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Abstract
In spoken language, speakers transmit infor-001
mation not only using words, but also via002
a rich array of non-verbal signals, which in-003
clude prosody—the auditory features of speech.004
However, previous studies have shown that005
prosodic features exhibit significant redun-006
dancy with both past and future words. Here,007
we examine the time scale of this relationship:008
How many words in the past (or future) con-009
tribute to predicting prosody? We find that010
this scale differs for past and future words.011
Prosody’s redundancy with past words extends012
across approximately 3-8 words, whereas re-013
dundancy with future words is limited to just014
1-2 words. These findings indicate that the015
prosody-future relationship reflects local word016
dependencies or short-scale processes such as017
next word prediction, while the prosody-past re-018
lationship unfolds over a longer time scale. The019
latter suggests that prosody serves to empha-020
size earlier information that may be challenging021
for listeners to process given limited cognitive022
resources in real-time communication. Our re-023
sults highlight the role of prosody in shaping024
efficient communication.1025

1 Introduction026

Auditory features of speech such as pitch, loud-027

ness, and tempo—collectively termed prosody—028

play a crucial role in conveying meaning. Prosody029

influences sentence-level interpretation, encoding030

both linguistic and para-linguistic cues relevant to031

the communicative context (Cole, 2015; Wagner032

and Watson, 2010; Breen et al., 2010). For exam-033

ple, prosody can signal phrase boundaries, empha-034

size key elements, transform statements into ques-035

tions, and express sarcasm, excitement, or doubt.036

However, some of the cues transmitted by prosody037

are redundant with the information encoded in the038

words themselves (Wolf et al., 2023).2 This raises039

1Code will be added upon publication.
2In both (Wolf et al., 2023) and our study, text is used as a

proxy to measure information present in the words themselves,
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Figure 1: The redundancy between prosody Ptand
linguistic context Wn,m↔ —quantified as their mutual
information—as a function of the number of words con-
tained in the past (n) and/or future (m) linguistic context.
The values are averaged across 6 prosodic features (see
Fig. 3 for the values of each of these features separately).

the question: Why is prosody used if its informa- 040

tion is recoverable from the words themselves? 041

One possibility is that prosody carries informa- 042

tion that is recoverable from long-term past context, 043

but not from short-term past context (see Hypothe- 044

sis 1 below). Such long-term linguistic information 045

may be challenging for listeners to maintain dur- 046

ing real-time communication due to limited human 047

cognitive capacities (e.g., working memory; Gib- 048

son, 1998; Lewis et al., 2006; Futrell et al., 2020) 049

and prosody may therefore be used by speakers 050

from an audience-design perspective3 (Clark and 051

Murphy, 1982). For instance, it might be possi- 052

ble to infer which word is most important in the 053

current sentence given long-term linguistic context, 054

but speakers still choose to emphasize the most 055

also referred to as “segmental information” in the phonology
literature. We thus use these terms interchangeably. We also
use the term ‘linguistic context’ to describe a word together
with the words around it.

3‘Audience design’ is sometimes termed ‘listener-oriented’
or ‘intelligibility-oriented’ pressures.
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important word using prosody to help the listener056

access this information more easily. This expla-057

nation implies that the information conveyed by058

prosody, although redundant with long-term past059

linguistic information, is locally unique.060

Apart from redundancy with past context, how-061

ever, prosody is also redundant with future words062

(Wolf et al., 2023). Since at any point in time a063

listener only has access to past context, if prosody064

is primarily shaped by audience-design, then its065

redundancy with the future likely reflects its role066

in helping listeners prepare for, or predict, upcom-067

ing words. Assuming prediction mechanisms are068

mostly tuned for local, incremental comprehen-069

sion,4 we hypothesize that the redundancy between070

prosody and future context has a shorter scale than071

with past context (see Hypothesis 2 below).072

To summarize our predictions, we thus formulate073

two main hypotheses:074

Hypothesis 1. Long-scale past redundancy. The075

redundancy between prosody and past linguistic076

context unfolds across a time scale that is longer077

than two words.078

Hypothesis 2. Short-scale future redundancy.079

The redundancy between prosody and future lin-080

guistic context unfolds across a time scale that is081

short relative to the past.082

To test these hypotheses, we build on the ap-083

proach of Wolf et al. (2023), quantifying the re-084

dundancy between prosody and linguistic context085

as mutual information, which we estimate using086

pre-trained language models and a dataset of peo-087

ple reading aloud English audiobooks. We extend088

their approach to investigate the time scale of this089

redundancy by limiting the past and future linguis-090

tic context available to our models. We vary con-091

text lengths parametrically, from 1 to 10 words092

for both past and future contexts, and analyze how093

the redundancy changes across time for several094

prosodic features: pitch, loudness, duration, pause,095

and prominence. Our main results, averaged across096

these features, can be seen in Fig. 1. These re-097

sults confirm that prosody is only redundant with098

short-term future context (up to 2 words), but with099

relatively longer-term past context (up to 8 words)—100

in agreement with our hypotheses. This advances101

our understanding of the role of prosody in natural102

spoken communication.103

4This is suggested by recent work on surprisal theory,
which shows that limiting the context of language models
used to estimate surprisals improves predictive power over
reading times (Kuribayashi et al., 2022).

2 Prosodic Features 104

Prosodic information can be conveyed via multiple 105

acoustic features of speech, which typically mani- 106

fest a high degree of co-variation. We next present 107

the features we study here. We independently ex- 108

amine the scale of redundancy with linguistic con- 109

text for each of these prosodic features. 110

Pitch Pitch is the perceptual dimension over 111

which listeners can order sounds on a scale from 112

low to high. The acoustic correlate giving rise to 113

this perception is the periodicity of sound signals; 114

pitch is thus often measured as the fundamental 115

frequency (f0) of the sound. Pitch is (arguably) 116

the hallmark feature of prosody, with its contours, 117

having been extensively studied and characterized 118

(Pierrehumbert, 1980; Silverman et al., 1992; Jun, 119

2006). These contours carry contextual information 120

that can signal a wealth of information, including, 121

in stress-accent languages like English, emphasiz- 122

ing specific words, signaling boundaries, speech 123

act type, and speaker’s intent (like interrogation, 124

sarcasm, and the affective state of the speaker). 125

Some typical pitch curves are the rise of pitch to- 126

wards the last word of a question (e.g. in yes/no 127

questions in American English), rise and then fall 128

of pitch on a specific word to emphasize it, and a 129

fall toward the end of phrases. 130

Loudness Loudness is the perceptual dimension 131

over which listeners can order sounds on a scale 132

from quiet to loud. The acoustic correlate giving 133

rise to this perception is sound pressure, being mea- 134

sured as the intensity of acoustic energy. The loud- 135

ness of speech can be used to transmit information 136

such as emphasize important words or convey emo- 137

tion. The correlation between pitch and loudness 138

is partly explained by vocal production constraints; 139

producing speech with higher energy is helpful for 140

raising and better controlling the fundamental fre- 141

quency. However, loudness variations may also 142

convey independent information from pitch. 143

Duration A word’s duration is the difference be- 144

tween its offset (end) and onset (start) times. The 145

relationship between word duration and linguistic 146

information has long been studied as a signature 147

of efficiency in communication such that more pre- 148

dictable words are reduced to a shorter duration 149

(Jurafsky et al., 1998; Bell et al., 2009; Seyfarth, 150

2014; Coupé et al., 2019; Pimentel et al., 2021). 151

Further, elongating a word is a common way to 152
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emphasize it, or signal prosodic boundary. Dura-153

tion is thus also highly correlated with pitch and154

loudness in natural speech, but it can also be used155

independently to convey meaning, or to compress156

words of low information content.157

Pause A word’s pause is the time difference be-158

tween its offset (end) time and the next word’s onset159

(start), being another way to emphasize an impor-160

tant word in context, or to signal phrase bound-161

aries (Hawkins, 1971). In contrast to phrase bound-162

aries, within the phrase speech tends to be ’con-163

nected’ such that there are usually no pauses be-164

tween words; i.e., most pauses are of zero seconds.165

Prominence Prosodic prominence is a term that166

describes how salient a linguistic entity—in our167

case, a single word—is perceived relative to the168

words surrounding it in an utterance (Terken and169

Hermes, 2000). Unlike the previously described170

prosodic features, prominence is a higher-level per-171

cept in the sense that it is not elicited by a single172

acoustic dimension. The perception of prominence173

is affected by multiple acoustic features (Cole et al.,174

2010)—elongating a word’s duration, increasing175

the speech energy or modulating the f0 contour176

of a specific word can all make this word be per-177

ceived as more prominent in context. Although178

other acoustic features, like timbre, can also affect179

prominence, and factors like word frequency influ-180

ence it as well (Cole et al., 2010), a combination of181

duration, loudness and pitch has been proposed as182

an effective acoustic measure to quantify prosodic183

prominence (Talman et al., 2019), which we use184

here.185

3 Redundancy between Prosody and186

Linguistic Context187

This paper concerns the time scale of the redun-188

dancy between prosody and linguistic context,189

where ‘linguistic context’ here refers to the seg-190

mental information of an utterance, represented in191

our experiments as text. In this section, we first192

explain how this redundancy can be formalized as193

a mutual information, following Wolf et al. (2023).194

We then expand on this framework by discussing195

how context-length manipulations allow us to in-196

vestigate the time scale aspect of this redundancy.197

3.1 Redundancy as Mutual Information198

Let Pt be a prosody-valued random variable, which199

takes values pt ∈ R. Further, let W be a words-200

valued random variable, which takes values w ∈201

W∗, where W is a language’s lexicon. We follow 202

Wolf et al. (2023) in formalizing the redundancy be- 203

tween prosody and linguistic context as the mutual 204

information: MI(Pt;W). Under a few technical 205

assumptions (e.g., the good mixed-pair assumption, 206

see Wolf et al., 2023 for details), we can write this 207

value as: 208

MI(Pt;W) = H(Pt)−H(Pt | W) (1) 209

In this equation, unconditional entropy H(Pt) 210

serves as a baseline, representing how much un- 211

certainty there is about Pt. In turn, conditional 212

entropy H(Pt | W) represents how much uncer- 213

tainty remains about Pt once we know the context 214

W. Their difference then represents how much 215

information W contains about Pt (and vice versa). 216

We are now left with the problem of estimating 217

these entropies. While these values are unknown, 218

we only require two things to estimate them: a 219

corpus of prosodic values coupled to linguistic con- 220

texts, sampled from the ground-truth distribution, 221

Dtst = {p′t,w′}Nn=1, p′t,w
′ ∼ p(pt,w) 222

and models pθ of distributions p(pt) and p(pt | 223

w). We can then use a cross-entropy upper-bound 224

(Pimentel et al., 2019) to estimate these entropies: 225

H(Pt | W) ≤ Hθ(Pt | W) (2) 226

≈ 1

|Dtst|
∑

p′t,w
′∈Dtst

log
1

pθ(p
′
t | w′)

227

where pθ(pt | w) is replaced with pθ(pt) when 228

estimating H(Pt). We describe our dataset Dtst 229

and how to estimate pθ in Section §4. 230

3.2 Manipulating Context Length 231

To analyze the time scale of the redundancy be- 232

tween prosody and linguistic context, we will es- 233

timate MI (Pt; W) while systematically manipu- 234

lating the amount of context, i.e. the number of 235

words, in W. We thus quantify ‘time’ in units of 236

words, as opposed to seconds, acknowledging the 237

discrepancy between these concepts due to varying 238

duration of words and speaking rates. To this end, 239

we define Wn,m↔ as the linguistic context compris- 240

ing n words before and m words after word Wt, 241

including the word itself: 242

wn,m↔ = ⟨wt−n, · · · ,wt, · · ·wt+m⟩ (3) 243

Thus, for instance, W0,0↔
corresponds to the word 244

Wt by itself, and W3,6↔
corresponds to the word 245
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can  you  give  me  a  few  hints  suppose  you  spoke 

Current word:

Past context: wt

Bidirectional LLM
(e.g., BERT large)

Pt Fine tune 
to predict

Prosody of current word:

Loss function:

Input
n words Future context: m words

Estimating the conditional entropy

Figure 2: Estimation procedure for H(Pt | Wn,m↔ ). A
span of words Wn,m↔ which includes word Wt is used as
input to a model which predicts that word’s prosody Pt.
The loss function that the model minimizes estimates
the conditional entropy.

Wt with 3 words in its past context and 6 words in246

its future context (see Fig. 2).247

Given this definition, we can then explore the248

time scale we are interested in by estimating the249

mutual information MI(Pt,Wn,m↔ ) while varying250

n and m. This amounts to estimating H(Pt) and251

H(Pt | Wn,m↔ ). The unconditional entropy does252

not depend on context; thus, to estimate it, we only253

need to compute a relatively simple prior over the254

domain of each prosodic feature. On the other255

hand, estimating the conditional entropy requires256

computing a family of conditional distributions for257

each prosodic feature, with one distribution for258

each n,m combination. In other words, we need a259

model pθ(pt | wn,m↔ ) that works for any n,m pair.260

We elaborate on this model in Section §4.2.261

Importantly, the MI(Pt;Wn,m↔ ) is a monotoni-262

cally increasing function of both m and n; larger263

linguistic contexts must contain at least as much264

(but maybe more) information about prosody than265

smaller contexts.5 However, at some value of m266

and some value of n, the MI might reach a plateau.267

We consider the “time scale” of the redundancy268

between prosody and linguistic context to be the269

value from which increasing context does not sig-270

nificantly increase the MI.271

4 Methods272

We now detail our dataset and modeling choices.273

4.1 Dataset274

Our data-extraction process follows Wolf et al.’s275

(2023) proposed and publicly available pipeline276

(see their paper for more details).277

5We note that—while the MI is monotonically increasing
in theory—it is not necessarily the case that this underlying
monotonicity will be reflected by our estimation methods.

Speech Data We use the LibriTTS spoken lan- 278

guage corpus 6 (Zen et al., 2019),7 which contains 279

public domain audiobook materials (audio and text) 280

recorded by volunteer narrators. This dataset con- 281

tains 585 hours of English speech data at a 24kHz 282

sampling rate, and includes recordings from 2,456 283

speakers reading aloud books which are paired with 284

the corresponding transcripts. We filtered out texts 285

from LibriTTS that contained less than three words 286

(such as book and chapter titles) and we eliminated 287

punctuation marks, since these can be very infor- 288

mative regarding prosody, and are not explicitly 289

present in spoken communication. 290

Prosody Feature Extraction The procedure for 291

extracting prosodic features starts with aligning 292

the audio and text using Montreal Forced Aligner 293

(MFA) (McAuliffe et al., 2017). Given this align- 294

ment, both the duration and pause of each word can 295

be easily computed from the words’ offset and on- 296

set times.8 Duration was then normalized relative 297

to the number of syllables in the word, to reflect 298

duration per syllable. To extract pitch, loudness, 299

and prominence, we rely on algorithms provided 300

by Suni et al. (2017). These algorithms return the 301

pitch curve, or fundamental frequency (f0), of a 302

speech signal, which is z-scored per speaker, to 303

remove inter-speaker differences. For each word, 304

we focused on the pitch curve in an interval up to 305

250ms (or across the word’s duration, if shorter 306

than 250ms) around the word’s primary syllable 307

(identified using CELEX (Baayen et al., 1996)). 308

These curves were then averaged, resulting in a 309

single mean pitch value per word. Suni et al.’s 310

(2017) algorithms also return continuous energy 311

curves, which we average per word. For promi- 312

nence, we use a mean value per word which was 313

released and validated by (Talman et al., 2019) for 314

this dataset. In short, this prominence value reflects 315

the steepest time-frequency variation in a signal 316

combining duration, energy and f0. Apart from 317

the absolute average prominence value per each 318

word, we also computed their relative prominence, 319

subtracting the mean prominence value of the three 320

preceding words from the current word’s value; this 321

emphasizes local changes in prominence. 322

6The LibriTTS corpus is licensed under the Creative Com-
mons Attribution 4.0 International License (CC BY 4.0)

7This dataset is derived from LibriSpeech audiobooks cor-
pus (Panayotov et al., 2015), which is itself derived from
LibriVox (Kearns, 2014).

8We note that about 89.4% of the words in our dataset
have a pause of 0 seconds.
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Splitting the Data to Train, Validation and Test323

The dataset was divided into separate train, val-324

idation and test sets, using splits of the dataset325

provided by Talman et al. (2019). For training, we326

used a data split (termed train-360) containing 904327

speakers, 11,262 sentences and 2,076,289 words.328

For validation, we used a data split (termed dev)329

containing 40 speakers, 5,726 sentences and 99,200330

words. We had access to a data split (termed test)331

containing 39 speakers, 4,821 sentences and 90,063332

words, as well as to another data split (termed train-333

100) containing 247 speakers, 33,041 sentences and334

570,592 words. We therefore used the latter split335

(train-100) as the test set, except for prominence336

(absolute and relative) where we added this split to337

the test split, which led to more stable results.338

4.2 Estimating the Cross-Entropies339

We now explain how we model the probability dis-340

tributions pθ(pt) and pθ(pt | wn,m↔ ), which serve341

to estimate the unconditional and conditional cross-342

entropies, respectively.343

Modeling pθ(pt) To model this unconditional344

distribution over prosodic values, we simply fol-345

low Wolf et al. (2023) in using a Gaussian kernel346

density estimator (KDE). Given a training set Dtrn,347

sampled from p(pt,w), this model is defined as:348

pθ(pt) =
1

|Dtrn|
∑

p′t∈Dtrn

N (pt;µ=p′t, σ= σ̂) (4)349

where N are Gaussian distributions, each centered350

at a prosodic value µ=p′t and all having the same351

variance σ = σ̂. We choose σ̂ that achieves the352

highest likelihood on our validation set.353

Modeling pθ(pt | wn,m↔ ) To model this condi-354

tional distribution, we again follow Wolf et al. in355

finetuning a language model (LM), with an added356

linear layer on top, to predict the parameters of a357

conditional distribution over pt. Unlike Wolf et al.,358

however, we limit our models input to include359

only wn,m↔ instead of the entire w. We assume the360

conditional distribution over prosody to follow a361

parametric distribution Z , and use a LM to predict362

this distribution’s parameters ϕ̂:9363

ϕ̂ = LM(wn,m↔ ) (5)364

pθ(pt | wn,m↔ ) = Z(pt;ϕ = ϕ̂) (6)365

9We evaluate models with Gaussian, Gamma and Laplace
distributions, choosing the distribution that leads to the lowest
cross-entropy on a validation set. Parameters ϕ are, e.g., the
mean and standard deviation for a Gaussian.

We finetune this model by minimizing its cross- 366

entropy on a training set Dtrn; which amounts to 367

minimizing the right-hand side of Eq. (2). As the 368

cross-entropy is an upper bound on the entropy, 369

the lower its value (and consequently the better our 370

model) the tighter the estimate we get for the en- 371

tropy. Notably, we estimate all n,m combinations 372

using a single finetuned LM. During training, we 373

sampled inputs of varying lengths, spanning 1 to 10 374

words.10 For each sample, the model then predicts 375

the prosody of each of the words in this span in 376

parallel; in a 7-word span, thus, the first word’s 377

prosody is predicted as pθ(pt | w0,6↔
) and the 5th 378

word’s prosody is predicted as pθ(pt | w4,2↔
).11 379

5 Results 380

Fig. 1 displays the average mutual information (MI) 381

across the 6 prosodic features tested here (pitch, 382

ludness, duration, absolute prominence, relative 383

prominence, pause), and Fig. 3 displays those re- 384

sults for each feature separately. See App. A for 385

the values of unconditional entropies that comprise 386

those MIs. Our results’ overall trend confirms Hy- 387

pothesis 1, the long-scale past redundancy hypoth- 388

esis. When averaged across all linguistic features, 389

the mutual information between prosody and past 390

linguistic context (first column in Fig. 1) increases 391

as a function of the number of words available, up 392

to about 5-8 words, after which it plateaus. Our 393

results also support Hypothesis 2, the short-scale fu- 394

ture redundancy hypothesis. When averaged across 395

all linguistic features, the mutual information be- 396

tween prosody and future linguistic context (first 397

row in Fig. 1) increases only up to about one or 398

two words and then plateaus. Furthermore, the 399

MI with the past is higher than the MI with the 400

future, a trend that becomes larger for longer spans 401

of words. 402

When examining the mutual information with 403

linguistic contexts containing both past and future 404

words (i.e., n > 0 and m > 0; the n-th column 405

and m-th row in Fig. 1), we observed interesting 406

interactions. Specifically, a combination of about 407

one word in the future and about 5-8 words in the 408

10These inputs were obtained by first sampling an item from
the dataset, and then randomly cutting it into the desired length
(between 1-10 words).

11For each prosodic feature, we tested several models,
namely BERT, BERT-large and RoBERTa-large, and selected
the model that gave the best results. In most cases, this was
BERT-large, except for pauses and pitch where it was BERT.
An early stopping criterion was applied, such that if the loss
did not decrease for 3 epochs the model stopped training.
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Figure 3: For each of the 6 tested prosodic features, two plots are presented. The upper plots are similar to Fig. 1,
and display the redundancy, quantified as mutual information between a prosodic feature at a given word ptand
the linguistic context wn,m↔ , which includes the word itself, n words before, and m words after it. The lower plots
display just the first column (corresponding to linguistic context which includes the word itself and a gradually
increasing number of past words, red curve) and the first row (corresponding to lingusitic context which includes the
word itself and a gradually increasing number of past words, blue curve) in the upper plots. Wherever numbers and
units are not displayed, they correspond to the units displayed for Absolute Prominence. The MI values correspond
to the mean across all train data. Error bars correspond to standard errors of the mean. Dashed horizontal line
corresponds to the MI with the longest available context. See App. B for the distributions of these features from our
dataset.
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past already contains most of the information about409

prosodic features. Notably, this n,m combination410

led to higher mutual information than even other411

combinations with larger context (i.e., with n′,m′,412

n′≥n, and m′≥m). While this is theoretically im-413

possible (adding more context can never decrease414

mutual information), this is likely due to our mod-415

els’ training procedure not being able to ignore416

unhelpful contributions of long-scale contexts.417

Interestingly, each individual prosodic feature418

shows a slightly different pattern (see Fig. 3). The419

long-scale past hypothesis (Hypothesis 1) is sup-420

ported for most prosodic features individually, but421

not for duration and pauses; for prominence, pitch422

and loudness, the MI with past context (red curves423

in the lower plot per each feature in Fig. 3) in-424

creases up to at least 3 words.12 For pauses though,425

the past MI saturates after only two words, and for426

duration, the MI with past alone does not seem to427

significantly rise above the 0, 0 point, indicating428

the past context does not add information beyond429

the word identity itself. However, for all prosodic430

features, even duration, when looking at all n,m431

combinations, redundancy is largest around 1-2432

words in the future and 3-8 words in the past—thus433

supporting Hypothesis 1.434

The short-scale future hypothesis (Hypothesis 2)435

is also supported for most individual features, ex-436

cept for duration and pause. For prominence, pitch437

and loudness, the time scale of the future MI is438

shorter than the scale of the past MI, saturating439

somewhere between 1 and 3 words (blue curves440

in the lower plot per each feature in Fig. 3). For441

pauses though, the future MI saturates after about 4442

words, which is longer than for the past—although443

these MI estimates seem noisy. For duration, it444

saturates after 1 word, which is more than the past445

since the past curve shows no increasing trend. No-446

tably however, the MI with the past is larger than447

with the future in all features except for duration,448

and, even for duration, MI(Pt,Wn,1↔
) is larger than449

MI(Pt,W1,m↔
). We thus conclude that all these in-450

dividual feature results’ support Hypothesis 2.451

6 Discussion452

This work aimed to estimate the time scale of the453

redundancy between prosodic and linguistic infor-454

mation. We built on an existing published pipeline455

(Wolf et al., 2023), but extended it to include a sys-456

12For absolute prominence, the curve is a little noisy but
saturates at around 7 words.

tematic modulation of context length, from 1 to 10 457

words. We will make our extension of this pipeline 458

publicly available for researchers wishing to ex- 459

tend our analysis, potentially exploring the time 460

scale of redundancy between other communication 461

channels of interest. 462

Overall, we confirm our two hypotheses (see 463

Section §1): For most prosodic features we tested 464

(apart from pause and duration, see §6.4), redun- 465

dancy with past linguistic context unfolds across 466

a long time scale (of about 3-8 words), while re- 467

dundancy with future words is shorter-scale (con- 468

centrated on 1-2 future words). We next discuss 469

the implications of these results with respect to 470

previous literature. 471

6.1 The Time Scale of Prosodic Information 472

Sentence comprehension is constrained by cogni- 473

tive demands such as attention and working mem- 474

ory, leading listeners to maintain a lossy represen- 475

tation of past linguistic context (Gibson, 1998; Va- 476

sishth et al., 2010; Futrell et al., 2020; Kuribayashi 477

et al., 2022). While the precise number of words 478

maintained in working memory probably depends 479

on many factors, estimates suggest a range of about 480

3-5 words (Cowan, 2010). In the brain, language- 481

selective neural populations integrate linguistic in- 482

formation across distinct time scales; these scales 483

are quantified to span between 1-6 words (Jain and 484

Huth 2018; Regev et al. 2024). 485

Despite the well-studied dynamics of linguistic 486

processing, the time scale at which prosody 487

interacts with linguistic information had been 488

previously underexplored. Intonation units, 489

a meaningful organizational unit of prosodic 490

information, follow a rhythmic structure of about 491

1 Hz (Inbar et al., 2020); meaning that each unit 492

is about 1 second long and therefore contains 493

about 3-4 words, given an average speech rate of 494

about 200 words per minute (Yuan et al., 2006). 495

This, together with the span of working memory 496

(mentioned above), suggests a natural alignment 497

between prosodic structure and the cognitive 498

constraints of linguistic processing. 499

Here, we provide a quantification of the time 500

scale at which redundancy between prosody and 501

linguistic context operates. Our findings suggest 502

that this redundancy spans around 3-8 past words, 503

a scale comparable to both linguistic working mem- 504

ory limitations and prosodic segmentation. These 505

results thus highlight a possible role of prosody in 506

optimizing comprehension. 507
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6.2 Prosody as an Audience-Design Tool in508

Communication509

A longstanding debate in linguistics concerns the510

extent to which language production is shaped by511

audience design, with speakers actively tailoring512

their utterances to facilitate listener comprehension.513

Evidence suggests that syntactic choices are not514

strongly adapted for listener needs but rather re-515

flect the speaker’s own constraints (Ferreira, 2008;516

Morgan and Ferreira, 2022). This apparent lack517

of audience design in syntax may stem from the518

rigid structural constraints imposed by linguistic519

systems. In contrast, prosody may offer greater520

flexibility, allowing speakers to dynamically mod-521

ulate pitch, loudness, and rhythm in real time. This522

flexibility suggests that prosody may play a larger523

role in audience design (Clark et al., 2025), serv-524

ing as an additional communicative channel that525

enhances intelligibility. In fact, prior work shows526

a trade-off between a word’s duration and its infor-527

mation content (Jurafsky et al., 1998; Bell et al.,528

2009; Coupé et al., 2019; Pimentel et al., 2021), a529

trade-off which is typically interpreted as arising530

to facilitate listeners comprehension by smoothing531

the amount of information they receive per sec-532

ond (known as the uniform information hypothesis;533

Fenk and Fenk, 1980; Genzel and Charniak, 2002;534

Levy and Jaeger, 2007). Our findings support this535

audience-design view by revealing that the redun-536

dancy between prosody and past linguistic con-537

text extends over long time scales, suggesting that538

prosody may serve as a "reminder", helping listen-539

ers access information from the long-scale past.540

6.3 The Relationship Between Prosody and541

Future Words542

Our findings indicate that redundancy between543

prosody and linguistic information is weaker for fu-544

ture words than for past words. However, prosody545

still exhibits a strong relationship with the imme-546

diately upcoming word or two. This short-range547

relationship could stem from motor constraints on548

prosody production, or from local linguistic de-549

pendencies like fixed expressions. Another possi-550

bility is that prosodic planning occurs at the level551

of entire sentences and therefore observed redun-552

dancy with the next word reflects broader contour553

structuring. Finally, prosody may actively signal554

upcoming words through cues such as duration,555

pauses, or pitch changes, aiding listener expecta-556

tions. Future work should explore these potential557

mechanisms to better understand prosody’s role 558

in forward-looking processing. Notably, prior re- 559

search has shown that a word’s duration correlates 560

with its predictability given future context (Bell 561

et al., 2009). Further, even reading times—a set- 562

ting in which the subject is assumed to not know 563

what future words are—correlate with features of 564

future words (such as frequency, predictability and 565

entropy; Roark et al., 2009; Angele et al., 2015; 566

van Schijndel and Schuler, 2017). 567

6.4 Pause and Duration Do not Follow 568

Hypotheses 1 and 2 569

Compared to the other prosodic features, pause and 570

duration stand out in their relatively short time scale 571

of redundancy with both past and future words, 572

as well as a relatively strong redundancy with fu- 573

ture words. This may suggest that pausing after a 574

word and elongating it, are mainly served in order 575

to prepare for the next upcoming word and facili- 576

tate its processing by slowing down the rhythm of 577

speech. Alternatively, as discussed above, pauses 578

are most common at the end of sentences. Simi- 579

larly, sentence-final words are also typically elon- 580

gated (Seifart et al., 2021; Paschen et al., 2022). 581

The high predictability of both these features with 582

future context could be partially due to our mod- 583

els predicting a sentence-final vs sentence-middle 584

distinction, which could itself be used to roughly 585

predict the value of these prosodic features. 586

7 Conclusion 587

Our findings reveal a fundamental asymmetry in 588

the time scale of redundancy between prosody and 589

linguistic context: while prosody exhibits redun- 590

dancy with both past and future words, this relation- 591

ship extends across a longer span for past words 592

(3–8 words) than for future words (1–2 words). 593

This suggests that prosody’s relationship with fu- 594

ture words primarily reflects short-term effects such 595

as next-word prediction, local word dependencies, 596

or other production factors—future work should try 597

to distinguish those explanations. In contrast, its re- 598

lationship with past words operates over a broader 599

scale, potentially serving to reinforce or highlight 600

information that may be cognitively demanding for 601

listeners to remember in real-time communication. 602

These results provide new insights into the role of 603

prosody in spoken language. 604
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Limitations605

Our study has several limitations that should be606

considered when interpreting the results.607

Data-related Limitations. The first set of lim-608

itations relates to the dataset used. Our dataset609

consists of audiobooks, which do not necessarily610

reflect natural prosody in real time communica-611

tion, potentially affecting the generalizability of612

our findings. Redundancy may be higher in au-613

diobooks than in spontaneous speech, because the614

text is written with the assumption that it must con-615

vey all necessary information without relying on616

prosody. We address this concern to some extent617

by removing punctuation marks, which serve as618

a substitute for prosody in written text. Another619

dataset-related limitation is the sample size. Larger620

datasets may be required for more stable estima-621

tions, especially given that we compute 55 differ-622

ent values (for wn,m↔ , n and m from 1 to 10), each623

based on different subsets of the data, effectively624

reducing the number of samples available for each625

estimate. This sparsity likely contributes to some626

of the observed noise in our results.627

Estimation-related Limitations. The second set628

of limitations has to do with the estimation proce-629

dure. The mutual information we compute approxi-630

mates the true value, and is constrained by the qual-631

ity of the models we use pθ(pt | wn,m↔ ). One of our632

modeling assumptions is the functional form of the633

conditional distribution of prosody given a linguis-634

tic context (namely, Gaussian, Gamma or Laplace635

distributions depending on the prosodic feature).636

However, this parametric assumption may limit the637

model’s performance and future work should ex-638

plore alternative conditional distributions which639

may improve results. This assumption is particu-640

larly violated for features that manifest different641

distributions; pause, for instance, takes a 0 value642

in 89.4% of the data and may therefore be better643

modeled by a zero-inflated distribution. Indeed,644

our results for pause seem particularly noisy. Addi-645

tionally, to estimate wn,m↔ , we provided the models646

with short segments of 1 to 10 words. However,647

these large language models were not pretrained648

on such short segments but rather on longer spans649

of text, which might have impacted their efficiency650

in extracting the information from short segments.651

While finetuning likely helped mitigate this issue,652

it remains a potential limitation. Furthermore, we653

train a single model for all combinations of n,m,654

which does not guarantee that the value is optimal 655

for each combination separately. Finally, we ob- 656

served cases where the mutual information decayed 657

for longer contexts, which contradicts expectations 658

from information theory, as additional context can 659

never reduce information. This phenomenon likely 660

stems from issues in training the models, which 661

could be biased toward under-utilizing the avail- 662

able context for longer spans. Future work should 663

address these limitations to refine our understand- 664

ing of redundancy between prosody and linguistic 665

information. 666
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A Unconditional Entropies870

Prosodic Feature Unconditional Entropy

Absolute Prominence 0.536
Relative Prominence 1.355
Energy 0.815
Duration -0.920
Pause -5.193
f0 3.469

Table 1: Unconditional entropies of each prosodic fea-
ture.

B Prosodic Features’ Histograms871

Figure 4: Histogram of prosodic features. (top-left) Ab-
solute prominence; (top-center) relative prominence;
(top-right) pause; (bottom-left) duration; (bottom-
center) energy; (bottom-right) pitch
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