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Abstract
In many computer vision applications, images
are acquired with arbitrary or random rotations
and translations, and in such setups, it is desir-
able to obtain semantic representations disentan-
gled from the image orientation. Examples of
such applications include semiconductor wafer
defect inspection, plankton microscope images,
and inference on single-particle cryo-electron mi-
croscopy (cryo-EM) micro-graphs. In this work,
we propose Invariant Representation Learning
with Implicit Neural Representation (IRL-INR),
which uses an implicit neural representation (INR)
with a hypernetwork to obtain semantic represen-
tations disentangled from the orientation of the
image. We show that IRL-INR can effectively
learn disentangled semantic representations on
more complex images compared to those con-
sidered in prior works and show that these se-
mantic representations synergize well with SCAN
to produce state-of-the-art unsupervised cluster-
ing results. Code: https://github.com/
sehyunkwon/IRL-INR.

1. Introduction
In many computer vision applications, images are acquired
with arbitrary or random rotations and translations. Ex-
amples of such applications include semiconductor wafer
defect inspection (Wang, 2008; Wang & Chen, 2019; 2020),
plankton microscope images (Zhao et al., 2009), and infer-
ence on single-particle cryo-electron microscopy (cryo-EM)
micrographs (Zhong et al., 2021). In such applications, the
rotation and translation of images serve as nuisance parame-
ters (Cox & Hinkley, 1979, §7.3) that may interfere with the
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inference of the semantic meaning of the image. Therefore,
it is desirable to obtain semantic representations that are not
dependent on such nuisance parameters.

Obtaining low-dimensional “disentangled” representations
is an active area of research in the area of representation
learning. Prior works such as β-VAE (Higgins et al., 2017)
and Info-GAN (Chen et al., 2016) propose general meth-
ods for disentangling latent representations so that com-
ponents correspond to semantically independent factors.
However, such fully general approaches are limited in the
extent of disentanglement that they can accomplish. Alterna-
tively, Spatial-VAE (Bepler et al., 2019) and TARGET-VAE
(Nasiri & Bepler, 2022) explicitly, and therefore much more
effectively, disentangle nuisance parameters from the se-
mantic representation using an encoder with a so-called
spatial generator. However, we find that these prior meth-
ods are difficult to train on more complex datasets such as
semiconductor wafer maps or plankton microscope images,
as we demonstrate in Section 3.4. We also find that the
learned representations do not synergize well with modern
deep-learning-based unsupervised clustering methods, as
we demonstrate in Section 4.3.

In this work, we propose Invariant Representation Learning
with Implicit Neural Representation (IRL-INR), which uses
an implicit neural representation (INR) with a hypernetwork
to obtain semantic representations disentangled from the
orientation of the image. Through our experiments, we
show that IRL-INR can learn disentangled semantic rep-
resentations on more complex images. We also show that
these semantic representations synergize well with SCAN
(Van Gansbeke et al., 2020) to produce state-of-the-art clus-
tering results. Finally, we show a scaling phenomenon in
which the clustering performance improves as the dimension
of the semantic representation increases.

2. Related Works
Disentangled representation learning. Finding disentan-
gled latent representations corresponding to semantically
independent factors is a classical problem in machine learn-
ing (Comon, 1994; Hyvärinen & Oja, 2000; Shakunaga &
Shigenari, 2001). Recently, generative models have been
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used extensively for this task. DR-GAN (Tran et al., 2017),
TC-β-VAE (Chen et al., 2018), DIP-VAE (Kumar et al.,
2018), Deformation Autoencoder (Shu et al., 2018), β-VAE
(Higgins et al., 2017), StyleGAN (Karras et al., 2019), and
Locatello et al. (2020) are prominent prior work finding dis-
entangled representations of images. However these meth-
ods are post-hoc approaches that do not explicitly structure
the latent space to separate the semantic representations
from the known factors to be disentangled. In contrast,
Spatial-VAE (Bepler et al., 2019) attempts to explicitly sep-
arate latent space into semantic representation of a image
and its rotation and translation information, but only the
generative part of spatial-VAE ends up being equivariant
to rotation and translation. TARGET-VAE (Nasiri & Be-
pler, 2022) is the first method to successfully disentangle
rotation and translation information from the semantic rep-
resentation in an explicit manner. However, we find that
TARGET-VAE fails to obtain meaningful semantic represen-
tation of complex data such as semiconductor wafer maps
and plankton image considered in Figure 2.

Invariant representation learning. Recently, contrastive
learning methods have been widely used to learn invari-
ant representations (Wang & Gupta, 2015; Sermanet et al.,
2018; Wu et al., 2018; Dwibedi et al., 2019; Hjelm et al.,
2019; He et al., 2020; Misra & Maaten, 2020; Chen et al.,
2020; Yeh et al., 2022). Contrastive learning maximizes the
similarity of positive samples generated by data augmenta-
tion and maximizes dissimilarity to negative samples. Since
positive samples are defined by data augmentation such as
rotation, translation, crop, color jitter and etc., contrastive
learning forces data representations to be invariant under
the designated data augmentation.

Siamese networks is another approach for learning invari-
ant representation (Bromley et al., 1993). The approach is
to maximize the similarity between an image and its aug-
mented image. Since only maximizing similarity may lead
to a bad trivial solution, having an additional constraint is
essential. For example, momentum encoder (Grill et al.,
2020), stop gradient method (Chen & He, 2021), and re-
construction loss (Chen & Salman, 2011; Giancola et al.,
2019; Zhou et al., 2020; Liu et al., 2020) were used to avoid
the trivial solution. Our IRL-INR methodology can be in-
terpreted as an instance of the Siamese network that uses
reconstruction loss as a constraint.

Implicit neural representations. It is natural to view an
image as a discrete and finite set of measurements of an
underlying continuous signal or image. To model this view,
Stanley (2007) proposed using a neural network to represent
a function f that can be evaluated at any input position (x, y)
as a substitute for the more conventional approach having a
neural network to output a 2D array representing an image.

The modern literature now refers to this approach as an
Implicit Neural Representation (INR). For example, Dupont
et al. (2022); Sitzmann et al. (2019; 2020) uses deep neural
networks to parameterize images and uses hypernetworks to
obtain the parameters of such neural networks representing
a continuous image (Ha et al., 2017).

Taking the coordinate as an input makes INR, by defini-
tion, symmetric or equivariant under rotation and transla-
tion. Leveraging the equivariant structure of INR, Bepler
et al. (2019); Mildenhall et al. (2020); Anokhin et al. (2020);
Zhong et al. (2021); Karras et al. (2021); Deng et al. (2021);
Chen et al. (2021); Nasiri & Bepler (2022) proposed the
generative networks that are equivariant under rotation or
translation, and our method uses the equivariance property
to learn invariant representations.

Deep clustering. Representation learning plays an essen-
tial role in modern deep clustering. Many deep-learning-
based clustering methods utilize a pretext task to extract a
clustering-friendly representation. Early methods such as
Tian et al. (2014); Xie et al. (2016) used the auto-encoder
to learn low-dimensional representation space and directly
clustered on this obtained representation space. Later, Ji
et al. (2017); Zhou et al. (2018); Zhang et al. (2021) pro-
posed a subspace representation learning as a pretext task,
where images are well separated by mapping into a suitable
low-dimensional subspace. More recently, Van Gansbeke
et al. (2020); Dang et al. (2021); Li et al. (2021); Shen et al.
(2021) established state-of-the-art performance on many
clustering benchmarks by utilizing contrastive learning-
based pretext tasks such as SimCLR (Chen et al., 2020)
or MOCO (He et al., 2020). However, none of the pretext
tasks considered in prior work explicitly take into account
rotation and translation invariant clustering.

3. Method
Our method Invariant Representation Learning with Implicit
Neural Representation (IRL-INR) obtains a representation
that disentangles the semantic representation from the rota-
tion and translation of the image, using an implicit neural
representation (INR) with a hypernetwork. Our main frame-
work is illustrated in Figure 1, and we describe the details
below.

3.1. Data and its measurement model

Our data J (1), . . . , J (N) are images with resolution P (num-
ber of pixels) and C color channels. In the applications we
consider, C = 1 or C = 3. We index the images with
the spatial indices reshaped into a single dimension, so that
J (i) ∈ RC×P and

J (i)
p ∈ RC , p = 1, . . . , P
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Figure 1. The IRL-INR framework. Encoder Eϕ takes an image J as input and outputs rotation representation θ̂, translation representation
τ̂ and semantic representation z. Hypernetwork Hψ takes z as an input and then outputs the weights and biases of INR network. INR
network I outputs the pixel (image) value corresponding to the input (x, y) coordinate.

for i = 1, . . . , N . We assume J (i) represents measurements
of a true underlying continuous image I(i) that has been
randomly rotated and translated for i = 1, . . . , N . We
further detail our measurement model below.

We assume there exist continuous 2-dimensional images
I(1), . . . , I(N) (so I(i)(x, y) ∈ RC for any x, y ∈ R) .
We observe/measure a randomly rotated and translated ver-
sion of I(1), . . . , I(N) on a discretized finite grid, to obtain
J (1), . . . , J (N). Mathematically, we write

J (i) =M [Tτ(i) [Rθ(i) [I(i)]]], i = 1, . . . , N,

where Rθ(i) denotes rotation by angle θ(i) ∈ [0, 2π), Tτ(i)

denotes translation by direction τ (i) ∈ R2, and M is a
measurement operator that measures a continuous image on
a finite grid. More specifically, given a continuous image Ĩ,
the measurement M [Ĩ] is a finite image

(M [Ĩ])p = Ĩ(xp, yp) ∈ RC , p = 1, . . . , P

with a pre-specified set of gridpoints {(xp, yp)}Pp=1, which
we take to be a uniform grid on [−1, 1]2. Throughout this
work, we assume that θ(1), . . . , θ(N) IID∼ Uniform([0, 2π]),
i.e., that the rotations sampled uniformly at random, and
that translations τ (1), . . . , τ (N) are sampled IID from some
distribution.

To clarify, we do not have access to the true underlying
continuous images I(1), . . . , I(N), so we do not use them on
our framework. Also, the rotation θ(i) and translation τ (i) of
I(i) that produced the observed image J (i) for i = 1, . . . , N
are impossible to learn without additional supervision, so
we do not attempt to learn it.

3.2. Implicit neural representation with a hypernetwork

Our framework takes in, as input, a discrete image J , which
we assume originates from a true underlying continuous
image I. The framework, as illustrated in Figure 1, uses
the rotation and translation operators Rθ and Tτ and three
neural networks Eϕ, Hψ , and I.

Define the rotation operation Rθ and translation operation
Tτ on points and images as follows. For notational con-
venience, define Sθ,τ = Rθ ◦ Tτ . When translating and
rotating a point in R2, define Sθ,τ as

Sθ,τ (x, y) =

[
cos θ − sin θ
sin θ cos θ

]([
x
y

]
+ τ

)
∈ R2.

For rotating and translating a continuous image I, define

S−1
θ,τ [I](x, y) = I (Sθ,τ (x, y)) ,

where S−1
θ,τ = T−1

τ ◦ R−1
θ = T−τ ◦ R−θ. For rotating and

translating a discrete image J , we use an analogous formula
with nearest neighbor interpolation.

The encoder network

Eϕ(J) = (z, θ̂, τ̂) ∈ Rd × R× R2,

where J is an input image and ϕ is a trainable parameter, is
trained such that the semantic representation z ∈ Rd cap-
tures a representation of I disentangled from the arbitrary
orientation J is presented in.

The rotation representation θ̂ ∈ [0, 2π) and translation repre-
sentation τ̂ ∈ R2 are trained to be estimates of the rotation
and translation with respect to a certain canonical orien-
tation. Specifically, given an image J and its canonical
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orientation J (can), we define (θ̂, τ̂) such that

J (can) = Sθ̂,τ̂ [J ],

and the equivariance property (1) that we soon discuss im-
plies that

Eϕ(J
(can)) = (z, 0, 0).

This canonical orientation J (can) is not (cannot be) the ori-
entation of I. Rather, it is an orientation that we designate
through the symmetry braking technique that we soon de-
scribe in Section 3.4.

The hypernetwork has the form

Hψ(z) = η,

where the semantic representation z ∈ Rd is the input and
ψ is a trainable parameter. (Notably, θ̂ and τ̂ are not inputs.)
The output Hψ(z) = η = (w1, b1, w2, b2, . . . , wk, bk) will
be used as the weights and biases of the k layers of the
INR network, to be defined soon. We train the hypernet-
work so that the INR network produces a continuous image
representation approximating I.

The implicit neural representation (INR) network has the
form

I(x, y; η) ∈ RC ,

where x, y ∈ R and η is the output of the hypernetwork.
The IRL-INR framework is trained so that

I(·, ·; η(i)) ≈ I(i)(·, ·)

in some sense, where η(i) is produced by Hψ and Eϕ with
J (i) provided as input. More specifically, we view I(x, y; η)
as a continuous 2-dimensional image with inputs (x, y) and
fixed parameter η, and we want I(x, y; η(i)) and I(i)(x, y)
to be the same image in a different orientation. The INR
network is a deep neural network (specifically, we use an
MLP), but it has no trainable parameters as its weights and
biases η are generated by the hypernetwork Hψ(z).

3.3. Reconstruction and consistency losses

We train IRL-INR with the loss

L(ϕ, ψ) = λrecon Lrecon + λconsis Lconsis + λsymm Lsymm,

where λrecon > 0, λconsis > 0, and λsymm > 0. We de-
fine Lrecon and Lconsis in this section and define Lsymm in
Section 3.4.

3.3.1. RECONSTRUCTION LOSS

We use the reconstruction loss

Lrecon(ϕ, ψ) = EJ [L̂recon(J ;ϕ, ψ)],

with the per-image loss L̂recon(J ;ϕ, ψ) defined as

(z, θ̂, τ̂) = Eϕ(J)

η = Hψ(z)

(x̃p, ỹp) = Sθ̂,τ̂ (xp, yp), p = 1, . . . , P

L̂recon(J ;ϕ, ψ) =
1

P

P∑
p=1

[
∥Jp − I(x̃p, ỹp; η)∥2

]
.

Given an image J and its canonical orientation J (can), min-
imizing the reconstruction loss induces Jp ≈ I(x̃p, ỹp; η),
which is roughly equivalent to J (can)

p ≈ I(xp, yp; η) for
p = 1, . . . , P . This requires the latent representation
(z, θ̂, τ̂) = Eϕ(J) to contain sufficient information about J
so that Hψ and I are capable of reconstructing J . This is a
similar role as those served by the reconstruction losses of
autoencoders and VAEs.

We believe that the INR structure already carries a signifi-
cant inductive bias that promotes disentanglement between
the semantic representation and the orientation information
(θ̂, τ̂). However, it is still possible that the same image
in different orientations produces different semantic repre-
sentations z while still producing the same reconstruction.
(Two different latent vectors can produce the same recon-
structed image in autoencoders and INRs.) Therefore, we
use an additional consistency loss to further enforce dis-
entanglement between the semantic representation and the
orientation of the image.

3.3.2. CONSISTENCY LOSS

We use the consistency loss

Lconsis(ϕ) = EJ [L̂consis(J ;ϕ)]

with the per-image loss L̂consis(J ;ϕ) is defined as

τ1, τ2 ∼ N (0, σ2I2)

θ1, θ2 ∼ Uniform([0, 2π])

(zi, θ̂i, τ̂i) = Eϕ(Sθi,τi [J ]), i = 1, 2

L̂consis(J ;ϕ) = 1− z1 · z2
∥z1∥ ∥z2∥

.

Note that this is the cosine similarity between z1 and z2.
Since Sθ1,τ1 [J ] and Sθ2,τ2 [J ] are also measurements of the
same underlying continuous image I, minimizing this con-
sistency loss enforces Eϕ to produce the same semantic
representation z regardless of the orientation in which J
is provided. (Of course, Eϕ produces different θ̂ and τ̂
depending on the orientation of J .)

It is possible to use other distance measures, such as the
MSE loss, instead of the cosine similarity in measuring
the discrepancy between z1 and z2. However, we found
that the cosine similarity distance synergized well with the
SCAN-based clustering of Section 4.3.
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Equivariance of encoder. Minimizing the reconstruction
and consistency losses induces the following equivariance
property. If Eϕ(J) = (z, τ̂ , θ̂), then

Eϕ(Sθ,τ [J ]) ≈ (z,Rθ̂−θ[τ̂ ]− τ, θ̂ − θ) (1)

for all τ ∈ R2 and θ ∈ [0, 2π), where θ̂−θ ∈ [0, 2π) should
be understood in the sense of modulo 2π. In other words,
rotating J by θ will subtract θ to the rotation predicted by
Eϕ. For translation, the rotation effect must be taken into ac-
count. To see why, note that minimizing the consistency loss
enforces Eϕ(J) and Eϕ(Sθ,τ [J ]) to produce an (approxi-
mately) equal semantic representation z, and therefore, the
corresponding η = Hψ(z) will be (approximately) equal.
Minimizing the reconstruction loss implies

0
(a)
≈ L̂recon(J ;ϕ, ψ)

=
1

P

P∑
p=1

[∥∥∥Jp − I(Sθ̂,τ̂ [(xp, yp)]; η)
∥∥∥2]

(b)
≈ 1

P

P∑
p=1

[∥∥∥(Sθ,τ [J ])p − I(Sθ̂−θ,Rθ̂−θ[τ̂ ]−τ
[(xp, yp)]; η)

∥∥∥2] ,
(c)
≈ L̂recon(Sθ,τ [J ];ϕ, ψ)

(a)
≈ 0.

Steps (a) holds since the recontruction loss is minimized.
Step (b) holds since if two images are similar, then their
rotated and translated versions are also similar. More
precisely, let J ′ be the discrete image defined as J ′

p =
I(Sθ̂,τ̂ [(xp, yp)]; η) for p = 1, . . . P . If J ≈ J ′, then
Sθ,τ [J ] ≈ Sθ,τ [J

′]. Furthermore,

(Sθ,τ [J
′])p

(d)
≈ I(S−1

θ,τSθ̂,τ̂ [(xp, yp)]; η)

(d)
≈ I(Sθ̂−θ,Rθ̂−θ[τ̂ ]−τ

[(xp, yp)]; η),

where we the approximation of (d) captures interpolation
artifacts. Step (c) holds since the left-hand-side and the right-
hand-side are both approximately 0. Finally, the fact that (c)
holds implies that the equivariance property (1) holds.

3.4. Symmetry-breaking loss

Our assumed data measurement model is symmet-
ric/invariant with respect to the group of rotations and trans-
lations. More specifically, let G be the group generated by
rotations and translations, then for any image J and g ∈ G,
the images

J, J̃ = g[J ]

are equally likely observations and carry exactly the same
information about the true underlying continuous image I .1

1We point out two technicalities in this statement. First, strictly
speaking, J and J̃ do not have exactly the same pixel values due

Ground Truth TARGET-VAE IRL-INR w/o s.b. IRL-INR w/ s.b.

Figure 2. Methods without symmetry fail to reconstruct WM811k
and WHOI-Plankton images.

However, our framework inevitably decides on a canonical
orientation as it disentangles the semantic representation
z from the orientation information (θ̂, τ̂), such that input
image J and its canonical orientation J (can) satisfy

J (can) = Sθ̂,τ̂ [J ], Eϕ(J
(can)) ≈ (z, 0, 0).

This canonical orientation is not orientation of the true un-
derlying continuous image I. The prior work of Bepler
et al. (2019); Nasiri & Bepler (2022) allows the canonical
orientation to be determined by the neural networks and
their training process. Some of the datasets used in Nasiri
& Bepler (2022) are fully rotationally symmetric (such as
“MNIST(U)”) and for those setups, the symmetry makes
the determination of the canonical orientation an arbitrary
choice. We find that if we break the symmetry by manually
prescribing a rule for the canonical orientation, the train-
ability of the framework significantly improves as we soon
demonstrate.

We propose a symmetry breaking based on the center of
mass of the image. Given a continuous image I, we define
its center of mass as

(mx,my) =
1

∥I∥1

∫ ∞

−∞

∫ ∞

−∞
(x, y)∥I(x, y)∥1 dxdy ∈ R2

where ∥I∥1 =
∫∞
−∞

∫∞
−∞ |I(x, y)| dxdy is L1 norm. For a

discrete image J , we use an analogous discretized formula.
Given an image J with center of mass m = (mx,my), let
τ = −m and let θ ∈ [0, 2π) such that

m = ∥τ∥(cos θ,− sin θ).

to interpolation artifacts, except when the translation and rotation
exactly aligns with the image grid. Second, the invariance with
respect to translation holds only if τ has a uniform prior on R2,
which is an improper prior. On the other hand, the rotation group
is compact and we do assume the rotation is uniformly distributed
on [0, 2π), which is a proper prior.
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(a) MNIST (U) (b) WM811K

(c) 5HDB (d) dSprites

(e) WHOI-Plankton (f) Galaxy Zoo

Figure 3. To validate the disentanglement of semantic representations, we verify that the reconstructions are indeed invariant under
rotation and translation. The first row of (a)–(f) are rotated by 2π

7
degrees. The second row of (a)–(f) are reconstructions using only the

semantic representation z, without any rotation or translation. We see that the reconstructions are invariant with respect to the rotations
and translations. The setup is further detailed in Appendix F and more images are provided in Figure 10.

Then J (can) = Sθ̂,τ̂ [J ] and J (can) has its center of mass at
(0, 0).

We use the symmetry-breaking loss

Lsymm(ϕ) = EJ [L̂symm(J ;ϕ)]

with the per-image loss L̂symm(J ;ϕ) is defined as

(z, τ̂ , θ̂) = Eϕ(J)

m = CoM(J)

L̂symm(J ;ϕ) =
∥∥∥m− ∥τ̂∥(cos θ̂,− sin θ̂)

∥∥∥2 ,
where CoM(J) denotes the center of mass of J .

The use of an INR with a hypernetwork is essential in di-
rectly enforcing the representation to disentangled while
allowing the network to be sufficiently expressive to be able
to learn sufficiently complex tasks. Specifically, we show
in Figure 2 that we could not train TARGET-VAE and IRL-
INR to reconstruct the WM811k dataset without using the
symmetry breaking technique.

4. Experiments
4.1. Experimental setup

The encoder network Eϕ(J) uses the ResNet18 architecture
(He et al., 2016) with an MLP as the head. The hyper-
network Hψ(z) is an MLP with input dimension d. The
INR network I(x, y; η) uses a random Fourier feature (RFF)
encoding in the style of (Rahimi & Recht, 2007; Tancik
et al., 2020) followed by an MLP with output dimension 1
(for grayscale images) or 3 (for rgb images). The architec-
tures for Hψ(z) and I(x, y; η) are inspired by Dupont et al.
(2022). Further details of the architecture can be found in
Appendix A or the code provided as supplementary materi-
als.

We use the Adam optimizer with learning rate 1 × 10−4,
weight decay 5 × 10−4, and batch size 128. For the loss
function scaling coefficients, we use λrecon = λconsis = 1
and λsymm = 15. We use the MSE and cosine similarity dis-
tances for the consistency loss for our results of Section 4.2
and Section 4.3, respectively.

We evaluate the performance of IRL-INR against the recent
prior work TARGET-VAE (Nasiri & Bepler, 2022). For
TARGET-VAE experiments, we mostly use the code and
settings provided by the authors. We use the TARGET-VAE
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with P16 and d = 32, which Nasiri & Bepler (2022) report
to perform the best for the clustering. For more complex
datasets, such as WM811K or WHOI-PLANKTON, we in-
crease the number of layers from 2 to 6 in their “spatial
generator” network, as the authors did for the cryo-EM
dataset. For the clustering experiments of Sections Sec-
tion 4.3 and Section 4.4, we separate the training set and
test set and evaluate the accuracy on the test set.

4.1.1. DATASETS

MNIST(U) is derived from MNIST with random ro-
tations and translations respectively sampled from
Uniform([0, 2π)) and N (0, 52). To accommodate the trans-
lations, we embed the images into 50 × 50 pixels as was
done in (Nasiri & Bepler, 2022).

WM811k is a dataset of silicon wafer maps classified into
9 defect patterns (Wu et al., 2015). The wafer maps are
circular, and the semiconductor fabrication process makes
the data rotationally invariant. Because the original full
dataset has a severe class imbalance, we distill the dataset
into 7350 training set and 3557 test set images with rea-
sonably balanced 9 defect classes and resize the images to
32× 32 pixels.

5HDB consists of 20,000 simulated projections of integrin
αIIb in complex with integrin β3 (Lin et al., 2015; Bepler
et al., 2019) with varying orientations. There are 16,000
training set and 4000 test set images of 40× 40 pixels.

dSprites consists of 2D shapes procedurally generated from
6 ground truth independent latent factors (Higgins et al.,
2017). All possible combinations of these latents are present
exactly once, resulting in 737,280 total images.

WHOI-Plankton is an expert-labeled image dataset for
plankton (Orenstein et al., 2015). The orientation of the
plankton with respect to the microscope is random, so the
dataset exhibits rotation and translation invariance. How-
ever, the original dataset has a severe class imbalance, so we
distill the dataset into 10 balanced classes with 1000 training
set and 200 test set images. We also perform a circular crop
and resize the images to 32× 32 pixels.

Galaxy Zoo consists of 61,578 RGB color images of galax-
ies from the Sloan Digital Sky Survey (Lintott et al., 2008).
Each image is cropped and downsampled to 64× 64 pixels
following common practice (Dieleman et al., 2015). We
divide into 50,000 training set and 11,578 test set images.

4.2. Validating disentanglement

In this section, we validate whether the encoder network
Eϕ(J) = (z, θ̂, τ̂) is indeed successfully trained to produce
a semantic representation z disentangled from the orienta-
tion of the input image J .

Translation Rotation

Spatial-VAE 0.982, 0.983 0.005
TARGET-VAE P4 0.975, 0.976 0.80
TARGET-VAE P8 0.972, 0.971 0.859
TARGET-VAE P16 0.974, 0.971 0.93
IRL-INR 0.999, 0.999 0.9891

Table 1. Correlation between true rotation and predicted rotation
and true translation and predcited translation from MNIST(U).

Figure 3 shows images and their reconstructions with
MNIST(U), WM811k, 5HDB, dSprites, WHOI-Plankton,
and Galaxy Zoo datasets. The first row of each subfigure
shows images that have been rotated or translated from a
given image, and we compute Eϕ(J) = (z, θ̂, τ̂). The sec-
ond row of each figure is the reconstruction of these images
by the disentangled semantic representation z. More specifi-
cally, the reconstructions correspond to I(x, y;Hψ(z)) with
(x, y) not rotated or translated. (So the (θ̂, τ̂) output by
Eϕ(J) is not used.) We can see that the reconstruction is
indeed (approximately) invariant regardless of the orienta-
tion of the input image J . For comparison, TARGET-VAE
was unable to learn representations from the WM811k and
WHOI-Plankton datasets, as discussed in Section 3.4.

Table 1 and Figure 4 shows how well the predicted rotation
θ̂ and predicted translation τ̂ matched the true rotation θ and
true translation τ . Table 1 shows the Pearson correlation
between the predicted rotation θ̂ and the true rotation θ,
predicted translation τ̂ and true translation τ . We confirmed
that our method has the highest correlation value. Also, in
Figure 4 we plotted values of θ and θ̂. We can observe that
most of predicted rotation degree are exactly same with true
rotation. Interestingly, in the case of the WM811k, there
were many cases where predicted degree and true degree
are differed by 2π, which is acceptable because the rotation
degree is equivalent under mod 2π.
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Figure 4. Difference between predicted rotation values and true
rotation values on MNIST(U) and WM811.
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4.3. Clustering with semantic representations and
SCAN

As the semantic representations are disentangled from the
orientation of the image, they should be more amenable
to be used for clustering, provided that the semantic mean-
ing of the underlying dataset is invariant under different
orientations of the image. In this section, we use the se-
mantic representations to perform clustering based on two
approaches: directly with z and using SCAN.

Table 2 shows the results of applying k-means and agglom-
erative clustering on the semantics representation z. For
TARGET-VAE, we used the original authors’ code and hy-
perparameters to best reproduce their results. We see that the
semantic representation produced by our framework IRL-
INR has better clustering accuracies and has significantly
less variability.

MNIST(U) WM811k

Spatial-VAE (K-means) 31.87 ± 3.72 27.4 ± 1.16
Spatial-VAE (Agg) 35.62 ± 2.08 28.73 ± 1.39
Target-VAE (K-means) 64.63 ± 4.4 39.6 ± 1.29
Target-VAE (Agg) 68.8 ± 4.39 40.11 ± 2.7
IRL-INR (K-means) 59.6 ± 1.12 55.06 ± 1.83
IRL-INR (Agg) 71.53 ± 1.01 56.74 ± 1.15

Table 2. Clustering on semantics representation z. The confidence
interval is a single standard deviation measured over 5 runs.

To further improve the clustering accuracy, we combine our
framework with one of the state-of-the-art deep-learning-
based method SCAN (Van Gansbeke et al., 2020). The
original SCAN framework adopted SimCLR (Chen et al.,
2020) as its pretext task. We instead use the training of
IRL-INR as a pretext task and then use the trained encoder
network Eϕ with only the z output for the SCAN framework.
(The (θ̂, τ̂) are not used with SCAN.) Since SimCLR is
based on InfoNCE loss (van den Oord et al., 2018), which
uses cosine similarity, we also use cosine similarity distance
in training IRL-INR.

Table 3 shows that IRL-INL synergizes well with SCAN
to produce state-of-the-art performance. Specifically, the
clustering accuracy significantly outperforms vanilla SCAN
(with InfoNCE loss) and combining Target-VAE with SCAN
yields little or no improvement compared to directly cluster-
ing the semantic representations of Target-VAE.

The confusion matrix Figure 5 shows that there is significant
misclassification between 6 and 9. In Appendix D, we
present our clustering results with the class 9 removed, and
IRL-INR + SCAN achieves a 98% accuracy.

MNIST(U) WM811k

TARGET-VAE + SCAN 63.09 ± 1.7 43.39 ± 4.55
SimCLR + SCAN 85.4 ± 1.46 57.1 ± 2.81
IRL-INR + SCAN 90.4 ± 1.74 64.6 ± 1.01

Table 3. Using IRL-INR as pretext task for SCAN outperformed
other combinations using TARGET-VAE and SimCLR. Here, d is
the dimension of the semantic representation z.
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Figure 5. Confusion matrices of clustering of IRL-INR + SCAN.

4.4. Scaling latent dimension d

Table 4 shows that clustering accuracy of IRL-INR scales
(improves) as the latent dimension d, the size of the semantic
representation z, becomes larger. This phenomenon may
seem counterintuitive as one might think that a smaller
semantic representation is a more compressed and, therefore,
better representation.

We also tried scaling the output dimension of the SimCLR
+ SCAN’s backbone model, but we did not find any no-
ticeable performance gain or trend. To clarify, SimCLR
+ SCAN and IRL-INR + SCAN used the same backbone
model, ResNet18, but only IRL-INR + SCAN exhibited the
scaling improvement. We also conducted a similar scaling
experiment with TARGET-VAE, but we did not find any
performance gain or trend with or without SCAN.

IRL-INR + SCAN MNIST(U) WM811k

d = 32 84.18 ± 2.11 53.78 ± 3.41
d = 64 86 ± 1.78 55.4 ± 1.35
d = 128 85.8 ± 1.46 56.2 ± 1.16
d = 256 87 ± 0.89 58.6 ± 1.62
d = 512 90.4 ± 1.74 64.6 ± 1.01

Table 4. Increasing latent dimension d of IRL-INR leads to better
clustering performance.
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4.5. Ablation studies

IRL-INR uses a hypernetwork-INR architecture, but one can
alternatively consider: (1) using a simple MLP generator
or (2) using a standard autoencoder while directly rotating
the generated output image through pixel interpolation. We
find that both alternatives fail in the following sense. For
the more complex images, such as the plankton microscope
or silicon wafer maps, if we use the losses for requiring the
semantic representation to be invariant, then the models fail
the image reconstruction pretext task in the sense that the
reconstruction comes out to be a blur with no discernable
content. When we nevertheless proceeded to cluster the
latents, the accuracy was poor. Using the hypernetwork was
the only option that allowed us to do clustering successfully
for the silicon wafer maps.

Also, the loss function of IRL-INR consists of three compo-
nents: (1) reconstruction loss (2) consistency loss (3) sym-
metry breaking loss. We conducted ablation study on the dif-
ferent loss terms and found that all components are essential
to reconstruction and clustering. For example, removing the
consistency loss does not affect the reconstruction quality
but does significantly reduce the clustering accuracy. Also,
as we see in Figure 2, removing the symmetry-breaking loss
significantly degrades the reconstruction quality, thereby
worsening the clustering results.

5. Conclusion
We proposed IRL-INR, which uses an INR with a hypernet-
work to obtain semantic representations disentangled from
the orientation of the image and used the semantic represen-
tations to achieve state-of-the-art clustering accuracy. Using
explicit invariances in representation learning is a relatively
underexplored approach. We find such representations to be
especially effective in unsupervised clustering as there is a
stronger reliance on inductive biases in the setup. Further
exploring how to exploit various invariances exhibited in
different datasets is an interesting future direction.
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A. Architectural details
Encoder. For the encoder network Eϕ, we use the ResNet18 architecture (He et al., 2016), a 3-layered MLP head with
dimensions [512, 512, d+2] where d is dimension of semantic representation, and the ReLU activation.

Hypernetwork. For the Hypernetwork Hψ , we use a 4-layered MLP with dimensions [d, 256, 256, 256, k] where k is the
number of parameters (weights and biases) of the INR network, and the LeakyReLU(0.1) activation.

INR Network. We parameterize a continuous image I by the INR-Network I. Basically, I takes coordinate (x, y) as an
input and outputs pixel value of that coordinate. More specifically, I consists of two parts. For the first, I transforms input
coordinate to fourier features following Rahimi & Recht (2007); Tancik et al. (2020), where fourier features of (x, y) is
defined as

FF(x) =
(

cos(2πBx)
sin(2πBx)

)
with B being an f by 2 random matrix whose entries are sampled from N (0, σ2). The number of frequencies f and the
variance σ2 are hyperparameters. In this paper, we use f = 256 and σ = 2.0. For the second part, fourier features are fed to
the 4-layered MLP with dimensions [2f -256-256-256-C], which then outputs the pixel value, where C is the number of
color channls (C = 1 for greyscale images, and C = 3 for RGB images).

B. Experimental details
We report the experimental details in Table 5. We use the Adam optimizer with learning rate = 0.0001, batch size = 128,
and weight decay = 0.0005, for all datasets. We train the model for 200, 500, 2000, 100 epochs for MNIST(U), WM811k,
WHOI-Plankton, and {5HDB, dSprites, Galaxy zoo} respectively. We run all our experiments on a single NVIDIA RTX
3090 Ti GPU with 24 GB memory.

Dataset LR Batch size WD Epochs

MNIST(U) 0.0001 128 0.0005 200
WM811k 0.0001 128 0.0005 500
WHOI-Plankton 0.0001 512 0.001 2000
5HDB 0.0001 128 0.0005 100
dSprites 0.0001 128 0.0005 100
Galaxy Zoo 0.0001 128 0.0005 100

Table 5. Hyperparameters for the experiments

C. Data-augmentation for SCAN training
The SCAN framework (Van Gansbeke et al., 2020) consists of two stages: the first stage is pretext task stage that learns
a meaningful representation and the second stage is minimizing clustering loss stage. For pretext task stage, the original
authors of SCAN experimented with various pretext tasks and observed that contrastive learning methods, such as MoCo
(He et al., 2020) and SimCLR (Chen et al., 2020), were most effective. In this paper, we use SimCLR as the pretext task
for SCAN, which the authors used for the dataset with small resolution such as CIFAR10. We denote this combination as
‘SimCLR + SCAN’.

SimCLR uses random crop (with flip and resize), color distortion and Gaussian blur data-augmentation strategies, and
we denote this strategy by S1. For minimizing clustering loss stage, the authors of SCAN reported that adding strong
augmentations including RandAugment (Cubuk et al., 2020) and Cutout (DeVries & Taylor, 2017), which we denote by S2,
showed better performance. So, in the original SCAN framework, S1 is applied in the first stage, and S1 + S2 in the second
stage.

However, if we naively follow the data-augmentation strategy used by the original SCAN, clustering performance of
MNIST(U) and WM811k were suboptimal, as reported in Table 6. We suspect that this is due to the nature of contrastive learn-
ing methods. Recall that contrastive learning methods, such as SimCLR, only force the representation to be invariant under
specific data augmentation strategy. Hence to extract invariant representation from dataset with strong rotation and translation
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variations, such as MNIST(U), WM811k, more powerful rotation and translation augmentations should be applied, especially
in the pretext task stage. So we add random rotation, R, where rotation angle is sampled from Uniform([0, 2π)) and random
translation, T, where translation is sampled from Uniform([−T, T ]). For the implementation details, we use functionals
provided by Torchvision: RandomRotation(180) and RandomAffine(translate=(-T/P, T/P)) for T
for R and T respectively. In our experiment, we set T = 0.07 × P where P is spatial dimension of the image.

Data Augmentation (Pretext) Data Augmentation (Clustering) Accuracy

R R 41.38 ± 2.07
R + T R + T 45.19 ± 3.62

S1 S1 + S2 52.8 ± 3.86
S1 + R S1 + S2 + R 83.66 ± 1.71

S1 + R + T S1 + S2 + R + T 85.4 ± 1.46

Table 6. Data augmetation strategies for SimCLR + SCAN

For IRL-INR, we apply R + T for the pretext task stage. As in the SimCLR + SCAN, IRL-INR + SCAN does benefit from
stronger augmentation strategies as reported in Table 7. However, it can still outperform SimCLR + SCAN with very simple
data augmentation strategies such as R, or R + T.

Data Augmentation (Pretext) Data Augmentation (Clusteirng) Accuracy

R + T R 86.42 ± 1.06
R + T R + T 87.11 ± 1.24
R + T S1 + S2 85.3 ± 1.88
R + T S1 + S2 + R 89.71 ± 2.93
R + T S1 + S2 + R + T 90.4 ± 1.74

Table 7. Data Augmentation Strategies for IRL-INR + SCAN

D. MNIST(U)\{9}
As shown in Figure 5, clustering accuracy of MNIST(U) was low for {6} and {9}. This seems natural, because once a
network has learned the rotation invariant representations of images, it could identify {6} and {9} as having similar (if not
same) semantic representation.

To verify this conjecture, we experiment IRL-INR + SCAN and SimCLR + SCAN with a new dataset ’MNIST(U)\{9}’
created by removing {9} from original MNIST(U) dataset. As reported in Table 8, removing {9} significantly increased the
clustering accuracy for both methods. Interestingly, by removing {9} we observed that the accuracy for {2}, which was
lower than the average accuracy, significantly improved as well.
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Figure 6. Confusion matrices for MNIST (U) dataset (left), and
MNIST (U)\{9} dataset (right)

MNIST(U)

SimCLR + SCAN 85.4 ± 1.46
IRL-INR + SCAN 90.4 ± 1.74

MNIST(U)\{9}
SimCLR + SCAN 93.8 ± 0.74
IRL-INR + SCAN 97.6 ± 0.48

Table 8. Clustering accuracy for MNIST(U)
dataset and MNIST(U)\{9} dataset
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E. Reconstructing J

In this section, we show image samples demonstrating that the IRL-INR does faithfully reconstruct the input image J .

E.1. Image generation process

The encoder Eϕ outputs the rotation representation θ̂, translation representation τ̂ , and semantic representation z. Hypernet-
work Hψ takes z as an input and then outputs η, where η is the set of weights and biases of INR network. The rotation
representation θ̂ ∈ [0, 2π) and translation representation τ̂ ∈ R2 are trained to be estimates of the rotation and translation
with respect to a certain canonical orientation. Hence, I(x̃p, ỹp; η) ≈ Jp, where (x̃p, ỹp) = Sθ̂,τ̂ (xp, yp). By accurately
predicting the rotation degree and translation values, IRL-INR reconstructs identical images to the input images (Figure 8).

I

J

Encoder

Eϕ

θ̂

τ̂

z

Sθ̂,τ̂ (xp, yp)(xp, yp)

Hypernetwork

Hψ

INR network
I(·, ·; η)

≃

η

M

T ◦ R

Figure 7. Using θ̂, τ̂ and z for reconstruction J . The input coordinates are rotated and translated by θ̂ and τ̂ for generating J .
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E.2. Reconstruction results for J

Input Ground Truth Output Reconstruction

Input Ground Truth Output Reconstruction

Input Ground Truth Output Reconstruction
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Input Ground Truth Output Reconstruction

Input Ground Truth Output Reconstruction

Input Ground Truth Output Reconstruction

Figure 8. The output images (Right) are reconstructed very similar to the input images (Left).
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F. Reconstructing J (can)

In this section, we show image samples demonstrating that IRL-INR does obtain an invariant representation of the input
image J regardless of its orientation. Specifically, we show that when the INR network I(·, ·; η) is provided with non-
transformed coordinates (or when θ̂, τ̂ is ignored), the input Rθ[J ] with any θ ∈ [0, 2π) is reconstructed into the same
canonical orientation J (can).

F.1. Image generation process

The Encoder Eϕ outputs the rotation representation θ̂, translation representation τ̂ , and semantic representation z. Hypernet-
work Hψ takes z as an input and then outputs η, where η is the set of weights and biases of INR network. We ignore the
rotation and translation representations θ̂ and τ̂ , so I(xp, yp; η) ≈ J (can)

p .

I

J

Encoder

Eϕ

θ̂

τ̂

z

S0,0(xp, yp)(xp, yp)

Hypernetwork

Hψ

INR network
I(·, ·; η)

≃

η

M

T ◦ R

J (can)

Figure 9. Using only z for reconstruction J can. Input NOT rotated and translated coordintates to INR network for generating J can.
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F.2. Reconstruction results for J can

(a) MNIST(U)

(b) WM811k

(c) 5HDB

(d) dSprites

(e) WHOI-Plankton

(f) Galaxy Zoo

Figure 10. To validate the disentanglement of semantic representations, we verify that the reconstructions are indeed invariant under
rotation and translation. The first row of (a)–(f) are rotated by 2π

7
degrees. The second row of (a)–(f) are reconstructions using only the

semantic representation z, without any rotation or translation.
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G. Visualization of clustering results
In this section, we show image samples from each cluster to visualize the clustering performance of IRL-INR + SCAN on
WM811k and MNIST(U). Each 8× 8 imageset in Figure 11 and 12 are sampled from same cluster.

Figure 11. Visualization of WM811k clustering
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Figure 12. Visualization of MNIST(U) clustering
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