
Published as a conference paper at ICLR 2022

END-TO-END LEARNING OF
PROBABILISTIC HIERARCHIES ON GRAPHS

Daniel Zügner, Bertrand Charpentier, Sascha Geringer, Morgane Ayle,
Stephan Günnemann
Technical University of Munich
{zuegnerd, charpent, geringer, ayle, guennemann}@in.tum.de

ABSTRACT

We propose a novel probabilistic model over hierarchies on graphs obtained by
continuous relaxation of tree-based hierarchies. We draw connections to Markov
chain theory, enabling us to perform hierarchical clustering by efficient end-to-end
optimization of relaxed versions of quality metrics such as Dasgupta cost or Tree-
Sampling Divergence (TSD). We show that our model learns rich, high-quality
hierarchies present in 11 real world graphs, including a large graph with 2.3M
nodes. Our model consistently outperforms recent as well as strong traditional
baselines such as average linkage. Our model also obtains strong results on link
prediction despite not being trained on this task, highlighting the quality of the
hierarchies discovered by our model.

1 INTRODUCTION

Clustering is a fundamental problem in unsupervised learning, both in theory and practice. In contrast
to traditional ‘flat’ clustering, hierarchical clustering brings several advantages. It enables us to
naturally analyze (Zhao & Karypis, 2002) and visualize (Himberg et al., 2004) a given dataset on
different scales. Further, different downstream tasks may require different granularities. Hierarchical
clustering lets us pick the desired granularity after learning. It can also be used for personalized
recommendation (Zhang et al., 2014) or to solve record linkage tasks (Wick et al., 2012). In an
influential paper, Eisen et al. (1998) perform hierarchical clustering on gene expression data and
argue that it could be used to discover the yet-unknown meaning of certain genes, which could lead
to advances in medicine. Besides traditional vector data, real-world graphs are often scale-free and
hierarchically organized (Ravasz & Barabási, 2003; Barabási & Pósfai, 2016). This makes them
interesting candidates for uncovering the underlying hierarchy via hierarchical clustering. Thus, the
hierarchical clustering method we introduce is particularly useful for analyzing scale-free real-world
networks such as Web graphs, citation networks, flight networks, or biological networks.

Related work. We can group hierarchical clustering algorithms into discrete and continuous opti-
mization methods. Discrete optimization methods can themselves be decomposed into agglomerative
approaches and divisive approaches. Agglomerative methods – like the famous linkage algorithms
(Gower & Ross, 1969; Jardine & Sibson, 1968; Bonald et al., 2018; Charpentier, 2019) – follow
a bottom-up approach and iteratively aggregate the two most similar clusters w.r.t. a given simi-
larity measure. Divisive methods follow a top-down approach and recursively split larger clusters
into smaller ones using, e.g., k-means (Steinbach et al., 2000) or spectral clustering (Charikar &
Chatziafratis, 2016). While Moseley & Wang (2017); Kamvar et al. (2002) have shown connections
with explicit objective functions, those methods are mainly based on heuristics to avoid exhaustive
combinatorial optimization.

On the other hand, continuous optimization methods circumvent this issue by (i) relaxing the discrete
tree structure, (ii) defining an explicit quality metric for hierarchies, and (iii) optimizing it using
gradient-based optimizers. Chierchia & Perret (2019); Monath et al. (2017; 2019); Chami et al.
(2020) focus on minimizing the Dasgupta cost (Dasgupta, 2016) (see Eq. (1)) to fit an ultrametric,
hyperbolic embeddings, or a probabilistic model over cluster assignments. Monath et al. (2017) learns
a probabilistic assignment of the samples to leaves of a tree with a fixed binary structure. The method
of Monath et al. (2019) requires approximation for the computation of lowest common ancestors
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(LCA) probabilities and regularization losses. Beyond the Dasgupta cost, Charpentier & Bonald
(2019) propose the Tree Sampling Divergence (TSD), a quality metric for hierarchies on graphs. Both
metrics have the benefit to be internal metrics, i.e., they do not require ground truth information to
evaluate the quality of a hierarchy. Most of the aforementioned methods focus on vector data.

Contributions. We (1) propose a probabilistic model over hierarchies via continuous relaxation of a
tree’s parent assignment matrices. We (2) theoretically analyze the model by drawing connections to
absorbing Markov chains, which allows (3) efficient and exact computation of relevant quantities
(e.g., LCA probabilities). This enables us to (4) learn hierarchies on graphs by efficient, end-to-end
optimization of relaxed versions of quality metrics such as Dasgupta cost and the TSD score. Our
extensive experimental evaluation on 11 real-world graphs, including a massive graph with more than
2M nodes and 60M edges, highlights the effectiveness of our Flexible Probabilistic Hierarchy model
(FPH). It outperforms all baselines, traditional and recent, on the quality of the learned hierarchies
measured both by TSD and Dasgupta cost. Remarkably, FPH also performs competitively on link
prediction despite not being trained on this task.

2 HIERARCHICAL GRAPH CLUSTERING PRELIMINARIES
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Figure 1: Model overview.

We define a graph G = (E, V ) with n nodes and m undi-
rected edges. We let w(vi, vj) be equal to the weight
of edge (vi, vj) if they are connected and to 0 other-
wise, and w(vi) =

∑
j w(vi, vj) to be equal to the

weight of node vi. This allows us to define the edge
distribution P (vi, vj) ∝ w(vi, vj) normalized over all
edges s.t.

∑
ij P (vi, vj) = 1 and the node distribution

P (vi) ∝ w(vi) s.t.
∑

i P (vi) = 1, which are later needed
to compute the quality metrics of learned hierarchies.

Discrete hierarchical clustering. We define a hierarchi-
cal clustering T̂ of a graph G as a tree structured partition-
ing of the nodes V . We denote the nodes of the tree T̂
with n′ ∈ N internal nodes by {x1, ..., xn+n′}. The tree nodes can be decomposed into the leaf nodes
{v1, ..., vn} corresponding to the nodes of the input graph, and the internal nodes {z1, ..., zn′} repre-
senting clusters of leaf nodes; overall {x1, ..., xn+n′} = {v1, ..., vn}∪ {z1, ..., zn′}. Since any tree is
a directed acyclic graph (DAG), we impose w.l.o.g. a topological ordering on the internal nodes of the
tree in the remainder of this work. That is, zi cannot be a parent of zj if i < j; zn′ denotes the root
node. We can uniquely define a tree as T̂ = (Â, B̂) with two adjacency matrices, Â ∈ {0, 1}n×n′

and B̂ ∈ {0, 1}n′×n′ . Â describes the connections from the leaves to the internal nodes, i.e. Âi,k = 1
if internal node zk is the parent of leaf node vi. B̂ describes the connections between the internal
nodes, i.e. Bk,l = 1 if internal node zl is the parent of internal node zk. Since in a tree any node has
exactly one parent, Â is row-stochastic and B̂ is row-stochastic; except its last row B̂n′ correspond-
ing to the root, whose sum is 0. We denote by vi ∧ vj the internal node which is the lowest common
ancestor (LCA) of vi, vj in the tree. The maximum possible number of internal nodes is n′ = n− 1.

Probabilistic hierarchical clustering. The central idea of FPH is to define a probabilistic tree
T via continuous relaxation of the binary-valued adjacency matrices Â, B̂. I.e., we define A,
B such that A ∈ [0, 1]n×n

′
and B ∈ [0, 1]n

′×n′ while keeping the row-stochasticity constraints,
i.e.,

∑n′

j Ai,j = 1 for 1 ≤ i ≤ n,
∑n′

l Bk,l = 1, 1 ≤ k < n′, and for the root node we have∑n′

l Bn′,l = 0. This describes a probabilistic hierarchy; the probability of an internal node zj to be a
parent of a leaf or an internal node is Aij := p(zj |vi) or Bij := p(zj |zi), respectively. See Fig. 1 for
a visualization. Our key technical contribution are efficient closed-form expressions for the lowest
common ancestor probabilities that arise when sampling discrete trees from the probabilistic one.

2.1 INTERNAL METRICS FOR HIERARCHICAL CLUSTERING

Internal metrics are commonly used to evaluate clustering methods, and they have the important
advantage of not requiring external labels. For hierarchical clustering on graphs, two internal metrics
have been proposed to assess the quality of a discrete hierarchy T̂ given an input graph G: Dasgupta
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cost (Das.) (Dasgupta, 2016), and Tree-Sampling Divergence (TSD) (Charpentier & Bonald, 2019).
While the Dasgupta cost can be used for graphs and vector data, TSD is tailored specifically to graphs.

Das(T̂ ) =
∑

vi,vj∈V
P (vi, vj)

∑
z

I[z=vi∧vj ]c(z), TSD(T̂ ) = KL(p(z)||q(z)) (1)

For Das., c(z) =
∑

vi∈V I[z∈anc(vi)] denotes the number of leaves for which the internal node z is an
ancestor. Intuitively, the cost is large if vi and vj are connected by an edge and their lowest common
ancestor contains many leaves, i.e., is close to the root. Thus, Dasgupta favors leaves connected by
an edge to have LCAs low in the hierarchy. For Das., lower scores indicate better hierarchies.

TSD defines two distributions over the internal nodes, p(z) =
∑

vi,vj I[z=vi∧vj ]P (vi, vj), induced
by the edge distribution, and q(z) =

∑
vi,vj I[z=vi∧vj ]P (vi)P (vj), induced by the independent node

distribution. Intuitively, we expect the graph distribution p(z) (induced by edge sampling) and the
null model distribution q(z) (induced by independent node sampling) to differ significantly if the tree
T̂ indeed represents the hierarchical structure of the graph, leading to high TSD scores.

Continuous relaxation. To enable end-to-end gradient-based optimization of Dasgupta or TSD, we
replace the discrete hierarchy T̂ = (Â, B̂) with its continuous relaxation T = (A,B). This leads
to probabilistic parent assignments of leaves to internal nodes. By itself, this does not help us in
hierarchical clustering as it is not clear how to compute the lowest common ancestor probabilities
when sampling discrete hierarchies from the relaxed one, i.e., the probability that an internal node is
the lowest common ancestor of two leaves. Our main theoretical contribution is to derive closed-form
expressions for the lowest common ancestor probabilities in Sec. 3. This gives rise to continuous
versions of TSD and Dasgupta (details in Appendix A.1), which we will refer to as Soft-TSD and
Soft-Das., respectively. For the first time, this allows us to directly optimize for hierarchical clustering
quality metrics in an end-to-end fashion instead of proxy losses or heuristic algorithms.

For optimization over hierarchies, we either minimize the Dasgupta cost or maximize TSD:
min
A,B

Soft-Das(T = (A,B)) or max
A,B

Soft-TSD(T = (A,B)), (2)

where A ∈ [0, 1]n×n
′
,B ∈ [0, 1]n

′×n′ are the continuous relaxations of the parent assignment
matrices as described in Sec. 2. Note that for both metrics we recover the same score as their discrete
versions in the case of a deterministic probabilistic model, i.e. when A, B are binary-valued.

2.2 SAMPLING DISCRETE HIERARCHIES

Given the probability matrices A and B we can easily recover a discrete hierarchical clustering by
sampling discrete matrices Â and B̂, which in turn describe a (discrete) tree T . For each leaf and
internal node we independently sample its parent from the categorical distribution described by the
respective row in A or B. As we show in Appendix A.2, this tree-sampling procedure (denoted
T̂ = (Â, B̂) ∼ PA,B(T )) leads to valid tree hierarchies, and we can directly compute the probability
of any discrete hierarchy given the probabilistic one. We denote probabilities associated with the
tree-sampling perspective as p(T )(·). Note that we can easily obtain a discrete tree given continuous
A,B in a deterministic way by selecting for each leaf and internal node its most likely parent.

3 EFFICIENT, DIFFERENTIABLE HIERARCHIES VIA MARKOV CHAINS

Outline. This section is organized as follows. The goal is to derive efficient, closed-form equations
to compute (lowest common) ancestor probabilities which are consistent with the tree-sampling pro-
cedure explained in the previous section. For this, we draw connections to absorbing Markov chains
in Sec. 3 and show in Secs. 3.1, 3.2 how to compute the desired quantities efficiently under this sim-
plifying Markov Chain perspective. Then, we show that these equations under the Markov chain and
the tree-sampling perspectives are equivalent, i.e., we do not introduce any error by the Markov chain
assumptions. Finally, we show in Sec. 3.3 how to exploit the independence assumptions of the Markov
chain to compute the (lowest common) ancestor probabilities efficiently and in a vectorized way.

We start by showing that the probabilistic model described in the previous section indeed defines an
absorbing Markov chain. Intuitively, A and B can be interpreted as transition matrices from leaves
to internal nodes and among internal nodes, respectively.
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Definition 1 (Tree Markov Chain). Let A ∈ [0, 1]n×n
′
,
∑n′

j=1Aij = 1 ∀1 ≤ i ≤ n and B ∈
[0, 1]n

′×n′ ,
∑n′

j=1Bij = 1 ∀1 ≤ i < n′,
∑n′

j=1Bn′j = 0. We define a Markov chain M =

(S ∪ {ω},T ) with state set S ∪ {ω} and transition matrix T , where S = {v1, v2, . . . , vn} ∪
{z1, z2, . . . , zn′}. Further,

T ∈ R|S|+1×|S|+1 =

[
Q w
0 1

]
,Q ∈ R|S|×|S| =

[
0 A
0 B

]
is the transition matrix of the Markov chain M in canonical form, where w ∈ R|S| =
(0, 0, . . . , 0, 1)T is the vector of transition probabilities to state ω. Note that we add here an auxiliary
state ω, which acts as final absorbing state from the root.
Theorem 1. LetM be a tree Markov chain as defined in Definition 1.M is an acyclic absorbing
Markov chain with ω being its only absorbing state. (See proof in App. A.3)

Thus, our probabilistic hierarchy defined by A and B describes an absorbing and acyclic Markov
chain. In our hierarchical clustering interpretation, a random walk starts at one of the leaves and first
randomly transitions to the internal nodes based on A, followed by transitions among the internal
nodes via B. Once the root is reached, the random walk is absorbed after one last step to ω.

In the remainder, we denote the probabilities arising from the tree Markov-chain as p(M)(·) to
distinguish them from their tree-sampling counterparts p(T )(·). In general, the two perspectives
are not equal, e.g., when considering pairs of leaf nodes. Here, the Markov chain introduces an
independence assumption of pairs of random walks. Under tree-sampling, two leaves’ paths to
the root are dependent in general, i.e., two paths traversing some internal node zk implies that all
subsequent transitions are identical. While Markov-chain probabilities p(M)(·) often have efficient
and analytical solutions grounded in Markov chain theory, it is unclear a-priori how to leverage them
for hierarchical clustering. In the following, we relate central tree-sampling probabilities p(T )(·), i.e.,
(lowest common) ancestor probabilities, to their Markov chain counterparts p(M)(·).

3.1 ANCESTOR PROBABILITIES

First, we want to compute the probability p(T )
anc (zk|vj) of an internal node zk being an ancestor of leaf

vj under the row-wise tree-sampling procedure (see Sec. 2.2). We call this an ancestor probability.

Theorem 2. Let T = (Â, B̂) ∼ PA,B(T ) be a discrete hierarchy obtained by tree-sampling.
Further, letW(vi) be a random walk onM rooted in vi resulting in path r̂i.We have that

p(T )
anc (zk|vj) = p(zk ∈ r̂i) =: p(M)

anc (zk|vj). (3)
(See proof in App. A.4)

Note that any random walk onM must result in a path since, becauseM is acyclic, no transient state
can be visited more than one time in a random walk. Theorem 2 means that we can use ancestor
probabilities arising from the tree-sampling and Markov chain views interchangeably.

3.2 LOWEST COMMON ANCESTOR PROBABILITIES

For the hierarchical clustering problem we are interested in the lowest common ancestor (LCA) of
two leaf nodes vi and vj , which we denote by vi ∧ vj . The LCAs are required to compute both the
Dasgupta cost as well as the Tree-Sampling Divergence (TSD). Therefore, when optimizing for good
Dasgupta or TSD scores, it is crucial to exactly and efficiently compute the LCA probabilities that
arise. We denote these LCA probabilities by p(T )(zk = vi∧vj). Previous work resorts to heuristics in
approximating the LCA probabilities (Monath et al., 2019). In contrast, our connection to absorbing
Markov chains admits efficient closed-form computation of LCA probabilities, as we now show.
Theorem 3. Let A and B be transition matrices describing a (soft or discrete) hierarchy as intro-
duced in Section 2. Let ri = (r

(1)
i , . . . , r

(T−1)
i , zn′) denote a path from leaf vi = r

(1)
i to the root zn′ ,

where |ri| = T . Then, the probability of internal node zk being the lowest common ancestor vi ∧ vj
of leaf nodes vi 6= vj under the tree-sampling procedure from Section 2.2 is

p(T )(zk = vi ∧ vj) =
∑

(ri,rj): zk=vi∧vj

p(ri) · p(rj), (4)
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where ri is the part of a path from vi up to (and including) internal node zk, i.e., ri = (r
(1)
i , . . . , zk).

(See proof in App. A.5)

For vi=vj , an LCA probability is trivially the parent probability, i.e., p(zk=vi∧vi) = p(zk|vi). From
Eq. (4) it seems that a straightforward way to compute the LCA probabilities is to enumerate the
set {(ri, rj) : zk = vi ∧ vj} of all pairs of potential paths from vi and vj to the internal node zk
and sum their probabilities. However, this is intractable in practice because the size of the set grows
exponentially in the ‘depth’ of the internal node k (see App. A.8, Thm. 7). In Thm. 4 we show how
to compute the LCA probabilities that arise when sampling pairs of random walks fromM.
Theorem 4. Let M be a Markov chain as defined in Definition 1, zk be an internal node, and
vi 6= vj be leaf nodes. Let W(vi),W(vj) be independent random walks onM rooted in vi and
vj , respectively. Then, the probability that internal node zk is the lowest internal node (as by the
topological order) traversed by both random walks, i.e., the lowest common ancestor of vi and vj , is

p(M)(zk = vi ∧ vj) = panc(zk|vi)panc(zk|vj)−
k−1∑
k′=1

p(M)(zk′ = vi ∧ vj)panc(zk|zk′)2 (5)

(See proof in App. A.6)

Thus, due to the independence of pairs of random walks in the Markov chainM, we can compute LCA
probabilities efficiently in closed form on the Markov chain. However, the joint ancestor probability
p
(M)
anc (zk|vi, vj) does not reflect the underlying process of sampling T = (Â, B̂) ∼ PA,B(T ) any

more, i.e., in general p(M)
anc (zk|vi, vj) = panc(zk|vi) · panc(zk|vj) 6= p

(T )
anc (zk|vi, vj).

As our main theoretical result, we show next that, remarkably, the LCA probabilities obtained from
the Markov chain are indeed equivalent to the tree-sampling LCA probabilities:
Theorem 5. Let A and B be transition matrices describing a (soft or discrete) hierarchy as described
in Sec. 2. The LCA probabilities arising from tree-sampling and the Markov chain are equal, i.e.,

p(T )(zk = vi ∧ vj) = p(M)(zk = vi ∧ vj). (6)
(See proof in App. A.7)

This result is surprising at first, since we made the assumption that pairs of random walks are
independent in the Markov chain sampling process. However, recall that two paths in the tree-
sampling process are disjoint and independent until they meet at their LCA zk. Thus, for this subset
of the pairs of paths leading to zk, the independence assumption inM does not lead to an error.

The result is also very useful in practice, since it means that we can use efficient computations from
the Markov chain view to exactly compute the tree-sampling LCA probabilities. As we show in the
following, we can jointly compute LCA probabilities for all pairs of leaves in a vectorized way.

3.3 EFFICIENT VECTORIZED COMPUTATION

Definition 2 (Fundamental Matrix). LetM be an absorbing Markov chain and Q as in Definition 1.
The fundamental matrix N of Markov chainM is

N ∈ R|S|×|S| = (I −Q)−1 =

[
I A(I −B)−1

0 (I −B)−1

]
. (7)

Nij equals the expected number of visits of state j when starting a random walk in state i. SinceM
is acyclic, each transient state can be visited at most once, i.e., Nij is the probability of state j being
on a random path to the root starting from i. Observing the block structure of N in Eq. (7), we define

P anc ∈ Rn×n′ := A(I −B)−1, P̃ anc ∈ Rn′×n′ := (I −B)−1 − I (8)
P anc
ij = panc(zj |vi) is the probability of internal node zj ending up being an ancestor of vi under the

tree-sampling procedure. Analogously, P̃ anc provides the ancestor probabilities among the internal
nodes, i.e. P̃ anc

ij = panc(zj |zi). Note that we subtract the identity matrix in Eq. (8) since the diagonal
entries of the fundamental matrix block (I −B)−1 are always trivially 1, as they correspond to the
probability of traversing an internal node zk when also starting from zk. By subtracting I we obtain
the ancestor probabilities by enforcing that an internal node is not its own ancestor. Since B is strictly
upper triangular, the inverse (I −B)−1 always exists and is efficient to compute in O(n′2).
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Theorem 6. The vector of LCA probabilities of all internal nodes w.r.t. leaf nodes vi and vj can be
computed in a vectorized way via

P LCA
vi 6=vj ∈ Rn′ = (P anc

vi � P anc
vj )T · (I + P̃ anc � P̃ anc)−1 P LCA

vi,vi = Avi, (9)

where � denotes the element-wise (Hadamard) product. (See proof in App. A.9)

Complexity analysis. As we show in App. A.10, we can exploit sparsity in real-world graphs and
thus do not have to construct the full Rn×n×n′ LCA tensor P LCA. This leads to a complexity of
O(m× n′2) for both Soft-Das. and Soft-TSD, which is efficient since typically we have n′ � n. All
equations are vectorized and thus benefit from GPU acceleration. More details in App. A.12.

3.4 INTEGRAL SOLUTIONS

In App. A.13 we analyze the properties of the relaxed problem Soft-TSD which our method FPH
optimizes. We prove in Theorem 10 that the optimization problem is integral, i.e., the global
maximum is discrete. This is remarkable, since we are actually optimizing over continuous hierarchies
parameterized by A and B. This implies that the global maximum of the relaxed problem is the same
as for the combinatorial problem of optimizing over discrete hierarchies. Soft-Das. is not obviously
convex or concave, thus not obviously integral.

3.5 FURTHER CONSIDERATIONS

Choice of n′. The number of internal nodes n′ is an important hyperparameter of our method (as
well as most baselines). Similar to, e.g., the number of clusters k in k-means, large numbers of
internal nodes n′ lead to more expressive hierarchies, which on the other hand are less interpretable
by a human and require more memory and computation. In Fig. 2, we show how the expressiveness
(as measured by TSD/Dasgupta) improves for increasing values of n′, and in App. B.6 we visualize
learned hierarchies with different n′. Since FPH typically trains within a few minutes, our general
recommendation is to use the elbow method (Thorndike, 1953) to determine n′.

Constrained vs. unconstrained optimization. Since our probabilistic hierarchy model leads to fully
differentiable metrics (i.e., Soft-Das. and Soft-TSD), we can optimize the metrics in an end-to-end
fashion via gradient descent. Note that the matrices A and B are constrained to be row-stochastic; we
therefore experiment with two optimization schemes: unconstrained optimization of A and B (e.g.
using Adam optimizer and softmax to obtain row-stochastic matrices), or constrained optimization
via projected gradient descent (PGD). In our ablation study we found that the PGD optimization
consistently leads to better results (see Fig. 4). We attribute this performance difference to the severe
gradient re-scaling in the softmax operation when the parameters become very large or small, leading
to very small step sizes (Niculae, 2020); thus, unless otherwise stated, FPH uses PGD optimization.

Scaling to large graphs. For fast training on large graphs on commodity GPUs, we propose a simple
yet effective batching scheme. We uniformly pick K random leaves from the graph at each iteration.
Then we select the induced subgraph of these K nodes and their neighbors while capping the total
number of nodes by some constant C. We then compute the loss and perform the update based on the
selected subgraph. By using our batching procedure we do not need to have all parameters on the
GPU, which enables scaling to very large graphs.

Node embeddings. In our default setting, we directly parameterize the matrices A and B as learnable
parameters via gradient descent. That is, the direct parent probabilities p(zk|vi) and p(zk|zk′) are the
only trainable parameters. As an alternative, we also experiment with learning a node embedding
for each leaf and internal node. We compute the parent probabilities A and B via softmax on
the negative Euclidean distances of the embeddings. Given a fixed embedding size, this leads to a
parameterization that scales linearly in the number of leaf nodes and internal nodes.

Initialization. We have found that our model (as well as most of the baselines) can greatly benefit
from a “smart” initialization scheme. For the direct parameterization, we have found initializing from
the solution obtained from the average linkage algorithm (Jardine & Sibson, 1968) to work well.
Unless stated otherwise, FPH uses initialization from average linkage. In contrast to vector data,
linkage algorithms are fast on graph data and can be performed in O(m) (Benzécri, 1982; Murtagh &
Contreras, 2012), thus not affecting the complexity of FPH. In the embedding parameterization, we
experiment with initializing the embeddings using DeepWalk (Perozzi et al., 2014).
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Dasgupta cost (lower is better) Normalized TSD (higher is better)

Alg. Ward Louv. UF HypHC HGHC RGHC Avg. lk. FPH Ward Louv. UF HypHC HGHC RGHC Avg. lk. FPH

Brain 618.81 777.14 712.33 571.64 749.40 556.57 556.68 503.67 31.72 29.28 28.61 17.48 24.18 22.05 28.91 32.34
OpenFlight 382.45 633.66 393.58 463.43 487.96 488.90 363.40 355.61 55.48 51.51 53.89 39.08 49.50 39.56 52.02 57.72
Genes 202.17 247.26 251.01 495.26 366.53 247.07 196.50 183.63 66.80 67.47 62.95 20.66 53.33 51.81 66.72 67.69
Citeseer 92.27 178.23 98.61 215.62 150.26 131.89 83.69 77.16 69.43 68.45 67.40 37.22 57.61 50.61 67.80 69.37
Cora-ML 281.82 336.86 342.86 442.09 411.49 350.00 292.77 254.78 56.47 57.51 53.06 30.73 46.76 42.68 55.30 58.02
PolBlogs 377.63 443.48 350.74 330.58 354.86 433.77 355.61 262.48 27.54 25.93 25.23 22.21 23.94 19.41 25.25 31.41
WikiPhysics 736.11 986.32 753.81 759.07 840.15 740.87 658.04 537.95 45.28 46.03 43.40 32.02 39.70 38.39 43.15 49.97
ogbn-arxiv 22,870 31,655 52,666 OOM 22,076 24,077 20,671 14,354 36.77 37.75 24.75 OOM 26.05 25.21 33.64 39.66
ogbl-collab 13,835 20,664 91,807 OOM 34,934 21,057 15,716 13,493 45.33 46.12 27.90 OOM 24.80 34.07 45.44 48.36
DBLP 31,138 40,744 148,439 OOM 94,384 44,424 36,463 31,686 38.26 40.92 20.21 OOM 15.96 27.82 38.99 41.66

Table 1: Hierarchical clustering results (n′ = 512). Bold/underline indicate best/second best scores.
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Figure 2: Hierarchical clustering results measured by Dasgupta cost (lower is better) and TSD (higher
is better). More results in Fig. 3 in the appendix.

4 EXPERIMENTS

Datasets. We use 11 real world datasets (McCallum et al., 2000; Sen et al., 2008; Aspert et al., 2019;
Amunts et al., 2013; Cho et al., 2014; Adamic & Glance, 2005; Patokallio; Wang et al., 2020; Yang
& Leskovec, 2015), including the very large ogbn-products dataset with around 2.3M nodes and 62M
edges (Hu et al., 2020). We always select the largest connected component (LCC) as a preprocessing
step and convert each graph to an undirected one. We provide further information about the datasets
in Table 6, including number of nodes, number of edges and mutual information (MI) between nodes
which is an upper-bound on the TSD score (Charpentier & Bonald, 2019). In our experiments we
report normalized TSD in percent.

Baselines. We compare our method with the following deep learning baselines: Routing Gradient-
based clustering (RGHC) (Monath et al., 2017), Hyperbolic Gradient-based Clustering (HGHC)
(Monath et al., 2019), Ultrametric Fitting (UF) (Chierchia & Perret, 2019), and HypHC (Chami
et al., 2020). Importantly RGHC, HGHC and HypHC also optimize a relaxed version of the Dasgupta
cost. Moreover, we compare to the average linkage algorithm (Avg. link.). as well as the Ward
linkage algorithm (Ward) (Ward Jr., 1963). Finally, we compare to the Louvain method (Blondel
et al., 2008) (Louvain). For RGHC, HGHC, and HypHC, which require vector data as input (as
opposed to graphs), we use DeepWalk embeddings as node features. Note that linkage algorithms
return a full hierarchy with n′ = n − 1. Therefore we use the compression scheme introduced in
(Charpentier & Bonald, 2019) to reduce the size of the hierarchies to the desired number of internal
nodes. See App. B.7 for our hyperparameter choices.

For the results on Dasgupta and TSD, we train each baseline 5 times and report results for the best
run.1 For all models, we apply a post-processing treatment consisting in pruning unused internal
nodes. For FPH, we select for each node its most likely parent to obtain a discrete tree.

4.1 RESULTS

Hierarchical clustering. We report results on hierarchical clustering with n′ = 512 internal nodes
in Table 1. FPH outperforms all baselines on all datasets on TSD and on all except one dataset on the
Dasgupta cost. Remarkably, the average linkage algorithm outperforms most of the deep-learning
based baselines. We partially attribute this to the fact that the baselines use DeepWalk embeddings as
node attributes.

1Since we are not using any label information, this does not lead to data leakage or overfitting on test data;
we show standard deviations in Table 11. Since FPH is deterministic, we only run it once.
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Model Citeseer Cora Polblogs ogbn-arxiv DBLP

Avg. 0.367 0.420 0.507 0.216 0.526
RGHC 0.281 0.400 0.730 0.286 0.510
HGHC 0.365 0.379 0.177 0.290 0.408
Ward 0.368 0.504 0.702 0.411 0.591
UF 0.347 0.428 0.676 0.254 0.598
HypHC 0.270 0.121 0.691 OOM OOM
Louvain 0.329 0.500 0.640 0.395 0.558
FPH 0.398 0.462 0.680 0.251 0.560
FPH (Louv.) 0.380 0.507 0.614 0.399 0.564
FPH (Ward) 0.393 0.516 0.708 0.401 0.604

Table 2: NMI results on real-world datasets. FPH (Louv.) and FPH (Ward) refer to FPH initialized
from the solutions of Louvain and Ward, respectively.

Moreover, we noticed that HypHC requires an excessive amount of triplet samples to obtain good
results. Even n2, as suggested by the authors, performs poorly. We use 50M triplets for all datasets,
which is more than 4.5 times the recommended number of n2 on Wiki-Physics. This took almost 24
hours to compute, which is why we could not go higher. We clearly see a dependence of HypHC’s
performance on the number of triplets, as it performs competitively on PolBlogs, our smallest dataset,
and poorly on Wiki-Physics, the largest dataset on which we were able to run HypHC. In Tbls. 8, 9
we show baseline results with DW d = 128 embeddings, which did not improve results consistently.

In Figure 2 we show how the models perform for different numbers of internal nodes n′. As expected,
the models generally obtain better scores for higher capacity. Again, we observe that FPH performs
best across datasets and values of n′, highlighting the effectiveness of our approach. Specifically
on the Dasgupta cost, FPH substantially outperforms the baselines. This is remarkable since RGHC,
HGHC and HypHC also optimize a relaxed version of the Dasgupta cost.

External evaluation. As we typically have no knowledge about ground-truth hierarchies in real-
world data, it is difficult to perform external evaluation. To address this, we propose the following:

(i) We compute the normalized mutual information (NMI) between the ground-truth class labels and
the learned hierarchies when cutting them appropriately to divide the leaves into the same number of
(flat) clusters. We set n′ = 256 for all models (except RGHC, since it ran OOM; we use n′ = 128
instead) and set FPH to optimize TSD. Note, though, that the node labels are not necessarily solely
based on connectivity of nodes, but e.g., also on node attributes, to which the models do not have
access. Thus, we cannot expect perfect correlation of “good” hierarchies in the sense of explaining
edges in the graph and NMI w.r.t. ground-truth node labels. In Table 2 we show the results; the
hierarchies learned by FPH achieve strong scores, highlighting its effectiveness.

(ii) Similarly, we can use the ground-truth clustering from synthetic hierarchical stochastic block-
model (HSBM) (Lyzinski et al., 2016) graphs to compute the NMI scores at each level of the hierarchy.
We use five HSBM graphs with 100 and 1000 nodes, respectively. The graphs have three levels (see
Figs. 6,7 for example graphs). On the small graphs we set n′ = 64; on the large graphs, we use the
same settings as in (i). In Table 10 we show the results. FPH outperforms all baselines and is able to
recover the ground-truth hierarchies to a very high accuracy.

Ablation study. In our ablation study, we compare (i) FPH (i.e., with constrained optimization
using PGD) vs. unconstrained optimization with Adam (FPH-U) and using softmax; (ii) average
linkage initialization vs. random initialization (FPH-R, FPH-UR); (iii) direct optimization of A,B
vs. learning node embeddings (FPH Emb.). Here, we experiment with random initialization (FPH-R
Emb.) as well as DeepWalk initialization (FPH Emb. DW). The results, obtained on the Wiki-
Physics dataset, are displayed in Figure 4 (App.). We observe that FPH, i.e. constrained PGD
optimization of A and B with initialization from average linkage performs best. In a similar way,
“smart” initialization from DeepWalk tends to improve the results on FPH Emb., too, but the effect is
less pronounced. In general, FPH variants learning embeddings perform worse than our full version;
this may be due to the gradient-rescaling due to softmax, which we also suspect is a reason why
unconstrained optimization achieves weaker results than FPH.

Scalability. We run experiments on the very large graph dataset ogbn-products, which has about
2.3M nodes and 62M edges. We train FPH both with n′=512 and 1024 internal nodes performing
batching as explained in Sec. 3.5. We show the results in Table 3. FPH outperforms all baselines
TSD and is competitive on Dasgupta, with both n′=512 and 1024. Note that we could not compare
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Dasgupta Norm. TSD
n′ 512 1024 512 1024

Ward 144,157 127,968 37.05 40.59
HGHC 219,959 168,851 35.90 39.53
RGHC 184,688 - 35.35 -
Avg. link. 175,571 168,753 40.33 43.21
FPH 147,169 142,404 43.79 45.57

Table 3: Results on ogbn-products.

Dataset FPH DCSBM DW Ad./Ad. VGAE
Cora-ML 95.7 95.5 94.3 86.5 95.9
Citeseer 96.2 93.6 96.0 76.8 94.8
PolBlogs 94.3 94.9 84.8 92.6 92.8
WikiPhysics 97.2 96.9 92.9 96.6 97.0
Brain 94.1 95.2 83.8 90.7 93.2
OpenFlight 99.3 99.0 94.3 98.4 99.0
Genes 69.8 66.9 70.3 53.0 66.6

Table 4: AUC-PR score (%) for link prediction.

with HypHC, since (a) the implementation constructs a dense n × n matrix, which would require
more than 14TB memory assuming single precision; (b) sampling n2 triplets, as recommended by the
authors, would take weeks. Further, we do not report results on UF since it did not converge. RGHC
ran out of memory for n′=1024.

Runtime. Due to the efficient, vectorized computations, a full epoch of a complete dataset to compute
Soft-TSD or Soft-Dasgupta using our model is very fast. A complete forward pass on Wiki-Physics
with 512 internal nodes takes only about 130ms on GPU and about 2s on CPU. On the other hand, a
full evaluation on ogbn-products takes only about 13 minutes (758s) on CPU, and training the model
on a GPU takes approximately 3.5 hours for 2K epochs (with batching).

Link prediction. As the TSD score can be interpreted in terms of a reconstruction loss, we can use
the scores of the reconstruction scheme in Eq. (25) (App. B.1) for predicting links. We compare with
DeepWalk (DW) and the variational graph autoencoder (VGAE) (Kipf & Welling, 2016), where the
link prediction score of two nodes is the cosine of their respective embeddings. Further, we compare
with degree-corrected stochastic blockmodels (DCSBM) (Karrer & Newman, 2011) and Adamic
Adar (Ad./Ad.) (Adamic & Adar, 2001), which are established strong baselines for link prediction in
non-attributed graphs. See App. B.2 for details. Importantly, none of the models use node features,
including FPH. As shown in Table 4, FPH achieves best or second-best performance on all datasets.
This is remarkable, since FPH is not trained specifically for this task, which highlights the generality
and usefulness of the hierarchies discovered by FPH.

Root Level 1 Level 2

learning,
algorithm,
problem

neural,
paper,

networks

asocs, generalization, dynamic
genetic, reinforcement, search

data, models, training
reasoning, knowledge, planning

chain, markov,
sampler

series, time, bayesian
gibbs, distribution, mcmc

dimacs,
evolutionary,

species

sum, binary, comparison
perfect, graphs, parameterized
technical, report, polynomial

stability,
systems,

linear

control, gain, output
proved, trajectory, bounded

lyapnov, state, online

wavelet, minimax,
estimation

Table 5: Cora-ML hierarchy visualization.

Qualitative analysis. In Table 5 we provide insight
into our model trained on the Cora-ML dataset. We
show the first three levels of internal nodes of the
learned hierarchy. Each cell corresponds to an inter-
nal node and contains the three most frequent words
of the abstracts of all papers (i.e., leaf nodes) as-
signed to the respective internal nodes. Words from
a node are excluded from its children to avoid dupli-
cates. Terms tend from more general at the root (e.g.,
‘problem’) towards more specific at the lower levels
(e.g., ‘mcmc’). Further, we can identify categories
of machine learning approaches, e.g., reinforcement
learning (L2, row 2), symbolic AI (L2, row 4), or
variational inference (L2, row 6). Again, FPH did not see any text information (node attributes) and
performed the clustering based on citations (edges) alone. Besides offering qualitative evidence that
the learned hierarchies are reasonable, this also showcases a potential real-world application of FPH:
a scholar can explore the hierarchy of topics in an academic field to discover relevant papers.

5 CONCLUSION

We propose a new probabilistic model over hierarchies on graphs which can be learned using
end-to-end gradient-based optimization. By drawing connections to absorbing Markov chains we
can compute relevant quantities such as lowest common ancestor probabilities exactly and efficiently
in a vectorized way. For the first time, this allows to directly optimize for relaxed versions of quality
metrics for hierarchical clustering such as Dasgupta cost or Tree-Sampling Divergence (TSD) in
an end-to-end fashion. Our Flexible Probabilistic Hierarchy model outperforms strong traditional
as well as recent deep-learning-based baselines on nearly all datasets and tasks considered and easily
scales to massive graphs with millions of nodes.
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ETHICS STATEMENT

Since our method does not directly focus on a specific real-world application, good or bad societal
outcomes depend on how practitioners and researchers use it in practice. This means that it could
potentially be abused, e.g., by corporations or governments, to identify groups and hierarchies of
dissidents via recorded metadata. For instance, phone call metadata is routinely collected at scale by
service providers and governments. By using our method on the large-scale call graph it could be
possible to identify groups of political dissidents and to repress them. On the other hand, we argue
that our method can also have positive impact, e.g., by making corpora of literature more accessible
to users or by enabling scientists, e.g., to discover cliques and hierarchies in biological networks.
Moreover, our contribution is algorithmic in nature and does not consider the effects of potential
biases or discrimination in the underlying network data.

REPRODUCIBILITY STATEMENT

For reproducibility and verifiability of our theoretical results, we provide complete proofs of all
ten theorems of our work in Appendices A.3-A.13. We further make explicit all assumptions
and definitions we use to derive our results. For reproducibility of our experimental results, we
first highlight that our model’s core implementation is a straightforward PyTorch implementation
of the matrix equations in this work. Further, we detail our experimental approach in Sec. 4
and provide hyperparameter choices for our method as well as the baselines in Table 7 in the
appendix. For the baselines, we use the authors’ official implementations and use the suggested
hyperparameters. To compute the Dasgupta and TSD metrics (as well as to obtain the results for
the Louvain algorithm), we use the sknetwork Python library.2 Our implementation is available at
https://www.daml.in.tum.de/fph
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A PROOFS AND THEORETICAL ANALYSIS

A.1 CONTINUOUS VERSIONS OF TSD AND DASGUPTA

Our probabilistic hierarchy model enables us to replace the discrete parent assignments in the
Dasgupta cost and TSD with the parent probabilities from the relaxed adjacency matrices A and B.
This, in turn, leads to LCA probabilities which are consistent under the tree-sampling procedure. For
the first time, this allows us to directly and efficiently optimize for relaxed versions of hierarchical
clustering quality metrics in an end-to-end fashion instead of proxy losses or heuristic algorithms.

Recall the equation of the discrete Dasgupta cost, Das(T̂ ) =
∑

vi,vj∈V P (vi, vj)
∑

z I[z=vi∧vj ]c(z).
c(z) is the number of leaves for which internal node z is an ancestor, i.e., c(z) =

∑
v∈V I[z∈anc(v)].

Thus, we get

Das(T̂ ) =
∑

vi,vj∈V
P (vi, vj)

∑
z

I[z=vi∧vj ]

∑
v∈V

I[z∈anc(v)].

We propose the soft Dasgupta cost (Soft-Das) by replacing the indicators I[·] with their expectations,
i.e., with their associated probabilities:

Soft-Das(PA,B(T )) =
∑

vi,vj∈V
P (vi, vj)

∑
z

p(z = vi ∧ vj)
∑

v

panc(z|v)

Intuitively, Soft-Das is the Dasgupta cost of the expected hierarchy obtained via sampling from
A,B, i.e., Soft-Das(PA,B(T )) ≡ Das(ET̂ ∼PA,B(T )[T̂ ]). Ideally, we would like to optimize
the expected Dasgupta cost when sampling discrete hierarchies, i.e., Exp-Das(PA,B(T )) =

ET̂ ∼PA,B(T )

[
Das(T̂ )

]
, i.e., to put the expectation outside the Das function, which is nontrivial. We

leave this extension for future work.

In the same way, we propose a differentiable version of the soft Tree Sampling Divergence (Soft-
TSD). To this end, we replace the discrete assignments in the distributions p(z) and q(z) with
probabilistic assignments, i.e.

Soft-TSD(PA,B(T )) = KL(p(z)||q(z)) =
∑

z

p(z) log
p(z)

q(z)

where p(z) =
∑
vi,vj

p(z = vi ∧ vj)P (vi, vj)

q(z) =
∑
vi,vj

p(z = vi ∧ vj)P (vi)P (vj)

Analogously to above, Soft-TSD effectively computes the TSD score of the expected hierarchy
obtained via sampling from A,B. Extending our model to compute Exp-TSD(PA,B(T )) =

ET̂ ∼PA,B(T )

[
TSD(T̂ )

]
is left for future work. Note that for both Soft-TSD and Soft-Das we

recover the same score as their discrete formulations in the case of a deterministic probabilistic model,
i.e. when A and B are binary-valued.

A.2 TREE-SAMPLING PROCEDURE

Recall our assumption that the internal nodes are ordered, and that Bij = 0 if j ≤ i. This implies
that there are no possible cycles, or equivalently that B is a strictly upper-triangular matrix, i.e., it
describes a directed acyclic graph (DAG). Combined with the fact that each node in a tree (except the
root) has exactly one parent, we see that the sampled discrete hierarchy is indeed a tree. We denote
this tree-sampling process by T = (Â, B̂) ∼ PA,B(T ). We can also compute the probability of any
tree T under the sampling procedure described above:

PA,B(T = (Â, B̂)) =
∏
i,j

A
Âi,j

i,j

∏
i′,j′

B
B̂i′,j′

i′,j′ (10)
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Note that Ai,j and Bi′,j′ are the probabilities of internal nodes zj and zj′ to be a parent of leaf and
internal nodes vi and zi′ respectively while Âi,j and B̂i′,j′ are equal to 1 if these connections exist in
the tree T , else 0.

A.3 PROOF OF THEOREM 1

Proof. For M to be absorbing (i) it must have at least one absorbing state, and (ii) at least one
absorbing state must be reachable from any state in a finite number of steps. For (i), ω is an absorbing
state since its self-transition probability Tk,k = 1, where k = |S|+ 1 is its corresponding index in
the transition matrix T . Thus, once reached, a random walk cannot leave the state ω. To show (ii), we
note that since the transient state transition matrix Q is a strictly upper-triangular matrix, any random
walk onM must lead to state zn′ . From state zn′ , the random walk transits to ω with probability
wn′ = 1. Thus, since n′ is finite, state ω can be reached from any state in a finite number of steps.
Further, ω is the only absorbing state since all self-transition probabilities of states in S are zero as
diag(Q) = 0. Since Q is strictly upper-triangular, none of the transient states can be visited more
than once on a random walk, and thereforeM is acyclic.

A.4 PROOF OF THEOREM 2

Proof. We can arbitrarily define the order in which we sample from the categorical distributions in
A and B because of the independence of the sampling steps. We choose to start by sampling first
from Ai, i.e., the row corresponding to the leaf node vi under consideration: w(1) ∼ Cat(Ai). Next,
we sample from the row corresponding to w(1), and repeat until we reach zk, i.e.

w(t) ∼ Cat(Bw(t−1)) for 1 < t ≤ T,

where w(T ) = zk. For the remaining entries, we continue in arbitrary order. Observe that
(w(1), . . . , w(T )) are the ancestors of leaf vi in T . Further observe that this sampling procedure is
identical to how the path r̂i is generated in the random walkW(vi), completing the proof.

A.5 PROOF OF THEOREM 3

Proof. First, recall that all paths end in the root node, such that ri necessarily ends in zn′ = r
(T )
i .

When reasoning about the lowest common ancestors, it is no longer sufficient to consider the ancestors
(or, equivalently, path to the root) of a single leaf node in isolation. Instead, we need to consider pairs
of dependent paths (ri, rj), i 6= j rooted in vi and vj , respectively. Note that ri and rj necessarily
converge at some internal node zk = vi ∧ vj — the latest at the root node zn′ .

Thus, we denote with ri = (r
(1)
i , . . . , vi ∧ vj) the first part of the path ri until (and including) its

lowest common ancestor with rj , i.e., vi ∧ vj . Analogously, ri = (r
(|ri|+1)

i , . . . , zn′), such that
ri = (ri, ri). Further, note that the paths ri and rj are on the same underlying hierarchy T , thus
ri = rj , as both paths have the same trajectory to the root once they have reached their lowest
common ancestor, i.e., they are dependent.

The probability of observing the pair of paths (ri, rj) under the tree-sampling perspective is

p(T )((ri, rj)) = p(r
(1)
i |vi) ·

|ri|∏
t=2

p(r
(t)
i |r

(t−1)
i ) · p(r(1)j |vj) ·

|rj |∏
t=2

p(r
(t)
j |r

(t−1)
j ) ·

|ri|∏
t=|ri|+1

p(r
(t)
i |r

(t−1)
i )

(11)
More compactly,

p(T )((ri, rj)) = p(ri) · p(rj) · p(ri) = p((ri, rj)) · p(ri) = p((ri, rj)) · p(rj) (12)

Importantly, we can see from Eq. (12) that, in general, p(T )((ri, rj)) 6= p(ri) · p(rj) i.e., the paths
ri and rj are not independent. We denote p(T )

anc (zk|vi, vj) the probability of the internal node zk to
be the ancestor of leaf nodes vi and vj under the tree-sampling perspective. Hence, the probability
of the internal node zk to be the ancestor of leaf nodes vi and vj under dependent and independent
random walks are different i.e. p(T )

anc (zk|vi, vj) 6= panc(zk|vi) ·panc(zk|vj). This makes intuitive sense
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because knowing that zk′ is an ancestor of vi and vj in a tree T , additional knowledge that zk, k > k′

is an ancestor of vi implies that zk is also an ancestor of vj .

However, for the parts of ri and rj before they converge, Eq. (12) shows that p((ri, rj)) = p(ri)·p(rj).
This is because all transitions in ri and rj are disjoint thus independent. This is an important insight
because it means that the probability of observing two paths both converging at an internal node zk
factorizes.

A.6 PROOF OF THEOREM 4

Proof. We start by reorganizing Eq. (5):

(i)︷ ︸︸ ︷
panc(zk|vi)panc(zk|vj) =

(ii)︷ ︸︸ ︷
p(M)(zk = vi ∧ vj) +

(iii)︷ ︸︸ ︷
k−1∑
k′=1

p(M)(zk′ = vi ∧ vj)panc(zk|zk′)2
(13)

In words, we can split the event “zk is an ancestor of vi and vj” (i) into two mutually exclusive events:
(ii) zk is the lowest common ancestor of vi and vj ; or (iii) some internal node lower in the topological
order is the LCA of vi and vj , and further, both random walks also traverse through zk. (ii) and (iii)
are mutually exclusive since exactly one internal node is the LCA for vi and vj on any two random
walks.

Since the two random walks are independent, the probability of zk being traversed on both walks
factorizes. Thus, p(M)

anc (zk|vi, vj) = panc(zk|vi)panc(zk|vj) and therefore (i) is the probability of zk
being an ancestor of vi and vj in our Markov chainM.

The events in (iii) can indeed be expressed:

p(M) (zk′ = vi ∧ vj , zk ∈ anc (vi, vj)) = p(M) (zk′ = vi ∧ vj) · p(M) (zk|zk′ ∈ anc (vi, vj))
(14)

where in the last step we exploit that zk′ = vi ∧ vj implies zk′ ∈ anc (vi, vj) as well as the Markov
property of the random walks. Further, note that

p(M)
anc (zk|zk′ ∈ anc(vi, vj)) = panc(zk|zk′ ∈ anc(vi)) · panc(zk|zk′ ∈ anc(vj))

= panc(zk|zk′)2,
(15)

where we first exploit factorization due to independence and in the last step again the Markov property
of the random walks.

A.7 PROOF OF THEOREM 5

Proof. Let r̂i ∈ P(vi), r̂j ∈ P(vj) be two independent random walks onM rooted in vi and vj ,
respectively. Then,

p(M)(zk = vi ∧ vj) =
∑

(r̂i,r̂j):zk=vi∧vj

p((r̂i, r̂j)), (16)

where r̂i = (r̂
(1)
i , . . . , zk) is the first part of r̂i until it reaches zk. Note that the second part of the

paths, r̂i and r̂j , which are theoretically independent under our Markov chain model, are marginalized
out in the LCA formula.

However, due to the independence of the first part of the paths r̂i and r̂j under both models (see
Eq. (4)), we can write:

p(M)(zk = vi ∧ vj) =
∑

(r̂i,r̂j):zk=vi∧vj

p((r̂i, r̂j))

=
∑

(r̂i,r̂j):zk=vi∧vj

p(r̂i) · p(r̂j)

= p(T )(zk = vi ∧ vj).

(17)
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A.8 NUMBER OF PAIRS OF LCA PATHS.

Theorem 7. LetM be a Markov chain as defined in Definition 1. The number of pairs of paths from
two leaves vi, vj for which an internal node zk is the lowest common ancestor is 3k−1.

Proof. Proof by induction over k. For the base case k = 1 we have one pair of paths for which zk is
the LCA, i.e. directly from vi to zk and vj to zk. Assume that for internal node zk there are 3k−1

unique pairs of paths for which zk is the LCA. For each of these paths we can generate three unique
paths for which zk+1 is the LCA. (1) rewire the last transition of vi’s path to go to zk+1 instead of zk.
(2) do the same but for vj . (3) rewire both vi’s and vj’s last transition to go to zk+1 instead of zk.
Thus, the number of pairs of paths from vi and vj to zk+1 is 3 · 3k−1 = 3k.

A.9 PROOF OF THEOREM 6

We provide here the proof for the fast vectorized computation of P LCA
vi,vj in Theorem. 6.

Proof. For the case vi 6= vj , we start by reorganizing Eq. (9):

P anc
vi � P anc

vj = P LCA
vi,vj + P LCA,T

vi,vj · P̃ anc � P̃ anc (18)

Note that the inverse (I + P̃ anc � P̃ anc)−1 is guaranteed to exist and is efficient to compute because
P̃ anc � P̃ anc is a strictly upper triangular and therefore nilpotent matrix. The k-th entry is thus:

[
P anc

vi � P anc
vj

]
k

= P LCA
vi,vj ,vk +

n′∑
k′=1

P LCA
vi,vj ,vk′

·
[
P̃ anc � P̃ anc

]
k′,k

.

Plugging in the definitions of Eq. (8), using Theorem 2, and observing that due to the upper triangular
structure P̃ anc

k′,k = 0 for k′ > k we obtain

panc(zk|vi) · panc(zk|vj) =p(zk = vi ∧ vj) +

k−1∑
k′=1

p(zk′ = vi ∧ vj) · panc(zk|zk′)2.

For vi = vj , we have P LCA
vi,vi = Avi , i.e., again simply the parent probabilities of vi.

A.10 VECTORIZED COMPUTATIONS

All quantities involved in Soft-Das and Soft-TSD can be computed in closed-form based on the
Markov chainM and its fundamental matrix. However, their computation should not be done naively,
as this involves unnecessary computations. Constructing the full tensor of LCA probabilities is
expensive since P LCA ∈ Rn×n×n′ . Note, however, that to compute the Soft Dasgupta loss or the
distribution p(z) in TSD we only require the LCA probabilities p(z = vi ∧ vj) for pairs of leaves
connected by an edge (i.e., P (vi, vj) > 0). That is, we only need to construct an LCA probability
matrix of shape Rm×n′ . Thus, we can exploit the sparsity of real world graphs, as typically m� n2.

In a similar way, the computation of the distribution q(z) does also not require the expensive explicit
computation of p(zk = vi ∧ vj) for all pairs of leaf nodes. Instead, we can again exploit insights from
the Markov chainM. First, observe that the equation of q(z) in Soft-TSD describes an expectation:

q(z) = Evi,vj∼P (v) [p(z = vi ∧ vj)] . (19)

Defining p̂anc = pT · P anc, the computation of this expectation can be vectorized similarly to
Theorem 6 (see derivation in App. A.11):

q = ((p̂anc � p̂anc)T − (p� p)T · P anc � P anc) · (I + P̃ anc � P̃ anc)−1 + (p� p)TA.
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A.11 VECTORIZED q COMPUTATION.

We provide here the proof for the fast vectorized computation of q in Eq. 19.

Proof. We first rewrite the expectation Eq. 19 in vectorized form:

q =
∑
i,j

pviP
LCA
vi,vjpvj

where we denote P (vi) = pvi . Subsequently, we can plug the P LCA formula Eq. (9) and pull pvi
into the Hadamard product which is done over the internal node dimension.

q̂ =
∑
i,j

pvipvj (P anc
vi � P anc

vj )T · (I + P̃ anc � P̃ anc)−1

=
∑
i

pvi

P anc
vi �

∑
j

pvjP
anc
vj

T

· (I + P̃ anc � P̃ anc)−1

=

∑
i

pviP
anc
vi �

∑
j

pvjP
anc
vj

T

· (I + P̃ anc � P̃ anc)−1

= (p̂anc � p̂anc)T · (I + P̃ anc � P̃ anc)−1.

where p̂anc = pT · P anc. However, recall that for vi = vj the LCA probabilities are Avi ; thus, we
need to correct for this difference to obtain q:

q̂ =
∑
i 6=j

pviP
LCA
vi,vjpvj +

∑
i

pviP̂
LCA
vi,vipvi

= q −
∑
i

pviP
LCA
vi,vipvi +

∑
i

pviP̂
LCA
vi,vipvi

⇔ q = q̂ +
∑
i

pviP
LCA
vi,vipvi −

∑
i

pviP̂
LCA
vi,vipvi = q̂ +

∑
i

pviAvipvi −
∑
i

pviP̂
LCA
vi,vipvi

= q̂ + (p� p)T ·A− (p� p)T P̂ LCA
vi,vi

= ((p̂anc � p̂anc)T − (p� p)T · P anc � P anc) · (I + P̃ anc � P̃ anc)−1 + (p� p)TA,

where P̂ LCA
vi,vi = P anc � P anc · (I + P̃ anc � P̃ anc)−1 (obtained by using Eq. equation 9).

Note that, unless stated otherwise, we use q̂ as a proxy for q in our experiments for simplicity.

A.12 COMPLEXITY ANALYSIS.

Both Dasgupta and TSD computations require to compute the ancestor probabilities (Eq. 8) which can
be done in O(n×n′2) (i.e. inverse of triangular matrix (I−B) ∈ Rn′×n′ , plus matrix multiplication
with A ∈ Rn×n′). Then, Soft-Das. or the distribution p(z) for the Soft-TSD loss require the LCA
probabilities (Eq. 9) for all leaves connected by an edge only, amounting to O(m× n′2) operations,
wherem is the number of edges in the graph. Note that similarly to Eq. (8), the inverse computation in
Eq. (9) can be done in O(n′2). Additionally, Soft-TSD requires the computation of q(z) ( complexity
O(n× n′2)). Both Soft-Das. and Soft-TSD computations are dominated by the O(m× n′2) term.
This leads to an efficient time complexity as long as we assume a small number of internal nodes
n′ � n, which is reasonable in practice.

A.13 CONVEXITY OF SOFT-TSD

Theorem 8. Let H ∈ [0, 1]n
′×n×n be a tensor whose elements Hkij = p(zk = vi ∧ vj) are the

LCA probabilities of internal nodes w.r.t. pairs of leaf nodes. Soft-TSD(H) is convex in H .
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Proof. Let H(1), H(2) be two LCA probability tensors defined as above, and 0 ≤ α ≤ 1. We first
compute the distribution p induced by the edge distribution. We have that

p(αH
(1)
k + (1− α)H

(2)
k ) =

∑
vi,vj

P (vi, vj)(αH
(1)
kij + (1− α)H

(2)
kij)

= α
∑
vi,vj

P (vi, vj)H
(1)
kij + (1− α)

∑
vi,vj

P (vi, vj)H
(2)
kij

= α · p(H(1)
k ) + (1− α) · p(H(2)

k ).

(20)

Analogously we compute the distribution q induced by the independent node distribution. We have
that

q(αH
(1)
k + (1− α)H

(2)
k ) = α · q(H(1)

k ) + (1− α) · q(H(2)
k ). (21)

We combine this with the well-known fact that KL-divergence is convex w.r.t. pairs of distributions,
i.e.,

KL(αp1(z)+(1−α)p2(z), αq1(z)+(1−α)q2(z)) ≤ αKL(p1(z), q1(z))+(1−α)KL(p2(y), q2(z)),

to obtain the desired result:

Soft-TSD(αH(1) + (1− α)H(2)) ≤ α · Soft-TSD(H(1)) + (1− α) · Soft-TSD(H(2)). (22)

Theorem 9. LetHFPH = {H : ∃A,B ∈ Φ(n, n′) : H = FPH(A,B)} denote the set of probabilis-
tic hierarchies which can be represented by FPH. Here, Φ(n, n′) are the constraints FPH places on
A,B (see Sec. 2), and FPH (A,B) is shorthand the mapping from transition matrices to lowest
common ancestor probability tensors defined in Theorems 4 and 6. Here, Hkij = p(zk = vi ∧ vj)
are the LCA probabilities of internal nodes w.r.t. pairs of leaf nodes. This setHFPH is convex.

Proof. We start by recalling form Theorems 4 and 5 that FPH computes lowest common ancestor
probabilities p(zk = vi ∧ vj) from the continuous parent probability matrices A and B such that the
LCA probabilities are consistent with the expected result from the tree-sampling procedure described
in Sec. A.2. More formally,

Hkij := p(zk = vi ∧ vj) = EĤ∼(A,B) [I[zk = vi ∧ vj ]]

= EĤ∼(A,B)

[
Ĥkij

]
= E

[
Ĥ
]
kij

,
(23)

where Ĥ ∈ {0, 1}n′×n×n is a discrete hierarchy obtained via tree-sampling from A and B. By
definition of the expectation we write

H = EĤ∼(A,B)

[
Ĥ
]

=
∑

Ĥ∈H(n,n′)

p(Ĥ|A,B) · Ĥ, (24)

where H(n, n′) is the set of all valid discrete hierarchies with n leafs and n′ internal nodes. Thus,
any continuous hierarchy H learned by FPH is a convex combination of discrete hierarchies Ĥ . This
completes the proof.

Theorem 10. The Soft-TSD optimization problem solved by FPH is integral. That is, the global
maximum of the Soft-TSD optimization problem solved by FPH is the same as the global optimum of
the discrete optimization problem of optimizing TSD over discrete hierarchies.

Proof. This follows from Theorems 8 and 9. Theorem 8 establishes that the Soft-TSD objective
function is convex in the hierarchy tensors H; Theorem 9 proves that the set of hierarchies FPH
optimizes over is convex. When maximizing a convex function over a convex set, we are guaranteed
to find the global optimum at a vertex of the constraint set, which are discrete hierarchies in the case
of FPH. Thus, the global maximizer is a discrete hierarchy; this discrete hierarchy must also be the
maximizer of the discrete TSD optimization problem, since our relaxation optimizes over a superset
of all discrete hierarchies.

18



Published as a conference paper at ICLR 2022

Dataset Nodes (LCC) Edges (LCC) MI (LCC) License

PolBlogs, (Adamic & Glance, 2005) 1,222 16,715 2.39 n/a
Brain, Amunts et al. (2013) 1,770 8,957 3.37 n/a
Citeseer, Sen et al. (2008) 2,110 3,694 5.69 n/a
Genes, Cho et al. (2014) 2,194 2,688 6.12 n/a
Cora-ML, McCallum et al. (2000); Bojchevski & Günnemann (2018) 2,810 7,981 5.23 n/a
WikiPhysics, Aspert et al. (2019) 3,309 31,251 3.44 n/a
OpenFlight, Patokallio, 3,097 18,193 3.44 ODbL
Ogbn-products, Hu et al. (2020) 2,385,902 61,806,367 9.29 Amazon license
Ogbn-arxiv, Hu et al. (2020); Wang et al. (2020) 169,343 1,157,799 7,40 ODC-BY
Ogbl-collab, Hu et al. (2020); Wang et al. (2020) 232,865 961,883 9.02 ODC-BY
DBLP, Yang & Leskovec (2015) 317,080 1,049,866 9.64 n/a

Table 6: Dataset summary; we convert directed datasets to undirected and select the largest connected
component (LCC).

Implications of Theorems 8, 9, and 10. In the previous theorems, we have shown that we are
maximizing a convex function over a convex set. In general, maximizing a convex function over
a convex set is NP-hard (Benson, 1995). Thus, we cannot hope to efficiently recover the global
optimum. However, our continuous relaxation brings several practical benefits for the optimization.

First, observe that directly optimizing over the convex set of continuous hierarchies described in
Theorem 9 is not practical. This is because there are exponentially many corners of the set, and
encoding the constraints of the set is very difficult. Our parameterization of (continuous) hierarchies
via A, B and being able to efficiently compute the expected lowest common ancestor probabilty
tensor enables us to optimize over a fairly low-dimensional and convex set. The constraints on A,B,
i.e., entries in [0, 1], unit row sums and upper-triangular structure of B, are easy to encode and
enforce during optimization. This comes at the cost that mapping from A and B to the LCA tensor
H is nonconvex (yet describes, as per Theorem 9, a convex set over hierarchies). Thus, we can solve
the optimization problem with off-the-shelf methods such as projected gradient descent and benefit
from the elaborate techniques from nonconvex optimization. While it is possible that FPH gets stuck
in a non-discrete local optima during optimization, we can easily obtain a discrete and valid hierarchy
given the non-discrete local optimizer via tree-sampling or selecting the most likely parent for all
leaves and internal nodes under A and B, as described in Sec. 2.2.

B EXPERIMENT INFORMATION

B.1 LINK PREDICTION WITH SOFT-TSD

The TSD can be interpreted in terms of retrieved information when reconstructing the original graph
from the tree representation (Charpentier & Bonald, 2019). In this case, the reconstruction scheme
for the edge weights of the reconstructed graph Ĝ is:

ŵ(vi, vj) = w(vi)w(vj)
p(vi ∧ vj)

q(vi ∧ vj)
(25)

B.2 LINK PREDICTION SETUP

For all datasets, we randomly select 10% of edges to hold out for testing while making sure that the
graph remains connected. Further, we set n′ = 256 and minimize Soft-TSD via FPH. For DC-SBM,
we use the Python package ‘graph-tool’ and follow the documentation3 with default parameters to
learn the model. For VGAE, we use the default hyperparameters by the authors (one hidden layer,
latent dimensions [32, 16], learning rate 0.01, training for 200 epochs). We use the variant described
in the paper which replaces the node attributes by the n× n identity matrix. For DeepWalk, we set
the embedding dimension to 10.

B.3 DATASET SUMMARY

See Table 6 for an overview of the datasets we used.
3https://graph-tool.skewed.de/static/doc/demos/inference/inference.html
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Figure 3: Results on hierarchical clustering measured by Dasgupta cost (lower is better) and TSD
(higher is better).
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(a) TSD - WikiPhysics
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Figure 4: Ablation study results.

B.4 ADDITIONAL RESULT FIGURES

In Fig. 3 we show results for four more datasets.

B.5 ABLATION STUDY

See Fig 4 for the comparison of different FPH model variants, and our full discussion in Sec. 4.1.

B.6 HIERARCHY VISUALIZATION

(a) Dasgupta - 10 clusters (b) Dasgupta - 50 clusters (c) Das. - Dendrogram

(d) TSD - 10 clusters (e) TSD - 50 clusters (f) TSD - Dendrogram

Figure 5: Visual comparison of trees obtained after Soft-TSD and Soft-Dasgupta optimization on
OpenFlight.

We conduct a qualitative study of the structure discovered by FPH. In Figure 5 we compare the
hierarchies learned by FPH when optimizing for TSD or Dasgupta, respectively. We cut at different
levels of the dendrogram to obtain a coarse hierarchy (10 clusters) and fine-grained structure (50
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clusters). Comparing Figure 5 (a) and (d), we notice that the coarse structure learned by optimizing
Soft-Dasgupta looks more appealing, as TSD essentially splits only into the Americas and the rest
of the world. At 50 clusters, however, we observe the opposite: TSD splits the airports across the
world into meaningful, coherent geographical regions, whereas Dasgupta looks mostly unchanged
from the coarse version, highlighting the complementarity of both quality metrics. In addition,
the dendrogram learned by TSD in (f) appears to be of higher quality and more balanced than the
Dasgupta dendrogram in (c).

B.7 HYPERPARAMETERS

We use the hyperparameters for models and baselines described in Tab. 7. For smaller datasets, we
train FPH for 1,000 epochs and restore the best hierarchy after training. For ogbn-products, ogbn-
arxiv, ogbl-collab, and DBLP, we train for 2,000 epochs. Similarly, we use different learning rates

Model Hyperparameter Value

FPH (TSD)
Learning rate 150
Batch size K** 10,000
Batch cutoff C** 200,000

FPH-R (TSD) Learning rate 200

FPH (Das.)
Learning rate 0.05
Batch size K** 10,000
Batch cutoff C** 200,000

FPH Emb. Learning rate 0.1

RGHC
Routing NN dim 128
Iterations 5000
Learning rate 0.0001

HGHC
Init. method K-means + agglom. linkage
Iterations 10
Learning rate 0.1

UF
Loss Closest + cluster size
Epochs 500
Learning rate 0.1

HypHC

Num. triples 50M
Epochs 50
Learning rate 0.001
Temperature 0.1

DeepWalk Embedding dim 10
Embedding dim* 32

* Used for ogbn-products, ogbn-arxiv, ogbl-collab, DBLP.
** Used for ogbn-products

Table 7: Hyperparameter settings.

for A and B for FPH (Das.) on ogbn-arxiv, ogbl-collab, ogbn-products, and DBLP (lrA = 1e− 2,
lrB = 1e− 9).

B.8 COMPUTING INFRASTRUCTURE

We train all models on a single GPU (NVIDIA GTX 1080 Ti or NVIDIA GTX 2080 Ti, 11 GB
memory) in our own in-house compute cluster. The machines have 10-core Intel CPUs. We use
Python 3 and PyTorch for all our experiments.

B.9 HSBM GRAPHS

We generated HSBMs with n = 100 leaf nodes and n = 1000 leaf nodes for our external evaluation.
The small HSBMs have 3 levels with edge probabilities in [.01, .1, .3, .6], a branching factor of 2
and core community sizes in [10, 15]. The large HSBMs have 3 levels with edge probabilities in
[.001, .01, .1, .4], branching factor in [2, 3, 4] and core community sizes in [30, 35]. In Fig. 6 and
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Figure 6: Example HSBM graph with n = 100, n′ = 7, and three levels in the hierarchy.

Figure 7: Example HSBM graph with n = 1000, n′ = 53, and three levels in the hierarchy.

Fig. 7, we plot one of the five synthetic HSBM graphs used in our experiments (right), and their
corresponding dendrograms (left). The graphs have n = 100 and n = 1000 leaf nodes and three
levels of hierarchy.

C ADDITIONAL RESULTS

Dasgupta cost (lower is better) Normalized TSD (higher is better)
Alg. Ward UF HypHC HGHC RGHC Ward UF HypHC HGHC RGHC

Brain 596.73 938.49 568.18 894.87 650.53 32.43 26.28 17.68 17.31 16.54
OpenFlight 416.05 643.45 423.80 477.51 469.98 55.59 49.88 40.06 47.52 45.84
Genes 221.76 258.21 467.12 482.11 444.82 66.87 63.73 23.94 50.59 40.98
Citeseer 105.12 280.66 271.80 224.63 200.91 69.28 62.95 31.74 52.53 47.66
Cora-ML 301.47 673.27 441.21 516.87 499.49 57.22 47.96 29.10 42.10 35.19
PolBlogs 383.51 726.34 334.69 428.52 376.94 27.01 10.73 21.60 20.30 20.78
WikiPhysics 808.87 958.20 701.14 919.27 790.39 45.54 41.55 33.85 34.51 36.51
ogbn-arxiv 22,046 64,950 OOM 37,177 26,286 37.43 26.22 OOM 17.55 25.20
ogbl-collab 14,834 101,562 OOM 112,048 17,964 45.20 30.50 OOM 11.11 37.73
DBLP 33,349 160,742 OOM 171,975 41,796 38.87 22.62 OOM 5.61 29.9

Table 8: Hierarchical clustering results (n′ = 512, d = 128).
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Model Citeseer Cora Polblogs DBLP ogbn-arxiv

RGHC 0.218 0.394 0.756 0.510 0.358
HGHC 0.304 0.362 0.604 0.655 0.385
Ward 0.363 0.445 0.436 0.587 0.402
UF 0.180 0.242 0.102 0.395 0.143
HypHC 0.285 0.390 0.740 - -

Table 9: NMI results for d = 128 DeepWalk embeddings.

n = 100 n = 1000
Model Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Avg. 0.985 0.952 0.791 0.990 0.978 0.965
RGHC 1.0 0.881 0.766 0.567 0.897 0.745
HGHC 0.874 0.872 0.705 0.840 0.942 0.786
Ward 1.0 0.975 0.765 1.0 0.991 0.841
UF 1.0 0.921 0.707 1.0 0.987 0.791
HypHC 1.0 0.892 0.768 0.933 0.846 0.702
Louvain 0.693 0.955 0.795 0.678 1.0 0.993
FPH 1.0 0.994 0.829 1.0 1.0 0.994

Table 10: NMI results on synthetic HSBM graphs.

TSD standard deviation Dasgupta standard deviation
Alg. HypHC HGHC RGHC HypHC HGHC RGHC

Brain 0.53 (3%) 0.06 (<0.5%) 0.6 (3%) 19.96 (3%) 38.56 (5%) 14.18 (3%)
OpenFlight 1.15 (3%) 0.4 (1%) 0.7 (2%) 26.61 (6%) 31.14 (6%) 23.9 (5%)
Genes 0.61 (3%) 0.12 (<0.5%) 1.19 (2%) 13.3 (3%) 2.88 (1%) 17.31 (7%)
Citeseer 0.19 (1%) 0.09 (<0.5%) 1.29 (3%) 6.93 (3%) 5.56 (4%) 8.02 (6%)
Cora-ML 0.96 (3%) 0.13 (<0.5%) 0.61 (1%) 17.39 (4%) 21.78 (5%) 12.98 (4%)
PolBlogs 0.13 (1%) 0.09 (<0.5%) 0.18 (1%) 4.04 (1%) 1.92 (1%) 3.4 (1%)
WikiPhysics 0.47 (1%) 0.14 (<0.5%) 0.56 (1%) 5.77 (1%) 6.83 (1%) 30.88 (4%)
ogbn-arxiv - 0.15 (1%) 1.31 (5%) - 405 (2%) 765 (3%)
ogbl-collab - 0.16 (1%) 0.61 (2%) - 1,592 (5%) 625 (3%)
DBLP - 0.47 (3%) 0.81 (3%) - 2,482 (3%) 1,005 (2%)

Table 11: Standard deviations of non-deterministic baselines. In parentheses we report the standard
deviation in relation to the best value reported in Table 1 in percent.
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