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Abstract001

Orthogonal finetuning (OFT) offers highly002
parameter-efficient adaptation while preventing003
catastrophic forgetting, but its high runtime and004
memory demands limit practical deployment.005
We identify the core computational bottleneck006
in OFT as its weight-centric implementation,007
which relies on costly matrix-matrix multiplica-008
tions with cubic complexity. To overcome this,009
we propose OFTv2, an input-centric reformula-010
tion that instead uses matrix-vector multiplica-011
tions (i.e., matrix-free computation), reducing012
the computational cost to quadratic. We further013
introduce the Cayley–Neumann parameteriza-014
tion, an efficient orthogonal parameterization015
that approximates the matrix inversion in Cay-016
ley transform via a truncated Neumann series.017
These modifications allow OFTv2 to achieve up018
to 10× faster training and 3× lower GPU mem-019
ory usage without compromising performance.020
In addition, we extend OFTv2 to support fine-021
tuning quantized foundation models and show022
that it outperforms the popular QLoRA in train-023
ing stability, efficiency, and memory usage.024

1 Introduction025

As foundation models continue to improve in per-026

formance, recent years have witnessed a paradigm027

shift from end-to-end learning to a pretraining-028

finetuning framework. This shift underscores the029

need for finetuning methods that are both effec-030

tive and scalable. Owing to its training stabil-031

ity and adaptation efficiency, orthogonal finetun-032

ing (OFT) (Qiu et al., 2023; Liu et al., 2024) has033

emerged as a promising approach for adapting034

foundation models to downstream tasks. However,035

while performing well, OFT incurs high compu-036

tational and memory costs, limiting its scalability.037

Motivated by these challenges, we seek to make038

OFT more scalable to large foundation models.039

Towards this goal, we begin by identifying the040

key bottleneck that limits OFT’s scalability. At041
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Figure 1: OFTv2 significantly reduces training time and
GPU memory usage without sacrificing performance.
The finetuning is performed with Qwen2.5-7B.

its core, OFT learns layer-shared orthogonal ma- 042

trices to transform pretrained weight matrices, re- 043

sulting in a naive weight-centric implementation 044

where forward inference is performed after merg- 045

ing the learned orthogonal matrices into weight 046

matrices during training. The weight-centric im- 047

plementation thus involves matrix-matrix multipli- 048

cations with cubic complexity. As weight matri- 049

ces grow large, this cubic scaling severely limits 050

OFT’s applicability to large foundation models. 051

However, these matrix-matrix multiplications are 052

not fundamentally necessary. We draw inspiration 053

from matrix-free methods (Chen, 2005), such as the 054

power method and the Lanczos algorithm, which 055

avoid explicit matrix-matrix operations by treat- 056

ing matrices as linear operators applied to vectors. 057

These methods operate entirely through matrix- 058

vector multiplications, applying a matrix to vectors 059

in the appropriate space without ever forming full 060

matrix products. Guided by the same insight, we 061

introduce an input-centric implementation of OFT, 062

in which the learned orthogonal transformations 063

are applied directly to the input vectors during each 064

forward pass, rather than being merged into the 065

weight matrix. This reformulation reduces the com- 066

plexity from cubic to quadratic. We refer to this 067

new formulation as OFTv2. Despite its simplicity, 068

this change significantly enhances the scalability of 069
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OFT, making it suitable for finetuning large founda-070

tion models that the original OFT could not handle071

due to memory constraints.072

Another scalability bottleneck in OFT arises073

from the Cayley parameterization used by Qiu et al.074

(2023); Liu et al. (2024) to preserve orthogonal-075

ity. While effective, this parameterization involves076

computing a matrix inverse, which becomes in-077

creasingly costly and less numerically stable as078

weight matrices get larger. To address this, we079

introduce a numerically stable yet efficient approx-080

imation – the Cayley–Neumann parameterization081

(CNP). By replacing the matrix inverse in the orig-082

inal Cayley transform with a truncated Neumann083

series, CNP offers improved numerical stability084

and significantly lower computational cost, particu-085

larly in settings where OFT is applied to finetune086

large foundation models. With CNP, OFTv2 be-087

comes even more scalable and readily applicable088

for efficient adaptation of such models. In Figure 1,089

we compare OFT and OFTv2 by performing fine-090

tuning tasks on Qwen2.5-7B, which is the largest091

model the original OFT can finetune within a sin-092

gle Nvidia H100 (80GB). The results show that093

OFTv2 achieves substantial GPU memory savings094

and training speed-up over the original OFT formu-095

lation (Qiu et al., 2023).096

In practice, finetuning ultra-large foundation097

models (e.g., LLaMA 3.1-70B (Grattafiori et al.,098

2024), Qwen 2.5-72B (Yang et al., 2024a)) typi-099

cally requires quantization to fit within GPU mem-100

ory limits. To support this, we follow the general101

design of the QLoRA framework (Dettmers et al.,102

2023) but replace LoRA with OFTv2. Our input-103

centric implementation of orthogonal finetuning104

enables a seamless application to the finetuning of105

quantized foundation models, resulting in QOFT–106

an efficient orthogonal finetuning that enables ef-107

ficient adaptation of quantized ultra-large models.108

Our major contributions are summarized below:109

• Inspired by matrix-free methods that avoid110

matrix-matrix multiplications in solving linear111

systems, we propose OFTv2–an input-centric112

reformulation of OFT that achieves significantly113

better scalability, with more than 10× faster114

training and 3× lower GPU memory usage.115

• We introduce the Cayley–Neumann parameter-116

ization, which approximates the Cayley trans-117

form with a truncated Neumann series and elim-118

inates numerically unstable matrix inversions.119

• Owing to the new input-centric formulation, we120

adapt OFTv2 to finetuning quantized foundation 121

models. This enables memory-efficient finetun- 122

ing of ultra-large models. 123

• We apply OFTv2 and its quantized variant to 124

different foundation models (including large lan- 125

guage models and text-to-image generative mod- 126

els) across various model scale. 127

2 Related Work 128

Parameter-efficient finetuning (PEFT). As foun- 129

dation models become increasingly large and pow- 130

erful, there has been growing interest in finetuning 131

them for downstream tasks in a parameter-efficient 132

manner (Houlsby et al., 2019; Aghajanyan et al., 133

2020; Hu et al., 2022a; Edalati et al., 2022; Wang 134

et al., 2022; Gheini et al., 2021; Zaken et al., 2022; 135

Guo et al., 2020; Sung et al., 2021; Ansell et al., 136

2022; Lester et al., 2021; Li and Liang, 2021; Vu 137

et al., 2022; He et al., 2021; Mao et al., 2021; 138

Karimi Mahabadi et al., 2021; Liu et al., 2022; 139

Sung et al., 2022; Chen et al., 2023; Jia et al., 140

2022; Chen et al., 2022; Zhang et al., 2022; Jie 141

and Deng, 2023; Lian et al., 2022; Luo et al., 2023; 142

Zhang et al., 2024; Wu et al., 2024). In particu- 143

lar, reparameterization-based methods (e.g., Agha- 144

janyan et al. (2020); Hu et al. (2022a); Edalati et al. 145

(2022); Zi et al. (2023); Chavan et al. (2023)) are 146

enjoying wide adoption. LoRA (Hu et al., 2022a) 147

learns a pair of small low-rank matrices whose 148

product is added to each weight matrix, enabling 149

task adaptation with a small number of trainable pa- 150

rameters. Building on LoRA, several works dynam- 151

ically adjust the rank across layers to better balance 152

the parameter budget (Zhang et al., 2023b; Valipour 153

et al., 2022; Zhang et al., 2023a, 2024). To improve 154

scalability, QLoRA (Dettmers et al., 2023) quan- 155

tizes the frozen base model to 4-bit NormalFloat 156

with double quantization and back-propagates only 157

through LoRA, achieving near full-precision accu- 158

racy while drastically lowering memory usage. 159

Orthogonal Finetuning (OFT). Qiu et al. (2023); 160

Liu et al. (2024) propose a reparameterization- 161

based method that learns an orthogonal matrix to 162

transform the neurons within the same layer, yield- 163

ing strong generalization and stable finetuning. It 164

is motivated by the idea that hyperspherical en- 165

ergy (i.e., a function of the geometric relationships 166

among neurons on the unit sphere) influences gener- 167

alization (Liu et al., 2018, 2021b), and that orthogo- 168

nal transformations keep this energy invariant (Liu 169

et al., 2021a). A growing body of research (Ma 170
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et al., 2024; Yang et al., 2024b; Gorbunov et al.,171

2024; Yuan et al., 2024; Feng et al., 2025; Raj and172

Coyle, 2025; Lingam et al., 2024; Bini et al., 2024;173

Liao and Monz, 2024) builds upon the core idea of174

OFT. Figure 2 provides an high-level comparison175

of OFT and LoRA. While OFT achieves parameter176

efficiency via sparsity, LoRA leverages low rank.177

3 OFTv2: Faster and More Scalable178

3.1 Preliminaries179

Let W = [w1, · · · ,wn] ∈ Rd×n be a weight ma-180

trix with columns wi ∈ Rd. In a linear layer, the181

forward pass is z = Wx, where x ∈ Rd is the in-182

put and z ∈ Rn is the output. OFT reparameterizes183

the weight matrix with WOFT = RW0 where W0184

is the pretrained weight matrix and R ∈ Rd×d is185

an orthogonal matrix. OFT only learns R for adapt-186

ing the pretrained model to downstream tasks. To187

enforce orthogonality, Liu et al. (2021b); Qiu et al.188

(2023); Liu et al. (2024) parameterize R using the189

Cayley transform: R = (I+Q)(I−Q)−1, where190

Q is a skew-symmetric matrix satisfying Q =191

−Q⊤. To further improve parameter-efficiency,192

OFT constrains the orthogonal matrix R to have a193

block-diagonal structure: R = Diag(R1, · · · ,Rr)194

where for any i, Ri ∈ Rb×b is a small orthogonal195

matrix and b ·r = d. Each Ri can be parameterized196

using the Cayley transform. This block-diagonal197

form imposes a sparsity pattern on R, effectively198

making it a sparse orthogonal matrix. Leveraging199

this structure, Liu et al. (2024) further enhance200

parameter efficiency using butterfly factorization.201

3.2 From Weight-centric Implementation to202

Input-centric Implementation203

OFT performs finetuning by learning an orthogo-204

nal matrix to directly transform the weight matrix,205

which naturally leads to a weight-centric imple- 206

mentation of the forward pass: 207

z =

(1) Weight transform: matrix-matrix mult.︷ ︸︸ ︷
W⊤

0 R⊤ x︸ ︷︷ ︸
(2) Linear map: matrix-vector mult.

(1) 208

The original OFT first performs a weight trans- 209

form by computing W⊤
OFT = W⊤

0 R⊤ (i.e., a 210

matrix-matrix multiplication) and then computes 211

the results of a linear layer with the equivalent 212

weight matrix W⊤
OFT (i.e., a matrix-vector multipli- 213

cation). This incurs O(nd2) complexity due to the 214

matrix-matrix multiplication. Inspired by matrix- 215

free methods for solving linear systems, we observe 216

that OFT’s forward pass can be interpreted as two 217

linear maps applied to the input. This leads to an 218

input-centric implementation 219

z = W⊤
0

(1) Linear map: matrix-vector mult.︷ ︸︸ ︷
R⊤x︸ ︷︷ ︸

(2) Linear map: matrix-vector mult.

(2) 220

where only two matrix-vector multiplications are 221

required, reducing the complexity from cubic to 222

quadratic: O(nd + d2). This simple conceptual 223

shift in implementation entails substantial speed- 224

up in training time and reduction in GPU memory. 225

3.3 Approximate Orthogonality via 226

Cayley-Neumann Parameterization 227

The Cayley parameterization constructs an orthogo- 228

nal matrix R as R = (I+Q)(I−Q)−1, where Q 229

is a skew-symmetric matrix. One limitation of this 230

formulation is that it only generates rotation ma- 231

trices, though empirical studies (Liu et al., 2021a; 232

Qiu et al., 2023; Liu et al., 2024) suggest that this 233

restriction does not negatively affect performance. 234

More critically, computing a matrix inverse intro- 235

duces numerical instability and additional compu- 236

tational overhead, making it challenging to scale 237

to large orthogonal matrices. To avoid numerical 238

instability, we replace the matrix inverse with a 239

truncated Neumann series: 240

R = (I +Q)(I −Q)−1 = (I +Q)
( ∞∑
i=0

Qi
)

≈ (I +Q)
(
I +

k∑
i=1

Qi
)
,

241

where larger k leads to better approximation. Re- 242

moving the matrix inversion improves training sta- 243

bility. The Neumann series approximation con- 244

verges in the operator norm if ∥Q∥ < 1. This 245
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condition is naturally satisfied in practice: to start246

from the pretrained model, OFT initializes the or-247

thogonal matrix R as the identity, which requires248

Q to start as a zero matrix. Since finetuning begins249

with a small learning rate and typically involves250

relatively few steps, Q tends not to drift far from251

zero. Empirically, even if ∥Q∥ slightly exceeds 1,252

it does not harm OFT’s training stability, as we use253

only a finite number of Neumann terms.254

CUDA kernel for skew-symmetric matrices. To255

maximize GPU memory efficiency, we leverage the256

skew-symmetric structure of Q ∈ Rn×n, where257

Qii = 0, Qij = −Qji. By storing only the upper258

triangular part as a vector, we reduce the storage259

requirement from n2 to n(n−1)
2 . During the forward260

pass, Q is reconstructed on-the-fly using a highly261

optimized custom CUDA kernel that significantly262

accelerates this process.263

4 QOFT: Adapting OFTv2 to Finetuning264

Quantized Foundation Models265

While PEFT methods primarily aim to reduce op-266

timizer memory by minimizing trainable parame-267

ters, the growing scale of foundation models has268

shifted the memory bottleneck to the pretrained269

weights themselves. As model dimensions grow,270

these frozen parameters increasingly dominate271

memory consumption during training (Kim et al.,272

2023). To address this emerging challenge, we ar-273

gue that truly scalable OFT must operate directly274

on quantized model representations, such as Nor-275

malFloat4 (Dettmers et al., 2023) and AWQ (Lin276

et al., 2024). This represents a critical shift that277

enables OFT to scale effectively.278

To this end, we introduce QOFT, a natural ex-279

tension of OFTv2 for quantized foundation mod-280

els. QOFT largely follows the framework of281

QLoRA (Dettmers et al., 2023). Specifically, the282

quantized low-bit weight matrices are first dequan-283

tized to higher precision, after which the parameter-284

efficient adaptation is carried out in the higher-285

precision space. Formally, the forward pass of286

QOFT can be written as287

z = Dequant(Wquant)
⊤︸ ︷︷ ︸

Fronzen

R⊤︸︷︷︸
Trainable

x (3)288

The update of OFTv2’s orthogonal matrix R is289

performed in high precision (e.g., BF16). We de-290

note the dequantization function as Dequant(·) and291

follow QLoRA’s design by adopting a double quan-292

tization strategy, where the quantization parameters293

of the weight matrices are themselves quantized to 294

further reduce GPU memory usage. 295

Flexible quantized finetuning via OFTv2. We 296

now explain why the weight-centric implemen- 297

tation of OFT is ill-suited for quantized foun- 298

dation models. Computing the matrix product 299

W⊤
quantR

⊤ involves rotating (or reflecting) a quan- 300

tized weight matrix, which requires first dequan- 301

tizing it to higher precision before applying the 302

transformation. While this is mathematically valid, 303

it makes OFT dependent on the specific quantiza- 304

tion method used. Different quantization schemes 305

may require different treatments for computing 306

Dequant(Wquant)
⊤R⊤, introducing unnecessary 307

complexity. In contrast, the input-centric imple- 308

mentation avoids this issue by fully decoupling 309

OFT from weight quantization. It applies the 310

learned orthogonal matrix R⊤ to the input x. The 311

subsequent forward pass proceeds as usual under 312

any quantization strategy. As a result, OFTv2 be- 313

comes a quantization-agnostic PEFT method com- 314

patible with arbitrary weight quantization schemes. 315

QOFT vs. QLoRA. We now look into the for- 316

ward pass of QLoRA: z = Dequant(Wquant)
⊤x+ 317

(AB)⊤x where A ∈ Rd×r and B ∈ Rr×n are 318

low-rank matrices and r ≪ min(d, n) is usually 319

quite small. First, QOFT is more suitable for post- 320

training quantization when merging the finetuned 321

weights back into the quantized model. In QLoRA, 322

the equivalent weight W +AB can alter the dy- 323

namic range (i.e., the possible minimum and maxi- 324

mum values) of the weight matrix, potentially com- 325

plicating requantization. In contrast, the equiva- 326

lent weight in QOFT, RW , preserve the dynamic 327

range of individual elements. The worse-case re- 328

quantization error for QLoRA is always larger than 329

QOFT by ∥AB∥∞. This advantage is also par- 330

tially supported by recent evidence (Tseng et al., 331

2024; Ashkboos et al., 2024) suggesting that or- 332

thogonal transformations can homogenize weight 333

magnitudes and suppress outliers. 334

Another practical limitation of QLoRA is its 335

training instability. Across various experiments, 336

we observe that QLoRA is prone to loss divergence 337

and unstable optimization. We suspect this arises 338

from the inherently noisier gradients in QLoRA, 339

which adversely affect the finetuned weights. In 340

contrast, QOFT benefits from the orthogonality 341

of R, which also regularizes the back-propagated 342

gradients. As a result, the adaptation weights in 343

QOFT are better conditioned, and when merged 344

into the pretrained model, they yield a more sta- 345
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ble finetuned model. This observation is supported346

by prior work (Qiu et al., 2023; Liu et al., 2024)347

showing that OFT significantly improves training348

stability and mitigates catastrophic forgetting.349

5 Discussion350

Sparse vs. low-rank PEFT. As shown in Fig-351

ure 2, OFT and LoRA achieve parameter-efficiency352

through sparsity and low rank, respectively. This353

suggests an intriguing analogy between OFT and354

LoRA, as sparsity and low rank represent arguably355

two of the most widely studied and exploited struc-356

tural properties in matrices. To further enhance the357

scalability of OFT, more structured sparsity should358

be exploited, e.g., butterfly factorization (Liu et al.,359

2024). Moreover, similar to AdaLoRA (Zhang360

et al., 2023c), the sparsity level in OFT can be361

conditioned on the task and layer. Compared to362

low-rank PEFT, sparse PEFT approaches like OFT363

remain relatively underexplored, leaving many in-364

teresting open problems for future investigation.365

Sequential vs. parallel adaptation. As shown366

in Figure 3, OFT and LoRA exemplify two dis-367

tinct adaptation strategies: sequential adaptation368

and parallel adaptation, respectively. This contrast369

is particularly intriguing, as it explains why sequen-370

tial adaptation benefits from orthogonality, while371

parallel adaptation naturally aligns with low rank.372

Sequential adaptation offers great expressiveness373

but is also more susceptible to error propagation374

and distortion of the pretrained model’s spectral375

properties. Enforcing orthogonality on R is there-376

fore a natural choice, as it preserves these proper-377

ties and helps prevent the accumulation of errors.378

Sparsity is the natural choice if we want to save379

parameters in orthogonal matrices. Parallel adap-380

tation adds the adapter R to the pretrained model.381

In this case, we want R to be a dense update while382

maintaining parameter efficiency–a goal naturally383

achieved through low-rank matrices. This perspec-384

tive may inspire new directions in adapter design. 385

Efficient orthogonality parameterization. OFT 386

also highlights the importance of efficient parame- 387

terization of orthogonal matrices. In fact, the effi- 388

ciency is closely tied to two factors: (1) the degree 389

to which orthogonality needs to be approximated, 390

and (2) the size of the set of orthogonal matrices 391

considered. Our experiments indicate that exact 392

orthogonality and the full orthogonal group are not 393

strictly necessary, as parameterizations from the 394

special orthogonal group and approximate orthogo- 395

nality perform equally well in practice. This raises 396

an open question: can we find even more efficient 397

parameterizations with comparable performance? 398

6 Experiments on Scalability 399

Our experiments systematically evaluate OFTv2 400

along two key dimensions: (1) its scalability im- 401

provements over the original OFT, and (2) its 402

finetuning performance across a diverse set of 403

tasks from multiple domains. For both aspects, 404

we compare OFTv2 and QOFT against the well- 405

established, memory- and compute-efficient low- 406

rank adaptation methods LoRA (Hu et al., 2022b) 407

and QLoRA (Dettmers et al., 2023). 408

6.1 GPU Memory Efficiency 409

As depicted in Figure 1, OFTv2 achieves a 3× re- 410

duction in GPU memory consumption compared 411

to the original OFT when finetuning the Qwen2.5- 412

7B model. Furthermore, QOFT significantly re- 413

duces memory consumption by enabling the orthog- 414

onal finetuning of quantized base models. In the 415

following ablation studies comparing against both 416

LoRA and QLoRA baselines – where we define 417

QLoRA broadly as low-rank adaptation of quan- 418

tized models without restricting to NormalFloat 4- 419

bit quantization – we evaluate the actual GPU mem- 420

ory consumption during finetuning of Qwen2.5 421

models across scales from 0.5B to 72B parame- 422

ters. For a comprehensive analysis, we incorporate 423

the widely adopted quantization method AWQ (Lin 424

et al., 2024) for activation-aware quantization. The 425

results are summarized in Figure 4. Our experi- 426

mental results demonstrate that OFTv2 and QOFT 427

achieve memory efficiency comparable to low-rank 428

adaptation methods, with consistent performance 429

across model scales and data formats. 430

6.2 Computational Efficiency 431

We begin by evaluating the training speed of 432

OFTv2 relative to the original OFT. To this end, 433
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Model Size GPUs LoRA OFTv2

Llama-2-7B 8×H100 00:12:10 00:15:10
Llama-2-13B 8×H100 00:17:00 00:19:50

Table 1: Training time (clock time) comparison: OFTv2
vs. LoRA on GSM8K for mathematical reasoning.

we fine-tune a Qwen2.5-7B model on the OASST1-434

Guanaco-9K dataset (Dettmers et al., 2023) for in-435

struction following and measure the training time.436

As shown in Figure 1, OFTv2 achieves a 3× speed-437

up over the original OFT. We further compare the438

end-to-end training speed of OFTv2 and LoRA439

across different model scales and precisions. Re-440

sults from the GSM8K experiment (Table 4) and441

the OpenR1-Math-220k experiment (Face, 2025)442

(Table 5) are used for comparison. Clock times for443

each setting are reported in Table 1 and Table 2.444

While low-rank adaptation methods like LoRA ben-445

efit from PyTorch’s highly optimized GEMM op-446

erations via NVIDIA cuBLAS/cuDNN libraries,447

the simple designs in OFTv2 significantly narrow448

this optimization gap in full-precision settings. No-449

tably, OFTv2 outperforms LoRA in quantized set-450

tings (Table 2), demonstrating that its quantization-451

agnostic design effectively leverages underlying452

quantization-layer optimizations.453

7 Experiments on Performance454

Having established that OFTv2 achieves compara-455

ble memory and computational efficiency to low-456

rank adaptation methods, we then test its perfor-457

mance on a variety of tasks.458

7.1 Encoder-Decoder Model: BART459

We evaluate the finetuning of BART-large (Lewis460

et al., 2019) on the XSum (Narayan et al.,461

2018) and CNN/DailyMail (Hermann et al., 2015)462

datasets for text summarization, reporting ROUGE-463

Model Size GPUs QLoRA QOFT

Qwen2.5-1.5B 8×H100 01:20:00 01:17:30
Qwen2.5-7B 8×H100 03:25:00 03:19:30
Qwen2.5-32B 8×H100 12:51:45 12:27:45

Table 2: Clock time comparison of QOFT and QLoRA
on OpenR1-Math-220k for mathematical reasoning.

1/2/L scores for LoRA and OFTv2 under both 464

full-precision and NormalFloat4 4-bit quantiza- 465

tion. We further investigate different configura- 466

tions by increasing the rank r for LoRA and the 467

block size b for OFTv2. The results from these 468

finetuning tasks are reported in Table 3. We ob- 469

serve that OFTv2/QOFT consistently outperforms 470

LoRA/QLoRA across all tested configurations, 471

while notably utilizing 47–53% fewer trainable pa- 472

rameters. The performance gap gets more obvious 473

with increasing model capacity: at the maximum 474

parameter budget, QOFT outperforms QLoRA by 475

+0.93 ROUGE-1 on XSum (44.16 vs. 43.23), sug- 476

gesting a more effective utilization of expanded 477

adapters. Furthermore, the finetuning performance 478

of OFTv2/QOFT improves accordingly with an 479

increase in trainable parameters. 480

7.2 Decoder-only Model: Llama-2 Series 481

We finetune Llama-2 7B and 13B models on the 482

NLG datasets GSM8K (Cobbe et al., 2021) and 483

WikiText-2 (Merity et al., 2016). To ensure fair- 484

ness, we use the same set of hyperparameters for 485

each method across datasets, precisions, and model 486

scales. Both LoRA and QLoRA set rank to r = 16. 487

Both OFTv2 and QOFT set block size to b = 32. 488

Table 4 shows that OFTv2 consistently outperforms 489

the low-rank adapter across different settings. 490

7.3 Decoder-only Model: Qwen2.5 Series 491

We perform supervised finetuning on the Hugging- 492

face OpenR1-Math-220k (Face, 2025) dataset—a 493

6



A photo of [V] cat in a futuristic space station

A photo of [V] cat in a magical floating garden in the clouds

A photo of [V] dog in a futuristic space station

A photo of [V] dog in a magical crystal cave

LoRA QLoRA OFTv2 QOFT

Input images

Input images

Figure 5: Qualitative results from Dreambooth finetuning of Stable Diffusion 3.5 Large (8.1B parameters), with
peak allocated GPU memory: LoRA (52.33 GB), OFT (52.32 GB), QLoRA (41.60 GB) and QOFT (41.53 GB).

Quant. LoRA / QLoRA OFTv2 / QOFT

# Params XSum↑ CNN/DailyMail↑ # Params XSum↑ CNN/DailyMail↑

Full Prec.
4.33M 43.33/20.06/35.11 43.11/20.22/29.69 2.03M 43.36/20.21/35.31 43.27/20.29/29.71
8.65M 43.47/20.19/35.21 43.20/20.31/29.71 4.19M 43.85/20.69/35.83 43.72/20.73/30.22
17.30M 43.38/20.20/35.25 43.17/20.31/29.72 8.52M 44.12/20.96/36.01 44.08/21.02/30.68

NF4
4.33M 43.09/19.82/34.92 43.17/20.25/29.66 2.03M 43.10/19.92/35.00 43.31/20.37/29.74
8.65M 43.15/19.80/34.92 43.10/20.24/29.65 4.19M 43.72/20.58/35.68 43.71/20.74/30.22
17.30M 43.23/19.92/35.10 43.11/20.23/29.63 8.52M 44.16/20.98/36.09 44.10/21.05/30.69

Table 3: ROUGE-1, ROUGE-2, and ROUGE-L scores for BART-large fine-tuned on XSum and CNN/DailyMail.

Model Metric 16-bit 4-bit

LoRA OFTv2 QLoRA QOFT

7B
# Params 39.98M 17.65M 39.98M 17.65M

WikiText-2↓ 6.63 6.14 5.74 5.60
GSM8K↑ 33.81 34.65 34.12 37.23

13B
# Params 62.59M 27.62M 62.59M 27.62M

WikiText-2↓ 5.23 4.98 5.31 5.05
GSM8K↑ 45.94 46.02 44.20 47.92

Table 4: Finetuning results of Llama-2 models on
WikiText-2 (perplexity) and GSM8K (test accuracy).

large-scale mathematical reasoning corpus con-494

taining challenging problems and two to four rea-495

soning traces distilled from DeepSeek R1 (Guo496

et al., 2025). Following the evaluation pro-497

tocol of Qwen2.5-Math (Yang et al., 2024a),498

we report pass@1 performance on established499

math benchmarks: CMATH (Wei et al., 2023),500

AMC23 (Project-Numina), AQUA (Ling et al.,501

2017), Olympiad Bench (He et al., 2024), Gaokao502

2023 En (Liao et al., 2024), and Minerva 503

Math (Lewkowycz et al., 2022). Finetuning was 504

only performed on NormalFloat 4-bit quantized 505

base models due to the substantial memory re- 506

quirements imposed by the large context window 507

size (16384), necessary for training on a reason- 508

ing dataset. The results are reported in Table 5. 509

The baseline type refers to the pre-trained Qwen2.5 510

models without any continual training. We observe 511

that QOFT consistently outperforms both QLoRA 512

and baseline models across all evaluated scales 513

and tasks, despite using significantly fewer train- 514

able parameters. For instance, on the Qwen2.5-7B 515

instruction-tuned model, QOFT achieves a 96.9% 516

SAT Math accuracy compared to QLoRA’s 68.8%, 517

while utilizing only 17.55M parameters (57% fewer 518

than QLoRA’s 40.37M). This advantage scales ro- 519

bustly: the Qwen2.5-32B variant fine-tuned with 520

QOFT attains 100% SAT Math accuracy, surpass- 521

ing both the baseline (65.6%) and QLoRA (96.9%). 522
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Model Type # Params AMC23 AQUA CMATH GaoKao Minerva Olympiad/ SAT
2023 En Math Bench Math

Qwen2.5-1.5B-it
baseline - 17.5 49.2 65.2 36.4 9.6 12.0 59.4
QLoRA 18.46M 15.0 42.5 61.5 29.6 8.1 8.9 59.4
QOFT 7.89M 27.5 53.1 68.5 41.0 11.8 14.4 81.2

Qwen2.5-1.5B
baseline - 0.0 18.9 4.0 4.2 2.6 2.4 28.1
QLoRA 18.46M 15.0 37.4 64.2 26.8 8.5 6.8 62.5
QOFT 7.89M 22.5 53.1 56.3 36.1 8.5 12.7 87.5

Qwen2.5-7B-it
baseline - 50.0 16.5 89.3 61.8 33.5 36.6 53.1
QLoRA 40.37M 30.0 48.0 88.8 50.1 25.4 19.7 68.8
QOFT 17.55M 52.5 70.9 90.5 63.6 33.5 37.6 96.9

Qwen2.5-7B
baseline - 25.0 55.1 61.2 42.9 11.8 29.9 71.9
QLoRA 40.37M 35.0 48.8 73.7 49.9 18.8 18.5 62.5
QOFT 17.55M 52.5 59.4 80.7 55.6 21.7 34.7 87.5

Qwen2.5-32B-it
baseline - 62.5 18.5 92.5 70.1 41.5 44.4 65.6
QLoRA 134.22M 62.5 71.7 94.0 71.2 39.7 46.8 96.9
QOFT 57.90M 75.0 83.1 94.7 73.5 41.5 48.7 100.0

Qwen2.5-32B
baseline - 35.0 23.2 35.7 46.8 20.2 25.2 62.5
QLoRA 134.22M 40.0 52.4 90.5 61.0 32.0 29.8 65.6
QOFT 57.90M 70.0 68.5 90.7 71.4 36.0 44.9 93.8

Table 5: The pass@1 performance of the Qwen2.5 series large language models and its QLoRA/QOFT fine-tuned
variants by the Chain-of-Thought reasoning.

These gains persist across mathematical reason-523

ing tasks (e.g., 70.0% on AMC23 for QOFT-32B524

vs. QLoRA’s 40.0%), suggesting that orthogonal525

adaptation in quantized space better preserves the526

model’s reasoning capabilities compared to low-527

rank adaptation. The results demonstrate QOFT’s528

dual strength: parameter efficiency without sacrific-529

ing task performance, particularly in the quantized530

setting. In contrast, QLoRA fine-tuned models can531

exhibit training instabilities (Li et al., 2023), lead-532

ing to instances where their performance fell below533

baseline methods. Appendix B gives more results534

on finetuning math-specific Qwen2.5.535

7.4 Text-to-image Diffusion Models: SD-3.5536

To assay the generality of the proposed methods537

across modalities, we perform Dreambooth (Ruiz538

et al., 2023) finetuning on the latest Stable Diffu-539

sion 3.5 models (Esser et al., 2024). Dreambooth540

fine-tunes text-to-image models using a limited set541

of images depicting the same subject. This process542

binds the subject to a unique token identifier, en-543

abling subject-driven generation where the model544

synthesizes this subject in novel scenes beyond the545

training data. Qualitative results are shown in Fig-546

ure 5 and Appendix C. We also report the actual547

peak GPU memory usage during the finetuning548

process in Appendix C. For finetuning the Nor-549

malFloat 4-bit quantized Stable Diffusion 3.5 Large550

model, QOFT requires slightly less GPU memory551

(38.68 GiB) than the QLoRA method (38.75 GiB).552

8 Concluding Remarks 553

OFTv2 advances orthogonal finetuning through 554

three key innovations: (i) an input-centric refor- 555

mulation using matrix–vector products, reducing 556

training time by over 10× and peak memory by 3× 557

without loss in performance; (ii) a Neumann se- 558

ries based approximation of the Cayley transform, 559

improving numerical stability while preserving ap- 560

proximate orthogonality; and (iii) an extension 561

to quantized models, which matches or surpasses 562

QLoRA in speed, stability, and memory efficiency. 563

Across BART, LLaMA2, Qwen2.5, and Stable Dif- 564

fusion3.5 (0.5B–72B), OFTv2 achieves competi- 565

tive performance with roughly half the trainable 566

parameters and consistent memory savings. 567

9 Limitations 568

OFTv2 substantially improves upon OFT in both 569

memory and computational efficiency, matching 570

low-rank methods in memory usage across data 571

types and training speed in the quantized setting. 572

However, its full-precision fine-tuning remains 573

slower. This limitation arises from fundamental dif- 574

ferences: low-rank can be naturally maintained effi- 575

ciently through two simple linear layers, while pre- 576

serving orthogonality presents a greater optimiza- 577

tion challenge. Additionally, low-rank approaches 578

benefit from extensive community-driven engineer- 579

ing and optimization. Bridging this computational 580

gap presents an interesting research direction. 581
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A Experiment Details880

This section outlines the specifics of our experimen-881

tal setup, including the optimizer, code frameworks,882

computational resources, evaluation methods, and883

detailed hyperparameters used for each experiment.884

Training details. We employed the Adam opti-885

mizer (Kingma and Ba, 2015) for all our training886

runs. The specific hyperparameters used for each887

experiment are detailed in the tables referenced888

below. These include learning rates, batch sizes,889

number of training epochs, and method-specific890

configurations: the rank r for LoRA-based meth-891

ods and the block size b for OFTv2/QOFT. If not892

explicitly specified, the r for LoRA-based methods893

is 16 and the block size b for OFTv2/QOFT is set894

as 32. For the Wikitext dataset, hyperparameters895

are listed in Table 8. For the GSM8K dataset, hy-896

perparameters are listed in Table 9. For the XSum897

dataset, hyperparameters are listed in Table 6. For898

the CNN/DailyMail dataset, hyperparameters are899

listed in Table 7. Since it is known that merging900

QLoRA adapter weights to its quantized base mod-901

els leads to performance degradation1 and distort902

the real performance, for every experiment, we903

evaluate the fine-tuned model without merging the904

trainable parameters, but load them as extra adapter905

layers.906

Code framework. Our method is implemented907

using the Hugging Face PEFT2 framework, a908

widely adopted open-source framework providing909

state-of-the-art parameter-efficient fine-tuning of910

pre-trained large language models and diffusion911

models. The implementation of OFTv2 will be re-912

leased on Hugging Face PEFT soon, to allow for913

easy reproduction of our training results. We uti-914

lized the Hugging Face TRL library for supervised915

fine-tuning3. For the base model quantization, we916

leveraged bitsandbytes4 for the NormalFloat 4-bit917

quantization and the QLoRA finetuning, and Au-918

toAWQ5 for AWQ quantization.919

Pretrained models. Our work utilized several920

pre-trained large language models. Specifically, we921

1See this article comparing different merging
methods: https://kaitchup.substack.com/p/
lora-adapters-when-a-naive-merge

2https://huggingface.co/docs/peft/en/index
3https://github.com/huggingface/trl
4https://github.com/bitsandbytes-foundation/

bitsandbytes
5https://github.com/casper-hansen/AutoAWQ

employed models from the Qwen2.5 model series6, 922

which are available under the permissive Apache 923

2.0 license. We also leveraged the Llama 2 mod- 924

els7, governed by the Llama 2 license. Addition- 925

ally, for the text summarization tasks, the BART- 926

large model was used, which is also distributed un- 927

der the Apache 2.0 license. For the text-to-image 928

generation, we utilized the Stable Diffusion 3.5 929

models, which are under the Stability AI Com- 930

munity license. We have adhered to all respective 931

licensing agreements for these models throughout 932

our work. 933

Dataset. The experiments in this study utilized a 934

diverse range of publicly available datasets to en- 935

sure comprehensive evaluation. For finetuning lan- 936

guage modeling tasks, we employed the Wikitext- 937

28 dataset, which is distributed under the CC-BY- 938

SA-3.0 license. Text summarization performance 939

was assessed by fine-tuning on the CNN / Daily- 940

Mail Dataset9, also licensed under Apache 2.0, and 941

the XSum dataset10, which is available under the 942

MIT license. For finetuning mathematical reason- 943

ing capabilities, we used the GSM8K11 dataset, 944

available under the MIT license, and the OpenR1- 945

Math-220k12 dataset, which can be used under the 946

Apache 2.0 license. The Dreambooth dataset13 947

for fine-tuning the diffusion models are under the 948

cc-by-4.0 license. 949

Compute Resources. All the training tasks are 950

performed on a NVIDIA HGX H100 8-GPU Sys- 951

tem node with 80GB memory each. We used a 952

single NVIDIA H100 NVL GPU with 94GB mem- 953

ory to benchmark the memory usage. 954

B Mathematical reasoning 955

Training details. We fine-tuned the Qwen2.5 956

models using QLoRA or QOFT on a random subset 957

of 50,000 samples from the Huggingface OpenR1- 958

6https://huggingface.co/collections/Qwen/
qwen25-66e81a666513e518adb90d9e

7https://huggingface.co/collections/meta-llama/metas-
llama2-models-675bfd70e574a62dd0e40541

8https://huggingface.co/datasets/Salesforce/
wikitext

9https://huggingface.co/datasets/abisee/cnn_
dailymail

10https://huggingface.co/datasets/EdinburghNLP/
xsum

11https://huggingface.co/datasets/openai/gsm8k
12https://huggingface.co/datasets/open-r1/

OpenR1-Math-220k
13https://huggingface.co/datasets/google/

dreambooth

12
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Hyperparameter
LoRA OFTv2

BF16 NF4 BF16 NF4

r = 8 r = 16 r = 32 r = 8 r = 16 r = 32 b = 16 b = 32 b = 64 b = 16 b = 32 b = 64

Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4

Epoch 10 10 10 10 10 10 5 5 5 5 5 5

Batch size 32 32 32 32 32 32 32 32 32 32 32 32

Gradient Accumulation 4 4 4 4 4 4 4 4 4 4 4 4

Table 6: Hyper-parameter setup of fine-tuning BART-large on XSum with LoRA and OFTv2.

Hyperparameter
LoRA OFTv2

BF16 NF4 BF16 NF4

r = 8 r = 16 r = 32 r = 8 r = 16 r = 32 b = 16 b = 32 b = 64 b = 16 b = 32 b = 64

Learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4

Epoch 5 5 5 5 5 5 5 5 5 5 5 5

Batch size 64 64 64 64 64 64 64 64 64 64 64 64

Gradient Accumulation 4 4 4 4 4 4 4 4 4 4 4 4

Table 7: Hyper-parameter setup of fine-tuning BART-large on CNN/DailyMail with LoRA and OFTv2.

Hyperparameter
LoRA OFTv2

BF16 NF4 BF16 NF4

7B 13B 7B 13B 7B 13B 7B 13B

Learning rate 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4 2e-4

Epoch 10 10 10 10 10 10 10 10

Batch size 16 16 16 16 16 16 16 16

Gradient Accumulation 2 2 2 2 2 2 2 2

Table 8: Hyper-parameter setup of fine-tuning Llama 2 on Wikitext-2 with LoRA and OFTv2.

Hyperparameter
LoRA OFTv2

BF16 NF4 BF16 NF4

7B 13B 7B 13B 7B 13B 7B 13B

Learning rate 2e-4 2e-4 2e-4 2e-4 8e-4 8e-4 8e-4 8e-4

Epoch 10 10 10 10 10 10 10 10

Batch size 16 16 16 16 16 16 16 16

Gradient Accumulation 4 4 4 4 4 4 4 4

Table 9: Hyper-parameter setup of fine-tuning Llama 2 on GSM8K with LoRA and OFTv2.

<|im_start|>system\n
Please reason step by step, and put your final answer within \\boxed{{}}.
<|im_end|>\n
<|im_start|>user\n{input}<|im_end|>\n
<|im_start|>assistant\n{output}\n\n

Figure 6: Prompt template used for evaluating Qwen2.5 series models on mathematical reasoning benchmarks.

Math-220k dataset (Face, 2025). For each method959 and benchmark, we selected the best-performing 960
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A photo of [V] dog in a mystical ancient temple

A photo of [V] cat in a Japanese zen garden

LoRA QLoRA QOFTOFT

Figure 7: Qualitative results from Dreambooth fine-tuning of Stable Diffusion 3.5 Medium (8.1B parameters), with
peak allocated GPU memory: LoRA (38.00 GB), OFT (38.02 GB), QLoRA (35.03 GB) and QOFT (35.02 GB).

model after trying learning rates of 1 × 10−5,961

2 × 10−5, 5 × 10−5, and 1 × 10−4. We used a962

batch size of 16 for the 1.5B models and 8 for the963

7B and 32B models, with 2 gradient accumulation964

steps for all. A cosine learning rate scheduler was965

employed, with a minimum learning rate set to 10%966

of the initial value.967

Evaluation details. For evaluating the Qwen2.5968

base models and the QLoRA or QOFT fine-tuned969

versions, we utilized the same evaluation pipeline970

as Qwen2.5-Math14. This framework provides ro-971

bust tools for parsing and evaluating mathematical972

expressions and problem-solving steps, ensuring973

accurate and consistent assessment of model perfor-974

mance on these mathematical benchmarks. More975

specifically, we report the model’s pass@1 perfor-976

mance, i.e., the performance on the first attempt977

for a given task, obtained by utilizing the Qwen2.5978

Chain-of-Though question prompt (Figure 6).979

C Stable diffusion 3.5980

Here we provide additional qualitative results of981

fine-tuning the Stable Diffusion 3.5 Medium model982

in Figure 7.983

The actual GPU memory usage during LoRA984

and OFTv2 fine-tuning is summarized in Table 11.985

As shown, OFTv2/QOFT demonstrates memory986

14https://github.com/QwenLM/Qwen2.5-Math

efficiency similar to LoRA and QLoRA, regardless 987

of data precision or model scale. 988

989

14

https://github.com/QwenLM/Qwen2.5-Math


Model Type # Params AMC23 AQUA CMATH GaoKao Minerva Olympiad/ SAT
2023 En Math Bench Math

Qwen2.5-1.5B-math-it QLoRA 18.46M 27.5 33.5 86.8 43.6 15.4 15.1 46.9
QOFT 7.89M 45.0 70.9 87.2 60.5 25.4 32.0 93.8

Qwen2.5-1.5B-math QLoRA 18.46M 25.0 31.5 49.0 36.9 10.7 12.9 50.0
QOFT 7.89M 27.5 31.5 55.5 37.7 13.6 14.4 37.5

Qwen2.5-7B-math-it QLoRA 40.37M 32.5 34.6 89.8 47.0 18.8 18.2 53.1
QOFT 17.55M 52.5 76.8 92.7 66.8 35.7 41.6 93.8

Qwen2.5-7B-math QLoRA 40.37M 30.0 38.6 75.7 48.6 21.0 20.4 50.0
QOFT 17.55M 30.0 40.6 81.7 49.4 21.3 20.4 50.0

Table 10: The pass@1 performance of the Qwen2.5 series math-specific large language fine-tuned with
QLoRA/QOFT by the Chain-of-Thought reasoning.

SD 3.5 Medium SD 3.5 Large

LoRA 38.00 GB 52.33 GB
OFTv2 38.02 GB 52.32 GB

QLoRA 35.03 GB 41.60 GB
QOFT 35.02 GB 41.53 GB

Table 11: Actual GPU memory usage during fine-tuning: LoRA, QLoRA, OFTv2, and QOFT applied on Stable
Diffusion 3.5 Medium and Large.
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