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ABSTRACT

Data-Free Knowledge Distillation (DFKD) has recently made remarkable ad-
vancements with its core principle of transferring knowledge from a teacher neural
network to a student neural network without requiring access to the original data.
Nonetheless, existing approaches encounter a significant challenge when attempt-
ing to generate samples from random noise inputs, which inherently lack meaning-
ful information. Consequently, these models struggle to effectively map this noise
to the ground-truth sample distribution, resulting in the production of low-quality
data and imposing substantial time requirements for training the generator. In
this paper, we propose a novel Noisy Layer Generation method (NAYER) which
relocates the randomness source from the input to a noisy layer and utilizes the
meaningful constant label-text embedding (LTE) as the input. The significance of
LTE lies in its ability to contain substantial meaningful inter-class information, en-
abling the generation of high-quality samples with only a few training steps. The
language model just is used once to query LTE, and then LTE is stored in mem-
ory for all subsequent training processes. Simultaneously, the noisy layer plays
a key role in addressing the issue of diversity in sample generation by preventing
the model from overemphasizing the constrained label information. By reinitializ-
ing the noisy layer in each iteration, we aim to facilitate the generation of diverse
samples while still retaining the method’s efficiency, thanks to the ease of learning
provided by LTE. Experiments carried out on multiple datasets demonstrate that
our NAYER not only outperforms the state-of-the-art methods but also achieves
speeds 5 to 15 times faster than previous approaches. The code is available at
https://github.com/fw742211/nayer.

1 INTRODUCTION

15x 8x 5x

𝐍𝐀𝐘𝐄𝐑𝟏𝟎𝟎
𝐍𝐀𝐘𝐄𝐑𝟐𝟎𝟎

𝐍𝐀𝐘𝐄𝐑𝟑𝟎𝟎

𝐅𝐌𝟏𝟎𝟎

𝐅𝐌𝟐𝟎𝟎
𝐅𝐌𝟑𝟎𝟎

𝐃𝐅𝐐

𝐙𝐒𝐊𝐓

𝐃𝐞𝐞𝐩𝐈𝐧𝐯

𝐌𝐀𝐃

𝐂𝐌𝐈

1x

Fast and High Accuracy

Slow and Low Accuracy

Figure 1: Accuracy of student models and GPU hours
of training time on CIFAR-100 dataset. All variants
of our method NAYER not only attains the highest ac-
curacies across but also accelerates the training pro-
cess by 5 to 15 times compared to DeepInv (Yin et al.,
2020).

Knowledge distillation (KD) aims to train a stu-
dent model capable of emulating the capabilities
of a pre-trained teacher model. Over the past
decade, KD has been explored across diverse do-
mains, including image recognition (Qiu et al.,
2022), speech recognition (Yoon et al., 2021), and
natural language processing (Sanh et al., 2019).
Conventional KD methods generally assume that
the student model has access to all or part of the
teacher’s training data. However, real-world ap-
plications often impose constraints on accessing
the original training data. This issue becomes
particularly relevant in cases involving privacy-
sensitive medical data, which may contain per-
sonal information or data considered proprietary
by vendors. Consequently, in such contexts, con-
ventional KD methods no longer suffice to ad-
dress the challenges posed.

Data-Free Knowledge Distillation (DFKD) has recently seen significant advancements as an alterna-
tive method. Its core principle involves transferring knowledge from a teacher neural network (T ) to
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Figure 2: Data Generation Strategies: (a) The classic Data-free Generation, which optimizes random noise (z);
(b) the 1-to-1 Noisy Layer Generation, which uses one noisy layer for generating one synthetic image from the
embedding of label’s text (ey) by CLIP (Radford et al., 2021); (c) K-to-1 Noisy Layer Generation, which uses
one noisy layer to generate multiple synthetic images.

a student neural network (S) by generating synthetic data instead of accessing the original training
data. The synthetic data enable adversarial training of the generator and student (Nayak et al., 2019;
Micaelli & Storkey, 2019). In this setup, the student seeks to match the teacher’s predictions on
synthetic data, while the generator aims to create samples that maximize the discrepancy between
the student’s and teacher’s predictions (Fig. 2a).

Due to its reliance on synthetic samples, the need for an effective and efficient data-free generation
technique becomes imperative. A major limitation of current DKFD methods is that they merely
generate synthetic samples from random noise, neglecting to incorporate supportive and semantic
information (Binici et al., 2022a; Fang et al., 2022; Yu et al., 2023; Patel et al., 2023). This limitation
in turn incurs the generation of low-quality data and excessive time requirements for training the
generator, rendering them unsuitable for large-scale tasks. Notably, almost SOTA DFKD methods
do not report results on large-scale ImageNet due to the significant training time involved. Even
with smaller datasets such as CIFAR-100 (see Fig. 1), state-of-the-art DFKD methods such as CMI
(Fang et al., 2021), MAD (Do et al., 2022), or DeepInv still demand approximately 25 to 30 hours
of training while struggling to achieve high accuracy. This emphasizes the pressing need for more
efficient and effective DFKD techniques.

To address mentioned problem, we introduce a simple yet effective DFKD method called Noisy
LAYER Generation (NAYER). Our approach relocates the source of randomness from the input
to the noisy layer and utilizes the meaningful label-text embedding (LTE) generated by a pretrained
language model (LM) (Reimers & Gurevych, 2019; Radford et al., 2021) as the input. In this context,
LTE plays a crucial role in accelerating the training process due to its ability to encapsulate useful
interclass information. It is noteworthy that in the field of text embedding, there is a common
observation that the text with similar meanings tend to exhibit closer embedding proximity to one
another (Le & Mikolov, 2014). From that, the text embedding of sentence ”A class of a dog” and ”A
class of a cat” is always closer compared to ”A class of a car”. Consequently, by using LTE as input,
our approach can proficiently generate high-quality samples that closely mimic the distributions of
their respective classes with only a few training steps. Note that, to ensure a data-free setting, our
method only queries the LTE from the pretrained language model once. This LTE is then stored in
memory for subsequent processing, and we do not use the language model in the training process.

However, when utilizing LTE as the input, we empirically observed that existing methods suffer
from a form of mode collapse. This means the generator consistently produces similar data in every
iteration. A naive approach to address this is to consider the concatenation of LTE and a vector
of random noise as the input for the generator. Unfortunately, it does not help in this case. We
attribute this phenomenon to an overemphasis on constant label-related information. This implies
that if the model has two sources of input, the first one remains unchanged and has discriminator
ability, while the other changes every iteration. The model tends to focus on learning the first source
and ignores the second. In DFKT, this emphasis might inadvertently overshadow the crucial random
noise component necessary for generating a diverse array of samples.

Our solution addresses this issue by relocating the source of randomness from the input to the layer
level by adding a noisy layer to learn the constant label information. This involves incorporating a
random noise layer to function as an intermediary between the generator and LTE, which prevents
the generator from relying solely on unchanging label information (Fig. 2b). The source of ran-
domness now comes from the random reinitialization of the noisy layer for each iteration. Through
this mechanism, we aim to effectively mitigate the risk of overemphasizing label information, thus
enhancing the diversity of synthesized images. Furthermore, thanks to the inherent ease of learning
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label-text embeddings, regardless of how it is initialized, the noisy layer can consistently generate
high-quality samples in just a few steps, thereby maintaining the method’s efficiency. Additionally,
we propose leveraging a single noisy layer to generate multiple samples (e.g., 100 images across 100
classes of CIFAR-100) (Fig. 2c). This strategy capitalizes on the multiple gradient sources stemming
from various classes, enhancing the diversity of the noisy layer’s output, reducing model size and
expediting the training process.

We conducted comprehensive experiments on several datasets, including ImageNet, demonstrating
the superiority of our proposed techniques over state-of-the-art algorithms. Notably, NAYER not
only outperforms the existing state-of-the-art approaches in terms of accuracy but also exhibits re-
markable speed enhancements. Specifically, as illustrated in Fig. 1, our proposed methods achieve
speeds that are 5 to even 15 times faster while also attaining higher accuracies compared to previous
methods, highlighting their efficiency and effectiveness.

2 RELATED WORK

Data-Free Knowledge Distillation. DFKD methods generate synthetic images to transfer knowl-
edge from a pre-trained teacher model to a student model. These data are used to jointly train
the generator and the student in an adversarial manner (Nayak et al., 2019; Micaelli & Storkey,
2019). Under this adversarial learning scheme, the student attempts to make predictions close to the
teacher’s on synthetic data, while the generator tries to create samples that maximize the mismatch
between the student’s and the teacher’s predictions. This adversarial game enables a rapid explo-
ration of synthetic distributions useful for knowledge transfer between the teacher and the student.

Data-Free Generation. As the central principle of DFKD revolves around synthetic samples, the
data-free generation technique plays a pivotal role. (Yin et al., 2020) proposes the image-optimized
method which attempts to optimize the random noise images using teacher network batch normal-
ization statistics. Sample-optimized methods (Fang et al., 2021; Yu et al., 2023) focus on optimizing
random noise over numerous training steps to produce synthetic images in case-by-case strategy.
In contrast, generator-optimized methods (Do et al., 2022; Patel et al., 2023; Binici et al., 2022a)
attempt to ensure that the generator has the capacity to comprehensively encompass the entire distri-
bution of the original data. In the other words, regardless of the input random noise, these methods
aim to consistently yield high-quality samples for training the student model. This approach often
prolongs the training process and may not consistently produce high-quality samples, particularly
when diverse noises are employed during both the sampling and training phases. Furthermore, the
main problem in existing data-free generation is the use of random noise input without any mean-
ingful information, leading to generate the low-quality samples and prolonged training times for the
generator. (Fang et al., 2022) introduced FM, a method incorporating a meta generator to accelerate
the DFKD process significantly. However, this acceleration comes at the cost of a noticeable trade-
off in classification accuracy. Also, several methods Wang et al. (2023); Chen et al. (2021) utilize
additional unlabeled data from the wild to enhance the performance of DFKD. However, in cases
involving sensitive or private data, collecting suitable unlabeled sources can be challenging, limiting
their application.

Synthetizing Samples from Label Information. Drawing inspiration from the success of incor-
porating label information in adversarial frameworks like Conditional GAN (Mirza & Osindero,
2014), several methods in DFKD have adopted strategies to generate images guided by labels. In
these approaches, a common practice involves fusing random noise (z) with a learnable embedding
(ey) of the one-hot label vector, which is used as input for the model (Luo et al., 2020; Yoo et al.,
2019; Do et al., 2022). This combination enhances control over the resulting class-specific synthetic
images. However, despite the potential of label information, its application has yielded only minor
improvements. This can be attributed to two key factors. Firstly, the one-hot vector introduces sparse
information that merely distinguishes labels uniformly, failing to capture the nuanced relationships
between different classes. Consequently, the model struggles to generate images that align closely
with ground-truth distributions. Secondly, there exists a challenge in balancing the generated im-
ages’ quality and diversity when incorporating label information. This can inadvertently lead to an
overemphasis on label-related details, potentially overshadowing the crucial contribution of random
noise, which is necessary for generating a diverse range of samples.
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Figure 3: (a) Random noise for data generation. (b) One-hot labels only uniformly distinguish labels, lacking
inter-class relationships. In contrast, (c) LTE captures inter-class connections, bringing similar classes closer
in the embedding space. This proximity enhances the similarity between the input and ground-truth sample
distributions, thereby allowing the model to more easily mimic the ground-truth distribution and accelerating
the learning process. (d) The averaging magnitude of weight used to learn LTE is much larger than those for
random noise, highlighting the model’s negative focus on label information while ignoring random noise.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

Consider a training dataset D = {(xi,yi)}mi=1 with xi ∈ Rc×h×w and yi ∈ {1, 2, · · · ,K}, where
the pair (xi,yi) represents a training sample and its corresponding label, respectively. Let T = TθT
be a pre-trained teacher network on D. The objective of DFKD is to train a student network S = SθS
to emulate T ’s performance, all without needing access to the original dataset D.

To achieve this, we employ the lightweight generator GθG to generate synthetic images and subse-
quently use them to train a student network S. Specifically, in contrast to existing DFKD methods
Yu et al. (2023); Do et al. (2022); Patel et al. (2023); Yin et al. (2020); Fang et al. (2021; 2022),
our approach utilizes a meaningful constant label-text embedding (LTE) as the input for G instead
of random noise. Due to LTE’s capability to encapsulate valuable interclass information, this accel-
erates the generation process, expediting the training time (Section 3.2). Following that, we propose
the use of a layer-level random source (Noisy Layer) to better adapt with LTE for generating diverse
synthetics (Section 3.3). Finally, the synthetic images are employed for the joint training of the
generator and student in an adversarial manner to enhance knowledge transfer (Section 3.4).

3.2 LABEL-TEXT EMBEDDING AS GENERATOR’S INPUT

The main limitation of existing DFKD methods is synthetize data from random noise, which have
no supportive and semantic information. Therefore, they usually generate very low-quality data
Fang et al. (2022) or require a excessive training time for high quality image generation Do et al.
(2022); Patel et al. (2023); Yu et al. (2023); Fang et al. (2021); Yin et al. (2020). There are also
several methods use to one-hot vector of classes as the additional input to resemble the conditional
generator, however its application has yielded only minor improvements. The main reason is the
one-hot vector (OH) introduces sparse information which make a generator hard to learn about it.
Furthermore, OH merely distinguishes labels uniformly, failing to capture the nuanced relationships
between different classes.

To address this problem, we are the first to propose the use of label-text embeddings for DFKD
by employing them as an input for the generator. LTE, as a dense vector with richer information,
facilitates an easier learning process for the model. Additionally, LTE capitalizes on the tendency
for text with similar meanings to exhibit proximity in their embeddings Le & Mikolov (2014). Fig-
ure 3a-c visually represents the LTE, highlighting their superior capacity to depict the relationship
between the ‘Dog’ and ‘Cat’ classes. This is evident in their closer proximity (shorter distance)
when compared to the ‘Car’ class. This characteristic of LTE contributes to making the input distri-
bution (representing labels) and ground-truth distribution (representing actual data) more similar. As
a result, it facilitates the model’s mapping between these two distributions, accelerating the learning
process and generating high-quality images.
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Prompt Engineering. Given the list of all classes y = [y1, · · · ,yK ], their label text Yy =
[Yy1

, · · · , YyK
] is generated by using a manually designed prompt template such as "a photo

of a {class name}". Then, the label-text prompt is then embedded using a pre-trained text
encoder C as follows:

ey = C(Yy) . (1)

LTE Pool. Importantly, the embedding ey is generated once and then stored in the LTE pool P ,
remaining fixed throughout the entire training process. The text encoder C is not utilized during the
training process. In training phases, with a batch of pseudo-labels ŷ, we retrieve their corresponding
LTEs from eŷ ∼ P and employ these LTEs as inputs for the generator. This eliminates the reliance
on random noise for synthetic image generation.

x̂ = G(eŷ) . (2)

We conducted an ablation study to analyze the impact of different prompt engineering template and
language model (LM) for generating LTEs in Section 4.4.

Thanks to the informative content embedded in LTE, our approach can efficiently produce high-
quality samples with minimal computational steps. We have also conducted an empirical study
to substantiate this claim, as illustrated in Table 3. The results of this study highlight that LTE
significantly accelerates convergence in terms of Cross-Entropy (CE) Loss and yields higher-quality
images (as measured by the Inception Score or IS score) compared to random noise and one-hot
vectors. This acceleration empowers our method to achieve convergence with a considerably smaller
training steps for generator (30 steps for CIFAR10 and 40 steps for CIFAR100), compared to the
2,000 steps required by DeepInv or the 500 steps of CMI, all while maintaining superior accuracy
(as detailed in Table 1).

3.3 GENERATING DIVERSE SAMPLES WITH NOISY LAYER

While leveraging label information provides advantages for data generation, the synthetic images
are less diverse due to the absence of a random source. Two common solutions involve concatenat-
ing random noise z and ey or using their sum as the generator input. However, both approaches
have limitations. Concatenation raises the risk of overemphasizing label-related information, as
evidenced by significantly larger weight magnitudes for learning LTE compared to random noise
(Figure 3d), which can be seen as the significance of these weights Frankle & Carbin (2018). Using
the sum of v = eŷ+βz faces challenges: a low β results in an insufficient random source for diverse
sampling, and a high β may overshadow LTE features, leading to a reliance on random noise z. This
challenge is also observed in some existing methods Luo et al. (2020); Do et al. (2022), where the
application of the sum of noise and label information provides minimal improvement compared to
an unconditional generator. To effectively introduce randomness to LTE, we propose the concept of
a layer-level random source with the Noisy Layer. The source of randomness now stems from the
random reinitialization of the NL during each iteration. With each different initialization, the NL
learns LTE in a distinct way, successfully mitigating the risk of a negative bias towards LTE. Unlike
existing sources of randomness, the design of NL provides a larger random parameter to enhance
the diversity of the synthesized images. Furthermore, due to the straightforward training of LTE,
regardless of its initialization, the joint training of the noisy layer and the generator consistently
yields high-quality samples within a few iterations, thus preserving the method’s efficiency.

Noisy Layer Architecture. We design the NL ZθZ as a combination of a BatchNorm layer and a
single Linear layer. The input size of the Linear layer matches the embedding size of the text
encoder (e), and the output size corresponds to the noise dimension (r). Typically, this output size is
set to 1,000, following to Patel et al. (2023); Do et al. (2022); Yu et al. (2023). The simplicity of the
single Linear layer is crucial for expediting the generation process. It converges rapidly without
requiring an excessive number of steps, yet its size remains sufficiently large to provide an sufficient
random source for the generator. Additionally, a BatchNorm module plays a role in increasing
the distance between LTEs (from averaging 0.015 to 0.45 using L2 distance), helping the model
discriminate these LTEs easier and thereby speeding up the training process. Furthermore, with a
different batch of ŷ, the output of BatchNorm can vary, introducing a slight additional randomness
for the generator. The ablation study analyzing the impact of different architectures of NL can be
found in the Supplemental Material.
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Figure 4: General Architecture of Noisy Layer Generation for Data-free Knowledge Distillation: NAYER
initially employs the text encoder to generate the LTEs, which are then stored in the memory pool for model
training. In each training batch, the LTEs serve as input for the noisy layer Z and generator G to produce
synthetic images. Finally, these images are used for the joint training of the generator, noisy layer, and student
network using Eq. 5 and Eq. 6.

Algorithm 1: NAYER
Input: pre-trained teacher TθT , student SθS , generator GθG , text encoder CθC , list of

labels y and list of text of these labels Yy;
Output: An optimized student SθS

1 Initializing P = {},M = {};
2 Store all embeddings ey = C(Yy) into P;
3 for E epochs do
4 for I iterations do
5 Randomly reinitializing noisy layers ZθZ and pseudo label ŷ for each iteration;
6 Query eŷ ∼ P;
7 for g steps do
8 x̂← G(Z(eŷ));
9 LZ ← αclsLCE(T (x̂), ŷ)− αadvLKL(T (x̂),S(x̂)) + αbnLBN(T (x̂));

10 Update θG , θZ by minimizing LZ ;

11 M←M∪ x̂;

12 for S iterations do
13 x̂ ∼M;
14 Update θS by minimizing LS ← LKL(T (x̂),S(x̂));

Given LTEs eŷ , we feed these eŷ into the noisy layer Z . Then, the output of the noisy layer is fed
into the generator G to produce the batch of synthetic images x̂:

Z(eŷ) = Linear(BatchNorm(eŷ)) . (3)
x̂ = G(Z(eŷ)) . (4)

K-to-1 Noisy Layer. In the existing approach, a separate random source is created for each instance,
as similar inputs generate similar samples. In contrast, we propose employing a single noisy layer
to learn from all available classes (K-to-1) by inputting eŷ with ŷ = 1, . . . ,K to a single noisy
layer Z . This design enables the noisy layer to generate multiple samples simultaneously, such
as a maximum of 100 for CIFAR100 or 10 for CIFAR10, thus reducing a parameter size and effi-
ciently expediting training. The underlying idea revolves around the fact that each class has distinct
LTEs. Thus, by supplying different inputs of eŷ from K classes, the noisy layer can still generate
diverse images. Furthermore, we also empirically observe that using a single noisy layer to syn-
thesize a batch of images (K-to-1) enriches generator diversity, ensuring both fast convergence and
high-quality sample generation. This enhancement can be attributed to the use of multiple gradient
sources from diverse classes, which can further enriches the diversity of the noisy layer’s output.

3.4 GENERATOR AND STUDENT UPDATING

To make it easier to follow, we provide the architecture of NAYER in Figure 4 and the detailed
pseudocode in Algorithm 1, wherein NAYER initially embeds all label text using a text encoder.
Subsequently, our method undergoes training for E epochs. Within each training epoch, NAYER
consists of two distinct phases. The first phase involves training the generator. In each iteration I ,
as described in Algorithm 1, the noisy layer Z is reinitialized (line 5) before being utilized to learn
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the LTE. The generator and the noisy layer are then trained through g steps using Eq. (5) to optimize
their performance (line 10).

min
θG ,θZ

LZ ≜ Ex̂∼G(Z(eŷ))

[
αclsLCE(T (x̂), ŷ)−αadvLKL(T (x̂),S(x̂))+αbnLBN(T (x̂))

]
. (5)

Within this context, LCE represents the Cross-Entropy loss term, serving the purpose of training
the student on images residing within the high-confidence region of the teacher’s knowledge. Con-
versely, the negative LKL term facilitates the exploration of synthetic distributions, boosting effective
knowledge transfer between the teacher and the student. In other words, the student network takes
on a role as a discriminator in GANs, ensuring the generator is geared towards producing images
that the teacher has mastered, yet the student network has not previously learned. This approach
facilitates the focused development of the student’s understanding in areas where it lags behind the
teacher, enhancing the overall knowledge transfer process. We also use batch norm regularization
(LBN) Yin et al. (2020); Fang et al. (2022), a commonly used loss in DFKD, to constrain the mean
and variance of the feature at the BatchNorm layer to be consistent with the running-mean and
running-variance of the same layer.

The second phase involves training the student networks. During this phase, all the generated sam-
ples are stored in the memory module M to mitigate the risk of forgetting (line 10), following
a similar approach as outlined in Fang et al. (2022). Ultimately, the student model is trained by
Eq. (6) over S iterations, utilizing the samples from M (lines 13 and 14).

min
θS

LS ≜ Ex̂∼M

[
LKL(TθT (x̂),SθS (x̂))

]
. (6)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We conducted a comprehensive evaluation of our method across various backbone networks,
namely ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2014), and WideResNet
(WRN)(Zagoruyko & Komodakis, 2016), spanning three distinct classification datasets: CIFAR10,
CIFAR100 (Krizhevsky et al., 2009), and Tiny-ImageNet (Le & Yang, 2015). The datasets feature
varying scales and complexities, offering a well-rounded assessment of our method’s capabilities.
In detail, CIFAR10 and CIFAR100 encompass a total of 60,000 images, partitioned into 50,000 for
training and 10,000 for testing. CIFAR10 comprises 10 categories, while CIFAR100 boasts 100
categories. The images within both datasets are characterized by a resolution of 32×32 pixels. On
the other hand, Tiny-ImageNet comprises 100,000 training images and 10,000 validation images,
with a higher resolution of 64 × 64 pixels. This dataset encompasses a diverse array of 200 image
categories, contributing to the breadth and comprehensiveness of our evaluation.

4.2 RESULTS AND ANALYSIS

Comparison with SOTA DFKD Methods. Table 1 displays the results of DFKD achieved by
our methods and several state-of-the-art (SOTA) approaches. In general, previous methods exhibit
limitations when generating images from random noise, impacting both training time and image
diversity. By using LTE as the input and relocating the source of randomness from the input to
the layer level, our approach provides highly diverse training images and faster running time. No-
tably, with 300 epochs, our method achieves SOTA performance in all comparison cases, except
for the Resnet32/Resnet18 case in CIFAR10. However, it is essential to note that our method was
designed in a straightforward manner, without incorporating innovative techniques found in current
SOTA approaches, such as activation region constraints and feature exchange in SpaceshipNet (Yu
et al., 2023), knowledge acquisition and retention meta-learning in KAKR (Patel et al., 2023), and
momentum distillation in MAD (Do et al., 2022).

Additional Experiments at Higher Resolution. To assess the effectiveness of NAYER, we con-
ducted further evaluations on the more challenging ImageNet dataset. ImageNet comprises 1.3
million training images with resolutions of 224×224 pixels, spanning 1,000 categories. ImageNet’s
complexity surpasses that of CIFAR, making it a significantly more time-consuming task for data-
free training. As displayed in Table 1, almost all DFKD methods refrain from reporting results
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Table 1: The accuracies of compared methods. The best-performing method is highlighted in bold, and the
runner-up is underlined. Additionally, we use superscripts to indicate the sources of these results: a for Fang
et al. (2022), b for Patel et al. (2023), c for Do et al. (2022), d for Yu et al. (2023), and e for our experiments. In
this table, ’R’ represents Resnet, ’W’ corresponds to WideResnet, and ’V’ stands for VGG.

CIFAR10 CIFAR100 TinyImageNet ImageNet

Method R34 W402 W402 W402 V11 R34 W402 W402 W402 V11 R34 R50
R18 W162 W161 W401 R18 R18 W162 W161 W401 R18 R18 R50

Teacher 95.70 94.87 94.87 94.87 92.25 77.94 77.83 75.83 75.83 71.32 66.44 75.45
Student 95.20 93.95 91.12 93.94 95.20 77.10 73.56 65.31 72.19 77.10 64.87 75.45

DeepInva (Yin et al., 2020) 93.26 89.72 83.04 86.85 90.36 61.32 61.34 53.77 68.58 54.13 - 68.00
DFQa (Choi et al., 2020) 94.61 92.01 86.14 91.69 90.84 77.01 64.79 51.27 54.43 66.21 - -
ZSKTa (Micaelli & Storkey, 2019) 93.32 89.66 83.74 86.07 89.46 67.74 54.59 36.60 53.60 54.31 - -
CMIa (Fang et al., 2021) 94.84 92.52 90.01 92.78 91.13 77.04 68.75 57.91 68.88 70.56 64.01 -
PREKDb (Binici et al., 2022a) 93.41 - - - - 76.93 - - - - 49.94 -
MBDFKDb (Binici et al., 2022b) 93.03 - - - - 76.14 - - - - 47.96 -
FMa (Fang et al., 2022) 94.05 92.45 89.29 92.51 90.53 74.34 65.12 54.02 63.91 67.44 - 57.37e
MADc (Do et al., 2022) 94.90 92.64 - - - 77.31 64.05 - - - 62.32 -
KAKR MBb (Patel et al., 2023) 93.73 - - - - 77.11 - - - - 47.96 -
KAKR GRb (Patel et al., 2023) 94.02 - - - - 77.21 - - - - 49.88 -
SpaceshipNetd (Yu et al., 2023) 95.39 93.25 90.38 93.56 92.27 77.41 69.95 58.06 68.78 71.41 64.04 -

NAYER (E = 100) 94.03 93.48 91.12 93.57 91.34 76.29 70.20 59.26 69.89 71.10 61.71 -
NAYER (E = 200) 94.89 93.84 91.60 94.03 91.93 77.07 71.22 61.90 70.68 71.53 63.12 -
NAYER (E = 300) 95.21 94.07 91.94 94.15 92.37 77.54 71.72 62.23 71.80 71.75 64.17 68.92

Table 2: Comparing training times in hours using a single NVIDIA A100 for DFKD methods on CIFAR-10 and
CIFAR-100 with the teacher/student models WRN40-2/WRN16-2. FM (E = 100, 200, and 300) corresponds
to the settings of three variants of our methods. We were unable to replicate the training times of KAKR and
SpaceshipNet as they did not provide access to their source code.

DeepInv CMI DFQ ZSKT MAD FM
E = 100

FM
E = 200

FM
E = 300

NAYER
E = 100

NAYER
E = 200

NAYER
E = 300

CIFAR10 89.72
(31.23h)

92.52
(24.01h)

92.01
(3.31h)

89.66
(3.44h)

92.64
(13.13h)

91.63
(2.18h)

92.05
(3.98h)

92.31
(7.02h)

93.48
(2.05h)

93.84
(3.85h)

94.07
(6.78h)

CIFAR100 61.34
(31.23h)

68.75
(24.01h)

64.79
(3.31h)

54.59
(3.44h)

64.05
(26.45h)

67.15
(2.23h)

67.75
(4.42h)

68.25
(7.56h)

70.20
(2.15h)

71.22
(4.03h)

71.72
(7.22h)

Avergaing Speed Up 1× 1.3× 9.73× 9.08× 1.78× 14.17× 7.46× 4.29× 14.88× 7.93× 4.47×

on ImageNet due to their prolonged training times. Therefore, our comparison is primarily against
DeepInv (Yin et al., 2020), and for the sake of a fair comparison, we re-conducted the experiments
of FM (Fang et al., 2022) to align with our settings. The results clearly demonstrate that NAYER
outperforms other methods in terms of accuracy, underscoring its efficacy on a large-scale dataset.

Training Time Comparison. As shown in Table 2, the NAYER model trained for 100 epochs (i.e.,
NAYER(E = 100)) achieves an average speedup of 15× compared to DeepInv, while also delivering
higher accuracies. This substantial speedup is attributed to the significantly fewer steps required for
generating samples (30 for CIFAR-10 and 40 for CIFAR-100) compared to DeepInv’s 2000 steps.
As a result, DeepInv takes over 30 hours to complete training on CIFAR-10/CIFAR-100, whereas
our method only requires approximately 2 hours. These results demonstrate that our method not
only achieves high accuracy but also significantly accelerates the model training process.

4.3 ABLATION STUDY

Effectiveness of Label-Text Embedding. We illustrate the impact of using LTE in comparison
with random noise (Z) and one-hot vector (OH) as the inputs for the generator. As depicted in
first three column in Table 3, LTE demonstrates significantly accelerated averaging convergence
in terms of CE Loss. This phenomenon can be attributed to the principle that mapping between
two distributions is simplified when they share greater similarity. However, the diversity metric for
inputting label information (both LTE and OH) is notably lower than that of random noise. This
outcome underscores the adverse effects of the generator overly focusing on constant LTEs.

Table 3: Comparison with different types of input and random sources involves accuracy in CIFAR100 with
W402/W162 pair. All compared method is trained with E = 100), diversity metric and averaging convergence
time, which is the average number of epochs the generator needs to synthesize data with Cross-Entropy (CE)
Loss < 0.1. Each method undergoes 30 generation steps and runs for 100 epochs. ”-” denotes that a model
cannot provide any data with CE Loss < 0.1.

OH Z LTE cat sum(0.1) sum(0.5) sum(1) NAYER(woRI) NAYER(1to1) NAYER(Kto1)
Avg. Convergence Time 28.23 - 8.72 10.47 10.17 25.12 - 8.68 9.53 9.82
Diversity Score 0.013 0.137 0.016 0.0132 0.021 0.036 0.127 0.016 0.138 0.139
Accuracy 12.35 90.14 13.52 13.29 18.92 85.72 90.15 14.82 93.42 93.48
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Effectiveness of Noisy Layer. We analyze the impact of multiple randomness source strategies,
including our NAYER (1-to-1), NAYER (K-to-1), NAYER without reinitiation (WoRI), the concate-
nation of LTE and random noise Z (cat), and the sum of them (sum(β)): v = ey + βZ. Table 3
demonstrates that: 1) the sum of LTE and noise have a lower convergence time but higher accuracy
and diversity if β is high, making them similar to only using random noise Z. In contrast, if β is
low, the convergence time is faster but accuracy and diversity are lower, similar to only using LTE.
1) Using NAYER boosts the generator’s diversity while maintaining rapid convergence and high-
quality sampling. 2) Using a single noisy layer to synthesize a batch of images (K-to-1) results in
faster convergence and a higher diversity score when compared to using one noisy layer for each
individual image (1-to-1). 3) With reinitiation, the NAYER provides almost similar results to only
using LTE, thereby highlighting the effectiveness of reinitiation strategies.

4.4 FURTHER ANALYSIS

Comparison with Different Text Encoder We analyze the accuracies of our NAYER (Noisy Label
Generator) model across three distinct text encoders: Doc2Vec (Le & Mikolov, 2014), SBERT
(Reimers & Gurevych, 2019), and CLIP (Radford et al., 2021). Table 4 shows that CLIP has the
best results due to its multimodal nature, but the difference is minor (0.09%). This result also
demonstrates that NAYER can work effectively with any pretrained language model.

Table 4: The accuracies of our NAYER with three different text encoders.

CIFAR-10 CIFAR-100

Text Encoder SOTA Doc2Vec SBERT CLIP SOTA Doc2Vec SBERT CLIP
Accuracy 93.25 93.98 93.94 94.07 69.95 71.58 71.63 71.72

Comparison with Different Prompting Engineering Strategies. We analyze the impact of differ-
ent prompting engineering techniques to generate the label text. Given the label ŷ and the index of
label Iŷ , we propose three different ways to prompt the label text Yŷ , including P1: "A class of
ŷ."; P3: "A class of ŷ"; P3: "A photo of class Iŷ.". Table 5 demonstrates that: 1)
While P2 has the best accuracy, the difference is not significant; 2) By using only the label index in-
stead of the label name, the performance of P3 remains far better than the best baseline (93.72% and
71.17% compared to 93.25% and 69.95% for SpaceshipNet). From this, we can infer that using the
label index is possible in the datasets with less meaningful labels, further showing the effectiveness
of our methods in real-world applications.

Table 5: The accuracies of our NAYER with three different prompt approaches.

CIFAR-10 CIFAR-100

Text Encoder SOTA P1 P2 P3 SOTA P1 P2 P3
Accuracy 93.25 93.96 94.07 93.72 69.95 71.68 71.72 71.17

5 CONCLUSION

In this paper, we propose a novel Noisy Layer Generation method (NAYER) which utilizes the
meaningful label-text embedding (LTE) as the input and relocates the randomness source from the
input to the noisy layer. The significance of LTE lies in its ability to contain substantial meaningful
information, enabling the fast generating images in only few steps. On the other hand, the use of
noisy layer can help the model address the overfocus problem in using constant input information
and increase significantly the diversity. Our extensive experiments on different datasets and tasks
prove NAYER’s superiority over other state-of-the-art methods in data-free knowledge distillation.
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A TRAINING DETAILS

A.1 TEACHER MODEL TRAINING DETAILS

In this work, we employed pretrained ResNet-34 and WideResnet-40-2 teacher models from (Fang
et al., 2022) for CIFAR-10 and CIFAR-100. For Tiny ImageNet, we trained ResNet-34 from scratch
using PyTorch, and for ImageNet, we utilized the pretrained ResNet-50 from PyTorch. Teacher
models were trained with SGD optimizer, initial learning rate of 0.1, momentum of 0.9, and weight
decay of 5e-4, using a batch size of 128 for 200 epochs. Learning rate decay followed a cosine
annealing schedule.

Table 6: Generator Network (G) Architecture for CIFAR10, CIFAR100 and TinyImageNet.

Output Size Layers
1000 Input
128× h/4× w/4 Linear, BatchNorm1D, Reshape
128× h/4× w/4 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
128× h/2× w/2 UpSample (2×)
64× h/2× w/2 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
64× h× w UpSample (2×)
3× h× w SpectralNorm (Conv (3 × 3)), Sigmoid, BatchNorm2D

Table 7: Generator Network (G) Architecture for ImageNet.

Output Size Layers
1000 Input
128× h/16× w/16 Linear, BatchNorm1D, Reshape
128× h/16× w/16 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
128× h/8× w/8 UpSample (2×)
128× h/8× w/8 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
128× h/4× w/4 UpSample (2×)
64× h/4× w/4 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
64× h/2× w/2 UpSample (2×)
64× h/2× w/2 SpectralNorm (Conv (3 × 3)), BatchNorm2D, LeakyReLU
64× h× w UpSample (2×)
3× h× w SpectralNorm (Conv (3 × 3)), Sigmoid, BatchNorm2D

Table 8: The hyperparameters for NAYER applied to four different datasets are detailed below. Specifically,
αcls, αbn, and αadv are the hyperparameters associated with Eq. (??), and their values are consistent with the
settings defined in (Fang et al., 2022). The variables I and S denote the number of iterations for generating
and training the student, respectively, while g represents the training steps to optimize the generator GθG and
the noisy layers Z .

batch size (student) batch size (generator) αcls αbn αadv I g S

CIFAR10 512 400 0.5 10 1.33 2 30 400
CIFAR100 512 400 0.5 10 1.33 2 40 400
TinyImageNet 256 200 0.5 10 1.33 4 60 1000
ImageNet 128 50 0.1 0.1 0.1 20 100 2000

A.2 STUDENT MODEL TRAINING DETAILS

To ensure fair comparisons, we adopt the generator architecture outlined in (Fang et al., 2022) for all
experiments. Specifically, the generator architecture for CIFAR10, CIFAR100, and TinyImageNet
is elaborated upon in Table 6, while the generator architecture for ImageNet is provided in Table 7.
Across all experiments, we maintain a consistent approach for training the student model, employing
a batch size of 512. We utilize the SGD optimizer with a momentum of 0.9 and a variable learning
rate, following a cosine annealing schedule that starts at 0.1 and ends at 0, to optimize the student
parameters (θS ). Additionally, we employ the Adam optimizer with a learning rate of 4e-3 for
optimizing the generator.We present the results in three distinct variants, each corresponding to a
different value of E : 100, 200, and 300, all incorporating a configuration of 20 warm-up epochs, in
line with the settings defined in (Fang et al., 2022). Further details regarding the parameters can be
found in Table 8.
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B EXTENDED RESULTS

B.1 ADDITIONAL EXPERIMENTS IN DATA-FREE QUANTIZATION.

To demonstrate the use of our data-free generation method in other data-free tasks, we further con-
duct experiments in Data-free Quantization. We conducted a comparative analysis against ZeroQ
(Cai et al., 2020), DFQ (Choi et al., 2020), and ZAQ (Liu et al., 2021). ZeroQ retrains a quantized
model using reconstructed data instead of original data, DFQ is a post-training quantization approach
that utilizes a weight equalization scheme to eliminate outliers in both weights and activations, and
ZAQ is the pioneering method that employs adversarial learning for data-free quantization. In this
comparison, our method consistently demonstrated superior accuracy across all four scenarios.

Table 9: The results of compared methods in Data-free Quantization.

Dataset Model Bit Float32 ZeroQ DFQ ZAQ NAYER (E = 300)

CIFAR10 MobileNetV2 W6A6 92.39 89.9 85.43 92.15 92.23
VGG19 W4A8 93.49 92.69 92.66 93.06 93.15

CIFAR100 Resnet20 W5A5 69.58 65.7 59.42 67.94 68.23
Resnet18 W4A4 77.38 70.25 40.35 72.67 73.32

B.2 COMPARISON WITH DIFFERENT MEMORY BUFFER SIZE

In this comparison, we evaluate the accuracies of our NAYER (Noisy Label Generator) and MBD-
FKD models while varying the memory buffer size. Note that, to ensure a fair and unbiased assess-
ment, we maintain identical generator architectures, including the additional linear layer (noisy layer
for NAYER) for both NAYER and MBDFKD. The results demonstrate that: 1) With a bigger mem-
ory size, our method can have better performance. 2) Even with only 5k memory size, our method
still outperforms the current SOTA DFKD method (90.41% compared to 90.38% of SpaceshipNet).

Table 10: The accuracies of NAYER and MBDFKD with varying the memory buffer size.

Memory buffer size 5k 10k 20k 40k 100k 200k Full SOTA

MBDFKD 73.33 74.12 73.72 72.68 71.96 71.27 70.72 90.38
NAYER 90.41 90.76 90.98 91.21 91.64 91.86 91.94 90.38

B.3 COMPARISON WITH DIFFERENT GENERATION STEPS

We compare NAYER and FM, both utilizing random noise as input, while adjusting the training
steps for their generators. To ensure a level playing field, we use identical generator architectures,
including the additional linear layer (noisy layer for NAYER), and train all models for 300 epochs.
This approach allows us to assess their performance under consistent conditions and understand how
varying the generator training steps impacts their accuracy.
Table 11: The accuracies of our NAYER and FM (which uses random noise as the input) with varying training
steps for generators. It’s important to note that for a fair comparison, we employ the same generator architec-
tures, including the additional linear layer (noisy layer for NAYER) for FM. Furthermore, all models are trained
for 300 epochs

Generator’s training steps g = 2 g = 5 g = 10 g = 20 g = 30 g = 40 g = 50

FM 57.08 63.83 65.12 66.82 67.51 68.23 68.18
NAYER 59.23 65.14 68.13 69.31 70.42 71.72 71.70

B.4 FURTHER COMPARISON WITH DIFFERENT GENERATION STRATEGIES

In this section, we conduct an extensive comparison of various generation strategies. These strategies
encompass using only LTE (LTE), random noise (Z), one-hot vectors (OH), the sum of random noise
and one-hot vectors (Do et al., 2022) (sum(OH,Z)), the concatenation of Z and one-hot vectors (Luo
et al., 2020; Yoo et al., 2019) (cat(OH,Z)), the concatenation of Z and LTE (cat(LTE,Z)), the sum
of Z and LTE (cat(LTE,Z)), utilizing our noisy layer for each LTE (LTE+NL(1to1)), a single noisy
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Figure 5: When further comparing various generation strategies based on CE Loss, IS Score, and a diversity
metric, it becomes evident that our proposed method, which utilizes the noisy layer for learning LTE, achieves
both rapid convergence and high-quality images while maintaining remarkable diversity.

(a) t-SNE of CIFAR10 data (b) t-SNE of LTE 

Figure 6: t-SNE Visualization of Label-Text Embedding and Ground-Truth Dataset Distribution for Four
Classes: Car, Cat, Dog, and Truck.

layer for all LTE (LTE+NL(1toN)), and the generation methods of DeepInv (Yin et al., 2020) and
CMI (Fang et al., 2021). We evaluate these strategies using three metrics: CE Loss to demonstrate
convergence speed, IS Score to illustrate image quality, and a diversity metric. It is evident that our
proposed method, which leverages the noisy layer for learning LTE, achieves both rapid convergence
and high-quality images while maintaining significant diversity.

B.5 T-SNE VISUALLIZATION OF LTE AND GROUND-TRUTH DATASET DISTRIBUTION

In this section, we aim to illustrate the interclass information captured by LTE (Label-Text Embed-
ding). To achieve this, we provide t-SNE visualizations of the embeddings for labels and ground-
truth data distribution pertaining to four distinct classes: Car, Cat, Dog, and Truck. The t-SNE
representation of LTE closely aligns with the ground-truth distribution, especially in the proximity
between classes like Car and Truck, as well as Cat and Dog, indicating notably smaller distances
compared to other class pairings.

B.6 VISUALIZATION.

The synthetic results achieved by NAYER within just 100 generator training steps on ImageNet by
employing the ResNet-50 as teacher model are presented in Fig. 7a-b. For further comparison, we
also visualize synthetic images generated by NAYER, FM, CMI, and DeepInv in Fig. 7c-f. All of
these samples are generated using 20 steps with a ResNet-34 teacher model in the CIFAR-10 dataset.
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(c) NAYER (d) FM (e) CMI (f) DeepInv

(a) ImageNet: Goldfish (b) ImageNet: Wolf

Figure 7: (a, b) Display synthetic data generated by our NAYER for ImageNet in just 100 steps. (c, d, e, f)
Showcase synthetic data generated for 5 classes (from top to bottom: Car, Bird, Cat, Dog, Ship) in CIFAR10,
using only 20 steps of NAYER, FM, CMI, and DeepInv.

While it remains challenging for human recognition, our method visibly demonstrates superior qual-
ity and a more diverse range of images when compared to other methods.

B.7 FURTURE WORKS

The proposed NAYER does not incorporate the innovative techniques utilized in current SOTA meth-
ods, such as feature mixup (Yu et al., 2023), knowledge acquisition and retention (Patel et al., 2023),
and momentum updating (Do et al., 2022). This leaves space for potential improvements through
the integration of these techniques in the future. Additionally, NAYER can be applied to various
data-free methods, including but not limited to data-free quantization or data-free model stealing.
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