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Abstract001

We propose a training-free framework that002
enables large language models (LLMs) to003
effectively process long texts, using a004
divide-and-conquer strategy for comprehen-005
sive document understanding. The proposed006
LLM×MapReduce framework splits the entire007
document into several chunks for LLMs to read008
and then aggregates the intermediate outputs009
to produce the final response. The main chal-010
lenge for divide-and-conquer long text process-011
ing frameworks lies in the risk of losing essen-012
tial long-range information due to document013
splitting, which can lead the model to produce014
incomplete or incorrect answers based on the015
segmented texts. Disrupted long-range infor-016
mation can be classified into two categories:017
inter-chunk dependency and inter-chunk con-018
flict. We design a structured information proto-019
col to better cope with inter-chunk dependency020
and an in-context confidence calibration mech-021
anism to resolve inter-chunk conflicts. Experi-022
ments demonstrate that LLM×MapReduce out-023
performs representative open-source and com-024
mercial long-context LLMs and is compatible025
with several models. Our framework can also026
function as a data synthesis engine, capable027
of generating high-quality long-alignment data028
using only short-context LLMs.029

1 Introduction030

Large language models (LLMs) exhibit impres-031

sive performance across a wide range of complex032

tasks (OpenAI, 2023), including question answer-033

ing (Anthropic, 2023), code generation (Luo et al.,034

2024), and solving mathematical problems (Luo035

et al., 2023). However, due to their quadratic com-036

putational complexity and a lack of high-quality037

long training examples, most LLMs are trained038

with a limited window size (Touvron et al., 2023a,b;039

Jiang et al., 2023). This context limit restricts the040

application of modern LLMs to long-sequence pro-041

cessing tasks. In response to this issue, several042

researchers have focused on extending the context 043

length of LLMs. Existing studies can be broadly 044

categorized into two types: training-based and 045

training-free methods. 046

For training-based extension methods, it is nec- 047

essary to prepare long training data and allocate 048

substantial computational resources to support the 049

additional training (Xiong et al., 2023; Chen et al., 050

2024). Although these training-based methods 051

can effectively extend the context length of LLMs, 052

they may be inapplicable in scenarios where suf- 053

ficient computational resources and high-quality 054

long texts are unavailable. 055

In contrast, training-free context extension ap- 056

proaches aim to overcome the length limitations of 057

LLMs without modifying their parameters (Xiao 058

et al., 2024b,a). A prominent approach within 059

this field is the divide-and-conquer strategy, which 060

processes long sequences by breaking them into 061

shorter, more manageable chunks (Wang et al., 062

2024; Zhao et al., 2024; Zhang et al., 2024b; Qian 063

et al., 2024). LangChain (Chase, 2022) initially 064

introduces the MapReduce method, where text seg- 065

ments are processed in parallel during the map 066

stage, followed by the aggregation of intermediate 067

results across all segments to predict the final out- 068

put. The major challenge for this kind of method 069

is that different segments are processed indepen- 070

dently, which may break some essential long-range 071

information. Disrupted long-range information can 072

be divided into two categories: (1) inter-chunk de- 073

pendency, where evidence is spread across differ- 074

ent chunks and relies on each other; and (2) inter- 075

chunk conflict, where evidence across chunks is 076

contradictory, requiring the model to resolve these 077

conflicts in order to predict the final answer. 078

In this paper, we introduce LLM×MapReduce, 079

a training-free framework for processing long texts 080

that employs a divide-and-conquer approach, en- 081

abling models with short context windows to effec- 082

tively handle long contexts. To address the chal- 083
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lenges of inter-chunk dependency and conflict, we084

introduce a structured information protocol and085

an in-context confidence calibration mechanism.086

The structured information protocol defines the in-087

formation passed from the map stage to the reduce088

stage, ensuring the model has the critical inputs089

needed to infer the correct answer when aggregat-090

ing different chunks. In-context confidence cali-091

bration allows the model to assign a reliable con-092

fidence score to the output of each chunk, aiding093

in effectively resolving inter-chunk conflicts. We094

evaluate the proposed method on various long-text095

benchmarks, and the experimental results show that096

our approach outperforms both closed- and open-097

source LLMs in terms of both performance and098

efficiency. Through ablation experiments, we fur-099

ther validate the effectiveness of each component100

in LLM×MapReduce, reaffirming the importance101

of explicitly addressing cross-chunk dependencies102

and conflicts.103

Moreover, the proposed framework can also104

serve as a data generation engine, leveraging short-105

context LLMs to synthesize long-form alignment106

data, thereby achieving the goal of “letting short107

teach long.” Annotating long-range texts is time-108

consuming and labor-intensive, making data syn-109

thesis an essential avenue for constructing long-110

form alignment datasets. By applying a divide-111

and-conquer approach, we aggregate information112

from a long document layer by layer, construct-113

ing pyramid-shaped textual representations. This114

pyramid structure enables explicit control over the115

amount of information when generating QA pairs116

for the corresponding document. As a result, com-117

pared to directly using the entire document (Bai118

et al., 2024) or focusing on a specific local sec-119

tion (An et al., 2024), our method generates QA120

pairs that cover varying amounts of information,121

offering a range of difficulty levels. Experimen-122

tal results demonstrate that the resulting dataset,123

Pyramid-Align, enables better model performance124

than LongAlign, a representative long-range align-125

ment dataset. Finally, we fine-tune an 8B model126

using Pyramid-Align and conduct inference with127

LLM×MapReduce, achieving performance better128

than GPT-4, thus demonstrating the effectiveness129

of our framework.130

Our main contributions include:131

• We propose a divide-and-conquer framework132

for long-sequence processing that explicitly133

tackles cross-chunk dependencies and con-134

flicts through a structured information pro- 135

tocol and in-context confidence calibration. 136

• We evaluate the performance and efficiency 137

of the proposed framework against several 138

representative baselines. The results highlight 139

the superiority of our approach, which is also 140

compatible with various LLMs. 141

• We extend the framework into a data synthesis 142

engine that uses short-context LLMs to gener- 143

ate long-range alignment data. The resulting 144

Pyramid-Align dataset enables an 8B model 145

to outperform GPT-4 on long-sequence tasks. 146

2 Related Works 147

Divide-and-Conquer Long-Sequence Process- 148

ing Thanks to the flexibility and scalability of 149

divide-and-conquer methods for processing long 150

sequences, many researchers have explored using 151

this approach to extend the effective context length 152

of existing LLMs. LangChain (Chase, 2022) is a 153

pioneering framework that breaks long documents 154

into smaller chunks for LLMs to process. Sim- 155

ilarly, in XL3M (Wang et al., 2024), long texts 156

are divided into multiple short sub-contexts, each 157

paired with a question. Relevant segments are 158

then selected using LLMs and combined chrono- 159

logically to generate the final answer. However, 160

these frameworks do not explicitly address inter- 161

chunk dependencies and conflicts. Recently, Lon- 162

gAgent (Zhao et al., 2024) introduces a multi-agent 163

framework consisting of a leader agent and several 164

member agents, each responsible for processing 165

a chunk. The leader agent organizes the member 166

agents into groups and then randomly selects one 167

member from each group to aggregate the final 168

answer. Our experiments show that LongAgent’s 169

aggregation mechanism does not effectively ad- 170

dress inter-chunk dependencies and conflicts, as the 171

random selection of members can lead to the loss 172

of important evidence. Unlike LongAgent, which 173

processes multiple chunks in parallel, Chain-of- 174

Agents (CoA) (Zhang et al., 2024b) processes split 175

chunks sequentially using an accumulated sum- 176

mary. However, since CoA’s workflow does not 177

explicitly address inter-chunk conflicts, key clues 178

in the memory may be overwritten when process- 179

ing subsequent chunks. LC-Boost (Qian et al., 180

2024) defines an action space and selects appro- 181

priate actions for sequentially processing chunks. 182

To address inter-chunk conflicts, LC-Boost adap- 183
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tively either appends new evidence or updates the184

summary. However, in complex cases where his-185

torical and current information conflict, LC-Boost186

may struggle to fully resolve the issue when relying187

solely on the accumulated summary and the current188

text. Augmented with the structured information189

protocol and in-context confidence calibration, our190

proposed LLM×MapReduce framework can better191

cope with the inter-chunk dependencies and con-192

flicts.193

Long-Range Alignment Datasets Alignment is194

a crucial step in training effective LLMs. Due to195

the prohibitively high cost of having human experts196

create QA pairs for long document understand-197

ing, several studies have proposed automatic data198

synthesis methods for constructing long-alignment199

datasets (Chen et al., 2024; Bai et al., 2024; An200

et al., 2024). LongAlign (Bai et al., 2024) leverages201

an existing long-context LLM (i.e., Claude-2.1)202

to generate QA pairs from entire long documents.203

In contrast, An et al. (2024) propose using local204

chunks to generate QA pairs, which are then con-205

catenated into long documents. Rather than relying206

solely on global or local information, we propose207

structuring the document as a pyramid, with differ-208

ent levels of nodes used to generate QA pairs. The209

resulting Pyramid-Align dataset contains questions210

that cover varying amounts of information, offering211

more diverse supervision.212

3 Approach213

3.1 Problem Description214

In real-world scenarios, users may require the LLM215

to comprehend one or more lengthy documents that216

far exceed the model’s effective context window.217

Formally, let X represent the user-provided long218

text and L denote the model’s effective context219

length. In this work, we focus on cases where220

|X| ≫ L, where |X| represents the length of X .221

we partition the input text X into a series of chunks222

{x1, x2, · · · , xn}, where the length of each chunk223

xi is within the model’s effective context length L.224

For a given user query Q, the LLM, parameterized225

by θ, processes each chunk to generate intermedi-226

ate outputs, which are then aggregated to predict227

the final answer.228

3.2 Workflow of LLM × MapReduce229

Figure 1 depicts the overall framework of the230

proposed LLM×MapReduce framework. Like231

LangChain (Chase, 2022), the LLM×MapReduce232

workflow consists of three stages: map, collapse, 233

and reduce. During the map stage, we utilize an 234

LLM as the map model to extract the necessary 235

information for each chunk xi: 236

si = fmap (xi, Q;θ) , (1) 237

where Q is the user query and fmap represents the 238

map function powered by the LLM, parameterized 239

by θ. Our experiments show that the design of 240

the mapped results, {s1, · · · , sN}, is crucial for en- 241

abling the divide-and-conquer framework to effec- 242

tively comprehend long documents. In this work, 243

we propose a structured information protocol aimed 244

at improving communication efficiency between 245

the different stages. 246

In some cases, the input text is extremely long, 247

resulting in mapped results that still exceed the 248

context window of the LLM being used. To address 249

this, a collapse stage is employed to compress the 250

mapped results. We divide the N mapped results 251

into K groups, ensuring that the length of each 252

group remains within the model’s context window 253

L. For the j-th group of mapped results gj , we 254

leverage an LLM to output a compact result: 255

cj = fcollapse (gj , Q;θ) . (2) 256

It is important to note that the structure of each 257

collapsed result cj remains the same as that of 258

each mapped result si. If the total length of the 259

mapped results {s1, · · · , sN} is less than L, we 260

use the mapped results directly as the collapsed 261

results for the reduce stage. If the collapsed results 262

{c1, · · · , cK} still exceed L, we iteratively apply 263

the collapse function fcollapse until their length is re- 264

duced to less than L. Briefly, we use {c1, · · · , cK} 265

to denote the final output of the collapse stage. 266

Finally, in the reduce stage, the final response is 267

generated based on the collapsed results: 268

a = freduce ({c1, · · · , cK} , Q;θ) . (3) 269

In LLM×MapReduce, we do not need to tune the 270

model parameters θ. Instead, the three functions 271

(i.e., fmap, fcollapse, and freduce) are implemented 272

using prompts with existing LLMs. 273

The aforementioned divide-and-conquer frame- 274

work is straightforward for long text processing, 275

and has been explored in previous studies (Chase, 276

2022; Zhao et al., 2024; Zhang et al., 2024b). How- 277

ever, in our experiments, we find that simply com- 278

bining an LLM and the divide-and-conquer strategy 279
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Figure 1: Overview of the proposed LLM×MapReduce framework. After dividing the provided long text into a
series of chunks, the model processes each chunk to extract an information structure containing the essential content
needed to address the query. This is referred to as the map stage in our framework. The mapped results are then
compressed during the collapse stage, preparing them for the reduce stage. The collapse stage ensures that the input
to the reducing model remains within its effective length (i.e., L). Based on the structured outputs from the first
two stages (i.e., the map and collapse stages), the reduce model aggregates information from all chunks, resolves
inter-chunk conflicts using calibrated confidence scores, and predicts the final answer.

can not achieve satisfying performance on modern280

long-text benchmarks (Zhang et al., 2024a).281

The major challenge is that segmenting the en-282

tire document may disrupt crucial long-range clues.283

The disrupted long-range information can be di-284

vided into two categories: inter-chunk dependen-285

cies and inter-chunk conflicts. We therefore fo-286

cus on enhancing the capabilities of divide-and-287

conquer frameworks to process cross-chunk infor-288

mation. Specifically, we propose a structured in-289

formation protocol to address inter-chunk depen-290

dencies and in-context confidence calibration to291

resolve inter-chunk conflicts.292

3.3 Structured Information Protocol293

An important research question for divide-and-294

conquer long-text processing frameworks is to de-295

termine what information the map stage should296

convey to the reduce stage. If the mapped results297

are overly simplified, as seen in LongAgent (Zhao298

et al., 2024), crucial details needed for subsequent 299

stages may be lost. On the other hand, if the 300

mapped results are too complex, they introduce 301

significant computational overhead, increasing the 302

overall latency of the framework. 303

To this end, we introduce a specialized informa- 304

tion structure consisting of four components: 305

• Extracted Information: key facts or data 306

relevant to the query Q that are extracted from 307

the current chunk, providing the necessary 308

background for subsequent stages to address 309

inter-chunk dependencies. 310

• Rationale: the analysis or inference process 311

that explains how the model derives the inter- 312

mediate answer from the extracted informa- 313

tion, helping to mitigate the risk of hallucina- 314

tions in subsequent stages. 315

• Answer: the intermediate answer to the 316

query, derived from the extracted informa- 317
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tion and rationale. If, after providing the ra-318

tionale, the model determines that the pas-319

sage does not contain relevant information320

to address the question, it will output “NO321

INFORMATION”, which will be disregarded in322

subsequent stages.323

• Confidence Score: a score (out of 5) reflect-324

ing the model’s confidence in the answer, indi-325

cating the completeness and reliability of the326

information. The confidence score is impor-327

tant for resolving inter-chunk conflicts.328

To maintain a consistent input format for the329

reduce stage, both the map and collapse stages pro-330

duce data in the structured format described above.331

A remaining issue with the structured information332

protocol is the potential inconsistency in confi-333

dence scores estimated across different chunks334

when resolving inter-chunk conflicts. Without a335

general criterion for confidence estimation, the336

model may assign varying confidence levels to dif-337

ferent chunks, even when the content is equally reli-338

able. We thus propose an in-context confidence cal-339

ibration mechanism to align the confidence scores340

of different chunks to a consistent standard.341

3.4 In-Context Confidence Calibration342

To make confidence scores comparable across343

chunks, we propose calibrating them through in-344

context learning without adjusting the model pa-345

rameters. Specifically, we provide confidence esti-346

mation principles alongside a typical example for347

different levels of confidence score. By referencing348

these principles and examples, the model learns to349

apply consistent criteria when processing chunks.350

We can customize different calibration principles351

and instances for various tasks. Claims fully sup-352

ported by the provided text are assigned high con-353

fidence, while those inferred by the model receive354

medium confidence. Claims not related to the pro-355

vided text are assigned low confidence. Figure 6 in356

Appendix provides an example of the calibration357

prompt. We also provide a prompt example for the358

map, collapse, and reduce stages in Appendix. F.359

4 Experiments360

4.1 Setup361

Models We use two well-known open-source362

models to validate the effectiveness of the pro-363

posed LLM×MapReduce framework, which are364

Llama3-70B-Instruct (Grattafiori et al., 2024) and365

Qwen2-72B-Instruct (Yang et al., 2024). We em- 366

ploy vLLM (Kwon et al., 2023) for model infer- 367

ence, and the decoding temperature is set to 0.7. 368

Evaluation We evaluate the performance of 369

the involved models and methods on In- 370

finiteBench (Zhang et al., 2024a), where the av- 371

erage input length exceeds 100K tokens. This 372

benchmark assesses the long-text capabilities of 373

LLMs across several dimensions, including long- 374

range retrieval, language comprehension, code un- 375

derstanding, and mathematical problem-solving. 376

We exclude the subsets Code.Run and Math.Calc, 377

as nearly all models achieve less than 5% accuracy 378

on these tasks, making it difficult to differentiate 379

performance among the models. We utilize the eval- 380

uation code open-sourced by Zhang et al. (2024a) 381

to calculate scores, except for En.Dia task. We 382

find that the recall score for this task tends to in- 383

crease with longer model outputs. Therefore, we 384

directly engage two human experts with experience 385

in natural language processing to manually assess 386

the accuracy. 387

Baselines We select several representative mod- 388

els and methods as our baselines. For closed- 389

source models, we compare against GPT-4, Claude 390

2 (Anthropic, 2023), and Kimi-Chat. For open- 391

source models, we include YaRN-Mistral (Peng 392

et al., 2024), Yi-6B-200K, Yi-34B-200K (AI et al., 393

2025), and Qwen2-72B-Instruct. Additionally, 394

we compare LLM×MapReduce with two recent 395

representative frameworks for divide-and-conquer 396

long-sequence processing: LongAgent (Zhao et al., 397

2024) and Chain-of-Agents (Zhang et al., 2024b). 398

4.2 Main Results 399

Table 1 presents the performance of the methods 400

involved on InfiniteBench. For divide-and-conquer 401

methods, the backbone model used is Llama3-70B- 402

Instruct, which has an effective context length of 403

8K, significantly shorter than the test examples 404

in InfiniteBench. The results indicate that LongA- 405

gent (Zhao et al., 2024) outperforms CoA on nearly 406

all subtasks. The proposed LLM×MapReduce 407

method achieves the highest average score, out- 408

performing both the closed-source models and the 409

divide-and-conquer baselines. Augmented by our 410

method, Llama3-70B-Instruct performs well on all 411

the subtasks. Our method is also compatible with 412

Qwen2-72B-Instruct, demonstrating its generaliza- 413

tion capability. 414
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Methods Re.Pa Re.Nu Re.KV En.Sum En.QA En.MC En.Dia Co.De Ma.Fi Avg.

Closed-Source Models

GPT-4⋆ 100.00 100.00 89.00 14.73 22.44 68.12 7.50 54.31 60.00 57.34
Claude 2⋆ 97.80 99.15 65.40 14.50 11.97 67.25 43.00 33.24 32.29 51.62
Kimi-Chat 99.32 97.45 69.20 29.94 18.81 79.91 15.50 38.32 18.57 51.89

Open-Source Models

YaRN-Mistral⋆ 92.71 58.31 0.00 9.09 9.55 29.26 4.50 23.60 17.14 27.13
Yi-6B-200K⋆ 100.00 94.92 0.00 0.92 9.20 36.68 1.50 18.78 4.29 29.59
Yi-34B-200K⋆ 100.00 100.00 0.00 1.33 12.17 46.29 3.50 21.32 25.71 34.48
Q2-72B-I 100.00 100.00 29.00 31.85 21.97 81.66 23.00 45.43 59.71 54.74

Divide-and-Conquer Frameworks

L3-70B-I+LA 99.32 93.05 74.60 2.19 35.41 69.00 7.50 24.11 79.14 53.81
L3-70B-I+CoA 9.32 15.59 1.80 10.10 7.03 27.51 9.50 18.27 44.57 15.97

L3-70B-I×MR 100.00 99.79 98.89 30.63 34.70 82.10 17.50 62.94 91.43 68.66
Q2-72B-I×MR 100.00 100.00 98.80 32.39 23.13 83.84 46.50 54.82 54.29 65.97

Table 1: Results on InfiniteBench. “⋆” indicates that we directly use the model outputs released by Zhang et al.
(2024a) and re-calculate the score. “Q2-72B-I” and “L3-70B-I” refer to Qwen2-72B-Instruct and Llama3-70B-
Instruct, respectively. “LA” and “CoA” denote LongAgent (Zhao et al., 2024) and Chain-of-Agents (Zhang et al.,
2024b), which are two recent representative frameworks for divide-and-conquer long-sequence processing .

Method Re.Avg En.Avg Co.De Ma.Fi

L3-70B-I×MR 99.56 41.23 62.94 91.43

-Conf. 96.00 39.18 58.12 90.00
-Struc. 97.14 25.93 46.45 56.00

Table 2: Effect of structured information protocol and in-
context confidence calibration. “Re.Avg” and “En.Avg”
denote the average performance on retrieval tasks and
English language understanding tasks, respectively.

4.3 Ablation Study415

In LLM×MapReduce, we introduce a structured416

information protocol and an in-context confidence417

calibration mechanism, setting our method apart418

from existing divide-and-conquer baselines. We419

conduct ablation experiments to investigate the420

effect of the two components. As shown in Ta-421

ble 2, removing the in-context confidence calibra-422

tion mechanism leads to a performance decline423

across all tasks, particularly in English language424

understanding tasks (i.e., En.Avg). When both con-425

fidence calibration and the structured information426

protocol are disabled, the performance drops even427

more significantly compared to the full framework.428

These results underscore the importance of both429

mechanisms in maintaining strong performance for430

long-sequence processing.431

4.4 Extremely Long Evaluation432

Needle-in-a-haystack (NIAH) (Kamradt, 2023) is433

a widely-used method for evaluating the ability of434

LLMs to handle long texts by identifying specific 435

facts within long documents. To assess the per- 436

formance of our framework in handling extremely 437

long texts, we extend the NIAH test to a length 438

of 1280K tokens. Figure 2 presents the results, 439

demonstrating that our proposed method enables 440

Llama3-70B-Instruct, with a trained context length 441

of 8K tokens, to effectively handle sequences of up 442

to 1280K tokens. This demonstrates the potential 443

of our framework for processing extremely long 444

sequences. 445

4.5 Inference Latency 446

Since divide-and-conquer long-sequence process- 447

ing frameworks introduce multiple intermediate 448

steps, they may be slower than standard decod- 449

ing. We thus measure the inference latency of 450

the different approaches using 20 test examples, 451

each with 128K tokens. Since the original Llama3- 452

70B-Instruct does not support 128K tokens, we 453

use Llama3-70B-Instruct-Gradient-1048K (Pekelis 454

et al., 2024), an extended version of Llama3-70B- 455

Instruct, to evaluate the inference speed. We report 456

the latency for LongAgent with the maximum num- 457

ber of turns set to 1 and 3. The experiments are 458

conducted using NVIDIA A100 GPUs (80 GB). As 459

shown in Figure 3, both CoA and LongAgent are 460

slower than standard decoding across different set- 461

tings. However, a notable advantage of divide-and- 462

conquer methods is their lower GPU requirements 463

for handling long sequences. For standard decod- 464
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ing, at least 4 GPUs are needed to process 128K465

tokens, whereas divide-and-conquer methods can466

support 128K tokens using just 2 GPUs. Surpris-467

ingly, the proposed LLM×MapReduce framework468

outperforms not only other divide-and-conquer469

baselines in speed but also standard decoding. The470

efficiency of our method is achieved by avoiding471

the need to repeatedly process text chunks to re-472

solve conflicts, as required in LongAgent. Instead,473

we employ a structured information protocol and474

an in-context confidence calibration mechanism to475

effectively integrate information across chunks.476

5 Pyramid-Align: Let Short Teach Long477

An additional advantage of divide-and-conquer478

methods is that they allow short-context LLMs to479

generate long-context supervised fine-tuning (SFT)480

data. In other words, we can distill the capabilities481

of short-context LLMs into long-context LLMs,482

achieving the goal of “letting short teach long”.483

In this work, we adopt this idea to create a long484

SFT dataset called Pyramid-Align. Several existing485

studies utilize LLMs to generate questions based486

on long documents. LongAlign (Bai et al., 2024) 487

proposes using Claude 2.1 to ask questions con- 488

ditioned on the entire text. In contrast, IN2 (An 489

et al., 2024) provides a local chunk to the LLM 490

for question generation before reintegrating that 491

chunk back into the long document. Instead of re- 492

lying solely on the entire document or a specific 493

chunk, we propose generating questions based on 494

varying amounts of information. Intuitively, a high- 495

quality long SFT dataset should train the model to 496

thoroughly comprehend any span of information 497

within the document. 498

Chunk1 Chunk2 Chunkn-1 Chunkn...

Q1

Q2

Q3

Figure 4: Illustration of Pyramid-Align.

Constructing the Pyramid As illustrated in Fig- 499

ure 4, we utilize LLMs to abstract chunks into 500

hierarchical nodes, where nodes at different lev- 501

els encompass varying amounts of information. 502

Specifically, each leaf node represents an individual 503

chunk, while higher-level nodes contain progres- 504

sively more information spanning multiple chunks. 505

Improving Information Coverage The primary 506

challenge in constructing the pyramid is that nodes 507

at higher levels may lose essential content, result- 508

ing in reduced informativeness as the hierarchy as- 509

cends. Improving the information coverage while 510

summarizing effectively at each level is crucial to 511
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ensure that upper-level nodes retain sufficient con-512

text and details to support accurate understanding513

across the entire document. To this end, we design514

a bottom-up importance propagation mechanism,515

where the sentence-level importance scores help the516

LLM identify key content. Figure 5 illustrates the517

propagating procedure. When constructing upper518

nodes, we prompt the LLM to pay more attention519

to sentences with higher importance scores. Please520

refer to Section C in Appendix for more details.521

Generating Questions After constructing the522

pyramid, we randomly select nodes to generate523

questions. Selecting leaf nodes mimics IN2 (An524

et al., 2024) while selecting the root node aligns525

with LongAlign (Bai et al., 2024). Additionally,526

the LLM is guided to prioritize important sentences527

when formulating questions, ensuring that key in-528

formation is considered.529

Generating Answers Given a long docu-530

ment X and a question Q, we employ the531

LLM×MapReduce framework to generate the an-532

swer A. Each example in the Pyramid-Align533

dataset is represented as (X,Q,M,A), where M534

denotes the intermediate outputs (e.g., the mapped535

and collapsed results) from the LLM×MapReduce536

process. This format allows us to not only use537

(X,Q,A) to learn a standard long-context LLM,538

but also leverage the intermediate outputs, namely539

(X,Q,M,A), to train a model that aligns more540

closely with the LLM×MapReduce framework.541

Dataset Construction To ensure a fair compari-542

son between different data construction methods,543

we use the same documents used in previous works.544

Specifically, we extract all the 5,299 English doc-545

Model Sum QA MC Dia Avg.

Baseline

GPT-4 14.73 22.44 68.12 7.50 28.20

Standard Decoding

L (LA) 16.46 6.17 44.54 10.50 19.42
L (PA) 25.22 19.91 43.67 11.00 24.95

LLM×MapReduce

L (PA) 28.55 21.22 67.69 10.00 31.86

Table 3: Comparison between LongAlign and Pyramid-
Align on the English tasks of InfiniteBench. “L (LA)”
denotes the model trained from Llama3.1-8B using Lon-
gAlign, while “L (PA)” denotes the model trained from
the same backbone on Pyramid-Align.

uments from the LongAlign dataset. The average 546

document length is approximately 17K tokens, with 547

a maximum length of 74K tokens. For each docu- 548

ment, we generate question-answer pairs using the 549

method described above. This process resulted in a 550

final dataset of 4,927 entries. 551

Standard Long-Context Training To validate 552

the effectiveness of our data synthesis approach, 553

we use the same backbone model, Llama3.1-8B, to 554

train long-context models on both LongAlign and 555

Pyramid-Align. Note that both long SFT datasets 556

are derived from the same set of long documents, 557

and the trained models perform standard decoding 558

without LLM×MapReduce. Since we only use 559

English documents, we evaluate the trained mod- 560

els on four English tasks from InfiniteBench. As 561

shown in Table 3, the model trained with Pyramid- 562

Align outperforms the one trained with LongAlign, 563

demonstrating the effectiveness of Pyramid-Align. 564

Training with LLM×MapReduce As afore- 565

mentioned, we can also leverage (X,Q,M,A) to 566

enhance the ability of LLMs to operate effectively 567

in the MapReduce framework. We train the model 568

from the same backbone (i.e., Llama3.1-8B) using 569

the data in the (X,Q,M,A) format. As shown 570

in Table 3, the trained 8B model can outperform 571

the strong baseline, GPT-4, with the help of our 572

proposed LLM×MapReduce framework. 573

6 Conclusion 574

We introduce LLM×MapReduce, an effective 575

divide-and-conquer framework for long-sequence 576

processing, which can also serve as a powerful data 577

synthesis engine for long-alignment resources. 578
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Limitations579

In this paper, we present the LLM×MapReduce580

framework, offering a general solution for process-581

ing long texts, particularly for standard document582

types. However, the current implementation may583

not fully accommodate the unique requirements of584

specialized formats, such as visually rich academic585

papers containing diagrams or other multi-modal586

elements. Furthermore, the document chunking587

mechanism may face challenges when processing588

unstructured texts that lack clear paragraph bound-589

aries. Future work could focus on developing adap-590

tive chunking algorithms and expanding the frame-591

work to better support domain-specific tasks.592
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A Example of In-Context Calibration762

Figure 6 shows a prompt example for in-context763

confidence calibration.764

Assign a confidence score (out of 5) to
your answer based on the completeness and
reliability of the extracted information
and your rationale. The following is some
assigning scoring cases:
<Text: [ Jerry is 18 years old this year. He can
swim and wants to be an athlete. ].
Examples of confidence estimation: [
Jerry can swim, 5 points;
Jerry will become an athlete in the future, 3.5
points;
Jerry will become a swimming athlete in the fu-
ture, 3 points;
Jerry is strong, 3 points;
Jerry can play chess, 0 points;
Jerry likes talking, 0 points ] >.

Figure 6: Prompt for in-context confidence calibration.

B Effect of Chunk Size765

To examine the impact of chunk size, we assess our766

framework on the En.QA task from InfiniteBench767

using chunk sizes ranging from 0.5k to 6k tokens.768

The model used in this evaluation is Llama3-70B-769

Instruct, with all other experimental settings con-770

sistent with those described in Section 4. As shown771

in Figure 7, increasing the chunk size generally772

leads to improved performance, suggesting that773

larger chunks provide more comprehensive con-774

textual information, which benefits the model’s775

ability to comprehend and answer questions accu-776

rately. However, the performance gain diminishes777

as chunk sizes increase, suggesting a trade-off be-778

tween contextual completeness and the increased779

difficulty of processing intensive information.780

C Details of Importance Propagation781

During the construction of Pyramid-Align, we as-782

sign an importance score and an index for each sen-783

tence within the pyramid. The importance scores784

help the LLM identify key content, while the in-785

dices are used to propagate the scores in a bottom-786

up manner. For the leaf nodes, the sentence-level787

importance score is calculated as the sum of the788

TF-IDF scores of the words in the sentence. For789

higher-level nodes, we require the LLM to record790

the sentences from the lower-level nodes using the791

sentence indices. The score of each sentence at792

a higher level is then the sum of the importance793
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Figure 7: Effect of the chunk size. Results are reported
on the En.QA task from InfiniteBench.

scores of the corresponding lower-level sentences. 794

Figure 5 shows an example. 795

D Details of the Construction of 796

Pyramid-Align 797

We construct the Pyramid-Align dataset using 798

Qwen2-72B-Instruct-AWQ (Yang et al., 2024), 799

leveraging vLLM with a decoding temperature of 800

0.7. The dataset is built from all the 5,299 English 801

documents in the LongAlign dataset, which are 802

structured into a pyramid format. After construct- 803

ing the pyramid for each document, a single node is 804

randomly selected as the context, and one question 805

is generated from it, chosen from three categories: 806

causal reasoning, information extraction, or sum- 807

marization. Figure 8 illustrates the prompt used for 808

generating causal reasoning questions. 809

We then generate answers using the pro- 810

posed LLM×MapReduce framework, powered by 811

Llama3-70B-Instruct, resulting in 5,299 question- 812

answer pairs. After filtering out pairs with ille- 813

gal characters, the final dataset contains 4,927 in- 814

stances. On average, the dataset has a document 815

length of 17K tokens, a question length of 23 to- 816

kens, and a response length of 151 tokens, as mea- 817

sured with the LLaMA 3 tokenizer. 818

E Details of Model Training 819

Following LongAlign, we mix our dataset with 820

ShareGPT (Chiang et al., 2023) data for train- 821

ing. Specifically, for standard training, we com- 822

bine the 4,927 generated Pyramid-Align instances 823

with the ShareGPT data. Similarly, we extract the 824

corresponding 4,927 instances from LongAlign 825

and mix them with ShareGPT to create a com- 826

11
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Propose a question based on the given
text. Bold words require extra attention
when asking questions. This question
must be about reasoning, such as sort,
timeline arrangement, and cause-effect
relationship identification. Sorting
involves organizing data in a specific
order, timeline arrangement refers to
placing events in chronological order, and
cause-effect relationship identification
is the process of determining how one event
or action can directly lead to another.

### Text:

{context}

### Question:

Figure 8: Prompt for generating causal reasoning ques-
tions during the construction of Pyramid-Align.

parable dataset. Both datasets are used to train827

long-context models on the same backbone model,828

Llama3.1-8B, for 1,500 steps (approximately 2829

epochs), with a learning rate of 2e-5. For train-830

ing with LLM×MapReduce, we leverage data in831

the (X,Q,M,A) format to enhance the ability of832

LLMs to perform effectively within the proposed833

framework. We combine this data with ShareGPT834

to create a mixed dataset and train the same model835

(i.e., Llama3.1-8B) for 2 epochs with a learning836

rate of 2e-5. All experiments are conducted on 32837

NVIDIA A100 80G GPUs.838

F Prompt Example839

To better understand the LLM×MapReduce frame-840

work, we provide the prompts for general question841

answering as an example. Specifically, Figure 9842

shows the prompt for the map stage, Figure 10843

presents the prompt for the collapse stage, and Fig-844

ure 11 displays the prompt for the reduce stage.845

You are provided with a portion of an
article and a question. Read the article
portion and follow my instructions to
process it.
Article:
The article begins as follows:
{context}
The article concludes here.
Question:
{question}
Instructions:
Please extract information from the
provided passage to try and answer the given
question. Note that you only have a part
of the entire text, so the information you
obtain might not fully answer the question.
Therefore, provide your rationale for using
the extracted information to answer the
question and include a confidence score.
The following is some assigning scoring
cases: <Text: [Jerry is 18 years old
this year. He can swim and wants to be
an athlete.]. assigning scoring: [Jerry
can swim, 5 points; Jerry will become an
athlete in the future, 3.5 points; Jerry
will become a swimming athlete in the
future, 3 points;Jerry is strong,3 points;
Jerry can play chess, 0 points;Jerry likes
talking,0 points]>. Follow these steps:
1. Extract Relevant Information: Identify
and highlight the key pieces of information
from the passage that are relevant to the
given question.
2. Provide a Rationale: Analyze the
extracted information and explain how it
can be used to address the question. If
the information is incomplete, discuss any
assumptions or inferences you need to make.
3. Answer the Question: Based on your
rationale, provide the best possible answer
to the question. If, after providing your
rationale, you believe the passage does
not contain any information to solve the
question, output “[NO INFORMATION]” as the
answer.
4. Assign a Confidence Score: Assign a
confidence score (out of 5) to your answer
based on the completeness and reliability
of the extracted information and your
rationale process.
Please follow this format:
Extracted Information:
Rationale:
Answer:
Confidence Score:

Figure 9: Example for the prompt of the map stage
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You need to process a task with a long
context that greatly exceeds your context
limit. The only feasible way to handle this
is by processing the long context chunk by
chunk. You are provided with a question
and some information extracted from each
chunk. Each piece of information contains
Extracted Information, Rationale, Answer,
and a Confidence Score. The following is
some assigning scoring cases: <Text: [Jerry
is 18 years old this year. He can swim and
wants to be an athlete.]. assigning scoring:
[Jerry can swim, 5 points; Jerry will
become an athlete in the future, 3.5 points;
Jerry will become a swimming athlete in the
future, 3 points;Jerry is strong,3 points;
Jerry can play chess, 0 points;Jerry likes
talking,0 points]>. Read the information
and follow my instructions to process it.
Extracted Information:
The extracted information begins as
follows:
{map result}
The extracted information concludes here.
Question:
{question}
Instructions:
Integrate the extracted information and
then reason through the following steps:
1. Integrate Extracted Information:
Collect and summarize all the evidence
relevant to solving the question. Consider
the confidence scores of each piece
of extracted information to weigh their
reliability. Higher confidence scores
should be given more importance in your
summary.
2. Analyze: Re-analyze the question
based on the summarized information.
Use the confidence scores to determine
the reliability of different pieces
of information, giving more weight to
information with higher confidence scores.
3. Answer the Question: Provide the
best possible answer based on the updated
information. If, after providing your
rationale, you believe the passage does
not contain any information to solve the
question, output “[NO INFORMATION]” as
the answer. Use the confidence scores
to support the reliability of your final
answer, prioritizing higher confidence
information.
4. Assign Confidence Score: Give a
confidence score (out of 5) for your
final answer based on the completeness and
reliability of the updated information and
your rationale process.
Consider the initial confidence scores of
the integrated information to determine
your final confidence score.
Please follow this format:
Extracted Information:
Rationale:
Answer:
Confidence Score:

Figure 10: Example for the prompt of the collapse stage

You need to process a task with a long
context that greatly exceeds your context
limit. The only feasible way to handle this
is by processing the long context chunk by
chunk. You are provided with a question
and some information extracted from each
chunk. Each piece of information contains
Extracted Information, Rationale, Answer,
and a Confidence Score. The following is
some assigning scoring cases: <Text: [Jerry
is 18 years old this year. He can swim and
wants to be an athlete.]. assigning scoring:
[Jerry can swim, 5 points; Jerry will
become an athlete in the future, 3.5 points;
Jerry will become a swimming athlete in the
future, 3 points;Jerry is strong,3 points;
Jerry can play chess, 0 points;Jerry likes
talking,0 points]>. Read the information
and follow my instructions to process it.
Question:
{question}
Information from chunks:
{collapse result}
Each chunk provides extracted information
related to the same question, but due to
partial data, conclusions from each chunk
might vary. Your role is to integrate
and reason through this information,
weighing confidence scores to resolve any
inconsistencies. Then provide the final
answer.
Please follow this format:
Rationale:
Answer:

Figure 11: Example for the prompt of the reduce stage
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