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Abstract

There has been great progress in improving numerical weather prediction and
climate models using machine learning. However, most global models act at a
kilometer-scale, making it challenging to model individual clouds and factors
such as extreme precipitation, wind gusts, turbulence, and surface irradiance.
Therefore, there is a need to move towards higher-resolution models, which in turn
require high-resolution real-world observations that current instruments struggle to
obtain. We present Cloud4D, the first learning-based framework that reconstructs
a physically consistent, four–dimensional cloud state using only synchronized
ground-based cameras. Leveraging a homography-guided 2D-to-3D transformer,
Cloud4D infers the full 3D distribution of liquid water content at 25 m spatial
and 5 s temporal resolution. By tracking the 3D liquid water content retrievals
over time, Cloud4D additionally estimates horizontal wind vectors. Across a
two-month deployment comprising six skyward cameras, our system delivers an
order-of-magnitude improvement in space-time resolution relative to state-of-the-
art satellite measurements, while retaining single-digit relative error (< 10%)
against collocated radar measurements. Code and data are available on our project
page https://cloud4d.jacob-lin.com/.

1 Introduction

Accurately estimating the state of Earth’s atmosphere is essential to all aspects of society, from
protecting food supplies to routing flights and optimizing renewable power generation. Therefore,
there has been much interest in creating machine learning weather and climate prediction systems able
to accurately model the evolution of the atmosphere. However, many processes in the atmosphere
are too detailed for current models to simulate directly. For example, shallow cumulus clouds
generally span less than a kilometer and cover as much as 40% of the Earth’s surface (Tselioudis
et al., 2021) and they play a central role in controlling the Earth’s temperature. As cumulus clouds are
small and short-lived, current weather and climate simulators can not resolve them directly. Instead,
hand-crafted "parameterizations" are used to approximate the aggregate effect of cloud properties on
variables such as temperature, moisture, and winds on a much coarser grid. These approximations
are a major source of error in both day-to-day forecasts and long-range climate projections. Modern
machine-learning systems such as GraphCast (Lam et al., 2023), Pangu-Weather (Bi et al., 2023),
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and Aardvark (Allen et al., 2025) inherit this problem: they train on “reanalysis” data that comes
from the same physics-based models and therefore bake in the same biases.

Improved models are needed, but this is hampered by the difficulty of observing detailed atmospheric
phenomena such as shallow cumulus clouds. To develop better models and assess their impact
on aggregate environmental variables, we need detailed observations of cloud properties such as
the size, spacing, and water content of individual clouds over their whole lifetime (Geerts et al.,
2018). However, detailed cloud properties are not easily measured by current observing systems.
High-resolution satellite imagery has a revisit time of several days, and while scanning radar and in
situ aircraft measurements provide data of high detail, they are typically of a small part of the cloud,
lacking the larger context.

In this paper, we introduce Cloud4D, the first learning-based system that reconstructs a physically
consistent, four-dimensional cloud state solely from synchronized ground-based cameras. Our
method is based on a homography-guided 2D-to-3D transformer architecture that estimates the full
spatial distribution of liquid water content and horizontal wind vectors at 25 m resolution and 5 s
rate. A two-month real-world deployment with six cameras demonstrates that Cloud4D achieves
an order-of-magnitude improvement in space-time resolution over state-of-the-art satellite products
while maintaining < 10% relative error against collocated radar retrievals.

Our contributions are threefold:

1. We propose the first method to jointly estimate cloud physical properties (liquid water
content, height, thickness) at a high spatial and temporal resolution from multi-view images.

2. To accomplish this, we propose a homography-guided 2D-3D transformer model that ingests
images and accurately predicts 3D cloud properties on a high-resolution grid.

3. We demonstrate, on a two-month deployment with six cameras, that our method delivers an
order-of-magnitude improvement in temporal resolution over space-borne products while
achieving < 10% relative error against collocated radar retrievals.

2 Problem Background

Figure 1: As a result of the cloud forma-
tion process, clouds are spatially struc-
tured into layers.

State-of-the-art weather prediction systems, ranging from
traditional dynamical models to recent neural-network ap-
proaches such as GraphCast (Lam et al., 2023), evolve a
core set of variables on a three-dimensional grid. Typical
variables include air temperature, pressure, the horizontal
wind components, humidity, and average droplet amounts
such as cloud water, rain, and snow. However, the models
resolve clouds only implicitly and at much coarser reso-
lutions than the scales on which individual cloud elements
form and evolve. Our work focuses on estimating these
quantities at a much higher resolution using ground-based
cameras that can be used as a substitute for radar to help
validate and improve weather models.

The main physical cloud property that we are interested
in is the amount of water they contain, as it is a key driver
affecting weather and climate. For cumulus clouds, this is characterized by the liquid water content
(LWC) (kgm−3) distribution, and is a common variable in weather and climate models. As the
vertical structure of water in the atmosphere is especially important, the summation of the LWC along
a height column is often explicitly predicted by weather and climate models. This is referred to as the
liquid water path (LWP) (kgm−2). Other important properties are the cloud base height (CBH) and
the cloud top height (CTH), as they impact weather and climate while also capturing the small-scale
physics of a cloud.

Our model takes advantage of the fact that cloud fields are spatially structured into cloud layers at
specific altitudes (see Figure 1). These cloud layers exhibit different properties and are categorized
into various cloud types. In this work, we focus on estimating the physical properties of shallow
cumulus clouds, which generally form at altitudes below 2000 m and are the first cloud layer from
the ground. These clouds are very difficult to measure using radar and satellite images because their
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Figure 2: Model overview. Our model estimates the liquid water content of clouds using a sparse
set of ground-based cameras. a) Cloud Layer Model: We leverage an inductive bias on the
spatial structure of clouds by defining a homography that maps images to cloud layers. The cloud
homography is used to predict key 2.5D cloud properties, giving an initial estimate of the 3D cloud
layer. b) 3D Refinement: A sparse transformer then refines the initial 3D field and estimates the
final cloud liquid water content. c) Inference: Wind Retrieval: By tracking the motion of cloud
reconstructions over time, our method retrieves a height and time-varying horizontal wind profile.

life cycle is short, and each individual cloud is small. In Section 3.1, we show how we can exploit the
layer structure of clouds through a homography-guided reconstruction model.

3 Method

In this section, we present our approach to estimating a high-resolution 3D grid of cloud properties
from ground-based images. We formulate the problem as follows, given N ground-based images
{Ii}Ni=1 together with their corresponding camera poses {Pi = [Ri|ti]}Ni=1 and intrinsics {Ki}Ni=1,
the goal is to produce an estimate of the cloud liquid water content at each grid cell ρ̂ ∈ RNx×Ny×Nz .

Figure 2 shows an overview of our method, Cloud4D. We first leverage the spatial structure of clouds
and use a homography to map images to cloud layers (Section 3.1). Taking advantage of the vertically
thin nature of cloud layers, Cloud4D uses the homography and formulates the cloud layer estimation
as an easier 2D-to-2D task. A sparse 3D transformer then refines the predictions using a full learned
3D prior attending over the whole volume (Section 3.2). Lastly, at inference time, we estimate
the liquid water content at multiple time steps and extract horizontal wind profiles by tracking our
predictions over time (Section 3.3).

3.1 Cloud Layer Model

To estimate the properties of a cloud layer, we first consider a homography between an image Ii with
homogeneous coordinates (ui, vi, 1)

⊤ and a plane at a height h with world coordinates (x, y, h)⊤ as
follows:

[
x
y
1

]
∼ (Ri −

tin
⊤

d
)K−1

i

[
ui

vi
1

]
(1)

where n = [0, 0, 1]⊤ and d = −h define the plane as n⊤X + d = 0. To search for a cloud layer at
an arbitrary height, we consider a feature volume with multiple such planes at H different heights
{hi}Hi=1. This is similar to previous approaches that build cost volumes for multi-view stereo (Yao
et al., 2018; Gu et al., 2020) with the key difference being that our homography is explicitly spatially
aligned with cloud layers.
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In practice, we leverage the robustness and 3D capabilities (El Banani et al., 2024) of vision foundation
models by first processing the images {Ii}Ni=1 using a DINOv2 (Oquab et al., 2023) backbone
producing features {Fi}Ni=1. For additional image-level detail, we use LoftUp (Huang et al., 2025) to
upsample the DINOv2 features back to the original image resolution and then use a learned projection
to downsample the feature dimension to df channels.

The DINOv2 features from each camera are lifted to world space using the cloud homography as
defined in (1), resulting in a feature volume V ∈ RH×df×Nx×Ny , where the features have been
averaged across the N views. Following previous work (Peebles and Xie, 2022; Perez et al., 2018),
we use an adaptive layer normalization (adaLN) to condition each of the H total feature layers on the
height from which it was sampled.

Due to the vertically thin nature of cloud layers relative to their horizontal length, the main variation
in cloud structure will be in the horizontal plane. Motivated by this, we formulate the cloud layer
estimation as a 2D-to-2D task, where the 3D cloud layer can be represented using 2.5D cloud
properties. Specifically, the feature volume is first flattened into a 2D feature with Hdf channels,
such that it can be processed by a 2D CNN, Ω. The 2D CNN predicts key 2D cloud properties, namely
the liquid water path LWP, the cloud base heights CBH, and the cloud geometrical thicknesses ∆h.

3.2 3D Refinement

In order to obtain a full 3D grid estimate of cloud properties, we lift our 2.5D maps into 3D to give an
initial 3D estimate of the liquid water content at each point in space ρ̂′ ∈ RNx×Ny×Nz . To refine this
coarse initial estimate, we then use a sparse transformer Ψ which estimates the LWC ρ̂ by learning a
better 3D distribution of the LWC.

Specifically, we first initialize the 3D LWC ρ̂′ from our 2.5D features as the following:

ρ̂′(x,y,z) →

{
LWP(x,y)

∆h(x,y)

2(zsz−CBH(x,y))
∆h(x,y) , if CBH(x,y) < zsz < CBH(x,y) +∆h(x,y)

0, otherwise
(2)

where sz is the size of a voxel along the height dimension. The first term evenly distributes the LWP
along the cloud height column, while the second term adds a linear increase towards cloud tops to
better match the expected LWC distribution of a cloud (Brenguier et al., 2000).

We then discard empty voxels in our initial LWC ρ̂′, extracting a sparse structure of M voxels, where
M ≪ NxNyNz as the cloud layer is vertically thin relative to the horizontal length. This allows us
to process the initial estimate using a sparse transformer, learning a 3D cloud prior without the added
computational complexity of attending over a full voxel grid.

To add image-level features to the transformer processing, we concatenate each sparse voxel of
LWC with DINOv2 features {F ′

i}Ni=1 that are backprojected and averaged across all cameras. As
in Section 3.1, the DINOv2 features are spatially upsampled with LoftUp and then downsampled
channel-wise using another learned projection to a dimensionality of df ′ . We additionally add
sinusoidal positional encoding based on the coordinates of each sparse voxel.

We normalize the output of the sparse transformer along the height dimension using softmax and then
scale each height column such that the original LWP (Section 3.1) is preserved. This formulation
takes advantage of the strong 2.5D features from the cloud layer model while learning a full 3D cloud
prior.

3.3 Wind Retrieval

The large-scale motion of clouds is dominated by horizontal winds that primarily change as a function
of altitude. By tracking the movement of our reconstructed clouds, we retrieve the horizontal wind
profile over time. This is similar to previous approaches for the estimation of wind through cloud
motion using satellites (Horváth and Davies, 2001) with a key difference being that our tracking is
done on full 3D LWC fields rather than satellite imagery. This allows us to directly track the motion
of clouds along their full vertical width, giving a height-varying horizontal wind profile.

To track the motion of our reconstructed clouds, we visualize the LWC of the reconstructed clouds
across different 2D height slices ρsliced ∈ RNx×Ny and use an off-the-shelf learned point tracker,
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specifically CoTracker3 (Karaev et al., 2024). This approach allows us to use temporal cues to track
the reconstructed clouds while also processing long sequences efficiently. By tracking how points
on the height-sliced LWC move horizontally over time, the rate of change in pixel space directly
gives us horizontal wind retrievals. We provide additional implementation details in the supplemental
material.

3.4 Implementation Details

Training We train our model in two separate stages. The cloud layer model is first trained to
predict 2.5D cloud properties, which is then followed by training the sparse transformer for full 3D
refinement. For the 2.5D predictions, we optimize for the following objective:

L2D = LLWP + λCBHLCBH + λ∆hL∆h (3)

where all losses are L1 losses applied to each predicted 2.5D cloud property. λCBH and λ∆h are
hyperparameters to scale the losses to similar ranges and are both set to 0.1.

In the second stage, we freeze the weights trained in the first stage, and train the sparse transformer Ψ
with the following objective:

L3D = ∥ρ− ρ̂∥1. (4)

Training is performed for 60k steps in the first stage and 30k steps in the second stage. Optimization
is done using Adam (Kingma and Ba, 2015), and takes three days with 4x H100 80GB GPUs.

Model Configuration Our model reconstructs volumes from heights of 0 to 4000 m, within a 5
km x 5 km area. We choose a voxel size of 25 m, giving us dimensions of ρ̂ ∈ R200×200×160. For
the cloud homography, we sample heights every 200 m starting from 400 m and ending at 3800
m. This results in H = 18 heights. The DINOv2 features are downsampled to a channel size of
df = df ′ = 16.

4 Cloud Datasets

4.1 Synthetic Dataset

To train our model, we require ground-based images that are paired with 3D grids representing the
cloud liquid water content. There are no instruments that can give such data at the resolution and
scale we are aiming for, and thus we rely on realistic large eddy simulations (LES) to generate the
necessary training data.

We use the CUDA-accelerated LES software, MicroHH (van Heerwaarden et al., 2017) and simulate
three scenarios of cumulus cloud days (ARM (Brown et al., 2002), Cabauw (Tijhuis et al., 2023),
and RICO (vanZanten et al., 2011)). By converting our liquid water content from the LES output to
scattering coefficients, we render images with Monte Carlo path tracing in Blender’s Cycles engine.

For additional data diversity, we also render cloud volumes from Terragen, an application aimed at
creating photorealistic natural scenes. As these are not physically realistic and will not accurately
represent a real-world cloud liquid water content, we only use this data for pre-training.

For both MicroHH and Terragen volumes, we render images from six different views, with intrinsics
and extrinsics matching our real-world dataset (see Section 4.2). For each camera, we render 1500
images from MicroHH volumes and 1000 images from Terragen volumes, totaling 15000 images.

4.2 Real-World Cloud Dataset

To evaluate our method, we collect real-world images from six cameras across a two-month period.
The six cameras are positioned in an inward-looking array, covering a 5 km x 5 km area where
Cloud4D does cloud property estimation. Taking an image every five seconds, the ground-based
cameras enable Cloud4D to operate at a high temporal resolution. Comparatively, other instrument-
based retrievals, such as satellites, can take up to hours or days. Ground-based cameras, therefore,
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(a) 1D liquid water content along a vertical line aligned with a radar scan

(b) Liquid water path

Figure 3: Comparison with radar retrievals. To compare with radar values, we visualize our 3D
liquid water content along a single ray over time. ERA5 captures coarse properties such as cloud
heights and mean LWP. Comparatively, our method predicts high-resolution cloud properties that
match up with radar retrievals.

provide the potential for a cheap and scalable means of obtaining high-resolution observations of
clouds at a state-of-the-art spatial and temporal resolution.

To evaluate the accuracy of our cloud property retrievals, the cameras are collocated with instruments
that can retrieve liquid water content and horizontal wind profiles. Specifically, a radar retrieves a 1D
vertical liquid water content profile above the radar with a 30 m height resolution every 30 seconds.
Wind profiles are measured by a radar wind profiler that retrieves the horizontal wind profile every
five minutes with a height resolution of 70 m.

Across the two-month deployment, we manually identify 12 days with shallow cumulus clouds,
resulting in 17 hours of camera data. This forms the basis of the real-world data that we use for
evaluation.

5 Experiments

We conduct experiments using our real-world ground-based camera dataset, consisting of 17 hours
of camera data capturing shallow cumulus clouds across 12 days. Given that there is no prior work
which uses ground-based cameras for the estimation of physical cloud properties, we instead rely on
comparisons to methods for satellite-based cloud retrievals (Ronen et al., 2022), radar, wind profiler,
and satellite measurements 1, and ERA5 (Hersbach et al., 2020) data 2.

Radar: The standard instrument for high-resolution measurements of clouds is generally a cloud-
profile radar. Therefore, we compare our cloud property predictions, which span a much larger area

1Provided by the European Space Agency under the Open Access compliant Creative Commons CC BY-SA
3.0 IGO Licence

2Provided by the Copernicus Climate Change Service under the ECMWF Copernicus License.
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Table 1: Quantitative comparison against existing methods. Cloud occupancy (Occ) is evaluated
using an F1 score, where a height column is considered occupied if there are non-zero densities in
the column. Mean absolute error is shown for retrievals on liquid water content (LWC), liquid water
path (LWP), cloud base height (CBH), and cloud top height (CTH).

Occ LWC (gm−3) LWP (kgm−2) CBH (m) CTH (m)
VIP-CT Ronen et al. (2022) 0.40 0.13 0.39 791.23 1021.49
Cloud4D (ours) 0.70 0.03 0.06 189.58 295.77

of 5 km x 5 km, with the single height-column retrievals of a radar. To enable this comparison, we
evaluate our 3D liquid water content along a single height column at the location of the radar.

Satellite: In contrast to cloud-profiling radars, which scan in a limited spatial area, satellites provide
retrievals across a large area but are instead limited in temporal resolution. Our method, on the other
hand, operates with a significantly larger area compared to cloud-profiling radars, but simultaneously
preserves the high temporal resolution, estimating cloud properties every five seconds. The combina-
tion of high temporal and spatial resolution is unique to ground-based cameras and is key to resolving
the small-scale physics of a cumulus cloud across its life cycle.

Wind profiler: Wind can be measured through different instruments, such as satellites, weather
balloons, and radar wind profilers. Of these, wind profilers are typically the most accurate, and
therefore, we evaluate our wind estimates by comparing them to a wind profiler situated at the site
where we collected the evaluation dataset.

5.1 Results

Figure 3 compares our cloud liquid water content and cloud liquid water path predictions with radar
values. Our predictions have high spatial resolution (25 m) and temporal resolution (5 seconds)
while also covering a significantly larger area than the radar. This enables the estimation of fine
details across whole clouds and is key to closing the observational gap where current observations
do not capture full microphysics across clouds. From Figure 3, we highlight in particular that our
predictions of cloud properties, such as cloud base heights, cloud top heights, and liquid water path,
closely match the radar retrievals. Global models such as ERA5, instead, operate at kilometer and
hourly scales, which do not observe individual clouds but instead capture coarse properties such as
the average liquid water path and approximate heights of cloud layers.

Comparing against radar retrievals over a longer period of 12 cumulus days, Table 1 shows quantitative
results with our method and also with VIP-CT (Ronen et al., 2022). VIP-CT is a satellite-based
cloud retrieval method, which we observe is unable to learn cloud property estimation from ground-
based cameras. This is not unexpected, as VIP-CT is designed for satellite imagery and relies on
unobstructed orthographic views. Additionally, VIP-CT implicitly learns multi-view geometry, which
is significantly more difficult for ground-based cameras where views vary more than for satellites. In
comparison, Cloud4D retrieves cloud properties with less than 10% relative error 3 compared to radar
values, while doing so in a significantly larger area of 5 km × 5 km.

Figure 4 shows visualizations of our 3D liquid water content retrievals at times coinciding with
satellite imagery at the location of the cameras. We highlight that our cloud envelopes qualitatively
match up with satellite retrievals, while operating at a significantly higher temporal resolution of
seconds instead of days. This enables cloud property estimation across the full life cycle of a cloud
rather than a single snapshot as provided by satellites. We note that our liquid water content retrievals
are visualized using Blender with accurate sun positions, enabling coarse qualitative evaluation of
cloud heights through the shadow of the clouds.

3This is calculated using the mean LWC of clouds from the radar GT as following:
MAE(LWC of clouds)

mean(LWC of clouds from radar GT)
=

0.029gm−3

0.321gm−3
= 8.9%
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Figure 4: Qualitative comparison against satellite imagery. We render our 3D liquid water
content predictions from a top-down orthographic view using Blender and compare against 2D image
retrievals from Sentinel-2 and MODIS. Cloud4D estimates volumetric cloud properties every five
seconds, while on average, Sentinel-2 takes one image every five days and MODIS once per day.

Figure 5: Comparison of horizontal wind retrieval. Cloud4D is able to estimate height-varying
horizontal wind vectors from the motion of our cloud predictions. Our wind profiles are of similar
magnitude and direction to retrievals from a wind profiler. The arrow direction denotes the horizontal
wind direction following the convention of a compass bearing.

Figure 5 compares horizontal wind profiles at different heights and times. We observe that our
horizontal wind profiles have similar magnitudes and directions when compared to the radar wind
profiler retrieval.
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6 Related Work

Cloud property estimation The retrieval of physical cloud properties is an important task for
weather and climate applications. With the advent of deep learning, learned methods for the estimation
of cloud properties have been explored using satellite images. Notably, 3DeepCT (Sde-Chen et al.,
2021) and VIP-CT (Ronen et al., 2022) have shown comparable retrieval results compared to
traditional explicit physics-based methods (Levis et al., 2015, 2017, 2020). However, VIP-CT and
3DeepCT both implicitly learn camera geometries from small-scale synthetic datasets. This is a
much more difficult task for ground-based cameras, which will greatly differ in viewing directions
compared to the orthographic satellite views. Our method explicitly models the camera geometry by
mapping images to cloud layers in world space using a homography, simplifying the cloud property
estimation task. Previous works with ground-based cameras have focused on estimating geometric
cloud properties such as cloud base heights using stereo cameras (Romps and Öktem, 2018; Öktem
et al., 2014), but do not recover physical quantities such as the liquid water content. Our method uses
a learned approach to estimate both physical and geometrical properties of clouds, doing so at a high
spatial and temporal resolution.

Weather and climate models Recently, there has been a growing number of works on ML-
based weather and climate models (ConvLSTM (SHI et al., 2015), GraphCast (Lam et al., 2023),
NeuralGCM (Kochkov et al., 2024), Pangu-Weather (Bi et al., 2023), and Aardvark (Allen et al.,
2025)). However, these are global models, operating at a kilometer scale, and therefore do not capture
the physics of individual clouds. There is a need for higher resolution models such that phenomena
that occur at a subgrid scale can be predicted. Our method fills an observational gap, providing
high-resolution data enabling the evaluation of fine-scale models and the training of data-driven
surrogates.

7 Discussion and Limitations

We have trained our model mainly on data of cumulus clouds. We made this choice as cumulus clouds
have a large effect on the atmosphere (Chen et al., 2000), while also being difficult to measure with
other instruments due to high requirements on temporal resolution and spatial coverage. However, it
is worth noting that other cloud types are also significant drivers of the atmosphere (Lee et al., 2021;
Chen et al., 2000), which makes the extension of Cloud4D to other cloud types an interesting avenue
for future work.

Secondly, we have focused on retrieving cloud properties of a single layer. This is well motivated for
ground-based cameras, as any higher layers will generally be occluded. Investigating the retrieval of
cloud properties from higher cloud layers would increase the robustness and potential applications of
our work and is a promising direction.

Ground-based cameras provide a cheap and scalable means of obtaining cloud retrievals through
Cloud4D. However, we note that they also include some limitations that do not apply to other
instruments. In particular, they are susceptible to occlusions from environmental conditions such as
rain, fog, and snow.

8 Conclusion

We introduced Cloud4D, the first learning-based framework that can provide cloud measurements at a
high spatial and temporal resolution using ground-based cameras. Leveraging a homography-guided
2D-to-3D transformer and a sparse-voxel refinement stage, Cloud4D reconstructs liquid water content
and height-resolved horizontal winds on a 25 m × 25 m × 25 m grid every 5 s. During a two-month
deployment, the system achieved an order-of-magnitude finer temporal resolution than state-of-the-art
satellite estimates while maintaining < 10% relative error against collocated radar and wind profiler
measurements. Because it relies only on low-cost, widely available cameras, Cloud4D offers a path to
scalable, high-frequency observations of clouds worldwide. These estimates can close a long-standing
observational gap that hampers both physics-based and neural weather and climate models. For
future work, extending the framework to multilayer and optically thick cloud regimes, embedding
radiative-transfer constraints, and coupling the retrievals with differentiable simulators could further
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increase physical fidelity. We plan to release our code, synthetic training data, and 17-hour real-world
benchmark dataset.
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A Training Details

Table 2: Overview of our multi-stage training pipeline. We first pre-train on our synthetic data
generated using Terragen, which is then followed by training on our LES data (MicroHH).

Dataset Trainable parameters Learning rate Schedule Steps

Terragen 2D CNN 1× 10−4 Cosine 20000
MicroHH 2D CNN 1× 10−5 Constant 40000
MicroHH Sparse Transformer 1× 10−5 Constant 30000

Training configurations The multi-stage training pipeline is outlined in Table 2. We use the
following hyperparameters for all stages of training:

• Optimizer: Adam with (β1, β2) = (0.9, 0.999)

• Batch Size: 1
• Gradient Clipping: 1
• Weight Decay: 0

Augmentations
• Saturation: 0.75 to 1.25
• Hue: −0.05

3.14 to 0.05
3.14

• Brightness: The synthetic cloud images are high-dynamic range (HDR), which we leverage
for an augmentation to the brightness. Specifically, we map an α-th percentile brightness
value to a β-th percentile brightness value after tonemapping, where the values are randomly
sampled as α ∼ Uniform(0.8, 0.95) and β ∼ Uniform(0.7, 0.9).

• Random Dropping of Cameras: During training of the cloud layer 2D CNN model, we
uniformly drop 0 to N-1 input views, where N is the number of camera views.

B Model Details
B.1 Architecture Details
Our 2D CNN implementation is based on the architecture of EDM Karras et al. (2022), with only the
input and output channel sizes being changed to fit our task. For the sparse transformer, we follow
the architecture of TRELLIS (Xiang et al., 2024), where we do attention after two sparse 3D CNN
downsampling blocks, and use channel sizes of 128, 256, and 384. We use 12 sparse transformer
blocks, each of which has 12 heads.

B.2 Cloud Homography Visualization
Figure 6 gives additional intuition into our cloud homography by visualizing the homography at
different altitudes. For the visualization, we use RGB images instead of DINOv2 features, where
the shown RGB value is averaged across the different views. We note that when the height of the
considered plane in the homography matches the cloud layer height, there are minimal artifacts in
the feature plane. In comparison, when the height is incorrect, the plane features do not match up
across the views, resulting in artifacts when averaged. By considering multiple heights using the
cloud homography, our 2D CNN processes the different planes and is able to estimate the correct
cloud height.

B.3 Wind Retrieval Additional Implementation Details
As described in the main paper, Cloud4D retrieves horizontal wind vectors by using CoTracker3
(Karaev et al., 2023) to track our 3D cloud volumes. Here, we give additional details on how this is
implemented.

Pre-processing 2D slices of our liquid water content predictions are tracked at varying altitudes to
retrieve a height-varying wind profile. We find that individual slices can be noisy, and we instead
consider the sum of H = 5 consecutive slices:

ρ
(t,x,y)
slice =

h+2∑
z=h−2

ρ(t,x,y,z)
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Figure 6: Cloud homography visualization. We visualize the cloud homography by mapping
synthetic RGB input images to different heights. ϵ denotes the height difference from the sampled
height and the mean height of the cloud.

where h is the index of the height which we are considering. For each height of the summed liquid
water content, we track points across T frames, where T is chosen such that the sequence is long
enough for noticeable cloud movement but short enough so that the tracked points are stable. In
practice, we choose T = 20 frames with 15 seconds between each frame, resulting in tracked points
over five minutes.

Tracking For each sequence of liquid water content, we scale the values to a standard grayscale
image range of [0, 1], and then initialize points on the first frame for CoTracker3 to track. The
points are initialized by uniformly sampling 25 random pixels from the 50th percentile of the highest
intensity pixels. This process is repeated for all frames, with all predicted tracks being aggregated into
five-minute buckets. This improves the robustness of the wind retrieval but decreases the temporal
resolution to five minutes. We extract the wind speed from each track and then take the median wind
within each bucket as the final retrieved wind profile. Specifically, for each predicted track that starts
at (x1, y1) and ends at (x2, y2), we estimate the horizontal wind as:

u =
s(x2 − x1)

dt
, v =

s(y2 − y1)

dt

where s is the pixel size in meters (25 m) and dt is the duration of the point tracking (five minutes).

Track Filtering We find that there are a significant number of tracks that drift and track empty
space. We observe that these failed tracks generally move slowly across the frames. To filter out
failed tracked points, we first discard all points that CoTracker3 predicts to be occluded. We then
additionally only keep the tracks that have the highest 95% magnitudes in pixel displacement. This
removes the failed point tracks as they have lower pixel displacements, and results in a smaller subset
of high-quality tracks, which we then use for wind estimation.

Table 3: LES Configurations. Voxel sizes and grid extents for all LES cases used for training.

Case Voxel sizes (m) Grid Extent (m)

Cabauw (Tijhuis et al., 2023) 10× 10× 25 5120× 5120× 4000
Rico (vanZanten et al., 2011) 20× 20× 20 12800× 12800× 4000
ARM (Brown et al., 2002) 10× 10× 10 6400× 6400× 4400
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C Dataset Details
C.1 LES Settings
The configurations for all cases used for LES training data are given in Table 3. Rendering is done
with the native voxel sizes and grid extents shown in the table. To emulate far-away clouds that are
outside the simulated grid, the volumes are continuously repeated along the horizontal plane during
rendering. For supervision, all voxel sizes are resized to 25 x 25 x 25 using trilinear interpolation,
and all grid extents are cropped to the center 5 km x 5 km x 4 km.

C.2 Rendering
The output of the simulation is a grid of liquid water mixing ratio ql, which needs to be converted to
scattering coefficients for rendering. First, the mixing ratio is converted to a droplet concentration Nd

by assuming a typical droplet size r for cumulus clouds of 20 µm (Durbin, 1959):

Nd =
3 ql

4πρw r3
.

where ρw is the density of water. The scattering cross-section σscat and scattering coefficient β are
then calculated as:

σscat = Qscat πr
2, β = Nd σscat.

where Qscat is set to 2 for Mie scattering. The scattering probability along a path ∆z is then given
by:

Pscat = 1− exp(−β∆z).

The scattering probability is then used for Monte Carlo path tracing in Blender’s Cycles engine.

C.3 Real-World Dataset
Our camera setup is visualized in Figure 7, and consists of three stereo camera pairs positioned in an
inwards-looking triangle. The baselines vary from 190 m to 350 m, while the distances between the
pairs are between 5000 m to 8000 m. We note that Cloud4D does not use any stereo vision techniques
and thus works on any camera array.

The cameras are synchronized by GPS, such that an image is taken every five seconds. We calibrate
the cameras using real-time kinematic positioning, giving a position accurate within a centimeter.
Night-time images of stars are then used to optimize for the rotation and focal length.

Figure 7: Camera configuration. The camera configuration of the real-world dataset is shown
with accurate camera poses. For visual clarity, we only illustrate the left camera of each stereo pair.
Cloud4D retrieves the cloud liquid water content in the middle 5 km x 5 km area.
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(a) LWC summed along the x-axis

(b) LWC summed along the y-axis

Figure 8: Synthetic data evaluation. We visualize our liquid water content predictions by summing
along (a) the x-axis and (b) the y-axis. Our predictions capture the cloud envelope, including the
cloud base height, cloud top height, and the plume shape. We note that the evaluated data is from an
unseen LES configuration.

D Additional Experiment: LES Data
The evaluation in the main paper has relied on comparisons to radar and satellite data. However, the
radar retrievals only evaluate a narrow vertical beam, and satellite retrievals generally focus on a
top-down photometric evaluation. To evaluate the side profiles of our predictions, we generate an
additional LES-generated volume using a configuration unseen during training (BOMEX (Siebesma
et al., 2003)). Figure 8 shows the liquid water content summed along the x-axis and the y-axis. Our
predictions retrieve accurate cloud base heights and cloud top heights, while also capturing correct
plume shapes.

E Additional Results
E.1 Ablations
In Table 4, we show an ablation study on the sparse transformer and the number of input views
evaluated using radar retrievals on our real-world datasets.

Sparse transformer The addition of the sparse transformer improves predictions on all metrics
(liquid water content, cloud base heights, and cloud top heights). We note that the sparse transformer
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Table 4: Ablation study on the sparse transformer and the number of input views. We note that the
liquid water path and cloud occupancy remain unchanged with the sparse transformer, as it preserves
the original liquid water path. For the ablation on input views, we uniformly drop camera pairs from
the input.

Sparse Transformer
Model Occ LWC (gm−3) LWP (kgm−2) CBH (m) CTH (m)
2D CNN Only 0.70 0.030 0.063 202.04 299.04
+ Sparse Transformer 0.70 0.029 0.063 189.58 295.77

Input Views
Dropped Views Occ LWC (gm−3) LWP (kgm−2) CBH (m) CTH (m)
0 0.70 0.029 0.063 189.58 295.77
2 0.76 0.038 0.070 316.28 371.71
4 0.68 0.037 0.072 325.03 383.16

Table 5: Real-world performance variation across different cloud properties. We use the GT radar
retrievals to classify the cloud properties in our real-world dataset. Note that the cloud thickness
refers to the vertical geometric thickness of the cloud.

Cloud Coverage Occ LWC (gm−3) LWP (kgm−2) CBH (m) CTH (m)
0.20 - 0.45 0.65 0.034 0.077 149.36 287.12
0.75 - 0.90 0.75 0.023 0.048 230.92 304.67

Mean CBH (m) Occ LWC (gm−3) LWP (kgm−2) CBH (m) CTH (m)
800 - 1350 0.74 0.027 0.055 198.63 281.29
1350 - 1650 0.63 0.033 0.077 173.36 321.73

Mean Cloud Thickness (m) Occ LWC (gm−3) LWP (kgm−2) CBH (m) CTH (m)
150 - 275 0.69 0.025 0.050 194.84 269.58
275 - 500 0.71 0.033 0.076 184.09 323.12

preserves the liquid water path from the 2D CNN prediction and therefore will not affect the evaluation
of the liquid water path and the cloud occupancy.

Number of input views The estimation of CBH and CTH worsens as the number of views decreases,
but the LWC and the LWP are less affected. The decreasing CBH and CTH accuracy with dropped
views matches established results in 3D vision, where increasing the number of views improves
accuracy in 3D shape estimation.

E.2 Performance Across Different Cloud Properties
Table 5 shows results across different cloud conditions where the radar GT has been used to classify
the cloud coverage, mean cloud base height, and mean cloud geometric thickness, over one-hour
segments in our real-world dataset. From the results, we note slightly worse performance for higher
cloud base heights and also geometrically thicker clouds, but not to a significant extent.

E.3 Additional Real-World Dataset Radar Examples
In Figures 9 to 13 we show additional comparisons to radar retrievals.
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Figure 9: Example 1. Additional results comparing the liquid water content and liquid water path
with radar retrievals.

Figure 10: Example 2. Additional results comparing the liquid water content and liquid water path
with radar retrievals.
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Figure 11: Example 3. Additional results comparing the liquid water content and liquid water path
with radar retrievals.

Figure 12: Example 4. Additional results comparing the liquid water content and liquid water path
with radar retrievals.
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Figure 13: Example 5. Additional results comparing the liquid water content and liquid water path
with radar retrievals.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims are backed by experimental evidence shown in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: —
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The main details of our method is described in Section 3 and all other required
implementation details can be found in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?
Answer: [Yes]
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Justification: Open access to our code and datasets will be made prior to the conference.
The radar and satellite data used are publicly available.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3.4 describe the main training details. Any additional detail necessary
is included in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to limitations in computational resources, we do not report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 3.4 describe the compute resources used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 1 describe the potential impacts of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly refer to the license for ERA5 and the satellite data. Acknowl-
edgements for the radar data will also be given after the blind review period.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We are releasing our code and datasets, which include relevant documentation
for use.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: —

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: —

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: —
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

29

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem Background
	Method
	Cloud Layer Model
	3D Refinement
	Wind Retrieval
	Implementation Details

	Cloud Datasets
	Synthetic Dataset 
	Real-World Cloud Dataset

	Experiments
	Results

	Related Work
	Discussion and Limitations
	Conclusion
	Training Details
	Model Details
	Architecture Details
	Cloud Homography Visualization
	Wind Retrieval Additional Implementation Details

	Dataset Details
	LES Settings
	Rendering
	Real-World Dataset

	Additional Experiment: LES Data
	Additional Results
	Ablations
	Performance Across Different Cloud Properties
	Additional Real-World Dataset Radar Examples


