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Abstract

Orthogonal finetuning (OFT) offers highly
parameter-efficient adaptation while preventing
catastrophic forgetting, but its high runtime and
memory demands limit practical deployment.
We identify the core computational bottleneck
in OFT as its weight-centric implementation,
which relies on costly matrix-matrix multiplica-
tions with cubic complexity. To overcome this,
we propose OFTV2, an input-centric reformula-
tion that instead uses matrix-vector multiplica-
tions (i.e., matrix-free computation), reducing
the computational cost to quadratic. We further
introduce the Cayley—Neumann parameteriza-
tion, an efficient orthogonal parameterization
that approximates the matrix inversion in Cay-
ley transform via a truncated Neumann series.
These modifications allow OFTv2 to achieve up
to 10x faster training and 3 x lower GPU mem-
ory usage without compromising performance.
In addition, we extend OFTv2 to support fine-
tuning quantized foundation models and show
that it outperforms the popular QLoRA in train-
ing stability, efficiency, and memory usage.

1 Introduction

As foundation models continue to improve in per-
formance, recent years have witnessed a paradigm
shift from end-to-end learning to a pretraining-
finetuning framework. This shift underscores the
need for finetuning methods that are both effec-
tive and scalable. Owing to its training stabil-
ity and adaptation efficiency, orthogonal finetun-
ing (OFT) (Qiu et al., 2023; Liu et al., 2024) has
emerged as a promising approach for adapting
foundation models to downstream tasks. However,
while performing well, OFT incurs high compu-
tational and memory costs, limiting its scalability.
Motivated by these challenges, we seek to make
OFT more scalable to large foundation models.
Towards this goal, we begin by identifying the
key bottleneck that limits OFT’s scalability. At
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Figure 1: OFTV2 significantly reduces training time and
GPU memory usage without sacrificing performance.
The finetuning is performed with Qwen2.5-7B.

its core, OFT learns layer-shared orthogonal ma-
trices to transform pretrained weight matrices, re-
sulting in a naive weight-centric implementation
where forward inference is performed after merg-
ing the learned orthogonal matrices into weight
matrices during training. The weight-centric im-
plementation thus involves matrix-matrix multipli-
cations with cubic complexity. As weight matri-
ces grow large, this cubic scaling severely limits
OFT’s applicability to large foundation models.
However, these matrix-matrix multiplications are
not fundamentally necessary. We draw inspiration
from matrix-free methods (Chen, 2005), such as the
power method and the Lanczos algorithm, which
avoid explicit matrix-matrix operations by treat-
ing matrices as linear operators applied to vectors.
These methods operate entirely through matrix-
vector multiplications, applying a matrix to vectors
in the appropriate space without ever forming full
matrix products. Guided by the same insight, we
introduce an input-centric implementation of OFT,
in which the learned orthogonal transformations
are applied directly to the input vectors during each
forward pass, rather than being merged into the
weight matrix. This reformulation reduces the com-
plexity from cubic to quadratic. We refer to this
new formulation as OFTv2. Despite its simplicity,
this change significantly enhances the scalability of



OFT, making it suitable for finetuning large founda-
tion models that the original OFT could not handle
due to memory constraints.

Another scalability bottleneck in OFT arises
from the Cayley parameterization used by Qiu et al.
(2023); Liu et al. (2024) to preserve orthogonal-
ity. While effective, this parameterization involves
computing a matrix inverse, which becomes in-
creasingly costly and less numerically stable as
weight matrices get larger. To address this, we
introduce a numerically stable yet efficient approx-
imation — the Cayley—Neumann parameterization
(CNP). By replacing the matrix inverse in the orig-
inal Cayley transform with a truncated Neumann
series, CNP offers improved numerical stability
and significantly lower computational cost, particu-
larly in settings where OFT is applied to finetune
large foundation models. With CNP, OFTv2 be-
comes even more scalable and readily applicable
for efficient adaptation of such models. In Figure 1,
we compare OFT and OFTv2 by performing fine-
tuning tasks on Qwen2.5-7B, which is the largest
model the original OFT can finetune within a sin-
gle Nvidia H100 (80GB). The results show that
OFTV2 achieves substantial GPU memory savings
and training speed-up over the original OFT formu-
lation (Qiu et al., 2023).

In practice, finetuning ultra-large foundation
models (e.g., LLaMA 3.1-70B (Grattafiori et al.,
2024), Qwen 2.5-72B (Yang et al., 2024a)) typi-
cally requires quantization to fit within GPU mem-
ory limits. To support this, we follow the general
design of the QLoRA framework (Dettmers et al.,
2023) but replace LoRA with OFTv2. Our input-
centric implementation of orthogonal finetuning
enables a seamless application to the finetuning of
quantized foundation models, resulting in QOFT—
an efficient orthogonal finetuning that enables ef-
ficient adaptation of quantized ultra-large models.
Our major contributions are summarized below:

* Inspired by matrix-free methods that avoid
matrix-matrix multiplications in solving linear
systems, we propose OFTv2—an input-centric
reformulation of OFT that achieves significantly
better scalability, with more than 10x faster
training and 3 x lower GPU memory usage.

* We introduce the Cayley—Neumann parameter-
ization, which approximates the Cayley trans-
form with a truncated Neumann series and elim-
inates numerically unstable matrix inversions.

* Owing to the new input-centric formulation, we

adapt OFTV2 to finetuning quantized foundation
models. This enables memory-efficient finetun-
ing of ultra-large models.

* We apply OFTv2 and its quantized variant to
different foundation models (including large lan-
guage models and text-to-image generative mod-
els) across various model scale.

2 Related Work

Parameter-efficient finetuning (PEFT). As foun-
dation models become increasingly large and pow-
erful, there has been growing interest in finetuning
them for downstream tasks in a parameter-efficient
manner (Houlsby et al., 2019; Aghajanyan et al.,
2020; Hu et al., 2022a; Edalati et al., 2022; Wang
et al., 2022; Gheini et al., 2021; Zaken et al., 2022;
Guo et al., 2020; Sung et al., 2021; Ansell et al.,
2022; Lester et al., 2021; Li and Liang, 2021; Vu
et al., 2022; He et al., 2021; Mao et al., 2021;
Karimi Mahabadi et al., 2021; Liu et al., 2022;
Sung et al., 2022; Chen et al., 2023; Jia et al.,
2022; Chen et al., 2022; Zhang et al., 2022; Jie
and Deng, 2023; Lian et al., 2022; Luo et al., 2023;
Zhang et al., 2024; Wu et al., 2024). In particu-
lar, reparameterization-based methods (e.g., Agha-
janyan et al. (2020); Hu et al. (2022a); Edalati et al.
(2022); Zi et al. (2023); Chavan et al. (2023)) are
enjoying wide adoption. LoRA (Hu et al., 2022a)
learns a pair of small low-rank matrices whose
product is added to each weight matrix, enabling
task adaptation with a small number of trainable pa-
rameters. Building on LoRA, several works dynam-
ically adjust the rank across layers to better balance
the parameter budget (Zhang et al., 2023b; Valipour
et al., 2022; Zhang et al., 2023a, 2024). To improve
scalability, QLoRA (Dettmers et al., 2023) quan-
tizes the frozen base model to 4-bit NormalFloat
with double quantization and back-propagates only
through LoRA, achieving near full-precision accu-
racy while drastically lowering memory usage.

Orthogonal Finetuning (OFT). Qiu et al. (2023);
Liu et al. (2024) propose a reparameterization-
based method that learns an orthogonal matrix to
transform the neurons within the same layer, yield-
ing strong generalization and stable finetuning. It
is motivated by the idea that hyperspherical en-
ergy (i.e., a function of the geometric relationships
among neurons on the unit sphere) influences gener-
alization (Liu et al., 2018, 2021b), and that orthogo-
nal transformations keep this energy invariant (Liu
et al., 2021a). A growing body of research (Ma



4
I
Pretrained | B
Weight Matrix + |44 .
Low-rank Matrix

W AB

n -t —

(a) Low-rank Structure in LoRA

d -] n
b X Pretrained
Orthogonal Weight Matrix
Matrx R Wo

(b) Sparse Orthogonal Structure in OFT

Figure 2: Comparison between LoRA and OFT.

et al., 2024; Yang et al., 2024b; Gorbunov et al.,
2024; Yuan et al., 2024; Feng et al., 2025; Raj and
Coyle, 2025; Lingam et al., 2024; Bini et al., 2024;
Liao and Monz, 2024) builds upon the core idea of
OFT. Figure 2 provides an high-level comparison
of OFT and LoRA. While OFT achieves parameter
efficiency via sparsity, LoRA leverages low rank.

3 OFTv2: Faster and More Scalable

3.1 Preliminaries

Let W = [wy, -+ ,wy] € R be a weight ma-
trix with columns w; € R<. In a linear layer, the
forward pass is z = Wx, where & € R is the in-
putand z € R" is the output. OFT reparameterizes
the weight matrix with Wopr = RW) where W
is the pretrained weight matrix and R € R%*? is
an orthogonal matrix. OFT only learns R for adapt-
ing the pretrained model to downstream tasks. To
enforce orthogonality, Liu et al. (2021b); Qiu et al.
(2023); Liu et al. (2024) parameterize R using the
Cayley transform: R = (I+Q)(I —Q)™!, where
Q is a skew-symmetric matrix satisfying Q =
—Q". To further improve parameter-efficiency,
OFT constrains the orthogonal matrix 2 to have a
block-diagonal structure: R = Diag(Ry,- -, R;)
where for any 4, R; € R?*® is a small orthogonal
matrix and b-r = d. Each R; can be parameterized
using the Cayley transform. This block-diagonal
form imposes a sparsity pattern on R, effectively
making it a sparse orthogonal matrix. Leveraging
this structure, Liu et al. (2024) further enhance
parameter efficiency using butterfly factorization.

3.2 From Weight-centric Implementation to
Input-centric Implementation

OFT performs finetuning by learning an orthogo-
nal matrix to directly transform the weight matrix,

which naturally leads to a weight-centric imple-
mentation of the forward pass:

(1) Weight transform: matrix-matrix mult.
/—{ﬁ
W, R x (1)

(2) Linear map: matrix-vector mult.

The original OFT first performs a weight trans-
form by computing WOTFT = W) R (ie, a
matrix-matrix multiplication) and then computes
the results of a linear layer with the equivalent
weight matrix WJFT (i.e., a matrix-vector multipli-
cation). This incurs O(nd?) complexity due to the
matrix-matrix multiplication. Inspired by matrix-
free methods for solving linear systems, we observe
that OFT’s forward pass can be interpreted as two
linear maps applied to the input. This leads to an
input-centric implementation

(1) Linear map: matrix-vector mult.

—~
z2=W, R'x )

(2) Linear map: matrix-vector mult.

where only two matrix-vector multiplications are
required, reducing the complexity from cubic to
quadratic: O(nd + d?). This simple conceptual
shift in implementation entails substantial speed-
up in training time and reduction in GPU memory.

3.3 Approximate Orthogonality via
Cayley-Neumann Parameterization

The Cayley parameterization constructs an orthogo-
nal matrix Ras R = (I +Q)(I—Q)~!, where Q
is a skew-symmetric matrix. One limitation of this
formulation is that it only generates rotation ma-
trices, though empirical studies (Liu et al., 2021a;
Qiu et al., 2023; Liu et al., 2024) suggest that this
restriction does not negatively affect performance.
More critically, computing a matrix inverse intro-
duces numerical instability and additional compu-
tational overhead, making it challenging to scale
to large orthogonal matrices. To avoid numerical
instability, we replace the matrix inverse with a
truncated Neumann series:

oo
R=(I+QI-Q) "' =I+Q)(>,Q)

& i=0
~I+QI+)_ Q)

i=1
where larger k leads to better approximation. Re-
moving the matrix inversion improves training sta-
bility. The Neumann series approximation con-
verges in the operator norm if ||@Q|| < 1. This



condition is naturally satisfied in practice: to start
from the pretrained model, OFT initializes the or-
thogonal matrix R as the identity, which requires
Q to start as a zero matrix. Since finetuning begins
with a small learning rate and typically involves
relatively few steps, @ tends not to drift far from
zero. Empirically, even if || Q]| slightly exceeds 1,
it does not harm OFT’s training stability, as we use
only a finite number of Neumann terms.

CUDA Kkernel for skew-symmetric matrices. To
maximize GPU memory efficiency, we leverage the
skew-symmetric structure of Q € R"™*™, where
Qii = 0, Qi = —Qj;. By storing only the upper
triangular part as a vector, we reduce the storage
requirement from n? to @ During the forward
pass, @ is reconstructed on-the-fly using a highly
optimized custom CUDA kernel that significantly
accelerates this process.

4 QOFT: Adapting OFTVv2 to Finetuning
Quantized Foundation Models

While PEFT methods primarily aim to reduce op-
timizer memory by minimizing trainable parame-
ters, the growing scale of foundation models has
shifted the memory bottleneck to the pretrained
weights themselves. As model dimensions grow,
these frozen parameters increasingly dominate
memory consumption during training (Kim et al.,
2023). To address this emerging challenge, we ar-
gue that truly scalable OFT must operate directly
on quantized model representations, such as Nor-
malFloat4 (Dettmers et al., 2023) and AWQ (Lin
et al., 2024). This represents a critical shift that
enables OFT to scale effectively.

To this end, we introduce QOFT, a natural ex-
tension of OFTV2 for quantized foundation mod-
els. QOFT largely follows the framework of
QLoRA (Dettmers et al., 2023). Specifically, the
quantized low-bit weight matrices are first dequan-
tized to higher precision, after which the parameter-
efficient adaptation is carried out in the higher-
precision space. Formally, the forward pass of
QOFT can be written as

z= Dequant(unam)T @; x 3)

Trainable

Fronzen

The update of OFTv2’s orthogonal matrix R is
performed in high precision (e.g., BF16). We de-
note the dequantization function as Dequant(-) and
follow QLoRA’s design by adopting a double quan-
tization strategy, where the quantization parameters

of the weight matrices are themselves quantized to
further reduce GPU memory usage.

Flexible quantized finetuning via OFTv2. We
now explain why the weight-centric implemen-
tation of OFT is ill-suited for quantized foun-
dation models. Computing the matrix product
quamRT involves rotating (or reflecting) a quan-
tized weight matrix, which requires first dequan-
tizing it to higher precision before applying the
transformation. While this is mathematically valid,
it makes OFT dependent on the specific quantiza-
tion method used. Different quantization schemes
may require different treatments for computing
Dequant(unam)TRT, introducing unnecessary
complexity. In contrast, the input-centric imple-
mentation avoids this issue by fully decoupling
OFT from weight quantization. It applies the
learned orthogonal matrix R to the input 2. The
subsequent forward pass proceeds as usual under
any quantization strategy. As a result, OFTv2 be-
comes a quantization-agnostic PEFT method com-
patible with arbitrary weight quantization schemes.
QOFT vs. QLoRA. We now look into the for-
ward pass of QLoRA: z = Dequant(unam)Tw +
(AB)"z where A € R¥™" and B € R™" are
low-rank matrices and » < min(d,n) is usually
quite small. First, QOFT is more suitable for post-
training quantization when merging the finetuned
weights back into the quantized model. In QLoRA,
the equivalent weight W + A B can alter the dy-
namic range (i.e., the possible minimum and maxi-
mum values) of the weight matrix, potentially com-
plicating requantization. In contrast, the equiva-
lent weight in QOFT, RW, preserve the dynamic
range of individual elements. The worse-case re-
quantization error for QLoRA is always larger than
QOFT by ||[AB||o. This advantage is also par-
tially supported by recent evidence (Tseng et al.,
2024; Ashkboos et al., 2024) suggesting that or-
thogonal transformations can homogenize weight
magnitudes and suppress outliers.

Another practical limitation of QLoRA is its
training instability. Across various experiments,
we observe that QLoRA is prone to loss divergence
and unstable optimization. We suspect this arises
from the inherently noisier gradients in QLoRA,
which adversely affect the finetuned weights. In
contrast, QOFT benefits from the orthogonality
of R, which also regularizes the back-propagated
gradients. As a result, the adaptation weights in
QOFT are better conditioned, and when merged
into the pretrained model, they yield a more sta-
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Figure 3: Comparison between sequential (e.g., OFT)
and parallel (e.g., LoRA) adaptation.

ble finetuned model. This observation is supported
by prior work (Qiu et al., 2023; Liu et al., 2024)
showing that OFT significantly improves training
stability and mitigates catastrophic forgetting.

5 Discussion

Sparse vs. low-rank PEFT. As shown in Fig-
ure 2, OFT and LoRA achieve parameter-efficiency
through sparsity and low rank, respectively. This
suggests an intriguing analogy between OFT and
LoRA, as sparsity and low rank represent arguably
two of the most widely studied and exploited struc-
tural properties in matrices. To further enhance the
scalability of OFT, more structured sparsity should
be exploited, e.g., butterfly factorization (Liu et al.,
2024). Moreover, similar to AdaLoRA (Zhang
et al., 2023c¢), the sparsity level in OFT can be
conditioned on the task and layer. Compared to
low-rank PEFT, sparse PEFT approaches like OFT
remain relatively underexplored, leaving many in-
teresting open problems for future investigation.

Sequential vs. parallel adaptation. As shown
in Figure 3, OFT and LoRA exemplify two dis-
tinct adaptation strategies: sequential adaptation
and parallel adaptation, respectively. This contrast
is particularly intriguing, as it explains why sequen-
tial adaptation benefits from orthogonality, while
parallel adaptation naturally aligns with low rank.
Sequential adaptation offers great expressiveness
but is also more susceptible to error propagation
and distortion of the pretrained model’s spectral
properties. Enforcing orthogonality on R is there-
fore a natural choice, as it preserves these proper-
ties and helps prevent the accumulation of errors.
Sparsity is the natural choice if we want to save
parameters in orthogonal matrices. Parallel adap-
tation adds the adapter R to the pretrained model.
In this case, we want R to be a dense update while
maintaining parameter efficiency—a goal naturally
achieved through low-rank matrices. This perspec-

tive may inspire new directions in adapter design.

Efficient orthogonality parameterization. OFT
also highlights the importance of efficient parame-
terization of orthogonal matrices. In fact, the effi-
ciency is closely tied to two factors: (1) the degree
to which orthogonality needs to be approximated,
and (2) the size of the set of orthogonal matrices
considered. Our experiments indicate that exact
orthogonality and the full orthogonal group are not
strictly necessary, as parameterizations from the
special orthogonal group and approximate orthogo-
nality perform equally well in practice. This raises
an open question: can we find even more efficient
parameterizations with comparable performance?

6 Experiments on Scalability

Our experiments systematically evaluate OFTv2
along two key dimensions: (1) its scalability im-
provements over the original OFT, and (2) its
finetuning performance across a diverse set of
tasks from multiple domains. For both aspects,
we compare OFTv2 and QOFT against the well-
established, memory- and compute-efficient low-
rank adaptation methods LoRA (Hu et al., 2022b)
and QLoRA (Dettmers et al., 2023).

6.1 GPU Memory Efficiency

As depicted in Figure 1, OFTv2 achieves a 3 re-
duction in GPU memory consumption compared
to the original OFT when finetuning the Qwen2.5-
7B model. Furthermore, QOFT significantly re-
duces memory consumption by enabling the orthog-
onal finetuning of quantized base models. In the
following ablation studies comparing against both
LoRA and QLoRA baselines — where we define
QLoRA broadly as low-rank adaptation of quan-
tized models without restricting to NormalFloat 4-
bit quantization — we evaluate the actual GPU mem-
ory consumption during finetuning of Qwen2.5
models across scales from 0.5B to 72B parame-
ters. For a comprehensive analysis, we incorporate
the widely adopted quantization method AWQ (Lin
et al., 2024) for activation-aware quantization. The
results are summarized in Figure 4. Our experi-
mental results demonstrate that OFTv2 and QOFT
achieve memory efficiency comparable to low-rank
adaptation methods, with consistent performance
across model scales and data formats.

6.2 Computational Efficiency

We begin by evaluating the training speed of
OFTv2 relative to the original OFT. To this end,
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Figure 4: Results of GPU memory usage for the same finetuning task. (a) OFT, LoRA and OFTv2 on Qwen2.5; (b)
QLoRA and QOFT on NF4-quantized Qwen2.5; (c) QLoRA and QOFT on AWQ-qunatized Qwen2.5.

Model Size GPUs LoRA OFTv2 Model Size GPUs QLoRA QOFT
Llama-2-7B 8xH100 00:12:10 00:15:10 Qwen2.5-1.5B  8xHI100  01:20:00 01:17:30
Llama-2-13B 8xH100 00:17:00 00:19:50 Qwen2.5-7B 8xHI100  03:25:00  03:19:30

Qwen2.5-32B 8xH100 12:51:45  12:27:45

Table 1: Training time (clock time) comparison: OFTv2
vs. LoRA on GSMB8K for mathematical reasoning.

we fine-tune a Qwen2.5-7B model on the OASST1-
Guanaco-9K dataset (Dettmers et al., 2023) for in-
struction following and measure the training time.
As shown in Figure 1, OFTv2 achieves a 3x speed-
up over the original OFT. We further compare the
end-to-end training speed of OFTv2 and LoRA
across different model scales and precisions. Re-
sults from the GSM8K experiment (Table 4) and
the OpenR1-Math-220k experiment (Face, 2025)
(Table 5) are used for comparison. Clock times for
each setting are reported in Table 1 and Table 2.
While low-rank adaptation methods like LoRA ben-
efit from PyTorch’s highly optimized GEMM op-
erations via NVIDIA cuBLAS/cuDNN libraries,
the simple designs in OFTV2 significantly narrow
this optimization gap in full-precision settings. No-
tably, OFTv2 outperforms LoRA in quantized set-
tings (Table 2), demonstrating that its quantization-
agnostic design effectively leverages underlying
quantization-layer optimizations.

7 Experiments on Performance

Having established that OFTv2 achieves compara-
ble memory and computational efficiency to low-
rank adaptation methods, we then test its perfor-
mance on a variety of tasks.

7.1 Encoder-Decoder Model: BART

We evaluate the finetuning of BART-large (Lewis
et al.,, 2019) on the XSum (Narayan et al.,
2018) and CNN/DailyMail (Hermann et al., 2015)
datasets for text summarization, reporting ROUGE-

Table 2: Clock time comparison of QOFT and QLoRA
on OpenR1-Math-220k for mathematical reasoning.

1/2/L scores for LoRA and OFTv2 under both
full-precision and NormalFloat4 4-bit quantiza-
tion. We further investigate different configura-
tions by increasing the rank r for LORA and the
block size b for OFTv2. The results from these
finetuning tasks are reported in Table 3. We ob-
serve that OFTv2/QOFT consistently outperforms
LoRA/QLoRA across all tested configurations,
while notably utilizing 47-53% fewer trainable pa-
rameters. The performance gap gets more obvious
with increasing model capacity: at the maximum
parameter budget, QOFT outperforms QLoRA by
+0.93 ROUGE-1 on XSum (44.16 vs. 43.23), sug-
gesting a more effective utilization of expanded
adapters. Furthermore, the finetuning performance
of OFTv2/QOFT improves accordingly with an
increase in trainable parameters.

7.2 Decoder-only Model: Llama-2 Series

We finetune Llama-2 7B and 13B models on the
NLG datasets GSM8K (Cobbe et al., 2021) and
WikiText-2 (Merity et al., 2016). To ensure fair-
ness, we use the same set of hyperparameters for
each method across datasets, precisions, and model
scales. Both LoRA and QLoRA set rank to r = 16.
Both OFTv2 and QOFT set block size to b = 32.
Table 4 shows that OFTv2 consistently outperforms
the low-rank adapter across different settings.

7.3 Decoder-only Model: Qwen2.5 Series

We perform supervised finetuning on the Hugging-
face OpenR1-Math-220k (Face, 2025) dataset—a
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Figure 5: Qualitative results from Dreambooth finetuning of Stable Diffusion 3.5 Large (8.1B parameters), with
peak allocated GPU memory: LoRA (52.33 GB), OFT (52.32 GB), QLoRA (41.60 GB) and QOFT (41.53 GB).

OFTv2 QOFT

Quant LoRA / QLoRA OFTv2/QOFT
# Params XSumt CNN/DailyMailt # Params XSumt CNN/DailyMailt
4.33M 43.33/20.06/35.11  43.11/20.22/29.69 2.03M 43.36/20.21/35.31  43.27/20.29/29.71
Full Prec. 8.65M 43.47/20.19/35.21  43.20/20.31/29.71 4.19M 43.85/20.69/35.83  43.72/20.73/30.22
17.30M  43.38/20.20/35.25  43.17/20.31/29.72 8.52M 44.12/20.96/36.01  44.08/21.02/30.68
4.33M 43.09/19.82/34.92  43.17/20.25/29.66 2.03M 43.10/19.92/35.00  43.31/20.37/29.74
NF4 8.65M 43.15/19.80/34.92  43.10/20.24/29.65 4.19M 43.72/20.58/35.68  43.71/20.74/30.22
17.30M  43.23/19.92/35.10  43.11/20.23/29.63 8.52M 44.16/20.98/36.09  44.10/21.05/30.69

Table 3: ROUGE-1, ROUGE-2, and ROUGE-L scores for BART-large fine-tuned on XSum and CNN/DailyMail.

Model  Metric 16-bit 4-bit 2023 En (Liao et al.,, 2024), and Minerva
LoRA  OFTv2 QLoRA  QOFT Math (Lewkowycz et al., 2022). Finetuning was
#Params  3998M  17.65M  39.98M  17.65M only performed on NormalFloat 4-bit quantized
7B .
WikiText-2)  6.63 6.14 5.74 5.60 base models due to the substantial memory re-
GSMSK? 3381 3465 3412 3723 . . .
quirements imposed by the large context window
# Params 6259M  27.62M  62.59M  27.62M . .
13B size (16384), necessary for training on a reason-
WikiText-2),  5.23 4.98 531 5.05 . .
GSMSKT 4504 46.02 440 47.92 ing dataset. The results are reported in Table 5.

Table 4: Finetuning results of Llama-2 models on
WikiText-2 (perplexity) and GSMS8K (test accuracy).

large-scale mathematical reasoning corpus con-
taining challenging problems and two to four rea-
soning traces distilled from DeepSeek R1 (Guo
et al., 2025). Following the evaluation pro-
tocol of Qwen2.5-Math (Yang et al., 2024a),
we report pass@1 performance on established
math benchmarks: CMATH (Wei et al., 2023),
AMC23 (Project-Numina), AQUA (Ling et al.,
2017), Olympiad Bench (He et al., 2024), Gaokao

The baseline type refers to the pre-trained Qwen2.5
models without any continual training. We observe
that QOFT consistently outperforms both QLoRA
and baseline models across all evaluated scales
and tasks, despite using significantly fewer train-
able parameters. For instance, on the Qwen2.5-7B
instruction-tuned model, QOFT achieves a 96.9%
SAT Math accuracy compared to QLoRA’s 68.8%,
while utilizing only 17.55M parameters (57% fewer
than QLoRA’s 40.37M). This advantage scales ro-
bustly: the Qwen2.5-32B variant fine-tuned with
QOFT attains 100% SAT Math accuracy, surpass-
ing both the baseline (65.6%) and QLoRA (96.9%).



GaoKao Minerva Olympiad/ SAT
Model Type #Params AMC23 AQUA CMATH 2023 En Math Bench Math
baseline - 17.5 49.2 65.2 36.4 9.6 12.0 59.4

Qwen2.5-1.5B-it QLoRA 18.46M 15.0 42.5 61.5 29.6 8.1 8.9 59.4
QOFT 7.89M 27.5 53.1 68.5 41.0 11.8 14.4 81.2

baseline - 0.0 189 4.0 4.2 2.6 2.4 28.1

Qwen2.5-1.5B QLoRA 18.46M 15.0 37.4 64.2 26.8 8.5 6.8 62.5
QOFT 7.89M 22.5 53.1 56.3 36.1 8.5 12.7 87.5

baseline - 50.0 16.5 89.3 61.8 33.5 36.6 53.1

Qwen2.5-7B-it QLoRA  40.37M 30.0 48.0 88.8 50.1 254 19.7 68.8
QOFT 17.55M 52.5 70.9 90.5 63.6 33.5 37.6 96.9

baseline - 25.0 55.1 61.2 42.9 11.8 29.9 71.9

Qwen2.5-7B QLoRA  40.37M 35.0 48.8 73.7 49.9 18.8 18.5 62.5
QOFT 17.55M 52.5 59.4 80.7 55.6 21.7 34.7 87.5

baseline - 62.5 18.5 92.5 70.1 41.5 44 .4 65.6

Qwen2.5-32B-it  QLoRA 134.22M 62.5 71.7 94.0 71.2 39.7 46.8 96.9
QOFT 57.90M 75.0 83.1 94.7 73.5 41.5 48.7 100.0

baseline - 35.0 23.2 35.7 46.8 20.2 252 62.5

Qwen2.5-32B QLoRA  134.22M 40.0 52.4 90.5 61.0 32.0 29.8 65.6
QOFT 57.90M 70.0 68.5 90.7 71.4 36.0 44.9 93.8

Table 5: The pass@1 performance of the Qwen2.5 series large language models and its QLoRA/QOFT fine-tuned

variants by the Chain-of-Thought reasoning.

These gains persist across mathematical reason-
ing tasks (e.g., 70.0% on AMC23 for QOFI-32B
vs. QLoRA’s 40.0%), suggesting that orthogonal
adaptation in quantized space better preserves the
model’s reasoning capabilities compared to low-
rank adaptation. The results demonstrate QOFT’s
dual strength: parameter efficiency without sacrific-
ing task performance, particularly in the quantized
setting. In contrast, QLoRA fine-tuned models can
exhibit training instabilities (Li et al., 2023), lead-
ing to instances where their performance fell below
baseline methods. Appendix B gives more results
on finetuning math-specific Qwen2.5.

7.4 Text-to-image Diffusion Models: SD-3.5

To assay the generality of the proposed methods
across modalities, we perform Dreambooth (Ruiz
et al., 2023) finetuning on the latest Stable Diffu-
sion 3.5 models (Esser et al., 2024). Dreambooth
fine-tunes text-to-image models using a limited set
of images depicting the same subject. This process
binds the subject to a unique token identifier, en-
abling subject-driven generation where the model
synthesizes this subject in novel scenes beyond the
training data. Qualitative results are shown in Fig-
ure 5 and Appendix C. We also report the actual
peak GPU memory usage during the finetuning
process in Appendix C. For finetuning the Nor-
malFloat 4-bit quantized Stable Diffusion 3.5 Large
model, QOFT requires slightly less GPU memory
(38.68 GiB) than the QLoRA method (38.75 GiB).

8 Concluding Remarks

OFTv2 advances orthogonal finetuning through
three key innovations: (i) an input-centric refor-
mulation using matrix—vector products, reducing
training time by over 10x and peak memory by 3x
without loss in performance; (ii) a Neumann se-
ries based approximation of the Cayley transform,
improving numerical stability while preserving ap-
proximate orthogonality; and (iii) an extension
to quantized models, which matches or surpasses
QLoRA in speed, stability, and memory efficiency.
Across BART, LLaMA2, Qwen2.5, and Stable Dif-
fusion3.5 (0.5B-72B), OFTv2 achieves competi-
tive performance with roughly half the trainable
parameters and consistent memory savings.

9 Limitations

OFTv2 substantially improves upon OFT in both
memory and computational efficiency, matching
low-rank methods in memory usage across data
types and training speed in the quantized setting.
However, its full-precision fine-tuning remains
slower. This limitation arises from fundamental dif-
ferences: low-rank can be naturally maintained effi-
ciently through two simple linear layers, while pre-
serving orthogonality presents a greater optimiza-
tion challenge. Additionally, low-rank approaches
benefit from extensive community-driven engineer-
ing and optimization. Bridging this computational
gap presents an interesting research direction.
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A Experiment Details

This section outlines the specifics of our experimen-
tal setup, including the optimizer, code frameworks,
computational resources, evaluation methods, and
detailed hyperparameters used for each experiment.

Training details. We employed the Adam opti-
mizer (Kingma and Ba, 2015) for all our training
runs. The specific hyperparameters used for each
experiment are detailed in the tables referenced
below. These include learning rates, batch sizes,
number of training epochs, and method-specific
configurations: the rank r for LoRA-based meth-
ods and the block size b for OFTv2/QOFT. If not
explicitly specified, the r for LoRA-based methods
is 16 and the block size b for OFTv2/QOFT is set
as 32. For the Wikitext dataset, hyperparameters
are listed in Table 8. For the GSM8K dataset, hy-
perparameters are listed in Table 9. For the XSum
dataset, hyperparameters are listed in Table 6. For
the CNN/DailyMail dataset, hyperparameters are
listed in Table 7. Since it is known that merging
QLoRA adapter weights to its quantized base mod-
els leads to performance degradation' and distort
the real performance, for every experiment, we
evaluate the fine-tuned model without merging the
trainable parameters, but load them as extra adapter
layers.

Code framework. Our method is implemented
using the Hugging Face PEFT? framework, a
widely adopted open-source framework providing
state-of-the-art parameter-efficient fine-tuning of
pre-trained large language models and diffusion
models. The implementation of OFTv2 will be re-
leased on Hugging Face PEFT soon, to allow for
easy reproduction of our training results. We uti-
lized the Hugging Face TRL library for supervised
fine-tuning?. For the base model quantization, we
leveraged bitsandbytes* for the NormalFloat 4-bit
quantization and the QLoRA finetuning, and Au-
toAWQ? for AWQ quantization.

Pretrained models. Our work utilized several

pre-trained large language models. Specifically, we
See this article comparing different merging
methods: https://kaitchup.substack.com/p/
lora-adapters-when-a-naive-merge
2https://huggingface.co/docs/peft/en/index
Shttps://github.com/huggingface/trl
*https://github.com/bitsandbytes-foundation/
bitsandbytes
5https://github.com/casper-hansen/AutoAWQ
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employed models from the Qwen2.5 model series®,

which are available under the permissive Apache
2.0 license. We also leveraged the Llama 2 mod-
els’, governed by the Llama 2 license. Addition-
ally, for the text summarization tasks, the BART-
large model was used, which is also distributed un-
der the Apache 2.0 license. For the text-to-image
generation, we utilized the Stable Diffusion 3.5
models, which are under the Stability AI Com-
munity license. We have adhered to all respective
licensing agreements for these models throughout
our work.

Dataset. The experiments in this study utilized a
diverse range of publicly available datasets to en-
sure comprehensive evaluation. For finetuning lan-
guage modeling tasks, we employed the Wikitext-
28 dataset, which is distributed under the CC-BY-
SA-3.0 license. Text summarization performance
was assessed by fine-tuning on the CNN / Daily-
Mail Dataset?, also licensed under Apache 2.0, and
the XSum dataset'?, which is available under the
MIT license. For finetuning mathematical reason-
ing capabilities, we used the GSM8K!'! dataset,
available under the MIT license, and the OpenR1-
Math-220k!2 dataset, which can be used under the
Apache 2.0 license. The Dreambooth dataset'?
for fine-tuning the diffusion models are under the
cc-by-4.0 license.

Compute Resources. All the training tasks are
performed on a NVIDIA HGX H100 8-GPU Sys-
tem node with 80GB memory each. We used a
single NVIDIA H100 NVL GPU with 94GB mem-
ory to benchmark the memory usage.

B Mathematical reasoning

Training details. We fine-tuned the Qwen2.5
models using QLoRA or QOFT on a random subset
of 50,000 samples from the Huggingface OpenR1-

6https://huggingface.co/collections/Qwen/
gwen25-66e81a666513e518adb90d9e
"https://huggingface.co/collections/meta-llama/metas-
llama2-models-675bfd70e574a62dd0e40541
8https://huggingface.co/datasets/Salesforce/
wikitext
“https://huggingface.
dailymail
Yhttps://huggingface.
Xsum
11https://huggingface.
12https://huggingface.
OpenR1-Math-220k
13https://huggingface.
dreambooth

co/datasets/abisee/cnn_
co/datasets/EdinburghNLP/

co/datasets/openai/gsm8k
co/datasets/open-ri1/

co/datasets/google/
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LoRA OFTv2

Hyperparameter BF16 NF4 BF16 NF4
r=8 r=16 r=32 r=8 r=16 r=32 b=16 b=32 b=64 b=16 b=32 b=264
Learning rate le-4 le-4 le-4 le-4 le-4 le-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Epoch 10 10 10 10 10 10 5 5 5 5 5 5
Batch size 32 32 32 32 32 32 32 32 32 32 32 32
Gradient Accumulation 4 4 4 4 4 4 4 4 4 4 4 4
Table 6: Hyper-parameter setup of fine-tuning BART-large on XSum with LoRA and OFTv2.
LoRA OFTv2
Hyperparameter BF16 NF4 BF16 NF4
r=8 r=16 r=32 r=8 r=16 r=32 b=16 b=32 b=64 b=16 b=32 b=264
Learning rate le-4 le-4 le-4 le-4 le-4 le-4 4e-4 4e-4 4e-4 4e-4 4e-4 4e-4
Epoch 5 5 5 5 5 5 5 5 5 5 5 5
Batch size 64 64 64 64 64 64 64 64 64 64 64 64
Gradient Accumulation 4 4 4 4 4 4 4 4 4 4 4 4

Table 7: Hyper-parameter setup of fine-tuning BART-large on CNN/DailyMail with LoRA and OFTv2.

LoRA OFTv2
Hyperparameter BF16 NF4 BF16 NF4
7B 13B 7B 13B 7B 13B 7B 13B
Learning rate 2e-4  2e-4 24 2e-4 2e-4 2e4 2e4 2e4
Epoch 10 10 10 10 10 10 10 10
Batch size 16 16 16 16 16 16 16 16

Gradient Accumulation 2 2 2 2 2 2 2 2

Table 8: Hyper-parameter setup of fine-tuning Llama 2 on Wikitext-2 with LoRA and OFTv2.

LoRA OFTv2
Hyperparameter BF16 NF4 BF16 NF4
7B 13B 7B 13B 7B 13B 7B 13B
Learning rate 2e-4  2e-4 2e4 2e-4 8e-4 8e4 8Bed Be4d
Epoch 10 10 10 10 10 10 10 10
Batch size 16 16 16 16 16 16 16 16

Gradient Accumulation 4 4 4 4 4 4 4 4

Table 9: Hyper-parameter setup of fine-tuning Llama 2 on GSM8K with LoRA and OFTV2.

<|im_start|>system\n

Please reason step by step, and put your final answer within \\boxed{{}}.
<|im_end|>\n

<|im_start|>user\n{input}<|im_end|>\n
<|im_start|>assistant\n{output}\n\n

Figure 6: Prompt template used for evaluating Qwen2.5 series models on mathematical reasoning benchmarks.

Math-220k dataset (Face, 2025). For each method  and benchmark, we selected the best-performing

13



LoRA

A photo of [V] catin aJapanese zen garden

QLoRA OFT QOFT

A photo of [V] dog in a mystical ancient temple

Figure 7: Qualitative results from Dreambooth fine-tuning of Stable Diffusion 3.5 Medium (8.1B parameters), with
peak allocated GPU memory: LoRA (38.00 GB), OFT (38.02 GB), QLoRA (35.03 GB) and QOFT (35.02 GB).

model after trying learning rates of 1 x 1075,
2x 1075, 5 x 107, and 1 x 1074 We used a
batch size of 16 for the 1.5B models and 8 for the
7B and 32B models, with 2 gradient accumulation
steps for all. A cosine learning rate scheduler was
employed, with a minimum learning rate set to 10%
of the initial value.

Evaluation details. For evaluating the Qwen2.5
base models and the QLoRA or QOFT fine-tuned
versions, we utilized the same evaluation pipeline
as Qwen2.5-Math'4. This framework provides ro-
bust tools for parsing and evaluating mathematical
expressions and problem-solving steps, ensuring
accurate and consistent assessment of model perfor-
mance on these mathematical benchmarks. More
specifically, we report the model’s pass@1 perfor-
mance, i.e., the performance on the first attempt
for a given task, obtained by utilizing the Qwen2.5
Chain-of-Though question prompt (Figure 6).

C Stable diffusion 3.5

Here we provide additional qualitative results of
fine-tuning the Stable Diffusion 3.5 Medium model
in Figure 7.

The actual GPU memory usage during LoRA
and OFTV2 fine-tuning is summarized in Table 11.
As shown, OFTv2/QOFT demonstrates memory

14ht’cps ://github.com/QwenLM/Qwen2.5-Math
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efficiency similar to LoRA and QLoRA, regardless
of data precision or model scale.


https://github.com/QwenLM/Qwen2.5-Math
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Table 10: The pass@1 performance of the Qwen2.5 series math-specific large language fine-tuned with
QLoRA/QOFT by the Chain-of-Thought reasoning.

SD 3.5 Medium SD 3.5 Large

LoRA 38.00 GB 52.33 GB
OFTv2 38.02 GB 52.32GB
QLoRA 35.03 GB 41.60 GB
QOFT 35.02 GB 41.53 GB

Table 11: Actual GPU memory usage during fine-tuning: LoRA, QLoRA, OFTv2, and QOFT applied on Stable
Diffusion 3.5 Medium and Large.
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