iteration. This optimization effectively handles large models
and datasets in modern machine-learning contexts.

5 EXPERIMENTS

We evaluate DIT through a series of experiments designed to answer the following questions:

• How do training sample influences evolve throughout the learning process?

• How accurately does DIT estimate sample influence compared to existing methods?

• What can we learn by analyzing how influence evolves across various training stages?

• Can time window analysis of sample influence improve practical ML tasks?

5.1 EXPERIMENTAL SETUP

We evaluate DIT across diverse datasets and model architectures, comparing it against leading in-
fluence estimation methods. Our experimental setup included eight Nvidia RTX A5000 GPUs, each
equipped with 24 GB of memory. These were supported by dual Intel Xeon Gold 6342 CPUs run-
ning at 2.80GHz with 96 cores in total and 503 GB of RAM. The software environment comprised
Ubuntu 22.04.3 LTS (64-bit), PyTorch v2.4.1, CUDA 12.4, and Python 3.11.9. Code and data are
available at https://github.com/dynamic-infl-tracker/DIT.

Datasets We used four datasets spanning different domains and complexities: Adult (tabular)
(Dua & Graff, 2019), 20Newsgroups (text) (Lang, 1995), MNIST (LeCun et al., 2010) and EM-
NIST (Cohen et al., 2017) (grayscale images). Details are in Appendix A.6.1.

Models We used three model architectures of varying complexity: 1) Logistic Regression (LR), a
simple linear model serving as a convex baseline; 2) Deep Neural Network (DNN), with two hidden
layers using ReLU activations; and 3) Convolutional Neural Network (CNN), with two convolutional
layers followed by a fully connected layer. The DNN and CNN represent non-convex scenarios.
All models are optimized using the binary cross-entropy loss with logits, which combines sigmoid
activation with binary cross-entropy loss for binary classification tasks. Input and output dimensions
were adapted to each dataset. Detailed specifications are provided in Appendix A.6.1.

Comparison Methods We evaluate DIT against two established methods.

Leave-One-Out (LOO) directly measures the influence of removing a training sample zj by retrain-
ing models. ∆`LOO(zj) = 1

M

∑M
i=1 (`(zi, θ−j)− `(zi, θ)), where zi ∈ Dtest, M is the size of the

test set Dtest = {zi}Mi=1. While LOO provides a robust ground truth baseline, it is computationally
intensive.

Influence Functions (IF) (Koh & Liang, 2017) estimates the influence of removing a
training sample zj on the model’s overall loss for a test set Dtest: I(zj , Dtest) =

− 1
M

∑M
i=1∇θ`(zi, θ)TH−1∇θ`(zj , θ), where H is the Hessian of the model’s loss at θ.

For DIT, we estimate influence by setting q(t) = 1
M

∑M
i=1∇θ`(zi; θ[t]), measuring the impact on

test set Dtest loss across time window [t1, t2]: Q[t1,t2]
−j (q) ≈ 1

M

∑M
i=1

[
`(zi; θ

[t2]
−j )− `(zi; θ[t1]

−j )
]
−

1
M

∑M
i=1

[
`(zi; θ

[t2])− `(zi; θ[t1])
]
.

To ensure the reproducibility and robustness of our results, we present them as the mean ± standard
deviation calculated over 16 runs, and each initialized with a different random seed.

6
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5.2 PATTERNS OF SAMPLE INFLUENCE DYNAMICS

While existing methods typically provide a static estimate of sample influence for the entire training
process, our study shows that sample influence on model performance is dynamic and evolves over
time. To uncover this, we conducted a preliminary exploration using LOO, as it provides a ground
truth assessment of each sample’s influence on model performance. Our methodology involved
randomly selecting 256 training samples and using LOO to evaluate their loss change at each epoch
during model training. For each sample and each epoch, we temporarily removed the sample from
the training set, retrained the model for that epoch, and recorded the resulting change in loss. This
process generated a time series of sample influences, allowing us to track how the importance of
each sample evolved throughout the training process.

As the model converges during training, the loss change decreases with increasing epochs. To
identify patterns of sample influence rather than relative influences, we normalized the values within
each epoch using StandardScaler. We then used linear regression to analyze trends in influence
changes. Figure 1 shows four distinct influence evolution patterns, displaying centroid values for
each group. Detailed experimental settings are provided in Appendix A.6.2.

Figure 1: Illustration of influence dynamics patterns for MNIST training using DNN

• Stable Influencers: Consistent influence throughout training.

• Early Influencers: Significant early impact that diminishes over time.

• Late Bloomers: Gain influence as training progresses.

• Highly Fluctuating Influencers: Large variations in influence across training.

We further analyzed the pattern distribution across datasets and models, as shown in Table 1.

Table 1: Distribution of influence dynamic patterns across datasets and models (percentage)

Model Dataset Stable Influencer Early Influencers Late Bloomers Highly Fluctuating

LR
Adult 64.75± 7.20 11.67± 3.27 20.15± 5.87 3.42± 1.82
20News 85.94± 5.38 1.17± 1.28 5.57± 1.26 7.32± 4.24
MNIST 80.16± 12.10 0.79± 0.96 10.78± 9.35 8.27± 3.36
EMNIST 75.49± 8.40 0.70± 0.53 13.77± 6.77 10.04± 2.75

DNN
Adult 97.91± 2.66 0.313± 1.12 1± 1.55 0.78± 0.89
20News 79.03± 7.78 8.44± 4.11 11.41± 3.90 1.13± 0.83
MNIST 66.56± 13.26 10.34± 4.65 20.59± 9.44 2.5± 0.93
EMNIST 78.16± 14.48 7.09± 7.678 7.47± 9.87 7.28± 3.55

CNN MNIST 83.76± 19.91 0.34± 0.42 11.74± 16.60 4.15± 3.94
EMNIST 86.50± 7.50 1.87± 5.15 1.59± 3.91 10.03± 2.48

These results show several key insights. 1) All datasets and models show diverse influence pat-
terns, with Stable Influencers dominating but other patterns consistently present. This underscores
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the dynamic nature of sample influence throughout the training process. 2) The consistent pres-
ence of Early Influencers and Late Bloomers highlights the importance of time-varying analysis in
understanding sample influence. DIT’s ability to capture these temporal dynamics provides a signif-
icant advantage over static influence estimation methods. 3) The varying distributions of influence
patterns across different model-dataset combinations show a complex interplay between data char-
acteristics and model architecture. This complexity further emphasizes the necessity of a flexible,
query-based approach like DIT, which can adapt to different scenarios and provide targeted insights.

5.3 INFLUENCE ESTIMATION ACCURACY

To validate DIT’s accuracy in estimating influence, we compared DIT against IF using LOO as
ground truth. We employed DIT’s full-time window [0, T ] for a fair comparison with IF, which
can only measure overall sample influence on the final model. To evaluate how closely DIT and
IF approximate LOO, we adopted four metrics: Pearson and Spearman correlations for linear and
monotonic relationships, respectively, Kendall’s tau for ordinal relationships, and Jaccard similarity
for the top 30% influencers. Detailed metric descriptions are in Appendix A.6.1.

Table 2: Performance comparison of DIT and IF for Logistic Regression and Deep Neural Network

Model Dataset Pearson Spearman Kendall’s Tau Jaccard

DIT IF DIT IF DIT IF DIT IF

LR
Adult 0.99±0.01 0.91±0.04 0.99±0.01 0.93±0.02 0.95±0.01 0.79±0.04 0.91±0.04 0.71±0.06

20News 0.99±0.01 0.90±0.13 0.99±0.01 0.94±0.08 0.97±0.01 0.84±0.13 0.95±0.03 0.78±0.16
MNIST 0.93±0.10 0.76±0.14 0.98±0.01 0.61±0.22 0.95±0.02 0.49±0.21 0.91±0.05 0.48±0.14

DNN
Adult 0.95±0.02 0.88±0.04 0.95±0.03 0.86±0.04 0.83±0.06 0.69±0.05 0.75±0.08 0.56±0.07

20News 0.85±0.07 0.77±0.05 0.85±0.08 0.80±0.06 0.71±0.08 0.62±0.07 0.67±0.08 0.55±0.07
MNIST 0.90±0.07 0.25±0.28 0.98±0.01 0.26±0.33 0.90±0.03 0.19±0.24 0.85±0.05 0.27±0.19

Table 2 shows several key findings: First, DIT consistently surpasses IF in accuracy across all
datasets, model architectures, and evaluation metrics. Second, DIT’s advantage is most signifi-
cant in complex settings like non-convex DNN and complex MNIST. Third, DIT shows superior
robustness and reliability, with lower standard deviations across runs compared to IF.

(a) LR, adult (b) LR, 20news (c) LR, mnist

(d) DNN, adult (e) DNN, 20news (f) DNN, MNIST

Figure 2: Comparison of influence estimates for DIT and IF vs. LOO ground truth across datasets using LR
and DNN. The x-axis represents the ground truth influence values obtained from the LOO method. The y-axis
shows DIT (blue) and IF (red) estimates.
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These results are visually shown in Figure 2. DIT estimates closely align with the y = x line,
indicating superior accuracy to IF, especially with non-convex models and complex datasets.

Furthermore, we analyzed the effectiveness of DIT on samples of different patterns. Due to page
limitations, the results are listed in Table 5 in Appendix A.6.2.

5.4 INFLUENCE DYNAMICS AND SIMILARITY ACROSS TRAINING STAGES

After validating DIT’s accuracy in estimating sample influence, we used it to analyze the similarity
of different training stages. The training process was adaptively divided into early, middle, and late
stages using change points identified in the overall training loss trajectory. Detailed experimental
settings are provided in Appendix A.6.3. Then, we set time windows based on stages and used
DIT to compute sample influence within these windows. We then used Kendall’s tau correlation to
quantify the similarity of influence rankings between stages, with higher values indicating greater
stability. Table 3 presents these correlations.

Table 3: Kendall’s Tau correlations across training stages

Model Dataset Early-Middle Early-Late Middle-Late Early-Full Middle-Full Late-Full

LR
Adult 0.64 ± 0.14 0.62 ± 0.08 0.79 ± 0.14 0.81 ± 0.05 0.82 ± 0.12 0.79± 0.05
20News 0.79 ± 0.12 0.78 ± 0.10 0.79 ± 0.09 0.91 ± 0.02 0.88± 0.10 0.86± 0.12
MNIST 0.43 ± 0.14 0.15 ± 0.12 0.35 ± 0.14 0.71 ± 0.08 0.72± 0.09 0.30 ± 0.14
EMNIST 0.73 ± 0.04 0.40 ± 0.16 0.51 ± 0.18 0.83 ± 0.03 0.89± 0.02 0.49 ± 0.17

DNN
Adult 0.61 ± 0.11 0.41 ± 0.15 0.70 ± 0.06 0.7 ± 0.09 0.87 ± 0.04 0.69 ± 0.08
20news 0.66 ± 0.06 0.57± 0.07 0.76 ± 0.05 0.81 ± 0.03 0.82 ± 0.04 0.76 ± 0.04
MNIST 0.56 ± 0.06 0.18 ± 0.21 0.20 ± 0.25 0.74 ± 0.03 0.81± 0.04 0.20 ± 0.25
EMNIST 0.60 ± 0.12 0.40 ± 0.20 0.59 ± 0.21 0.69 ± 0.11 0.84± 0.07 0.63± 0.17

Table 3 shows several key insights. First, sample influence evolves significantly throughout train-
ing, as evidenced by the consistently low correlations between early and late stages (Early-Late
column). This challenges the static influence measurement methods and highlights the necessity for
time-aware methods like DIT. Second, mid-training influence strongly correlates with full-training
influence across all datasets and models. This suggests that influential samples can be identified
before convergence. Mid-training analysis may suffice for estimating full-training sample influence,
potentially reducing computational costs. These insights have significant implications for data selec-
tion and curriculum learning strategies. Third, for a given dataset, the patterns of influence ranking
changes at different stages are similar across different model architectures when accounting for stan-
dard deviations. This consistency suggests that the influence of samples is largely determined by the
inherent dataset rather than being heavily model-dependent.

5.5 APPLICATIONS OF DYNAMIC INFLUENCE TRACKER

Flipped label Sample Detection To show the practical utility of DIT, we applied it to detecting
flipped labels in a binary classification problem using the MNIST dataset (distinguishing between
digits ‘1’ and ‘7’). We randomly selected and flipped labels for 5%, 10%, 15%, and 20% of the
training data, corresponding to 12, 25, 38, and 51 samples, respectively. Models were then trained
on these partially corrupted datasets. We calculated influence using six methods: full-process DIT,
IF, LOO, and epoch-specific DIT (first, middle, and last epochs). For each method, we ranked
training samples by their negative influence and evaluated the top-k samples, where k equals the
number of deliberately flipped samples. This approach allows us to assess each method’s ability to
identify mislabeled samples accurately. Table 4 presents results averaged over 16 runs.

First, DIT consistently outperforms IF across all scenarios, often matching or closely approach-
ing the LOO performance. DIT maintains its performance advantage across varying levels of label
noise (5% to 20%). Second, the performance gap between DIT and IF widens as model complexity
increases (LR < DNN < CNN), highlighting DIT’s robustness to non-convexity. Third, later train-
ing stages generally yield better detection accuracy, particularly for complex models. As models
converge, the influence of mislabeled samples becomes more distinguishable relative to correctly
labeled ones. These findings collectively show DIT’s effectiveness as a powerful tool for enhanc-
ing model robustness and sample quality assessment, particularly in complex, real-world machine
learning scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Number of correctly identified flipped samples

Flipped Model IF Full DIT LOO First Epoch DIT Mid Epoch DIT Last Epoch DIT

5%
LR 10.50 ± 0.50 10.94 ± 0.90 10.94 ± 0.90 10.56 ± 1.22 10.88 ± 0.78 10.88 ± 0.78

DNN 2.94 ± 2.01 9.06 ± 1.85 8.81 ± 1.98 8.25 ± 2.33 8.88 ± 2.09 9.38 ± 1.98
CNN 5.88 ± 2.26 10.50 ± 1.32 10.44 ± 1.32 8.75 ± 2.11 10.69 ± 1.16 11.06 ± 1.32

10%
LR 23.44 ± 0.93 23.50 ± 1.00 23.50 ± 1.00 22.56 ± 1.54 23.50 ± 1.06 23.38 ± 1.00

DNN 7.50 ± 3.34 20.75 ± 3.01 19.94 ± 3.77 20.31 ± 2.78 20.50 ± 3.22 21.31 ± 3.77
CNN 15.00 ± 2.83 21.81 ± 3.11 21.75 ± 3.11 18.44 ± 4.37 22.19 ± 2.81 23.56 ± 3.11

15%
LR 36.06 ± 0.97 36.06 ± 1.14 36.06 ± 1.14 35.38 ± 1.62 35.69 ± 1.69 35.13 ± 1.14

DNN 12.63 ± 4.62 32.81 ± 3.47 32.50 ± 3.72 32.19 ± 3.40 32.56 ± 3.61 33.31 ± 3.72
CNN 23.44 ± 4.68 34.19 ± 4.17 34.19 ± 4.17 29.75 ± 5.93 34.56 ± 3.98 36.31 ± 4.17

20%
LR 48.63 ± 1.11 48.69 ± 1.16 48.69 ± 1.16 47.94 ± 1.52 46.56 ± 3.12 42.94 ± 1.16

DNN 22.31 ± 6.14 45.31 ± 3.29 43.94 ± 5.20 44.13 ± 3.64 45.19 ± 3.30 45.56 ± 5.20
CNN 31.00 ± 5.79 46.19 ± 4.33 46.25 ± 4.35 41.50 ± 7.66 47.13 ± 3.35 48.69 ± 4.35

6 RELATED WORKS

Estimating the influence of individual training samples on machine learning models is important
for optimization and interpretability. While the Leave-One-Out (LOO) method is straightforward,
it’s computationally prohibitive for large datasets or complex models. Influence functions (Koh &
Liang, 2017) offer a more feasible alternative, estimating the impact of removing a single training
sample on model performance at convergence. However, their effectiveness is limited in non-convex
scenarios common in deep learning (Basu et al., 2021). Recent extensions (Guo et al., 2021;
Schioppa et al., 2022; Choe et al., 2024) still provide static, full-process influence measures, failing
to capture dynamic sample influence during training.

Shapley Value-based approaches (Ghorbani & Zou, 2019) provide a robust, equitable valuation of
individual sample contributions by considering all possible subsets of training data. Efficient approx-
imation algorithms (Jia et al., 2019; 2021; Xu et al., 2021) and domain-specific extensions (Schoch
et al., 2022; Sun et al., 2023; Fan et al., 2022) have improved scalability, but remain computationally
expensive for large-scale problems.

Data cleansing and pruning focus on removing noisy or irrelevant data. SGD-influence (Hara et al.,
2019) analyzes the gradient descent process and estimates sample influence across the entire training
trajectory. Our proposed DIT extends this approach, enabling influence estimation within arbitrary
time windows during training, providing more flexible error bound analysis and detailed experimen-
tal evaluation. Forgetting events (Toneva et al., 2018) and early-training scores (Paul et al., 2021)
enable efficient data pruning. MOSO (Tan et al., 2024) identifies less informative samples via
gradient deviations, and YOCO (He et al., 2023) enables flexible resizing of condensed datasets.

Despite these advancements, analyzing sample influence within arbitrary time windows during train-
ing remains a challenge. DIT addresses this gap by providing a flexible, computationally efficient
method for fine-grained influence tracking without relying on strong convexity assumptions. It
enables multidimensional influence measurement with a single training process, offering a compre-
hensive understanding of sample importance throughout the learning trajectory.

7 CONCLUSION

This paper introduces Dynamic Influence Tracker (DIT), a novel approach for fine-grained estima-
tion of individual training sample influence within arbitrary time windows in SGD-trained models.
Our method’s query-based design enables multifaceted analysis of sample influence on various as-
pects of model performance effectively. Our theoretical analysis provides error bounds without
assuming convexity. Extensive experimental results reveal patterns in influence dynamics and show
that DIT consistently outperforms existing methods in influence estimation accuracy, particularly
for complex models and datasets.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

S Basu, P Pope, and S Feizi. Influence functions in deep learning are fragile. In International
Conference on Learning Representations (ICLR), 2021.
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A APPENDIX

A.1 PATTERN-SPECIFIC INFLUENCE ESTIMATION

Our experimental analysis in Section 5.2 revealed that sample influence exhibits distinct temporal
patterns throughout the training process, categorized as Stable Influencers, Early Influencers, Late
Bloomers, and Highly Fluctuating Influencers. To rigorously evaluate DIT’s effectiveness across
these diverse influence patterns, we conducted a pattern-specific performance analysis comparing
DIT against IF with LOO as ground truth using the MNIST dataset with DNN architecture. Table 5
presents the comparative results across multiple metrics. Results show mean±std across 16 runs.

Table 5: Pattern-specific performance comparison between DIT and IF using MNIST-DNN.

Sample Pattern Pearson Spearman Kendall’s Tau Jaccard
DIT IF DIT IF DIT IF DIT IF

Stable Influencers 0.95±0.03 0.23±0.39 0.96±0.03 0.16±0.40 0.87±0.05 0.13±0.28 0.82±0.12 0.26±0.16
Early Influencers 0.94±0.04 0.35±0.29 0.98±0.01 0.35±0.30 0.92±0.03 0.26±0.23 0.89±0.07 0.29±0.20
Late Bloomers 0.98±0.02 0.23±0.46 0.98±0.02 0.19±0.38 0.90±0.05 0.15±0.27 0.85±0.10 0.27±0.21

Highly Fluctuating 0.76±0.18 -0.10±0.54 0.72±0.18 -0.08±0.48 0.63±0.21 -0.09±0.40 0.52±0.34 0.15±0.17

The pattern-specific analysis reveals several key insights:

1) Substantial Performance Gap: DIT shows remarkable improvements over IF across all
patterns. For Stable Influencers, DIT achieves a 4.1× improvement (Pearson: 0.95±0.03 vs
0.23±0.39), for Late Bloomers, DIT shows a 4.3× improvement (0.98±0.02 vs 0.23±0.46),
and for Early Influencers, DIT maintains a 2.7× advantage (0.94±0.04 vs 0.35±0.29). Even
in the challenging case of Highly Fluctuating samples, DIT maintains positive correlations
(0.76±0.18) while IF shows negative correlations (-0.10±0.54).

2) Consistency and Stability: DIT shows remarkable stability in its performance metrics.
Linear correlations (Pearson) and rank-based correlations (Spearman, Kendall’s Tau) show
strong agreement, with variations typically within ±0.05. The standard deviations for DIT
are consistently lower than IF, indicating significantly more reliable estimates.

3) Pattern-Specific Excellence: DIT excels at capturing influence patterns across different
temporal stages. The method achieves near-perfect correlations (> 0.94) for Stable, Early,
and Late patterns, with a particularly strong performance for Late Bloomers (0.98±0.02).
This shows DIT’s unique capability to adapt to varying temporal dynamics throughout the
training process.

4) Robustness to Volatility: Even under challenging conditions with Highly Fluctuating sam-
ples, DIT maintains meaningful positive correlations (Pearson: 0.76±0.18). This contrasts
sharply with IF’s negative correlations (-0.10±0.54), highlighting DIT’s robust performance
even in volatile scenarios. While performance shows some expected degradation compared
to stable patterns, DIT continues to provide reliable influence estimates.

These comprehensive results show DIT’s effectiveness in handling diverse influence patterns while
maintaining high estimation accuracy. The method’s robust performance across both architectural
complexity and temporal influence patterns, particularly in challenging scenarios involving non-
convex models and fluctuating influences, establishes its practical utility for real-world deep learning
applications. The consistent outperformance of IF across all patterns and metrics further validates
DIT’s advantages in capturing dynamic sample influence.
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A.2 DISCUSSIONS

A.2.1 KEY FINDINGS AND IMPLICATIONS

Our investigation of Dynamic Influence Tracker (DIT) reveals several important insights about the
nature of sample influence in deep learning. We first present a comprehensive comparison of differ-
ent sample influence analysis methods:

Table 6: Comprehensive Comparison of Different Sample Influence Analysis Methods

Aspect Full-DIT First-Epoch DIT Influence Functions Leave-One-Out

Space Complexity O(T (|St|+ p)) O(E(|St|+ p)) O(p2) O(p)
Time Complexity O(T |St|p) O(E|St|p) O(p3 +Np2) O(NT |St|p)
Robustness to Non-convergence Yes Yes No No
Robustness to Non-convexity Yes Yes No Yes
Robustness to Global Optimality Yes Yes No Yes
Adaptability Flexible Flexible Static Static
T = total steps, E = steps per epoch, p = parameters, |St| = batch size

This comparison highlights several key findings:

1) Our results show that sample influence is not static but evolves significantly throughout the
training process. The identification of four distinct influence patterns (Stable Influencers,
Early Influencers, Late Bloomers, and Highly Fluctuating Influencers) challenges the tra-
ditional static view of sample importance.

2) The strong correlation between mid-training and full-training influence measures suggests
that influential samples can be identified well before model convergence. This finding has
practical implications for efficient training protocols and early intervention strategies.

3) The consistency of influence patterns across different model architectures for the same
dataset suggests that sample influence is more intrinsically tied to data characteristics than
model architecture.

A.2.2 APPLICATIONS IN MODERN DEEP LEARNING

There are two particularly promising applications of DIT: large language model fine-tuning and
curriculum learning.

In the context of large pre-trained models, DIT addresses several fundamental challenges that have
previously limited influence analysis methods. The method’s assumption-free nature makes it partic-
ularly suitable for fine-tuning scenarios, as it requires no constraints on global optimality or conver-
gence. By treating the pre-trained model’s parameters as the initial state θ0, DIT naturally integrates
with existing fine-tuning workflows without requiring complete retraining cycles.

Moreover, the scalability of DIT’s model-agnostic design presents a significant advantage for large-
scale applications. Whether applied to full model fine-tuning or specific architectural components
like adapters, the query-based approach efficiently tracks parameter influence while maintaining
computational feasibility. This scalability is further enhanced by DIT’s shown ability to identify
influential samples in early training stages, enabling effective analysis of large language models
while minimizing storage requirements through targeted early-stage tracking.

DIT also offers novel approaches to curriculum learning by providing data-driven methods for sam-
ple ordering and difficulty assessment. The identification of distinct influence patterns naturally in-
forms curriculum design: Early Influencers serve as optimal starting points for initial training stages,
while Late Bloomers naturally align with curriculum progression. Stable Influencers provide con-
sistent anchoring points across different training phases, enabling automatic difficulty assessment
without relying on manual labeling techniques.

This approach to curriculum learning is supported by our empirical findings on cross-stage influence
correlations. The strong correlation between early and full training influence enables reliable early
identification of important samples. Simultaneously, the observed low correlation between early and
late stages provides empirical support for the necessity of progressive learning approaches. These
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relationships establish a robust theoretical foundation for dynamic curriculum design, offering a
data-driven framework for optimizing training trajectories.

A.2.3 DETAILED DERIVATION OF PARAMETER CHANGE ESTIMATION

We start from Eq.(10), which establishes the relationship:

θ
[t+1]
−j − θ[t+1] = (θ

[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St

g(zi; θ
[t])) (21)

= (θ
[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St\{j}

g(zi; θ
[t])− 1j∈St

g(zi; θ
[t])) (22)

= (θ
[t]
−j − θ

[t])− ηt
|St|

(
∑

i∈St\{j}

g(zi; θ
[t]
−j)−

∑
i∈St\{j}

g(zi; θ
[t])) +

ηt
|St|

1j∈Stg(zi; θ
[t]) (23)

= (θ
[t]
−j − θ

[t])− ηt
|St|

∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) +
ηt
|St|

1j∈St
g(zi; θ

[t]), (24)

where 1j∈St
is an indicator function that equals 1 if j ∈ St, otherwise 0.

Using Eq.(12), we have:∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) ≈
∑

i∈St\{j}

∇θg(zi; θ
[t])T (θ

[t]
−j − θ

[t]), (25)

Following Eq.(11) and Assumption (A4) detailed in Appendix A.4, we have:∑
i∈St\{j}

∇θg(zi; θ
[t])T (θ

[t]
−j − θ

[t]) = |St|H [t]
−j(θ

[t]
−j − θ

[t]) ≈ |St|H [t](θ
[t]
−j − θ

[t]). (26)

Combining Eq.(25) and Eq.(26), we have:∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) ≈ |St|H [t](θ
[t]
−j − θ

[t]). (27)

Applying Eq. (27) to Eq. (21), we have the final result:

θ
[t+1]
−j − θ[t+1] = (θ

[t]
−j − θ

[t])− ηt
|St|

∑
i∈St\{j}

(g(zi; θ
[t]
−j)− g(zi; θ

[t])) +
ηt
|St|

1j∈Stg(zi; θ
[t])

(28)

≈ (θ
[t]
−j − θ

[t])− ηt
|St|

(|St|H [t](θ
[t]
−j − θ

[t])) +
ηt
|St|

1j∈St
g(zi; θ

[t]) (29)

= (θ
[t]
−j − θ

[t])− ηtH [t](θ
[t]
−j − θ

[t]) +
ηt
|St|

1j∈St
g(zi; θ

[t]) (30)

= (I − ηtH [t])(θ
[t]
−j − θ

[t]) +
ηt
|St|

1j∈St
g(zi; θ

[t]). (31)

This derivation confirms the correctness of Eq. (14), including the last term.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 DIT TOOLKIT

The flexibility of query-based DIT allows for its application to a wide range of machine learning
challenges. In this section, we provide a toolkit of query vectors that enables targeted investiga-
tions into critical aspects of model behavior, including gradient value, prediction changes, feature
importance, and parameter importance.

A.3.1 DIT FOR LOSS VALUE

Theorem 7 (DIT for Loss Value). Given a loss function `(z; θ), a time window [t1, t2], a train-
ing sample zj , and a test sample ztest, the Dynamic Influence Tracker with query function q(t) =

(∇θ`(ztest; θ
[t]) can be approximated as:

Q
[t1,t2]
−j (q) ≈ [`(ztest; θ

[t2]
−j )− `(ztest; θ

[t1]
−j )]− [`(ztest; θ

[t2])− `(ztest; θ
[t1])], (32)

where θ[t]
−j denotes the model parameters at time t when trained without sample zj , and θ[t] denotes

the parameters when trained with all samples.

Proof. We begin with the definition of the Query-Based Dynamic Influence Tracker:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
(33)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ∇θ`(ztest; θ
[t]) into Eq. (33):

Q
[t1,t2]
−j (q) =

〈
∇θ`(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
−
〈
∇θ`(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
. (34)

Apply the first-order Taylor expansion of `(ztest; θ) around θ[t2] and θ[t1]:

`(ztest; θ
[t2]
−j ) ≈ `(ztest; θ

[t2]) + 〈∇θ`(ztest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 (35)

`(ztest; θ
[t1]
−j ) ≈ `(ztest; θ

[t1]) + 〈∇θ`(ztest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 (36)

Rearranging Eq. (35) and Eq. (36):

〈∇θ`(ztest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 ≈ `(ztest; θ
[t2]
−j )− `(ztest; θ

[t2]) (37)

〈∇θ`(ztest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 ≈ `(ztest; θ
[t1]
−j )− `(ztest; θ

[t1]) (38)
Substituting these approximations back into Eq. (34):

Q
[t1,t2]
−j (q) ≈ [`(ztest; θ

[t2]
−j )− `(ztest; θ

[t2])]− [`(ztest; θ
[t1]
−j )− `(ztest; θ

[t1])] (39)

= [`(ztest; θ
[t2]
−j )− `(ztest; θ

[t1]
−j )]− [`(ztest; θ

[t2])− `(ztest; θ
[t1])] (40)

This completes the proof of Theorem 7.

This theorem provides a foundation for understanding how individual training samples affect the
model’s loss on specific test points over time. The right-hand side of Eq. (32) represents the differ-
ence between the loss changes with and without sample zj , offering a direct measure of the sample’s
influence on model performance.

Extension to Test Sets: We can extend this concept to consider an entire test set Dtest =
{z1, . . . , zM}. Define the query function as:

q(t) =
1

M

M∑
i=1

∇θ`(zi; θ[t]), zi ∈ Dtest. (41)

With this choice, the DIT approximates the change in average test loss:

Q
[t1,t2]
−j (q) ≈ 1

M

M∑
i=1

[
`(zi; θ

[t2]
−j )− `(zi; θ[t1]

−j )
]
− 1

M

M∑
i=1

[
`(zi; θ

[t2])− `(zi; θ[t1])
]

=
[
Ltest(θ

[t2]
−j )− Ltest(θ

[t1]
−j )

]
−
[
Ltest(θ

[t2])− Ltest(θ
[t1])

]
,

(42)

where Ltest(θ
[t]) = 1

M

∑M
i=1 `(zi; θ

[t]) is the average test loss.
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A.3.2 DIT FOR PREDICTION CHANGES

Theorem 8 (DIT for Prediction Changes). Given a model function f(x; θ), a time window [t1, t2],
a training sample zj , and a test input xtest, the Dynamic Influence Tracker with query function
q(t) = ∇θf(xtest; θ

[t]) can be approximated as:

Q
[t1,t2]
−j (q) ≈

[
f(xtest; θ

[t2]
−j )− f(xtest; θ

[t1]
−j )

]
−
[
f(xtest; θ

[t2])− f(xtest; θ
[t1])

]
, (43)

where θ[t]
−j denotes the model parameters at time t when trained without sample zj , and θ[t] denotes

the parameters when trained with all samples.

Proof. We begin with the definition of the Query-Based Dynamic Influence Tracker:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
(44)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ∇θf(ztest; θ
[t]) into Eq. (44):

Q
[t1,t2]
−j (q) =

〈
∇θf(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
−
〈
∇θf(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
. (45)

We apply the first-order Taylor approximation of the model function around θ[t2] and θ[t1]:

f(xtest; θ
[t2]
−j ) ≈ f(xtest; θ

[t2]) + 〈∇θf(xtest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 (46)

f(xtest; θ
[t1]
−j ) ≈ f(xtest; θ

[t1]) + 〈∇θf(xtest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 (47)

Rearranging these equations:

〈∇θf(xtest; θ
[t2]), θ

[t2]
−j − θ

[t2]〉 ≈ f(xtest; θ
[t2]
−j )− f(xtest; θ

[t2]) (48)

〈∇θf(xtest; θ
[t1]), θ

[t1]
−j − θ

[t1]〉 ≈ f(xtest; θ
[t1]
−j )− f(xtest; θ

[t1]) (49)

Substituting these approximations back into Eq. (45):

Q
[t1,t2]
−j (q) ≈ [f(xtest; θ

[t2]
−j )− f(xtest; θ

[t2])]− [f(xtest; θ
[t1]
−j )− f(xtest; θ

[t1])] (50)

= [f(xtest; θ
[t2]
−j )− f(xtest; θ

[t1]
−j )]− [f(xtest; θ

[t2])− f(xtest; θ
[t1])] (51)

This completes the proof of Theorem 8.

This theorem provides a formal justification for using DIT to analyze how excluding sample zj
influences the model’s predictions on a test input xtest over the interval [t1, t2]. Compared to Theorem
7, which focuses on the loss value, Theorem 8 focuses on specific model outputs. It enables the
identification of influential training samples for specific predictions, aids in understanding model
behavior on particular inputs, and can help detect potential outliers or mislabeled data.

A.3.3 DIT FOR FEATURE IMPORTANCE

Theorem 9 (DIT for Feature Importance). Given a loss function `(z; θ), a training sample z =
(x, y), and a test sample ztest = (xtest, ytest), the Dynamic Influence Tracker for Feature Importance
with query function q(t) = ∇x∇θ`(ztest; θ

[t]) can be approximated as:

Q
[t1,t2]
−j (q) ≈ [∇x`(ztest; θ

[t2]
−j )−∇x`(ztest; θ

[t1]
−j )]− [∇x`(ztest; θ

[t2])−∇x`(ztest; θ
[t1])], (52)

where θ[t]
−j denotes the model parameters at time t when trained without sample zj , and θ[t] denotes

the parameters when trained with all samples.

Proof. We start with the definition of the Query-Based Dynamic Influence Tracker:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
, (53)
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where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ∇x∇θ`(ztest; θ
[t]):

Q
[t1,t2]
−j (q) =

〈
∇θ∇x`(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
−
〈
∇θ∇x`(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
. (54)

We apply the first-order Taylor approximation of∇x`(ztest; θ) around θ[t2] and θ[t1]:

∇x`(ztest; θ
[t2]
−j ) ≈ ∇x`(ztest; θ

[t2]) +∇θ∇x`(ztest; θ
[t2])

(
θ

[t2]
−j − θ

[t2]
)
, (55)

∇x`(ztest; θ
[t1]
−j ) ≈ ∇x`(ztest; θ

[t1]) +∇θ∇x`(ztest; θ
[t1])

(
θ

[t1]
−j − θ

[t1]
)
. (56)

Rearranging these equations:〈
∇θ∇x`(ztest; θ

[t2]), θ
[t2]
−j − θ

[t2]
〉
≈ ∇x`(ztest; θ

[t2]
−j )−∇x`(ztest; θ

[t2]), (57)〈
∇θ∇x`(ztest; θ

[t1]), θ
[t1]
−j − θ

[t1]
〉
≈ ∇x`(ztest; θ

[t1]
−j )−∇x`(ztest; θ

[t1]). (58)

Substituting these approximations back into Eq.(54):

Q
[t1,t2]
−j (q) ≈

[
∇x`(ztest; θ

[t2]
−j )−∇x`(ztest; θ

[t2])
]
−
[
∇x`(ztest; θ

[t1]
−j )−∇x`(ztest; θ

[t1])
]

=
[
∇x`(ztest; θ

[t2]
−j )−∇x`(ztest; θ

[t1]
−j )

]
−
[
∇x`(ztest; θ

[t2])−∇x`(ztest; θ
[t1])

]
. (59)

This completes the proof.

This theorem shows how DIT measures the impact of excluding a training sample zj on the gradient
of the loss with respect to the input features at the test point ztest over the interval [t1, t2]. This
provides insights into how the importance of different input features evolves during training and
how individual training samples influence this feature importance.

A.3.4 DIT FOR PARAMETER IMPORTANCE

Theorem 10 (DIT for Parameter Importance). Given a model with parameters θ ∈ Rp, a time
window [t1, t2], a training sample zj , and the i-th standard basis vector ei ∈ Rp, the Dynamic
Influence Tracker with query function q(t) = (ei) is exactly:

Q
[t1,t2]
−j (q) =

(
θ

[t2]
−j,i − θ

[t1]
−j,i

)
−
(
θ

[t2]
i − θ[t1]

i

)
, (60)

where θ[t]
−j,i denotes the i-th component of the model parameters at time t when trained without

sample zj , and θ[t]
i denotes the i-th component of the parameters when trained with all samples.

Proof. We start with the definition of the Query-Based Dynamic Influence Tracker:

Q
[t1,t2]
−j (q) =

〈
q(t2),∆θ

[t2]
−j

〉
−
〈
q(t1),∆θ

[t1]
−j

〉
, (61)

where ∆θ
[t]
−j = θ

[t]
−j − θ[t].

Substituting q(t) = ei, which is constant over time:

Q
[t1,t2]
−j (q) =

〈
ei, θ

[t2]
−j − θ

[t2]
〉
−
〈
ei, θ

[t1]
−j − θ

[t1]
〉
. (62)

Since ei is the i-th standard basis vector, the inner product selects the i-th component:

Q
[t1,t2]
−j (q) =

(
θ

[t2]
−j,i − θ

[t2]
i

)
−
(
θ

[t1]
−j,i − θ

[t1]
i

)
=
(
θ

[t2]
−j,i − θ

[t1]
−j,i

)
−
(
θ

[t2]
i − θ[t1]

i

)
. (63)

This matches the expression in Eq. (60), completing our proof.
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This theorem allows us to isolate the influence of a training sample zj on specific model parameters
over the interval [t1, t2]. A large absolute value of Q[t1,t2]

−j (q) indicates that sample zj has a signifi-
cant influence on the i-th parameter during the specified time window. This is particularly useful for
identifying which parameters are most affected by specific training samples and understanding the
localized effects of training samples on the model.

By analyzing how Q
[t1,t2]
−j (q) changes over different time windows, we can understand how the

influence of a training sample on specific parameters evolves throughout the training process.
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A.4 ESTIMATION ERROR ANALYSIS WITHOUT CONVEXITY ASSUMPTIONS

Theorem 11 (Error Bound for DIT Parameter Change). Let ∆θ
[t1,t2]
−j be the true influence of exclud-

ing sample zj on the model parameters over the interval [t1, t2] during SGD training. Let ∆̂θ
[t1,t2]

−j
be its approximation using DIT. Under the following assumptions:

(A1) Lipschitz Continuity of Gradient: The gradient∇`(zi; θ) is Lipschitz continuous with con-
stant Lg: ‖∇`(zi; θ1)−∇`(zi; θ2)‖ ≤ Lg‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ,∀i.

(A2) Lipschitz Continuity of Hessian: The Hessian∇2`(zi; θ) is Lipschitz continuous with con-
stant LH : ‖∇2`(zi; θ1)−∇2`(zi; θ2)‖ ≤ LH‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ,∀i.

(A3) Learning Rate Bound: The learning rate satisfies ηt ≤ 1
LH

for all t.

(A4) Hessian Approximation Error: The Hessian approximation error is bounded: ‖H [t] −
H

[t]
−j‖ ≤ εH , ∀t, where H [t]

−j = 1
|St\{j}|

∑
i∈St\{j}∇

2`(zi; θ
[t]) is the empirical Hessian

over the mini-batch.

(A5) Gradient Norm Bound: For all θ ∈ Θ and all zi: ‖∇`(zi; θ)‖ ≤ G.

(A6) Parameter Difference Bound: There exists a constant M > 0 such that: ‖θ[t]
−j − θ[t]‖ ≤M ,

∀t ∈ [t1, t2].

(A7) Bounded Hessian Norm: For all θ ∈ Θ and all zi: ‖∇2`(zi; θ)‖ ≤MH .

Then, the expected estimation error is bounded as follows:

E
[∥∥∥∥∆θ

[t1,t2]
−j − ∆̂θ

[t1,t2]

−j

∥∥∥∥] ≤ B̃

MH

(
eMHηmax(t2+1) + eMHηmax(t1+1) − 2

)
(64)

where: ηmax = maxt∈[t1,t2] ηt, B̃ = LHM
2

2 + εHM , n is the total number of samples in the dataset.

Proof. Step 1: Derivation of the Error Update Equation

Define the error at iteration t:
e[t] = (θ

[t]
−j − θ

[t])− ∆̂θ
[t]

−j (65)

where ∆̂θ
[t]

−j = ∆̂θ
[0,t]

−j is the approximation of the true parameter change ∆θ
[t]
−j using the DIT

method.

Our aim is to derive a recursive relation for e[t] and then bound its expected norm.

Consider the updates for θ[t], θ[t]
−j , and θ̂[t]

−j :

Original SGD Update:

θ[t+1] = θ[t] − ηtg̃[t], g̃[t] =
1

|St|
∑
i∈St

∇`(zi; θ[t]). (66)

Leave-One-Out SGD Update:

θ
[t+1]
−j = θ

[t]
−j − ηtg̃

[t]
−j , g̃

[t]
−j =

1

|St|
∑

i∈St\{j}

∇`(zi; θ[t]
−j). (67)

Approximate Leave-One-Out Update (DIT Method):

θ̂
[t+1]
−j = θ̂

[t]
−j − ηt

(
g̃[t] +H [t](θ̂

[t]
−j − θ

[t])− 1{j∈St}
1

|St|
∇`(zj ; θ[t])

)
. (68)

We derive the error update equation as follows:

e[t] − e[t−1] = ηt−1δ
[t−1], (69)
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where:

δ[t−1] =
(
g̃

[t−1]
−j − g̃[t−1]

)
−H [t−1]∆̂θ

[t−1]

−j + 1{j∈St−1}
1

|St−1|
∇`(zj ; θ[t−1]). (70)

or equivalently:

δ[t] =
(
g̃

[t]
−j − g̃

[t]
)
−H [t]∆̂θ

[t]

−j + 1{j∈St}
1

|St|
∇`(zj ; θ[t]). (71)

Step 2: Bounding ‖δ[t]‖

We decompose δ[t] and bound each term:

1. Difference in Stochastic Gradients:

g̃
[t]
−j − g̃

[t] =
1

|St|

 ∑
i∈St\{j}

(
∇`(zi; θ[t]

−j)−∇`(zi; θ
[t])
)
− 1{j∈St}∇`(zj ; θ

[t])

 . (72)

Applying a first-order Taylor expansion to∇`(zi; θ[t]
−j) for i 6= j:

∇`(zi; θ[t]
−j)−∇`(zi; θ

[t]) = ∇2`(zi; θ
[t])(θ

[t]
−j − θ

[t]) + r
[t]
i,j , (73)

where, by Assumption (A2):

‖r[t]
i,j‖ ≤

LH
2
‖θ[t]
−j − θ

[t]‖2 (74)

Thus, we have:

g̃
[t]
−j − g̃

[t] =
1

|St|
∑

i∈St\{j}

∇2`(zi; θ
[t])(θ

[t]
−j − θ

[t]) + r
[t]
i,j − 1{j∈St}∇`(zj ; θ

[t])

=
1

|St|

 ∑
i∈St\{j}

r
[t]
i,j − 1{j∈St}∇`(zj ; θ

[t])

+H
[t]
−j(θ

[t]
−j − θ

[t]) (75)

2. Hessian Approximation Error:

‖(H [t]
−j −H

[t])(θ
[t]
−j − θ

[t])‖ ≤ εH‖θ[t]
−j − θ

[t]‖. (76)

according to Assumption (A4).

3. Combining Terms: Substitute the approximations back into δ[t]:

δ[t] =
(
g̃

[t]
−j − g̃

[t]
)
−H [t]∆̂θ

[t]

−j + 1{j∈St}
1

|St|
∇`(zj ; θ[t])

=
(
g̃

[t]
−j − g̃

[t]
)
−H [t]

−j(θ
[t]
−j − θ

[t]) +
(
H

[t]
−j −H

[t]
)

(θ
[t]
−j − θ

[t]) + 1{j∈St}
1

|St|
∇`(zj ; θ[t])

=
1

|St|
∑

i∈St\{j}

r
[t]
i,j + (H

[t]
−j −H

[t])(θ
[t]
−j − θ

[t]) +H [t]((θ
[t]
−j − θ

[t])−∆θ̂
[t]
−j)

=
1

|St|
∑

i∈St\{j}

r
[t]
i,j + (H

[t]
−j −H

[t])(θ
[t]
−j − θ

[t]) +H [t]e[t]. (77)

4. Bounding ‖δ[t]‖:

• First Term: ∥∥∥∥∥∥ 1

|St|
∑

i∈St\{j}

r
[t]
i,j

∥∥∥∥∥∥ < LHM
2

2
. (78)
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• Second Term: ∥∥∥(H
[t]
−j −H

[t])(θ
[t]
−j − θ

[t])
∥∥∥ ≤ εHM. (79)

• Third Term: ∥∥∥H [t]e[t]
∥∥∥ ≤MH‖e[t]‖. (80)

Combining bounds, we can have:

‖δ[t]‖ < LHM
2

2
+ εHM +MH‖e[t]‖. (81)

Step 3: Error Update Equation

Using the error update:
e[t] = e[t−1] − ηtδ[t−1], (82)

we have:

‖e[t]‖ ≤ ‖e[t−1]‖+ ηt‖δ[t−1]‖ < ‖e[t−1]‖+ ηt

(
LHM

2

2
+ εHM +MH‖e[t−1]‖

)
. (83)

Define:

at = 1 + ηtMH , bt = ηt

(
LHM

2

2
+ εHM

)
. (84)

Then:
‖e[t]‖ < at‖e[t−1]‖+ bt. (85)

Step 4: Taking Expectations

Taking expectations over the mini-batch sampling:

E
[
‖e[t]‖

]
< atE

[
‖e[t−1]‖

]
+ bt. (86)

Define:

B̃ =
LHM

2

2
+ εHM. (87)

Then:
E
[
‖e[t]‖

]
< atE

[
‖e[t−1]‖

]
+ ηtB̃. (88)

Step 5: Solving the Recurrence Relation

Unfolding the recurrence:

E
[
‖e[t]‖

]
≤

t∏
k=0

ak · E
[
‖e[0]‖

]
+

t∑
s=0

(
t∏

k=s+1

ak

)
bs. (89)

Since e[0] = 0, we have:

E
[
‖e[t]‖

]
≤

t∑
s=0

(
t∏

k=s+1

ak

)
bs. (90)

Assuming ak ≤ eMHηmax , we get:
t∏

k=s+1

ak ≤ eMHηmax(t−s). (91)

Therefore:

E
[
‖e[t]‖

]
≤ B̃ηmax

t∑
s=0

eMHηmax(t−s). (92)
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Approximating the sum:

E
[
‖e[t]‖

]
≤ B̃ηmax ·

eMHηmax(t+1) − 1

eMHηmax − 1
. (93)

For small MHηmax, eMHηmax − 1 ≈MHηmax, yielding:

E
[
‖e[t]‖

]
≤ B̃

MH

(
eMHηmax(t+1) − 1

)
. (94)

Substitute t with t1 and t2 respectively:

E
[
‖e[t2]‖

]
≤ B̃

MH

(
eMHηmax(t2+1) − 1

)
, (95)

E
[
‖e[t1]‖

]
≤ B̃

MH

(
eMHηmax(t1+1) − 1

)
. (96)

Step 6: Final Bound

The estimation error is:

E
[∥∥∥∥∆θ

[t1,t2]
−j − ∆̂θ

[t1,t2]

−j

∥∥∥∥] ≤ E
[
‖e[t2]‖

]
+ E

[
‖e[t1]‖

]
≤ B̃

MH

(
eMHηmax(t2+1) + eMHηmax(t1+1) − 2

)
(97)

This completes the proof.

Remark 12. The error bound provides several key insights:

• The error grows at most exponentially with both t1 and t2, highlighting the challenge of
long-range influence estimation. The impact of t2 is generally more significant as it repre-
sents the end of the time window.

• The Hessian approximation error εH directly impacts the overall error, emphasizing the
importance of accurate Hessian estimation.

• The maximum learning rate ηmax affects the error bound exponentially, suggesting that
smaller learning rates might help control the estimation error.

• The bound depends on the Lipschitz constants of the gradient and Hessian (Lg and LH ),
indicating that smoother loss landscapes lead to more reliable influence estimates.

This theorem provides a theoretical foundation for understanding the limitations of influence estima-
tion without assuming convexity and guides practical considerations in its application to large-scale
machine learning problems.
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A.5 PROOF OF ALGORITHM 2

We begin by recalling the definition:

Q
[t1,t2]
−j (q) = 〈q(t2),∆θ

[t2]
−j 〉 − 〈q(t1),∆θ

[t1]
−j 〉 (98)

where ∆θ
[t]
−j ≈

∑t−1
s=0

(∏t−1
k=s+1 Zk

)
1̃

[s]
j , and Zt = I − ηtH [t], 1̃[t]

j = 1j∈St

ηt
|St|g(zj ; θ

[t]).

Note that Zt is self-adjoint matrix, adhering to 〈x, Zty〉 = 〈Ztx, y〉 for all vectors x, y.

According to the update rules for u1 and u2 in the algorithm:

u
[t−1]
i = u

[t]
i − ηtH

[t]u
[t]
i = (I − ηtH [t])u

[t]
i = Ztu

[t]
i , i ∈ {1, 2} (99)

By recursive application of this update rule, we obtain for s < t:

u
[s]
i =

(
t−1∏

k=s+1

Zk

)
u

[t]
i , i ∈ {1, 2} (100)

According to the accumulation of Q in the algorithm, at each time step t, if j ∈ St, we have:

∆Qt =

〈
(u

[t]
2 − u

[t]
1 ),

ηt
|St|

g(zj ; θ
[t])

〉
(101)

The algorithm initializes u[t2−1]
2 = q(t2) and sets u[t1−1]

1 = q(t1) at time t1. Importantly, u1 is not
updated beyond t1. Using the result from Eq. (100), we can express u[t]

2 and u[t]
1 as:

u
[t]
2 =

t2−1∏
k=t+1

Zkq(t2), for 0 ≤ t < t2 (102)

u
[t]
1 =

{∏t1−1
k=t+1 Zkq(t1) for 0 ≤ t < t1

0 for t1 ≤ t < t2
(103)

Note that u[t]
1 = 0 for t1 ≤ t < t2 because u1 is not updated beyond t1, effectively removing its

contribution to ∆Qt in this range.

Substituting these expressions into Eq.(101):

∆Qt =


〈∏t2−1

k=t+1 Zkq(t2)−
(∏t1−1

k=t+1 Zkq(t1)
)
, 1̃

[t]
j

〉
for 0 ≤ t < t1〈∏t2−1

k=t+1 Zkq(t2), 1̃
[t]
j

〉
for t1 ≤ t < t2

(104)

The total Q is the sum of all ∆Qt: Q =
∑t2−1
t=0 ∆Qt.

Expanding this sum and recalling that Zt is self-adjoint, we get:

Q =

〈
q(t2),

t2−1∑
t=0

(
t2−1∏
k=t+1

Zk

)
1̃

[t]
j

〉
−

〈
q(t1),

t1−1∑
t=0

(
t1−1∏
k=t+1

Zk

)
1̃

[t]
j

〉
(105)

Note that u[t]
2 contributes to the first term over the entire interval [0, t2), while u[t]

1 only contributes
to the second term over [0, t1). This distinction arises from the algorithm’s design, where u1 is not
updated beyond t1.

Combined Eq. (105) are precisely the definitions of ∆θ
[t2]
−j and ∆θ

[t1]
−j , we have:

Q = 〈q(t2),∆θ
[t2]
−j 〉 − 〈q(t1),∆θ

[t1]
−j 〉 = Q

[t1,t2]
−j (q) (106)

Thus, we have rigorously demonstrated that the algorithm’s output Q is equivalent to the defined
Q

[t1,t2]
−j (q) in Eq. (98) under the stated assumption on ηt.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A.6 EXPERIMENTAL SUPPLEMENT

A.6.1 EXPERIMENTAL SETUP

Datasets We employed four diverse datasets spanning various domains and complexities to eval-
uate the robustness and generalizability of DIT.

• Adult (Dua & Graff, 2019): A dataset for income prediction containing 48,842 instances
with 14 mixed categorical and numerical features. The dataset is preprocessed by handling
missing values, normalizing numerical features, and applying one-hot encoding to cate-
gorical features. The task is a binary classification of predicting whether income exceeds
$50K/year.

• 20 Newsgroups (Lang, 1995): A text classification dataset. Text data is converted
to TF-IDF vectors, and stop words are removed for cleaner feature representation.
We focus on binary classification between categories comp.sys.ibm.pc.hardware and
comp.sys.mac.hardware. The task is to classify posts into one of the two hardware cat-
egories.

• MNIST (LeCun et al., 2010): A dataset of 70,000 handwritten digit images, each 28x28
pixels in grayscale. Binary classification is conducted between digits 1 and 7, where the
pixel intensities are normalized.

• EMNIST (Cohen et al., 2017): An extended MNIST dataset for handwritten letters. The
grayscale images are normalized to ensure uniformity in the input space. We focus on
binary classification between letters A and B.

Model Architectures We implemented three model architectures of varying complexity to evalu-
ate the performance of DIT across different learning paradigms. In all models, the final layer outputs
a single value for binary classification, and all use binary cross-entropy loss with logits.

• Logistic Regression (LR): Implemented as a single-layer neural network without hidden
layers. The input dimension is flattened to accommodate various input shapes.

• Deep Neural Network (DNN): The architecture comprises two hidden layers, each with
eight units followed by a ReLU activation function. The second layer outputs a single value
for binary classification. The input is flattened, similar to logistic regression.

• Convolutional Neural Network (CNN): This architecture is used for image datasets like
MNIST and EMNIST. It consists of two convolutional layers, with 32 and 64 filters, re-
spectively, each followed by ReLU activation and max-pooling. The final output from the
convolutional layers is flattened and passed through a linear layer to output a binary classi-
fication value.

For non-image data like Adult and 20 Newsgroups, the input is a vector, while image data like
MNIST and EMNIST is reshaped into a single dimension for LR and DNN models. The CNN
processes image data in its original 2D format.

Evaluation Metrics To comprehensively evaluate the performance of DIT, we employed a suite of
statistical metrics, each capturing different aspects of the relationship between compared methods:

• Pearson Correlation Coefficient (r) (Pearson, 1895): The Pearson correlation coefficient
measures the linear relationship between two variables. For two sets of data, X and Y, it is
calculated as:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
∑n
i=1(Yi − Ȳ )2

where X̄ and Ȳ are the means of X and Y respectively, and n is the number of samples.
This metric is valuable for identifying direct proportional or inversely proportional rela-
tionships within the data. r ranges from -1 to 1, where 1 indicates a perfect positive linear
relationship, -1 indicates a perfect negative linear relationship, and 0 indicates no linear
relationship.
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• Spearman’s Rank Correlation Coefficient (ρ) (Spearman, 1987): Spearman’s rank cor-
relation assesses monotonic relationships by comparing the rank orders of samples:

ρ = 1−
6
∑n
i=1 d

2
i

n(n2 − 1)

where di is the difference between the ranks of corresponding values Xi and Yi, and n is
the number of samples. ρ ranges from -1 to 1, with values close to 1 or -1 indicating strong
monotonic relationships (positive or negative, respectively) and values close to 0 indicating
weak monotonic relationships.

• Kendall’s Tau (τ ) (Kendall, 1938): Kendall’s Tau evaluates ordinal relationships by mea-
suring the number of concordant and discordant pairs:

τ =
2(nc − nd)
n(n− 1)

where nc is the number of concordant pairs, nd is the number of discordant pairs, and n
is the total number of pairs. τ ranges from -1 to 1, with 1 indicating perfect agreement
between two rankings, -1 indicating perfect disagreement, and 0 indicating no relationship.

• Jaccard Similarity (J) (Jaccard, 1912): The Jaccard similarity coefficient compares the
overlap between the top 30% of influential points as determined by different methods:

J(A,B) =
|A ∩B|
|A ∪B|

where A and B are the sets of top 30% influential points identified by different methods. J
ranges from 0 to 1, with 1 indicating perfect overlap between the sets and 0 indicating no
overlap.

By capturing linear relationships (Pearson), monotonic relationships (Spearman), ordinal relation-
ships (Kendall’s Tau), and set-based similarities (Jaccard), we ensure a multifaceted evaluation of
influence estimation methods.

To ensure transparency and reproducibility, all code, including detailed hyperparameter settings and
training procedures, is available on our GitHub repository. This repository contains scripts and
configuration files that define the exact setup for each model used in our experiments, encompassing
learning rates, batch sizes, regularization strategies, and any other model-specific training details.

A.6.2 SAMPLE INFLUENCE DYNAMICS METHODOLOGY

The methodology for analyzing sample influence dynamics consists of several key steps.

1) Sampling and Influence Tracking: We randomly select 256 training points and track their
influence, measured as loss change via LOO, over 20 epochs of training. This fine-grained
sampling provides detailed influence trajectories for each point.

2) Standardization and Trend Analysis: We standardize the influence values using Stan-
dardScaler to normalize the value across different epochs. For each sample, a linear re-
gression is performed on its standardized influence values over time. The slope of this
regression line indicates the overall trend direction (increasing or decreasing influence).
The p-value of the regression determines whether this trend is statistically significant.

3) Adaptive Pattern Categorization: Each sample is categorized based on its statistical prop-
erties, including a) Trend significance (determined by the p-value) b) Trend direction (pos-
itive or negative slope) c) Standard deviation of influence values (a measure of fluctuation).

4) Pattern Analysis: We calculate the proportion of samples in each category and compute
the centroid of each category by averaging the standardized influence values of all points
within that category.

A.6.3 IDENTIFICATION OF TRAINING STAGES

To identify stages in the training process, we utilized the following method:
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1) Modeling Loss Trajectory: We analyzed the loss trajectory across epochs by fitting an
exponential decay model. This approach helps to smooth out fluctuations and emphasize
underlying trends in the training loss.

2) Residual Calculation: Residuals were computed as the differences between the actual loss
values and the values predicted by the exponential model. These residuals highlight where
the actual training deviates from the predicted trend.

3) Change Point Detection: We identified peaks in the absolute residuals as change points.
A minimum distance criterion was applied to ensure these change points were evenly dis-
tributed across the training timeline.

4) Stage Segmentation: Based on the identified change points, the training process was di-
vided into three stages: early, middle, and late.
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