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Abstract

Collaborative learning techniques have the potential to enable training machine
learning models that are superior to models trained on a single entity’s data. How-
ever, in many cases, potential participants in such collaborative schemes are com-
petitors on a downstream task, such as firms that each aim to attract customers
by providing the best recommendations. This can incentivize dishonest updates
that damage other participants’ models, potentially undermining the benefits of
collaboration. In this work, we formulate a game that models such interactions
and study two learning tasks within this framework: single-round mean estimation
and multi-round SGD on strongly-convex objectives. For a natural class of player
actions, we show that rational clients are incentivized to strongly manipulate their
updates, preventing learning. We then propose mechanisms that incentivize honest
communication and ensure learning quality comparable to full cooperation. Lastly,
we empirically demonstrate the effectiveness of our incentive scheme on a standard
non-convex federated learning benchmark. Our work shows that explicitly mod-
eling the incentives and actions of dishonest clients, rather than assuming them
malicious, can enable strong robustness guarantees for collaborative learning.

1 Introduction

Recent years have seen an increased interest in designing methods for collaborative learning, where
multiple participants contribute data and train a model jointly. The premise is that the participants
will then be able to obtain a better model than if they were learning in isolation. Most prominently,
federated learning (FL) (Kairouz et al., 2021) provides a method for training models in a distributed
manner, allowing data to stay with institutions, while still harvesting the benefits of collaboration.

An underlying premise for the success of collaborative learning schemes is that the participants
contribute data (or gradient updates) relevant to the learning task at hand. However, when participants
are in competition on some downstream task, they may have an incentive to sabotage other participants’
models. For instance, firms that are competing on the same market can often improve their machine
learning models by having access to their competitors’s data, but at the same time will likely benefit
from a gap between the quality of their models and those of other firms.

These conflicting incentives raise a concern that collaborative learning may be vulnerable to strategic
updates from participants. Previous work has empirically demonstrated that irrelevant or malicious
updates can negatively impact collaborative learning (Tolpegin et al., 2020; Kairouz et al., 2021). In
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particular, if a subset of participants is modeled as fully-malicious (Byzantine) agents, that collude in
a worst-case manner, it is known that optimal convergence rates contain a leading-order term that
is based on the fraction of Byzantine agents and is irreducible as the number of players increases
(Yin et al., 2018; Alistarh et al., 2018). This suggests that collaborative learning in the presence of
strategic behavior may often not provide asymptotic benefits over learning with one’s own data.

Contributions In this work, we study collaborative learning in the presence of strategic behavior
by explicitly modeling players’ competitive incentives. We consider a game between multiple players
that exchange updates via a central server, where players’ rewards increase both when they obtain a
good model for themselves, and when other players’ models perform poorly.

We study two important instantiations of this collaborative learning game: mean estimation with a
very general action space and strongly-convex stochastic optimization with attacks that add gradient
noise. We show that players are often incentivized to strongly manipulate their estimates, rendering
collaborative learning useless. To remedy this, we suggest mechanisms inspired by peer prediction
(Miller et al., 2005), that penalize cheating players using side payments. Our results on stochastic
optimization rely on a novel recursive bound for the squared norm of differences in SGD-iterates
between a clean trajectory and a strategically corrupted trajectory. Meanwhile, we show that side
payments can be avoided in the mean estimation case, using a novel communication protocol in which
the server sends noisy estimates back to players that are suspected of cheating. Our mechanisms
are solely based on observable player behaviour, and recover near-optimal convergence rates at
equilbrium. Furthermore, expected payments cancel out when all players are honest, so that players
are incentivized to participate in the training, rather than use their own data only, despite the penalties.

Finally, we conduct experiments on the FeMNIST and Twitter datasets from LEAF (Caldas et al.,
2018) and demonstrate that our mechanisms can incentivize honesty for realistic non-convex problems

2 Related work

Game theory and collaborative learning Many works that study connections between FL and
game theory focus on clients’ incentives to participate in the training process at all (see Tu et al.
(2021) for a recent survey, and Gradwohl & Tennenholtz (2022) for an analysis of how this relates
to competition). Similarly, Karimireddy et al. (2022) study incentives for free-riding, i.e. joining
collaborative learning without spending resources to contribute data. In contrast, our setting covers
clients that strategically manipulate their updates in order to damage other participants’ models.

Another line of work studies FL as a coalitional game theory problem, in which the players need
to deal with potential issues of between-client heterogeneity by deciding with whom to collaborate
Donahue & Kleinberg (2021a,b). Optimal behavior under data heterogeneity is also studied by
Chayti et al. (2021), while Gupta et al. (2022) studies invariant risk minimization games in which
FL participants learn predictors invariant across client distributions. In contrast, we study FL as a
non-cooperative game and seek to address strategic manipulation, rather than data heterogeneity.

Robustness in federated learning The robustness of FL to noisy or corrupted updates from clients
has received substantial recent interest, see Shejwalkar et al. (2022) for a recent overview. One line
of work studies federated learning in the context of various data corruption models, e.g. noise or
bias towards protected groups (Fang & Ye, 2022; Abay et al., 2020). In contrast, we study strategic
manipulation by clients as the source of data corruption.

Clients attacking the training are typically modeled as Byzantine (Blanchard et al., 2017; Yin et al.,
2018; Alistarh et al., 2018), adversarially seeking to sabotage training by deviating from the FL
protocol in a worst-case manner. The goal of Byzantine-robust learning is to achieve guarantees in
that setting. Similar models have been studied in a statistical context, where data is stored at a single
location and so communication is not a concern (Qiao & Valiant, 2018; Konstantinov et al., 2020). In
contrast to these works, we model manipulation as a consequence of competitive incentives rather
than maliciousness and analyze client behaviour using game theory (Osborne & Rubinstein, 1994).
Rather than focussing on robustness to manipulations, we aim to prevent manipulation alltogether.

Peer prediction mechanisms Our mechanisms for inducing honesty are closely related to peer
prediction that aims to incentivize honest ratings on online platforms. In their seminal paper,
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Miller et al. (2005) suggest paying raters based on how much their rating helps to predict other
raters’ ratings. While they require a common prior shared by all raters and the mechanism designer,
Witkowski & Parkes (2012) extend their results relaxing that assumption. Closely related to our work,
Cai et al. (2015) suggest to incentivize crowdworkers to produce accurate labels by paying them
more, the better their label gets predicted by a model estimate from other workers’ data. Meanwhile,
Waggoner & Chen (2014) prove that peer prediction elicits common knowledge, rather than truth
from participants. Lastly, while Karger et al. (2021) find that peer prediction can elicit subjective
forecasts of similar accuracy as scoring based on the ground truth, Gao et al. (2014) demonstrate that
human raters can end up with dishonest strategies despite the existence of honest equilibria.

3 Competitive federated learning

In this section, we present our framework on a high level and explain how it models competitive
behaviour in FL. In this generality, however, it is impossible to analyze the problem quantitatively.
We therefore define specific instantiations of the framework, which we study for the rest of the paper.

3.1 General framework

Overview Throughout the paper, we assume that there are N ≥ 2 players, who each have a private
dataset. The players participate in an FL-like procedure, which takes place over multiple rounds and
requires them to send messages with information relevant to update a centrally trained model at every
step. In our setup, players act strategically and competitive pressures might incentivize them to try to
corrupt other players’ models. This is done by manipulating updates sent to the central model, while
simultaneously keeping track of an unmanipulated private (presumably more accurate) model.

To model the participants’ strategic interactions, we need to define a game by specifying their action
spaces and rewards. To this end, one needs to specify: their attack strategies, that describe whether
and how they will corrupt their messages to the server; their defense strategies, which describes how
they postprocess the server’s updates to defend themselves against others’ manipulations; and their
rewards, in a way that reflects the quality of learning and the competition between them. Given
these components, we are interested in the Nash equilibria of the corresponding game, in order to
understand strategic behavior in FL and how it affects the quality of the players’ models.

Formal setup We denote the samples of each player i by xi = {xi1, . . . , xin}, where x ∈ X , and
assume that {xij : i ∈ [N ], j ∈ [n]} are not necessarily independent samples from an unknown
distribution D ∈ P(X ). For simplicity, we assume that all players have an equal number of samples
n. Players communicate via an FL-like protocol, through which a central server model θs ∈ Rd is
updated. The intended goal of this procedure is to find a value for θs that minimizes a loss function
fD(θ). Note that because D is unknown to the players, they can benefit from honest collaboration.

The protocol consists of T rounds and the central model is initialized at some θs1 ∈ Rd. At time
t = 1, 2, . . . , T the server sends the model θst to all participants. Each agent i is then meant to send an
update gt(θst , x

i) to the server, for some function gt : Rd ×Xn → Rd. For example, in the standard
FedSGD setting, fD(θ) = Ex∈D[fx(θ)] for functions fx : Rd → R and g = 1

n

∑
j ∇fxij (θ

s
t ) serves

as an estimate of the gradient of f evaluated at the data of player i. Each player i then sends a message
mi
t ∈ Rd to the server (which may or may not be equal to gt(θst , x

i)). Finally, the server computes a
new model θst+1 = Agg(θit,m

1
t ,m

2
t , . . . ,m

N
t ), via an aggregating function Agg : Rd ×RN×d → Rd

(for example, in FedSGD this will be a gradient update computed as m̄t = 1
N

∑N
i=1m

i
t).

Players’ strategies At every step, the players take two decisions: how to attack by sending a
manipulated estimate to the server, and how to defend themselves from unreliable estimates when
updating their locally tracked model based on information received from the server. Formally, we
assume that each player i ∈ [N ] chooses (potentially randomized) functions ai1, a

i
2, . . . , a

i
T and

di1, . . . , d
i
T , that describe their behavior for the attack and defense stages at every time step. These

functions are chosen from two respective sets of possible actions A and D . The tuple of chosen
actions pi = (ai1, . . . , a

i
T , d

i
1, . . . , d

i
T ) ∈ A T ×DT represents the player’s global strategy.

In the most general case, the attacks and defenses of each player i may take into account all
information available to the player, throughout the history of the optimization process. At time t this
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include the models θs1, . . . , θ
s
t received by the server; the local models θi1, . . . , θ

i
t the player kept at

previous iterations; the attack strategies ai1, . . . , a
i
t used up to time t (e.g. to correct for one’s own

faulty estimate at time t); as well as additional randomness ξi1, . . . , ξ
i
t sampled at each round.

Players’ rewards Each player aims to obtain a final model θiT+1 that approximately minimizes
fD(θiT+1). Crucially, their reward also depends on other players’ models. Specifically, we assume
that each player i has a reward functionRi : RN×d × P(X )→ R and receives the reward

ri = Ri
(
θ1
T+1, θ

2
T+1, . . . , θ

N
T+1,D

)
. (1)

Note that the messagesmi sent by players and thus θiT+1 and each player’s reward depend not only on
players’ strategies, but also on the particular realization of their samples xi. We thus focus on expected
rewards, averaging out the effects of particular realizations of players’ samples and randomness in
their strategies. We study the vector of expected rewards E(r1, . . . , rN ) and its dependence on the
strategy profile, that is on the distribution of strategies p = (p1, p2, . . . , pN ) chosen by each player.

Assumptions on players’ behaviour To analyze players’ behaviour, we make two assumptions,
giving rise to a classic game-theoretic setup. The first is that players seek to maximize their expected
reward, as defined above, i.e. players are rational. In addition, since the reward of each player depends
on the actions of the other players, players account for the actions of the others, which means that
their behavior is strategic. A natural solution concept in this context is the Nash equilibrium (Nash,
1951). This describes a strategy profile in which no player can improve their reward by unilaterally
changing their strategy. In our case, this classic notion translates to the following definition.

Definition 1. Let p = (p1, p2, . . . , pN ) ∈
(
P(A T ×DT )

)N
be a strategy profile. Then p is a

(mixed) Nash equilibrium if:

∀p∗ ∈ P(A T ×DT ) and ∀i ∈ [N ] : E
(
ri(p1, . . . , pi, . . . , pN )

)
≥ E

(
ri(p1, . . . , p∗, . . . , pN )

)
,

where the expectation is taken with respect to the randomness of the data and the players’ strategies.

3.2 Specific instantiations: mean estimation and stochastic gradient descent

We study two specific cases of the game, each modeling a fundamental learning problem. The first
is single-round mean estimation (Sections 4 and 5), which correspond to the general setup with
T = 1, fD(θ) = ‖θ − µ‖2, where µ = EX∼D(X), and the updates g being the sample means of the
players. The second is multi-round stochastic optimization of strongly-convex functions fD(θ) via
SGD (Section 6), in which case the updates g are stochastic gradient estimates based on players’ data.
In the corresponding sections, we define natural rewards that model the competing incentives.

Strategy spaces To describe the attack strategies, in both cases we model attacks that send a noisy
update gt(θst , x

i) + αitξ
i
t , for normalized zero-mean noise ξit and an attack parameter αit ∈ R, to the

server. Up to a certain magnitude of αit, these attacks have a natural interpretation as the act of hiding
a random subset of a player’s data. In addition, the αit parameters have a natural interpretation as the
of aggressiveness of the player. In the case of mean estimation, we are also able to analyze much
more general attack strategies that can adjust αit based on the players’ samples xi and additionally
allow for adding a directed bias to the communicated messages.

For the defense strategies in the mean estimation case, we consider a defense strategy that corrects the
mean estimate received from the server for the player’s own manipulation. The player then computes
a weighted average of the result and the their local mean. The weighting parameter βi used then
has a natural interpretation as the cautiousness of the player. In the SGD case we directly provide
mechanisms that incentivize honesty at the attack stage, making potential defenses redundant.

4 A single-round version of the game: competitive mean estimation

In this section we analyze a single-round version of the game, in which players aim to estimate the
mean of a random variable X ∈ P(Rd). Specifically, we consider the game defined in Section 3,
in the case of T = 1 rounds. Players sample from a distribution D ∈ P(Rd) by first independently
sampling a random mean µi ∼ Dµ and "variance" σ2

i := E‖Xi − µi‖2 ∼ Dσ (this models potential
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heterogeneity between clients), and then receiving (conditionally) independent samples from a random
variable Xi with mean µi and "variance" σ2

i . We call µ = Eµi, σ2 = Eσ2
i and σ2

? = E‖µ − µi‖2.
We assume that players do not know the distributions Dµ and Dσ .

Each player wants to estimate the global mean µ as well as possible. During the single communication
round, the players are meant to communicate the mean of their samples: g1(θs1, x

i) = 1
n

∑n
j=1 x

i
j .

Instead, they send messages mi
1. The server aggregates the received messages by averaging them, so

that θs2 = 1
N

∑N
i=1m

i
1. The players then receive the value of θs2 from the server and use their defense

strategy to arrive at a final estimate θi2 = d(θs2, x
i) of the mean. For simplicity of notation, we ignore

the dependence of all values on the time t = 1 in the rest of this and the next section.

Reward functions To model competitive incentives, the reward of each player needs to increase as
their own estimate of the mean becomes better, and as the estimates of other players become worse.
Therefore, a natural reward function is:

Ri(θ1, . . . , θN , µ) =

∑
j 6=i ‖θj − µ‖2
N − 1

− λi‖θi − µ‖2, (2)

for some λi ≥ 0. The value of λi quantifies to what extent player i prioritizes the quality of their
own estimate over damaging the estimates of the other players.

Attack strategies We assume that players choose what estimates to communicate by deciding how
to perturb the empirical mean of their data. Specifically, each player i selects parameters αi(xi) ≥
0, bi(xi) ∈ Rd based on their sample, in a potentially randomized manner, and communicates:

mi = x̄i + αi(xi)ξi + bi(xi), (3)

where x̄i = 1
n

∑n
j=1 x

i
j , E[ξi] = 0 and E‖ξi‖2 = 1. Here x̄i is the standard empirical mean of xi,

while αi represents the magnitude of the noise player i adds to the estimate and bi(xi) is an additional
bias term. Note that the case of bi(xi) = 0 recovers the data-hiding attack discussed in Section 3.2.

In order to prevent "non-general" strategies, such as simply setting mi = µ, that cannot be analyzed
properly as their success depends on the true parameter µ, we assume that players do not base their
strategies on guesses about µ beyond the information they obtained from x̄i. Formally, we assume

E < x̄j − µ, bj(xj) >= 0. (4)

This prevents bi from linearly encoding additional knowledge about µ and for example holds whenever
bj(xj) is independent of the residuals x̄j − µ. We also assume that the noise variables ξi are
independent of each other and all xkj and αk(xk), but make no further distributional assumptions
about ξi. Indeed, all of our theorems will hold regardless of any additional assumptions about ξi.

We denote this set of attack strategies as A . Each element in A can be uniquely identified via the
distribution of the noise ξi and the functions αi(xi) and bi(xi). As α = b = 0 can be interpreted as
covering the fully collaborative case, while α, b→∞ covers the fully malicious case, the (adaptive)
parameters α, b have a natural interpretation as measures of the aggressiveness of a player.

We also note that these attacks are very general: mi(xi)− x̄i can always be written as the sum of a
determinstic component b̂(xi) and zero mean noise ξ̂(xi), such that (4) and the fixed distribution of
ξi are the only assumptions separating us from the most general possible set of attacks strategies.

Defense strategies In the defense stage each player uses the received estimate θs = m̄ =
1
N

∑N
i=1m

i and their local data xi to compute a final estimate of the unknown mean. Two ex-
treme approaches for player i are being fully cautious and using their local mean x̄i only, or fully
trusting other players and computing the average of all sent updates, corrected for their own manipula-
tion, that is m̄i = 1

N

(
Nθs −mi + x̄i

)
. We consider defense strategies that take a weighted average

of these two extremes: Each player i chooses a parameter βi ∈ [0, 1] and constructs a final estimate

θi = (1− βi)m̄i + βix̄i. (5)

Denote the described set of defenses, as D . Each element in D is uniquely identified via the
corresponding parameter β with β = 0 and β = 1 covering the extreme cases from above. Since β
can be used to interpolate between these two extremes, it can be seen as a measure of cautiousness.

5



We do not cover more complicated defense strategies for two reasons: First, our proposed mechanisms
will incentivize players to be honest even without any defenses such that more advanced defense
mechanisms are not necessary. Second, as defenses can be seen as a method for mean estimation,
analyzing the optimality for general classes of defenses would be fundamentally challenging for
d ≥ 3 due to Stein’s Paradox (Stein, 1956), even for a single player version of our game.

4.1 Expected rewards and Nash equilibria

We now analyze the game with strategy set (A × D). As the specific distribution of ξi does not
affect the players’ rewards, the attack and defense strategies are for all relevant purposes uniquely
determined by the functions α, b, and β respectively. We abuse notation and consider (αi, bi, βi) as
the strategy of player i. First we derive a formula for the MSE of a player, for a fixed strategy profile.
Theorem 4.1. Let D be as described above. Then the expected mean squared error (MSE) of player
i ∈ [N ] for any strategy profile ((α1, bi, β1), . . . , (αN , bN , βN )) ∈ (A ×D)

N is:

E
(
‖θi − µ‖2

)
=
(
1− βi

)2 σ2

Nn
+
σ2
?

N
+

1

N2

∑
j 6=i

E(aj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2


+ (βi)2(
σ2

n
+ σ2

?) + 2
(
1− βi

)
βi(

σ2

Nn
+
σ2
?

N
)

This is proven in Appendix C similar to the bias-variance decomposition. This result allows us to
analyze the expected rewards defined by equation (2) of the players for any strategy profile.

One can immediately see that there is no incentive for players to cooperate as long as βi < 1: other
players j can always increase their reward by increasing E(aj(xj)2) (unless it is already infinite).
But for finite E(aj(xj)2) and E‖∑j 6=i b

j(xj)‖2, the optimal βi can be shown to never equal one,
such that equilibria are only possible "at infinity":
Corollary 4.2. The game defined by the reward in equation (2) and the set of strategies A ×D does
not have any (pure or mixed) Nash equilibrium for which E(αj(xj)2) and E‖bj(xj)‖2 are finite for
all players.

For details, see Appendix C. This shows that our defenses are unable to prevent maximal dishonesty
by at least some players and formalizes a simple intuitive observation: as long as a player considers
other players’ updates at all, others are incentivized to reduce the information their updates convey
about their samples. As at equilibrium at least one other player will infinitely distort the server
estimate m̄, no player can benefit from collaborative learning without modifications to the protocol.

5 Mechanisms for incentivizing honesty

Given the impossibility of successful learning with rational competing agents in the simple mean
estimation setting, we shift our focus to modifications of the protocol that allow for honest Nash
equilibria (that is, equilibria where αj(xj) = bj(xj) = 0,∀j). To this end, we design two mecha-
nisms that seek to penalize dishonest players proportionally to the magnitude of their manipulations
(and, thus, the damage caused to other players). Note that this is complimentary to robust estimation
methods (Diakonikolas et al., 2019) that can reduce but not eliminate the impact of manipulations.

The first relies on explicit side payments and requires transferable utility (that is, the existence of an
outside resource R such as money, that is valued equally and on the same scale as the rewardR by
all players). The second is a modification of the FL protocol, in which the server adds noise to the
estimates it sends to players that have sent suspicious updates. Importantly, for both mechanisms,
the penalties can be computed by the server without the need for knowing αi, bi or other additional
information beyond the players’ updates, and without prior knowledge of the true distribution D.

5.1 Efficient solution for fully transferable utility

We first consider the case of transferable utility. In this case, we introduce a more general penalized
reward for player i, which is given by

Rip = Ri(θ1, . . . , θN , µ)− pi(m1, . . . ,mN ).
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Here pi(m1, . . . ,mN ) denotes a penalty paid by player i to the server, measured in terms of the
resource R and depending on the messages that the clients sent. As players value the reward and
resource equally, they optimize forRip instead ofRi.
Inspired by peer prediction (Miller et al., 2005) we consider a penalty for player i proportional to the
squared difference between that player’s update and the average update sent by all players:

pi(m1, . . . ,mN ) = C‖mi − m̄‖2, (6)

for some constant C ≥ 0. This is a natural measure of the “suspiciousness” of the client’s update. In
order to prevent excessive payments for honest players, we redistribute the penalties as

p′i(m1, . . . ,mN ) = C‖mi − m̄‖2 −
∑
j 6=i

C‖mj − m̄‖2
N − 1

This redistribution also makes it possible to implement our mechanism in a decentrally with messages
sent publically, if players are able to credibly commit to the implied payments to other players.

Theorem 5.1 establishes that this penalty can incentivize full honesty for the right choice of C:
Theorem 5.1. In the setting of Theorem 4.1 for the penalized game with rewards

Rip′ =

∑
j 6=i ‖θj − µ‖2
N − 1

− λi‖θi − µ‖2 − p′i(m1, . . . ,mN )

the strategy profile αj = bj = βj = 0 for all j is a Nash equilibrium, whenever C > 1
(N−1)2−1 and

maximizes the sum of all players’ rewards among equilibria whenever λ ≥ 1 for all players.

At this equilbrium, the expected penalty pi(m1, . . . ,mN ) paid by each player i is equal to 0. Each
player is incentivized to participate in the penalized game rather than relying on their own estimate,
whenever N > 2, the other N − 1 players participate at the honest equilibrium, and λi > N

(N−1)2 .

Intuitively, our incentive mechanism is effective because αi and bi only affect the first term of the
original reward of player i (equation 2), as well as the penalty, to which they contribute at most as

1
N2 and − (N−1)2−1

N2 C respectively. At the honest equilibrium every player’s MSE is in O( 1
N ), such

that for large N a player can strongly improve their own error by joining the collaboration, while
barely affecting others’ errors. For a complete proof consider Appendix D.1.

Theorem 5.1 shows that our mechanism fulfills two desirable properties: (budget) balance and
(ex-ante) individual rationality/voluntary participation (Jackson, 2014). The first property means
that the server neither makes a profit nor a loss. The second holds as long as λi > N

(N−1)2 and the
other players take part in the optimization, and means that a player will receive better reward at the
game’s equilibrium, than when learning with their own data, despite the penalties assigned by the
server. While non-honest equilbria exist, these are difficult to coordinate on (as they lack the natural
symmetric Schelling point of honesty), while also yielding less total reward summed across players
than honesty, such that there is no strong incentive for such coordination.

5.2 Non-transferable utility

We now discuss a way to achieve similar results in the case of non-transferable utility, where players’
rewards are not translatable to monetary terms. Instead of modifying players’ reward function, we
modify the FL protocol, altering the server’s messages to players. This effectively results in a robust
learning algorithm that the server can implement. We do so by letting the server send noisier versions
of its mean estimate to players whose messages suspiciously deviate from the average of all players’
updates. The penalization scheme is designed in a way such that players receive expected rewards
E(Ri) similar to the expected penalized rewards E(Rip′) in the previous section. This is conceptually
similar to methods against free-riding (e.g. Karimireddy et al. (2022)), which often tie the accuracy
of the model a client receives in an FL setting to the client’s overall contribution to model training.

Theorem 5.2. Consider the modified game with rewardRi =
∑
j 6=i ‖θ

j−µ‖2

N−1 − λi‖θi − µ‖2, where
player i receives an estimate m̄ +

√
Cεi‖mi − m̄‖ for independent noise εi with mean Eεi = 0

and "variance" E‖εi‖2 = 1, instead of the empirical mean m̄, from the server. Then honesty
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(αi = 0, bi = 0, βi = C
C+1 ) is a Nash equilibrium, as long as C > 1

λi(N−1)2−1 and λi > 1
(N−1)2 .

Furthermore, honesty maximizes the sum of all players’ rewards among equilibria whenever λi ≥ 1
for all players.

For fixed λi = λ, k > 1 and C = k
λ(N−1)2−1 , E

(
‖θi − µ‖2

)
= O

(
σ2

Nn +
σ2
?

N

)
and players are

incentivized to participate in the penalized game rather than relying on their own estimate, whenever
N ≥ 2, the other N − 1 players participate at the honest equilibrium and λ ≥ 1.

Essentially, the noise added by the server increases the expected MSE for player i by C‖mi − m̄‖2,
producing similar incentives as in Theorem 5.1. Theorem 5.2 is proven in Appendix D.2. We obtain
voluntary participation if at least two other players participate at the honest equilibrium and λ > 1.

The benefits of modeling clients’ rationality Note that at the equilibrium, players’ MSEs are of
the same order as if all clients honestly communicated their sample means. In particular, when σ∗ = 0
(i.e. homogeneous clients), this is in contrast to known negative results for worst-case poisoning
attacks Qiao & Valiant (2018) and single-round Byzantine robustness Alistarh et al. (2018). In this
sense, our modified protocol acts as a robust and efficient collaborative learning algorithm. This is
possible because our data corruption model is derived by explicitly modeling clients’ incentives.

6 Beyond mean estimation: stochastic gradient descent

We now extend the ideas from the last section to multi-round collaborative Stochastic Gradient
Descent (SGD) in the FL setting. We show that under stronger assumptions, mechanisms similar to
those described in Section 5.1 can still provide arbitrary bounds on manipulations by rational players.
Again, this is complimentary to methods for robust federated learning such as median-based gradient
aggregation that can reduce but not eliminate the impact of existing manipulations.

6.1 The game and rewards

We consider a T -round version of the game described in Section 3. The FL protocol is designed to
minimize a loss function fD(θ) over a closed and convex set of model parameters θ ∈W ⊂ Rd that
contains the global minimizer of fD(θ) . At every time step t, each player is meant to communicate
an update gt(θst , x

i) with expectation ∇f(θst ). We denote by eit(θt) = gt(θ
s
t , x

i) − ∇f(θt) the
difference between the gradient and the estimate, which is a deterministic function of θt for fixed data
xi, but is assumed to fulfill Exieit(θ) = 0 for all θ, and to be independent across time and players.
Intuitively, fD(θ) can be thought of as an expected loss Ex∼Dfx(θ), for which player i computes
approximate stochastic gradients as ∇fxit(θ

s
t−1) using their t-th sample xit. The message sent by

player i is termed mi
t. The server averages the received messages to compute a gradient estimate

m̄t = 1
N

∑
im

i
t and updates the parameter θ via θst+1 = ΠW (θst − γtm̄t), using a fixed learning rate

schedule γt and the projection ΠW onto W . Finally, the server sends the updated θst+1 to all players.

Strategies and rewards We consider attacks of the form mi
t = gt(θ

s
t , x

i) + αitξ
i
t , that is, the true

gradient estimate plus random noise of the form αitξ
i
t , where Eξit = 0, E‖ξit‖2 = 1 and ξit is sampled

independent from the other ξjt′ and the algorithm’s trajectory. The set of attack strategies Ag is then
described by the sequence of aggressiveness parameters αit > 0, which we assume to be selected
in advance, independent of the optimization trajectory. Since defenses were already ineffective for
mean estimation, we directly focus on mechanisms and only consider adjustments to the server’s
final estimate for the noise player i added themselves in the final step T : θiT+1 = θT − αiT

N ξiT .
The assumption of non-adaptive strategies is needed to avoid complicated dependencies between
successive SGD rounds and more sophisticated attack strategies are beyond the scope of our analysis.

We do not consider a bias term for these attacks. Our unbiased attacks have natural interpretations,
both in terms of hiding randomly selected data points and differential privacy defenses, and unlike in
the mean estimation case, the effects of a fixed-direction attack on the loss fD(θ) can strongly depend
on the current estimate θst and the attack’s precise direction, making it substantially harder to analyze
such attacks. That said, it is easy to see that if the server aims to optimize fD(θT+1) and is allowed to
shift its estimate θst to defend against fixed-direction attacks at every step t, the fixed direction attacks
would be neutralized by the server at any equilbrium, unless they inadvertently improved fD(θT+1).
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Given these strategies and a Lipschitz function Ui : RN → R, player i aims to maximize the reward

RiU = U i(f(θ1
T+1), ..., f(θNT+1)). (7)

It is easy to see that this game does not always have an equilibrium and players are often incentivized
to lie aggressively. In particular, we recover the mean estimation setting with βi = 0 when setting
U i(x) =

∑
j 6=i ‖θ− θj‖2−λi‖θ− θi‖2, T = 1, θ1 = 0 and γ1 = 0.5, as d

dθ‖θ−x
j
i‖2 = 2(θ−xji ).

Our next result establishes that players can be incentivized to be arbitrarily honest, using a penalty
scheme similar to the one in Section 5.1. Again, penalties are redistributed such that players’ penalties
have zero expectation whenever αit = αjt for all i, j, t. We set m̄t = 1

N

∑
jm

j
t and

RiUp = U i(f(θ1
T+1), ..., f(θNT+1))−

T∑
t=1

Ct‖mi
t − m̄t‖2 +

1

N − 1

∑
k 6=i

T∑
t

Ct‖mk
t − m̄t‖2

for constants Ct. With this penalized reward we prove:
Theorem 6.1. Assume f is B-smooth and L-Lipschitz on W and m-strongly convex on Rd (See
Appendix 2 for definitions of these properties). Also assume that for all i and t the gradient noise eit
is B′-Lipschitz with probability one and that there exist scalars M ≥ 0 and MV ≥ 0, such that for
all t:

Esi(‖(eit(θst )‖2) ≤M +MV ‖∇f(θst ))‖22. (8)
Set the learning γt = 4

ηm+tm for an integer constant η > 1, such that 4
ηm+m ≤ 1

B(MV /N+1) .

Then if U i is l1-Lipschitz with constant LU for all players i, all player’s best response strategy fulfill
αti ≤ 8LLUN

Ct(N−2)m
√
T+η

independent of other players’ strategies. If αit = αjt ,∀i, j, t, each player’s

expected penalty is 0. For ε > 0, Ct ≥ 8LLUN
ε(N−2)m

√
T+η

yields αti ≤ ε for rational players. In that case,

if in addition W is bounded and we have that P (∃t ≤ T : ΠW (θst − γtm̄t) 6= θst − γtm̄t) ∈ O( 1
NT ),

we get E (f(θT+1)− f(θ∗)) ∈ O( 1+M+ε2

NT ) +O( 1
T 2 ).

Intuitively, small perturbations of gradient estimates sent to the server should only have a small effect
on the final learnt model. Formally, our assumptions allow us to inductively prove bounds on the
difference between the values of Ef(θjT+1) in a clean (αit = 0) scenario and a scenario with other
values of αit. By setting Ct large enough, we can then ensure that the penalties paid by a dishonest
player always outweigh their effect on the final model. The condition on ΠW ensures that SGD is
not slowed down by projections and holds for "sufficiently large" distances between the boundary of
W and θ1. See Appendix E.2 for more details on this and the theorem proof. Theorem 6.1 implies
that for sufficiently large Ct, despite all players acting strategically, the model converges at speed
comparable to when all clients share clean updates (where the convergence rate isO( 1+M

NT )+O( 1
T 2 )),

thereby ensuring full learning benefits from the collaboration. Moreover, as long as all players are
equally honest, this is achieved with zero expected penalties for players and thus with budget balance.

7 Experimental results

To verify that our mechanisms can work for SGD in the non-convex case we simulate FedSGD
McMahan et al. (2017) with clients corrupting their messages to different degrees, and record how
players’ rewards and penalties are affected by their aggressiveness α for different penalty constants
C. The αit that empirically maximizes a player’s reward is an approximate best response for a given
C and fixed αjt for j 6= i, and should thus be small for a successful mechanism.

First, we simulate FedSGD, treating each writer as a client, to train a CNN-classifier using the
architecture provided by Caldas et al. (2018) for the FeMNIST dataset that consists of characters and
numbers written by different writers. Second, we train a two-layer linear classifier with 384 hidden
neurons on top of frozen "bert-base-uncased" embeddings on the Twitter Sentiment Analysis dataset
from Caldas et al. (2018). In both cases, we randomly select m = 3 clients and compute a gradient
estimate git for the cross entropy loss f using a single batch containing 90% of the data provided by
the corresponding writer at time step t < T = 10650 1. We test on the remaining 10% of the data.

1T was selected as 3 times the number of writers in the FeMNIST dataset, as reported by Caldas et al. (2018).
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Figure 1: FeMNIST Dataset
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Figure 2: Twitter Dataset

Figure 3: Average reward Rip(C) received by players in group A for αB = 0 and varying αA.
Different colors represent different penalty weights C. Results are averaged over 10 runs and error
bars show the standard error.

For both experiments, we randomly split writers into two groups A and B containing one and two
thirds of the writers respectively, and corrupt the gradient estimates (mi

t)l = (git)l + αA(ξit)l sent by
players in group A for each weight tensor and bias vector l separately, by adding isotropic normal
noise (ξit)l with "variance" E‖(ξit)l‖2 = 1. We do the same with αB for group B. At each step,
the three corrupted gradients are then averaged (weighted by the corresponding writers’ datasets’
sizes) to m̄t, which is used to update our neural network’s parameters θt with learning rate 0.06,
i.e. θt+1 = θt − 0.06m̄t. Unlike in our theorems, writers reuse the same data points whenever they
calculate gradients. In the clean case (αA = αB = 0), our final models achieve a test accuracy
of 86% on FeMNIST 2 and 63% on Twitter. We record both the cross-entropy loss f achieved
by the final model θT on the test set, as well as the sum of the squared deviations ‖mi

t − m̄t‖2
incurred by each individual client i across all steps. This allows us to calculate the estimated reward
Rip(C) = f(θT )−∑T−1

t=0 It(i)C‖mi
t − m̄t‖2 + 1

2

∑
k 6=i
∑T−1
t=0 It(i)It(k)C‖mk

t − m̄t‖2 received
by every player for penalty weights C held constant over time, where It(j) is a binary indicator equal
to 1 whenever player i provided an update at time t.

Figure 3 shows the average reward Rip(C) received by players in group A for αB = 0 and αA
varying on the x-axis for different penalty weights C. It clearly shows that penalization decreases
players’ gains from adding noise even in the non-convex case, and that near-zero noise is optimal for
players given sufficiently large penalty weights C. At the same time, despite client heterogeneity, the
penalties paid by honest players are small: In the FeMNIST experiments, if all players are honest, an
overwhelming majority (98%) of players end up paying less than 0.0031 on average (over 10 rounds),
even at C = 0.0002. This is an order of magnitude under the increase in loss from moving from
αA = 0 to αA = 9, which is already disincentivized for the substantially smaller penalty constant
C = 5e − 5. On the Twitter dataset, noise has a larger effect on the loss (the loss is degraded by
0.084 already at noise level aA = 5 compared to 0.034 at noise level aA = 9 for FeMNIST). This
means that larger penalty weights are necessary to incentivize honesty. Correspondingly, the 98th
percentile of penalties paid at the largest considered penalty level C = 0.002 is also larger (0.0243)
than on FeMNIST. Additional experimental results can be found in Appendix B.2.

8 Conclusion

In this paper, we studied a framework for FL with strategic agents, where players compete and aim
to not only improve their model but also damage others’ models. We analyzed both the single- and
multi-round version of the problem for a natural class of strategies and goals and showed how to
design mechanisms that incentivize rational players to behave honestly. In addition, we empirically
demonstrated that our approach works on realistic data outside the bounds of our theoretical results.

2For comparison, Caldas et al. (2018) aim for an accuracy threshold of 75% using 5% of the training data.
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A Ethical considerations

Our theoretical results establish that penalties average out to zero in expectation, but substantial
client heterogeneity can still cause large payments for individual honest participants. Despite our
experimental results indicating that variance can be manageable even for real-world data, this is
problematic for two reasons: The first is about fairness: Paying some honest participants large
amounts, while demanding large amounts from others, based on what essentially amounts to luck is
problematic, especially when the participants are individuals rather than firms, and when the nature
of the problem might make it difficult for participants to gauge the order of magnitude of payments
in advance. The second is about diversity: Clients that expect their data to deviate strongly from
the mean of the overall data distribution might opt to not participate in FL with our mechanisms,
even though underrepresented types of clients can provide data that is crucial to a model’s broad
performance and generalization. In our formalism, this problem is obscured by the assumption that
all participants sample their data independently from the same distribution, and are unable to predict
whether or not their data represents outliers.

Correspondingly, it is important to keep penalty weights C as low as possible to reduce the likelihood
of overwhelmingly large penalties, only apply our framework in the context of firms rather than
individuals (for whom competitive incentives might often play less of a direct role either way), as well
as ensure that the our assumptions about a common data distributions are plausible for the problem at
hand. The former can be particularly challenging for non-convex problems, or convex problems with
unknown problem parameters, for which no strong candidate for C can be established theoretically.

Furthermore, our results do not establish collusion-proofness of our mechanism. While we expect
our mechanism to be collusion-proof against small coalitions, there is a problem once the colluding
coalition is large enough to significantly affect the mean estimate, as the shifted mean would reduce
the penalty paid by each member of the coalition.

B Additional results

B.1 Nash equilibria in the mean estimation game under bounded attacks

The conclusion that no Nash equilibria exist in the mean estimation game described in 4 is rather
intuitive, since all participants have an incentive to send as modified an update as possible, therefore
damaging the other players’ estimates. In practice, however, attacking in an unbounded manner,
that is, sending updates very far from the true mean, may not be plausible. Indeed, if most players
send their true mean, one expects the variance of the estimates that the server receives to be of order
O
(
σ2

n + σ2
?

)
. Therefore, players might in practice be reluctant to send estimates that are further

than A
√

σ2

n + σ2
? away from there true local mean, for some constant A.

We therefore consider the same game as before, in the case when an upper bound A on the
parameters αi is given. Denote the resulting set of attack strategies by AA. Since AA ⊂ A m,
Theorem 4.1 holds for the joint set of strategies (A m

A ×D). Then we have the following
Corollary B.1. In the setup of Theorem 4.1, if the set of available strategies is AA × D for some
constant A > 0, the only Nash equilibria of the game with bi(xi) = 0 fixed for all players i are the
strategy profiles for which:

|αi| = A and βi =
A2

(σ
2

n + σ2
?)N + A2

∀i ∈ [N ]. (9)

Furthermore, at each of these equilibria the value of mean squared error of the estimate of each
player i is

E
(
‖θi − µ‖2

)
= (

σ2

n
+ σ2

?)
(1 + 1

σ2

n +σ2
?

A2)

(N + 1
σ2

n +σ2
?

A2)

As a result, whenever A = O(1), each player’s estimate at any Nash equilibrium achieves a mean
squared error of O

(
σ2

Nn +
σ2
?

N

)
, which is of the same order as the MSE of the estimates that would

have been obtained in a fully collaborative setting.
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B.2 Additional details on experiments

The network we train is based on the network used in the LEAF repository 3 but implemented in
pytorch Paszke et al. (2019). It consists of two convolutional layers with relu activations, kernel size
5, (2, 2) padding and 32 and 64 filters, respectively, each followed by max pooling with kernel size
and stride 2. After the convolutional layers, there is a single hidden dense layer with 2048 neurons
and a relu activation, and a dense output layer. All experiments were conducted using a single GPU
each4 per run.
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ing.

Figure 7: Average rewardRip(C) received by players in a group for different values of αA and αB .
Different colors represent different penalty weights C. Results are averaged over 10 runs and error
bars show the standard error.

We downloaded the FeMNIST and Twitter datasets using the code provided at
https://github.com/TalwalkarLab/leaf/tree/master/data/femnist, opting not to filter writers
that only have produced a small amount of samples. Correspondingly, our FeMNIST dataset contains
817851 examples of handwritten digits and characters written by a total of 3597 writers rather than
the 805263 samples from 3550 writers reported in Caldas et al. (2018).

Figures 4, 5, 6 show results similar to 2 for αB fixed to 1 instead of 0 (Figure 4), or αB varying while
αA is fixed to 0 (Figure 5), or 1 (Figure 6), respectively. As payments are redistributed, the average
payments for players in group B increase slower with αB , as each individual’s increase in payment
is partially balanced out by an increase in received payments from encountering other members of
group B (Figures 5, 6). Meanwhile, figures 4 and 6 hint at honest players receiving money when
others are adding noise: In both cases, players of one group receive slightly higher reward for larger
penalties when they are honest (α = 0) while the other group slightly cheats (α = 1).

It is worth noting, that we do not perform a projection step in our experiments, such that numerical
instabilities become an issue for large values of α. In particular, for αA > 6 or αB > 6 we regularly
observed NaN gradients on FeMNIST for one or more of our 10 runs.

Figure 10 show histograms over the total penalty for C = 0.0002 (FeMNIST) and C = 0.002
(Twitter) paid by each individual client over the whole 10650 steps for the honest case of αA = αB =
0, averaged over 10 runs. Clearly, most penalties are on the order of 0.01 (FeMNIST) or 0.1 (Twitter)
, which is substantially smaller (FeMNIST) / comparable (Twitter) to the negative effects of larger
noise values on the order of 0.1, which are strongly disincentivized by the considered penalty values.

Figure 13 shows additional results using SGD with Median-based rather than Mean-based aggregation
as a baseline that is more robust to noisy gradients. We can see that while using Median-based
aggregation helps, players can affect the loss as much as before by adding even more noise (see
Figure 11), such that adding noise is still incentivized. At the same time, our mechanism still works:
As can be seen in Figure 12, rewards still decrease with increased noise for sufficiently large C.
Correspondingly, players remain disincentivized to add noise. This empirically suggests that our
mechanism can also be applied to more advanced federated learning protocols that go beyond simple
SGD with Mean-based aggregation.

3https://github.com/TalwalkarLab/leaf/blob/master/models/femnist/cnn.py
4We used assigned GPUs from a cluster that employs mostly, but not exclusively Nvidia V100 GPUs
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Figure 10: Histogram of average (over 10 runs) total penalties paid by players for αA = αB = 0
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Figure 11: Mean vs Median-based aggrega-
tion in the unpenalized setting (C = 0).
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Figure 12: Median-based aggregation with
different penalty weights C.

Figure 13: Results on FeMNIST with median-based aggregation: Average reward Rip(C) (with
penalties calculated in terms of the distance to the median rather than the mean for Median-based
aggregation) received by players in group A for αB = 0 and varying αA. Results are averaged over
10 runs and error bars show the standard error.

C Proofs on mean estimation

First we prove Theorem 4.1.

Theorem C.1. Let D be as described in 4. Then, for any strategy profile
((α1, b1, β1), . . . , (αN , bN , βN )) ∈ (A ×D)

N and for any player i ∈ [N ], the expected
mean squared error of player i is:

E
(
‖θi − µ‖2

)
=
(
1− βi

)2 σ2

Nn
+
σ2
?

N
+

1

N2

∑
j 6=i

E(aj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2


+ (βi)2(
σ2

n
+ σ2

?) + 2
(
1− βi

)
βi(

σ2

Nn
+
σ2
?

N
)

Proof. Recall that θi = (1 − βi)m̄i + βix̄i = (1 − βi) 1
N

(
Nθs −mi + x̄i

)
+ βix̄i. Therefore,

θi − µ = (1− βi)
(

1
N

(
Nθs −mi + x̄i

)
− µ

)
+ βi

(
x̄i − µ

)
.
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Denote
Y =

1

N

(
Nθs −mi + x̄i

)
− µ, Z = x̄i − µ

Then we have:
E
(
‖θi − µ‖2

)
= E

(
‖
(
1− βi

)
Y + βiZ‖2

)
(10)

=
(
1− βi

)2 E‖Y ‖2 + (βi)2E‖Z2‖+ 2
(
1− βi

)
βiE(Y tZ)

The second term is the mean squared error of the (clean) estimate based on the local data of player i
and so:

E(‖Z‖2) = E
(
‖x̄i − µ‖2

)
= E

‖ 1

n

∑
j

xij − µ‖2


= E

‖ 1

n

∑
j

(xij − µ)‖2


=
1

n2
E

‖∑
j

(xij − µ)‖2


=
1

n2
E

‖∑
j

(xij − µi)‖2 + ‖
∑
j

(µi − µ)‖2


=
1

n2

∑
j

E
(
‖(xij − µi)‖2

)
+ E

(
‖n(µi − µ)‖2

)
=

n

n2
E
(
‖(Xi − µi)‖2

)
+ E‖(µi − µ)‖2

= E
(
σ2
i

n

)
+ σ2

?

=
σ2

n
+ σ2

?

(11)

Where we can split E
(
‖∑j(x

i
j − µ)‖2

)
because of the tower law of expectation and using that

E(xij) = µi conditional on the value of µi; and the squared norm of the last sum factors, as all
xij − µi terms are independent and have zero mean such that

E‖
∑
j

(xij − µ)‖2

= E‖
∑
j>1

(xij − µ)‖2 + E‖xi1 − µ‖2 + 2E

(xi1 − µ)t

∑
j>1

(xij − µ)


= E‖

∑
j>1

(xij − µ)‖2 + E‖xi1 − µ‖2 + 2E

∑
d

(xi1 − µ)d

∑
j>1

(xij − µ)d


= E‖

∑
j>1

(xij − µ)‖2 + E‖xi1 − µ‖2 + 2
∑
d

E

(xi1 − µ)d

∑
j>1

(xij − µ)d


= E‖

∑
j>1

(xij − µ)‖2 + E‖xi1 − µ‖2 + 2
∑
d

E(xi1 − µ)dE

∑
j>1

(xij − µ)d


16



= E‖
∑
j>1

(xij − µ)‖2 + E‖xi1 − µ‖2 + 2
∑
d

0E

∑
j>1

(xij − µ)d


= E‖

∑
j>1

(xij − µ)‖2 + E‖xi1 − µ‖2

and so on, allowing us to inductively factor the sum.

Now, to compute the terms that depend on Y , note that by definition θs = 1
N

∑N
i=1m

i and therefore:

Y =
1

N

(
Nθs −mi + x̄i

)
− µ

=
1

N

 N∑
j=1

mj −mi + x̄i

− µ
=

1

N

∑
j 6=i

mj +
1

N
x̄i − µ

Define random variables:

Y1 =
1

N

N∑
j 6=i

mj , Y2 =
1

N
x̄i − µ

so that Y = Y1 + Y2. This implies that:

E(Y tZ) = E
(
Zt (Y1 + Y2)

)
= E(ZtY1) + E(ZtY2).

Since the value of Y1 only depends on the data of all players j ∈ {1, 2, . . . , N}/{i} and the value
of Z depends only on the data of player i, it follows that Z and Y1 are independent and therefore
E(ZtY1) = E(Z)tE(Y1).

Therefore,

E(ZtY ) = E
(
Zt (Y1 + Y2)

)
= E(Z)tE(Y1) + E(ZtY2)

= E
(
x̄i − µ

)t E
 1

N

∑
j 6=i

mj

+ E
((
x̄i − µ

)t( 1

N
x̄i − µ

))

= 0 +
1

N
E
(
‖x̄i‖2

)
− 1

N
µtE

(
x̄i
)
− µtE

(
x̄i
)

+ ‖µ‖2

=
1

N
E
(
‖x̄i‖2

)
− 1

N
µtµ− µtµ+ ‖µ‖2

=
1

N
E
(
‖x̄i‖2

)
− 1

N
‖µ‖2

=
1

N
E

‖ 1

n

∑
j

xij‖2
− 1

N
‖µ‖2

=
1

N
E

‖( 1

n

∑
j

xij − µ) + µ‖2
− 1

N
‖µ‖2

=
1

N
E

‖( 1

n

∑
j

xij − µ)‖2 + ‖µ‖2
− 1

N
‖µ‖2

=
1

N
E

‖( 1

n

∑
j

xij − µ)‖2


17



=
σ2

Nn
+
σ2
?

N
(12)

Where the squared norm of the sum factors as all xji − µ terms have zero mean, while µ is a constant
and the last equality follows from the computations in (11).

Now, by definition mj = x̄j + αj(xj)ξj + bj(xj) for every j ∈ [N ], where the ξj are random
variables with zero mean and unit "variance" E(‖ξj‖2). Note that because Y1 and Y2 depend only
on the data of all players j ∈ {1, 2, . . . , N}/{i} and on the data of player i respectively, they are
independent and we get:

E
(
‖Y 2‖

)
= E

(
‖Y1 + Y2‖2

)
= E

(
‖Y1‖2

)
+ E

(
‖Y2‖2

)
+ 2E (Y1)

t E (Y2) (13)

In order to calculate the value of E
(
Y 2
)

we have to compute E(Y1),E(Y2),E
(
‖Y1‖2

)
and

E
(
‖Y2‖2

)
. We have:

E(Y1) = E

 1

N

∑
j 6=i

(
x̄j + αj(xj)ξj + bj(xj)

)
=

1

N

∑
j 6=i

E
(
x̄j
)

+
1

N

∑
j 6=i

E(αj(xj))E (ξj) +
1

N

∑
j 6=i

E(bj(xj))

=
N − 1

N
(µ) +

1

N

∑
j 6=i

Ebj(xj),

since E(ξj) = 0 and ξj is independent from all other variables. In addition,

E(Y2) = E
(

1

N
x̄i − µ

)
=

1

N
E(x̄i)− µ =

(1−N)

N
µ

Next,

E
(
‖Y1‖2

)
= E

‖ 1

N

∑
j 6=i

(
x̄j + αj(xj)ξj + bj(xj)

)
‖2


= E

‖ 1

N

∑
j 6=i

x̄j + bj(xj)‖2 + ‖ 1

N

∑
j 6=i

αj(xj)ξj‖2


=
1

N2
E

‖∑
j 6=i

x̄j +
∑
j 6=i

bj(xj)‖2
+

1

N2

∑
j 6=i

E(αj(xj)2)

=
1

N2
E

‖∑
j 6=i

(x̄j − µ+ bj(xj)) + (N − 1)µ‖2
+

1

N2

∑
j 6=i

E(αj(xj)2)

=
1

N2
E

‖∑
j 6=i

x̄j − µ‖2 + ‖
∑
j 6=i

bj(xj) + (N − 1)µ‖2
+

1

N2

∑
j 6=i

E(αj(xj)2)

=
1

N2
E

‖∑
j 6=i

∑
k

(
1

n
xjk − µ)‖2

+
1

N2
E‖(N − 1)µ+

∑
j 6=i

bj(xj)‖2 +
1

N2

∑
j 6=i

E(αj(xj)2)

=
1

N2
E

‖ 1

n
(
∑
j 6=i

∑
k

xjk − µ)‖2
+

1

N2
E‖(N − 1)µ+

∑
j 6=i

bj(xj)‖2 +
1

N2

∑
j 6=i

E(αj(xj)2)

=
1

N2
E

∑
j 6=i

‖ 1

n
(
∑
k

xjk − µ)‖2
+

1

N2
E‖(N − 1)µ+

∑
j 6=i

bj(xj)‖2 +
1

N2

∑
j 6=i

E(αj(xj)2)
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=
(N − 1)

N2

(
σ2

n
+ σ2

?

)
+

1

N2
E‖(N − 1)µ+

∑
j 6=i

bj(xj)‖2 +
1

N2

∑
j 6=i

E(αj(xj)2)

Where the first squared norms factors because

E[<
1

N

∑
j 6=i

x̄j + bj(xj), αj(xj)ξj >] = E[< αj(xj)
1

N

∑
j 6=i

(x̄j + bj(xj)), ξj >] = 0

as the ξj are independent of all other variables and have zero mean, the E(‖∑j 6=i α
j(xj)ξj‖2) term

factors because all αj(xj) and ξj are independent (and the ξj have zero mean), the bj(xj) terms
factor because E < x̄j − µ, bj(xj) >= 0 by assumption and because the x̄j − µ have zero mean and
are independent of bi(xi) for j 6= i. The last squared norm factors because all

∑
k x

k
j − µ terms are

independent and have zero mean.

Finally,

E
(
‖Y2‖2

)
= E

(
‖ 1

N
x̄i − µ‖2

)

= E

‖ 1

Nn

∑
j

xij − µ‖2


= E

‖ 1

Nn

∑
j

(xij − µ) +
1−N
N

µ‖2


= E

‖ 1

Nn

∑
j

(xij − µ)‖2 + ‖1−N
N

µ‖2


=
1

N2
E

‖ 1

n

∑
j

(xij − µ)‖2
+

(1−N)2

N2
‖µ‖2

=
1

N2
(
σ

n
+ σ2

?) +
(1−N)2

N2
‖µ‖2

=
1

N2n
σ2 +

1

N2
σ2
? +

(1−N)2

N2
‖µ‖2

with the sums factoring for the same reasons as above. Substituting in (13):

E
(
‖Y 2‖

)
= E

(
‖Y1‖2

)
+ E

(
‖Y2‖2

)
+ 2E (Y1)

t E (Y2)

=
(N − 1)

N2
(
σ2

n
+ σ2

?) +
1

N2
E‖(N − 1)µ+

∑
j 6=i

bj(xj)‖2 +
1

N2

∑
j 6=i

E(αj(xj)2)

+
1

N2n
σ2 +

1

N2
σ2
? +

(1−N)2

N2
‖µ‖2 + 2(

N − 1

N
µ+

1

N

∑
j 6=i

Ebj(xj))t
(1−N)

N
µ

=
σ2

Nn
+
σ2
?

N
+

1

N2

∑
j 6=i

E(αj(xj)2)

+
(N − 1)2

N2
‖µ‖2 +

1

N2
E‖
∑
j 6=i

bj(xj)‖2 +
2(N − 1)

N2

∑
j 6=i

E(bj(xj)tµ)

+
(N − 1)2

N2
‖µ‖2 + 2

(N − 1)(1−N)

N2
‖µ‖2 +

2(1−N)

N2

∑
j 6=i

Ebj(xj)tµ

=
σ2

Nn
+
σ2
?

N
+

1

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2 (14)
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Substituting (11), (12) and (14) into (10), we have:

E
(
‖θi − µ‖2

)
=
(
1− βi

)2 E (‖Y ‖2)+ (βi)2E
(
‖Z‖2

)
+ 2

(
1− βi

)
βiE

(
ZtY

)
=
(
1− βi

)2 σ2

Nn
+
σ2
?

N
+

1

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2


+ (βi)2(
σ2

n
+ σ2

?) + 2
(
1− βi

)
βi(

σ2

Nn
+
σ2
?

N
)

Next we prove a lemma that gives the optimal value of the defense parameter β of a player, assuming
that the attack parameters α of all players are fixed.
Lemma C.1. For a fixed set of values α1, . . . , αN ∈ [0,∞) and b1, . . . , bN ∈ Rd, the value of βi
that minimizes the mean squared error of the estimate of player i is given by:

(βi)∗ =
1
N2

∑
j 6=i E(αj(xj)2) + 1

N2E‖
∑
j 6=i b

j(xj)‖2(
σ2

n + σ2
? − σ2

Nn −
σ2
?

N + 1
N2

∑
j 6=i E(αj(xj)2) + 1

N2E‖
∑
j 6=i b

j(xj)‖2
) (15)

Proof. Re-writing the statement of Theorem C.1,

E
(
‖θi − µ‖2

)
= (βi)2

σ2

n
+ σ2

? −
σ2

Nn
− σ2

?

N
+

1

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2


− 2
βi

N2

∑
j 6=i

E(αj(xj)2) + E‖
∑
j 6=i

bj(xj)‖2


+

 σ2

Nn
+
σ2
?

N
+

1

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2


This is a quadratic function of βi with a positive coefficient in front of the square term. Therefore,
the function is minimized over (−∞,∞) at the point:

(βi)∗ =
1
N2

∑
j 6=i E(αj(xj)2) + 1

N2E‖
∑
j 6=i b

j(xj)‖2(
σ2

n + σ2
? − σ2

Nn −
σ2
?

N + 1
N2

∑
j 6=i E(αj(xj)2) + 1

N2E‖
∑
j 6=i b

j(xj)‖2
)

This result is closely related to the work of Grimberg et al. (2021), which studies the optimal way of
averaging two sample sets from two different distributions, with the goal of minimizing the mean
squared error of the estimate on one of these distributions. However, in our case the estimate from
the server is an average of manipulated samples coming from multiple distributions, rather than i.i.d.
samples from a single one. Now, C.1 allows us to prove Corollary 4.2:
Corollary C.2. The game defined by the expected reward

E
(
Ri(θ1, . . . , θN , µ)

)
=

∑
j 6=i E

(
‖θj − µ‖2

)
N − 1

− λiE
(
‖θi − µ‖2

)
and the set of strategies A ×D does not have a (pure or mixed) Nash equilibrium at which E((αj)2)
and E‖bj(xj)‖2 are finite for all players.

Proof. Assume that a strategy profile ((α1, b1, β1), . . . , (αN , bN , βN )) ∈ P (A ×D)
N is a (po-

tentially mixed) Nash equilibrium for which E((αj)2) and E‖bj(xj)‖2 are finite for player j 6= i
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(with the expectations taken both over the randomness of the strategy profile and x). Note that
in the definition of the (expected) reward function, the value of the defense parameters of the i-th
player βi only affects the MSE of the estimate θi of that player. Therefore, it follows from Lemma
C.1 that each βi must be non-random and defined by equation (15). In particular, it is easy to
see that each βi ∈ [0, 1). In that case, it follows from Theorem C.1 that the expected reward of
each player j is strictly monotonically increasing in E(αj(xj)2), so that player j can increase their
reward by increasing E((αj)2). This contradicts the assumption that the strategy profile is a Nash
equilibrium.

Finally, we prove corollary B.1. For this, we consider the same game as before, in the case when
an upper bound A on the parameters αi is given. Recall that we denote the resulting set of attack
strategies by AA. Since AA ⊂ A m, Theorem 4.1 holds for the joint set of strategies (A m

A × D).
Then we have the following
Corollary C.3. In the setup of Theorem 4.1, if the set of available strategies is AA × D for some
constant A > 0, the only Nash equilibria of the game with bi(xi) = 0 fixed for all players i are the
strategy profiles for which:

|αi(xi)| = A and βi =
A2

(σ
2

n + σ2
?)N + A2

∀i ∈ [N ]. (16)

Furthermore, at each of these equilibria the value of mean squared error of the estimate of each
player i is

E
(
‖θi − µ‖2

)
= (

σ2

n
+ σ2

?)
(1 + 1

σ2

n +σ2
?

A2)

(N + 1
σ2

n +σ2
?

A2)

Proof. Assume that a strategy profile ((α1, b1, β1), . . . , (αN , bN , βN )) is a Nash equilibrium. As in
Corollary C.2, it follows that each βi is given by equation (15) and is therefore in the interval [0, 1).
Therefore, the reward of each player i is increasing with E(αi(xi)2). It follows that αi(xi) = A for
all i ∈ [N ]. Substituting for the value of (βi)∗ we get that for every i ∈ [N ]:

βi = (βi)∗ =
N−1
N2 A2

σ2

n + σ2
? − σ2

Nn −
σ2
?

N + N−1
N2 A2

=
A2

(σ
2

n + σ2
?)N + A2

.

Substituting into Theorem C.1 and setting σ̂2 = σ2 + nσ2
? we get:

E
(
‖θi − µ‖2

)
=
(
1− βi

)2 σ̂2

Nn
+

1

N2

∑
j 6=i

(αj)2

+ (βi)2 σ̂
2

n
+ 2

(
1− βi

)
βi
σ̂2

Nn

=
N2σ̂4

n2

(Nσ̂
2

n +A2)2

(
σ̂2

Nn
+
N − 1

N2
A2

)
+

A4

(Nσ̂
2

n +A2)2

σ̂2

n
+ 2

A2Nσ̂2

n

(Nσ̂
2

n +A2)2

σ̂2

Nn

=
Nσ̂6

n3 + σ̂4

n2 (N − 1)A2 + A4σ̂2

n + 2A
2σ̂4

n2

(Nσ̂
2

n +A2)2

=
σ̂2

n

Nσ̂4

n2 + σ̂2

n (N − 1)A2 +A4 + 2 σ̂
2

n A
2

(Nσ̂
2

n +A2)2

=
σ̂2

n

σ̂4

n2N + σ̂2

n NA
2 +A4 + σ̂2

n A
2

( σ̂
2

n N +A2)2

=
σ̂2

n

N + n
σ̂2NA

2 + n2

σ̂4A
4 + n

σ̂2A
2

(N + n
σ̂2A2)2

=
σ̂2

n

(1 + n
σ̂2A

2)(N + n
σ̂2A

2)

(N + n
σ̂2A2)2

=
σ̂2

n

(1 + n
σ̂2A

2)

(N + n
σ̂2A2)
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= (
σ2

n
+ σ2

?)
(1 + 1

σ2

n +σ2
?

A2)

(N + 1
σ2

n +σ2
?

A2)

D Proofs on mechanisms for mean estimation

Next, we proof a version of Theorem 5.1 without redistribution.
Proposition D.1. In the setting of 4.1, the penalized game with rewards

Rip =

∑
j 6=i ‖θj − µ‖2
N − 1

− λi‖θi − µ‖2 − C‖mi − θs‖2

has a Nash equilbrium consisting of the strategies αj = bj = βj = 0 for all j whenever C > 1
(N−1)2 .

At this equilbrium, the expected penalty pi(m1, . . . ,mN ) paid by each player i is equal to C (N−1)
Nn σ2,

thus a player is incentivized to participate in the penalized game rather than relying on their own
estimate, whenever N > 2, the other N − 1 players participate at the honest equilibrium and
λi > C + N

(N−1)2 or N = 2 and λi > C + 1.

Proof. We begin by inserting the equality E
(
‖θi − µ‖2

)
=(

1− βi
)2 ( σ2

Nn +
σ2
?

N + 1
N2

∑
j 6=i E(αj(xj)2) + 1

N2E‖
∑
j 6=i b

j(xj)‖2
)

+ (βi)2(σ
2

n + σ2
?) +

2
(
1− βi

)
βi( σ

2

Nn +
σ2
?

N ) from 4.1 in the first two terms to obtain

ERip = E

∑j 6=i ‖θj − µ‖2
N − 1

− λi‖θi − µ‖2 − C‖mi − 1

N − 1

∑
j 6=i

mj‖2


= E

∑
j 6=i
(
1− βj

)2 ( σ2

Nn +
σ2
?

N + 1
N2

∑
k 6=j E(αk(xk)2) + 1

N2E‖
∑
k 6=j b

k(xk)‖2)
)

N − 1

+ E

∑
j 6=i

(
(βj)2(σ

2

n + σ2
?) + 2

(
1− βj

)
βj( σ

2

Nn +
σ2
?

N

)
N − 1

− λiE
(
1− βi

)2 σ2

Nn
+
σ2
?

N
+

1

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2


− λi
(

(βi)2(
σ2

n
+ σ2

?) + 2
(
1− βi

)
βi(

σ2

Nn
+
σ2
?

N
)

)
− E

(
C‖mi − θs‖2

)
Correspondingly, we get

d

dEαj(xj)2
ERip =

∑
j 6=i

(1− βi)2

(N − 1)N2
− C d

dαj(xj)2
E‖mi − θs‖2 (17)

To analyze the second term, we calculate:

E‖mi − θs‖2 = ‖mi − θs‖2

= E‖mi − 1

N

∑
j

mj‖2

= E‖αi(xi)ξi + bi(xi) +
1

n

∑
k

xik −
1

N

∑
j

(αj(xj)ξj + bj(xj) +
1

n

∑
k

xjk)‖2

= E‖αi(xi)ξi +
1

n
(
∑
k

xik − µ)
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− 1

N

∑
j

(
αj(xj)ξj +

1

n

∑
k

(xjk − µ)

)
+ µ− µ+ dib‖2

= E‖N − 1

N

(
αi(xi)ξi +

1

n
(
∑
k

xik − µ)

)

− 1

N

∑
j 6=i

(
αj(xj)ξj +

1

n

∑
k

(xjk − µ)

)
+ dib‖2

= (
N − 1

N
)2E‖αi(xi)ξi‖2 + (

N − 1

N
)2E‖ 1

n

∑
k

xik − µ‖2

+
1

N2

∑
j 6=i

E‖αj(xj)ξj‖2 +
1

N2

∑
j 6=i

E‖ 1

n

∑
k

xjk − µ‖2 + E‖dib‖2

= (
N − 1

N
)2E(αi(xi)2) +

(N − 1)2

N2
(
σ2

n
+ σ2

?)

+
1

N2

∑
j 6=i

E(αj(xj)2) +
(N − 1)

N2
(
σ2

n
+ σ2

?) + E‖dib‖2

= (
N − 1

N
)2E(αi(xi)2) +

1

N2

∑
j 6=i

E(αj(xj)2)

+
(N − 1)

Nn
σ2 +

N − 1

N
σ2
? + E‖dib‖2 (18)

setting dib = N−1
N bi(xi)−∑j 6=i

bj(xj)
N . The squared norm again factors because of the independence

and zero means of both ξi and xik − µ and because E < x̄j − µ, bj(xj) >= 0, while bj(xj) is
independent of x̄i − µ for i 6= j. Now, inserting 18 in 17, we obtain

d

dEαi(xi)2
ERip(θ1, . . . , θN , µ) =

∑
j 6=i

(1− βi)2

(N − 1)N2
− C(

N − 1

N
)2

≤ 1

N2
− C (N − 1)2

N2

=
1

N2

(
(1− C(N − 1)2)

)
(19)

As βi ∈ [0, 1]. Thus E d
dαiRip is negative wheneverC(N−1)2 > 1 orC > 1

(N−1)2 . Correspondingly,
for such C, player i is incentivized to set αi = 0, independent of other players’ strategies.

Now, assuming bj(xj) = 0 for all other players j 6= i, we also get

d

dE‖bi(xi)‖2ER
i
p(θ

1, . . . , θN , µ) =
∑
j 6=i

(1− βi)2

(N − 1)N2
− C(

N − 1

N
)2

≤ 1

N2
− C (N − 1)2

N2

=
1

N2

(
(1− C(N − 1)2)

)
. (20)

Correspondingly, bi = 0 for all players is a Nash Equilbrium. As the penalty pi(m1, ...,mN ) does
not dependend on the defense strategies βi, the optimal βi at the equilbrium αi = 0 and bi = 0 can
still be calculated using 15 and is equal to zero as well.

The average penalty honest players pay at the Nash equilbrium is then given by C (N−1)
N (σ

2

n + σ2
?) ,

according to 18.

To understand participation incentives, we compare the equilbrium rewardRi(θ1, . . . , θN , µ) player
i receives if they do not participate while all other players do, to the penalized rewardRip player i
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would obtain when participating. We first calculateRi(θ1, . . . , θN , µ) assuming player i only uses
their own estimate and does not send an update to the server, while the other N −1 players participate
in the penalized game at equilbrium:

ERi(θ1(N − 1), . . . , θi(1), . . . , θN (N − 1), µ) = E

(∑
j 6=i ‖θj(N − 1)− µ‖2

N − 1
− λ‖θi(1)− µ‖2

)

=
σ2

(N − 1)n
+

σ2
?

(N − 1)
− λi(

σ2

n
+ σ2

?) (21)

using 4.1 with αj = bj = βj = 0 and substituting N − 1 and 1 for N respectively. We then calculate
ERip:

ERip = E

(∑
j 6=i ‖θj − µ‖2
N − 1

− λi‖θi − µ‖2 − C‖mi − θs‖2
)

= (1− λi)(
σ2

Nn
+
σ2
?

N
)− C(

(N − 1)

Nn
σ2 +

(N − 1)

N
σ2
?) (22)

using 4.1 with αj = bj = βj = 0 and D.1. The difference between these can the be calculated as

ERip − ERi(θ1(N − 1), . . . , θi(1), . . . , θN (N − 1), µ)

= (1− λi)(
σ2

Nn
+
σ2
?

N
)− C (N − 1)

N
(
σ2

n
+ σ2

?)− 1

N − 1
(
σ2

n
+ σ2

?) + λi(
σ2

n
+ σ2

?)

= (
σ2

n
+ σ2

?)

(
(1− λi)

1

N
− CN − 1

N
− 1

N − 1
+ λi

)
= (

σ2

n
+ σ2

?)

(
1

N
− CN − 1

N
− 1

N − 1
+
N − 1

N
λi

)
= (

σ2

n
+ σ2

?)

(
1

N
− 1

N − 1
+
N − 1

N
(λi − C)

)
≥ (

σ2

n
+ σ2

?)

(
− 1

N − 1
+
N − 1

N
(λi − C)

)
= (

σ2

n
+ σ2

?)

(
N − 1

N
(λi − C −

N

(N − 1)2
)

)

and is positive whenever λi > C + N
(N−1)2 , such that in these cases player i is better off participating

in data sharing, despite the penalties. If N = 2, we instead obtain

ERip − ERi(θ1(N − 1), . . . , θi(1), . . . , θN (N − 1), µ) =
σ2

n

(
−1

2
+

1

2
(λi − C)

)
which is positive whenever λi > C + 1.

We now prove 5.1:
Theorem D.1. In the setting of 4.1, the penalized game with rewards

Rip′ =

∑
j 6=i ‖θj − µ‖2
N − 1

− λi‖θi − µ‖2 − C‖mi − θs‖2 +
1

N − 1

∑
j 6=i

C‖mj − m̄‖2

has a Nash equilbrium consisting of the strategies αj = bj = βj = 0 for all j whenever C >
1

(N−1)2−1 . Furthermore, this equilibrium maximizes the sum of all players’ rewards among equilibria
whenever λi ≥ 1 for all players.

At this equilbrium, the expected penalty pi(m1, . . . ,mN ) paid by each player i is equal to 0, such
that player i is incentivized to participate in the penalized game rather than relying on their own
estimate, whenever N > 2, the other N − 1 players participate at the honest equilibrium, and
λi >

N
(N−1)2 .
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Proof. Analogous to the proof of D.1 We have that
d

dEαi(xi)2
ERip′ =

d

dEαi(xi)2
ERip +

1

N − 1

∑
j 6=iC

d

dEαi(xi)2
E‖mj − θs‖2

≤ 1

N2

(
(1− C(N − 1)2)

)
+ C

1

N2

=
1

N2

(
(1− C

(
(N − 1)2 − 1)

))
by inserting 18 and 19.

Similarly, assuming bj(xj) = 0 for all players j 6= i we get

d

dE‖bi(xi)‖2ER
i
p′ =

d

dE‖bi(xi)‖2ER
i
p +

1

N − 1

∑
j 6=iC

d

dE‖bi(xi)‖2E‖m
j − θs‖2

≤ 1

N2

(
(1− C(N − 1)2)

)
+ C

1

N2

=
1

N2

(
(1− C

(
(N − 1)2 − 1)

))
by inserting 18 and 20

Thus E d
dEαi(xi)2Rip′ is negative whenever C((N − 1)2 − 1) > 1 or C > 1

(N−1)2−1 and
d

dE‖bi(xi)‖2ERip′ under the same conditions as long as bj(xj) = 0 for all other players j.

The expected penalty paid by each player is zero by symmetry, as every players’ paid penalty gets
redistributed equally among all other players, such that the payments cancel out in expectation.

Similarly, the calculations for participation incentives are exactly as in D.1, but ERip′ is now equal to

(1−λi)( σ
2

Nn +
σ2
?

N ) rather than (1−λi)( σ
2

Nn +
σ2
?

N )−C( (N−1)
Nn σ2 + (N−1)

N σ2
?) because the expected

penalty paid by players is equal to zero at equilbrium.

Lastly, it is easy to see that E‖bi(xi)‖2 has to be nonzero for at least two players at any other
equilibrium. Compared to the honest equilibrium, that increases every players’ MSE. But the

(unpenalized) expected reward for player i equals
∑
j 6=i ‖θ

j−µ‖2

N−1 − λi‖θi − µ‖2, such that the sum
of all players’ (unpenalized) rewards equals

∑
j(1− λj)‖θj − µ‖2, which is strictly monotonically

decreasing in all players’ MSEs when λi ≥ 1 for all players. As all players’ penalties add up to
zero in expectation, the sum of penalized rewards is equally strictly monotonically decreasing in all
players’ MSEs.

Next, we prove 5.2
Theorem D.2. Consider the modified game with reward

Ri =

∑
j 6=i ‖θj − µ‖2
N − 1

− λi‖θi − µ‖2,

where player i receives an estimate m̄ +
√
Cεi‖mi − m̄‖ for independent noise εi with mean

Eεi = 0 and "variance" E‖εi‖2 = 1, instead of the empirical mean m̄, from the server. Then honesty
(αi = 0, bi = 0, βi = C

C+1 ) is a Nash equilibrium, as long as C > 1
λi(N−1)2−1 and λi > 1

(N−1)2 .
Furthermore, honesty maximizes the sum of all players’ rewards among equilibria whenever λi ≥ 1
for all players.

Furthermore, for fixed constant λi = λ, E
(
‖θi − µ‖2

)
∈ O

(
σ2

Nn +
σ2
?

N

)
whenever C = k

λ(N−1)2−1

for any constant k > 1, such that players are incentivized to participate in the penalized game rather
than relying on their own estimate, whenever N > 2, the other N − 1 players participate at the
honest equilibrium, and λ ≥ 1.

Proof. In order to calculate the rewardRi(θ1, . . . , θN , µ) =
∑
j 6=i ‖θ

j−µ‖2

N−1 −λi‖θi−µ‖2 for player
i, we have a closer look at the mean squared error incurred by players in the modified game. For
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convenience, we set σ̄2 := σ2

n + σ2
?

E‖θi − µ‖2 = E‖(1− βi)
(
m̄i +

√
C‖mi − θs‖εi

)
+ βix̄i − µ‖2

= E‖(1− βi)m̄i + βix̄i − µ‖2 + E‖(1− βi)
√
C‖mi − θs‖εi‖2

+ 2E <
(

(1− βi)
√
C‖mi − θs‖εi,

(
(1− βi)m̄i + βix̄i − µ

))
>

=
(
1− βi

)2 σ̄2

N
+

1

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2


+ (βi)2σ̄2 + 2
(
1− βi

)
βi
σ̄2

N

+ (1− βi)2C

(
N − 1

N
)2E(αi(xi)2) +

1

N2

∑
j 6=i

E(αj(xj)2) + E‖dib‖2 +
(N − 1)

N
σ̄2


+ 2E <

(
(1− βi)

√
C‖mi − θs‖εi,

(
(1− βi)m̄i + βix̄i − µ

))
>

using the calculations from the proof of C.1 for the first term and D.1 for the second. The last term is
equal to zero because:

E
(
< (1− βi)

√
C‖mi − θs‖εi,

(
(1− βi)m̄i + βix̄i − µ

)
>
)

= E
(
< εi, (1− βi)

√
C‖mi − θs‖

(
(1− βi)m̄i + βix̄i − µ

)
>
)

= E(< εi,E
(

(1− βi)
√
C‖mi − θs‖

(
(1− βi)m̄i + βix̄i − µ

)
>
)

= 0

as εi is independent of all the other terms and has mean zero. Simplifying, we obtain

E‖θi − µ‖2

=
(
1− βi

)2 σ̄2

N
+

1

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2
+ (βi)2σ̄2 + 2

(
1− βi

)
βi
σ̄2

N

+ (1− βi)2C

(
N − 1

N
)2E(αi(xi)2) + E‖dib‖2 +

1

N2

∑
j 6=i

E(αj(xj)2) +
(N − 1)

N
σ̄2


= (βi)2

(
σ̄2 +

C(N − 1)− 1

N
σ̄2 +

1 + C

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2

+ C(
N − 1

N
)2E(αi(xi)2) + CE‖dib‖2

)

− 2βi

(
1 + C

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2

+ C(
N − 1

N
)2E(αi(xi)2) + CE‖dib‖2 + C

(N − 1)

N
σ̄2

)

+
1 + C

N2

∑
j 6=i

E(αj(xj)2) +
1

N2
E‖
∑
j 6=i

bj(xj)‖2 +
1− C + CN

N
σ̄2

+ C(
N − 1

N
)2E(αi(xi)2 + CE‖dib‖2)
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As in C.1, this yields an optimal value for βi of

(βi)∗ =

(
Hi(α, b) + C (N−1)

N σ̄2
)

(
σ̄2 + C(N−1)−1

N σ̄2 +Hi(α, b)
)

for Hi(α, b) = 1+C
N2

∑
j 6=i E(αj(xj)2)+ 1

N2E‖
∑
j 6=i b

j(xj)‖2 +C(N−1
N )2E(αi(xi)2)+CE‖dib‖2

Now, calculating the derivative of ERi(θ1, . . . , θN , µ) with respect to E(αi(xi)2) yields:

d

dE(αi(xi)2)
ERi(θ1, . . . , θN , µ) =

d

dE(αi(xi)2)

∑
j 6=i ‖θj − µ‖2
N − 1

− d

dE(αi(xi)2)
λi‖θi − µ‖2

=
∑
j 6=i

(1− βj)2

(N − 1)N2
((1 + C))− (1− βi)2(λiC

(N − 1)2

N2
)

Similarly, assuming bj(xj) = 0 for all other players j 6= i, we get

d

dE‖bi(xi)‖2ER
i(θ1, . . . , θN , µ) =

d

dE‖bi(xi)‖2

∑
j 6=i ‖θj − µ‖2
N − 1

− d

dE‖bi(xi)‖2λi‖θ
i − µ‖2

=
∑
j 6=i

(1− βj)2

(N − 1)N2
((1 + C))− (1− βi)2(λiC

(N − 1)2

N2
)

Both are negative, whenever βj = βi 6= 1 and λiC(N − 1)2 > 1 + C or C(λi(N − 1)2 − 1) > 1,
which is true whenever C > 1

λi(N−1)2−1 and λi > 1
(N−1)2 .

But for αj = bj = 0 for all players j, the formula for (βi)∗ simplifies to

(βi)∗ =
C (N−1)

N σ̄2

σ̄2 + C(N−1)−1
N σ̄2

=
C (N−1)

N

1 + C(N−1)−1
N

=
C (N−1)

N

N−1
N + C(N−1)

N

=
C

1 + C
,

for all players. In particular, we have (βi)∗ < 1 for C > 0, such that βj = βi 6= 1 and the derivatives
with respect to both α and b are negative for all players, turning αj = bj = 0, (βi) = C

1+C into a
Nash equilibrium.

We can now upper bound E‖θi − µ‖2 at the honest equilbrium by considering it at the suboptimal
βi = 0:

E‖θi − µ‖2 ≤ σ̄2

N
+ C

N − 1

N
σ̄2,

which is is O( σ̄
2

N ) as long as C is in O( 1
N ), which is the case for constant λi = λ, C = k

λ(N−1)2−1

and any k > 1.

In terms of participation incentives, we again look at the difference in rewards obtained by player i in
both cases:

ERi(θ1, . . . , θN , µ)− ERi(θ1(N − 1), . . . , θi(1), . . . , θN (N − 1), µ) (23)

= E

(∑
j 6=i ‖θj(N)− µ‖2

N − 1
− λi‖θi(N)− µ‖2

)
(24)

− E

(∑
j 6=i ‖θj(N − 1)− µ‖2

N − 1
− λi‖θi(1)− µ‖2

)

= (1− λi)E‖θi(N)− µ‖2 − E

(∑
j 6=i ‖θj(N − 1)− µ‖2

N − 1
− λi‖θi(1)− µ‖2

)

It is obvious that E‖θi(N)−µ‖2 < E‖θj(N − 1)−µ‖2 ≤ E‖θi(1)−µ‖2 at the honest equilibrium
because of symmetry and as players could otherwise improve their reward by setting βi = 1, which
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was shown to be suboptimal in the proof of 5.2. This has two implications: First, 23 is positive for
λi = 1. Second, the derivative of 23 with respect to λi is always positive. Combined, this implies
that 23 is positive for all λi ≥ 1.

Lastly, it is easy to see that E‖bi(xi)‖2 has to be nonzero for at least two players at any other
equilibrium. Compared to the honest equilibrium, that increases every players’ MSE. But the

expected reward for player i equals
∑
j 6=i ‖θ

j−µ‖2

N−1 − λi‖θi − µ‖2, such that the sum of all players’
rewards equals

∑
j(1 − λj)‖θj − µ‖2, which is strictly monotonically decreasing in all players’

MSEs when λi ≥ 1 for all players.

E Proofs on stochastic gradient descent

Outlook In this section we prove Theorem 6.1. To this end, we first present the formal definitions of
the assumptions on f that we make. Next, we prove two results which bound the difference between
the performance of a model resulting from a corrupted optimization scheme (in which players send
corrupted estimates) and the performance of a model resulting from honest participation (i.e. from
vanilla SGD). In particular, Theorem E.1 provides such a result for a simple penalization scheme,
which then easily extends to the penalties presented in Section 6 (Theorem E.2). Next, we combine
these results with classic bounds on the distance of the plain SGD trajectory to the minimum value
of f (Lemma E.1), to provide an upper bound on the difference between the performance of the
corrupted trajectory and the minimum value of f in Theorem E.1. Finally, we show how this last
result can be extended to general Lipschitz utilities in Theorem E.2, thereby proving the result from
the main text.

Definitions First we formally state our assumptions on the function f .

Definition 2. A function f : W ⊂ Rn → Rd is called L-Lipschitz with respect to given norms ‖ · ‖n
and ‖ · ‖d if for all x, y ∈W

‖f(x)− f(y)‖d ≤ L‖x− y‖n.
Definition 3. A continously differentiable function f : W ⊂ Rn → R is called B-smooth if its
gradient∇f : W → Rn is B−Lipschitz with respect to the euclidean norm.

Definition 4. A differentiable function f : W ⊂ Rn → R is called m-strongly convex if for all
x, y ∈W

f(x) ≥ f(y) +∇f(y)t(x− y) +
m

2
‖x− y‖2,

where ‖ · ‖ denotes the euclidean norm.

We start with proving a weaker version of 6.1 with constant learning rates in which player’s paid
penalties do not get redistributed:

Proposition E.1. Assume f is B-smooth and L-Lipschitz with respect to the euclidean norm on
W and m-strongly convex on Rd. Also assume that for all i, t the gradient noise eit is B′-Lipschitz
with respect to the euclidean norm with probabiltiy one and that the constant learning rate γ fulfills
0 < γ < 2m

B2+B′2 . Then for the penalized game with reward

Rip(θ1
T+1, . . . , θ

N
T+1, f) =

 1

N − 1

∑
j 6=i

f(θjT+1)

− T∑
t=1

Ct‖mi
t −

1

N

∑
j

mj
t‖2,

any player’s best response strategy fulfills αit ≤ LNc
T−t
2 γ

Ct(N−1)2 ≤
LNγ

Ct(N−1)2 for c = (1+γ2(B2 +B′2)−
2γm), independent of other players’ strategies.

Given ε > 0, the expected absolute change in function values f(θjT ) due to noise added by players
playing best responses compared to full honesty can be bounded by 1

1−
√
c
Lγε by choosing Ct ≥

LNc
T−t
2 γ

ε(N−1)2 < LNγ
ε(N−1)2 . The total penalties paid by player i can then be bounded by 1

1−
√
c

Lγ
(N−1) (G

2

ε +

ε) ≤ for a global bound on the "variance" of the gradient estimates ‖eit(θ)‖2 ≤ G2.
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Proof. We compare two trajectories θt and θ′t starting at the same θ0 and sharing the same realizations
for the noise variables ejt and ξjt in which player i employs different agressiveness schedules αit and
(αit)

′ with squared difference δit = (αit − (αit)
′)2. We define ēt = 1

N

∑
i e
i
t. Then:

E‖θt+1 − θ′t+1‖2 = E‖ΠW (θt − γt(∇f(θt) + ēt(θt) +
1

N

∑
j 6=i

αjtξ
j
t +

1

N
αitξ

i
t))

−ΠW (θ′t − γt(∇f(θ′t) + ēt(θ
′
t) +

1

N

∑
j 6=i

αjtξ
j
t +

1

N
(αit)

′ξit))‖2

≤ E‖θt − γt(∇f(θt) + ēt(θt) +
1

N

∑
j 6=i

αjtξ
j
t +

1

N
αitξ

i
t)

− θ′t − γt(∇f(θ′t) + ēt(θ
′
t) +

1

N

∑
j 6=i

αjtξ
j
t +

1

N
(αit)

′ξit)‖2

= E‖θt − θ′t‖2 + γ2
t E‖∇f(θt)−∇f(θ′t)‖2 + γ2

t E‖ēt(θt)− ēt(θ′t)‖2

+ 2γtE| < θt − θ′t,∇f(θ′t)−∇f(θt) > +
γ2
t

N2
E‖(αit − (αit)

′)ξit‖2

− 2γtE < ēt(θt)− ēt(θ′t), θt − θ′t − γt(∇f(θt)−∇f(θ′t)) >

Where the first inequality follows from the well-known 1−Lipschitzness of projections onto convex
closed sets with respect to the euclidean norm (Balashov & Golubev (2012)) and the ξi terms factor
because of their zero mean and independence of the other variables. Similarly, the last term turns out
to equal zero because:

E < ēt(θt)− ēt(θ′t), θt − θ′t − γt(∇f(θt)−∇f(θ′t)) >

= E[E[< ēt(θt)− ēt(θ′t), θt − θ′t − γt(∇f(θt)−∇f(θ′t)) > |θt, θ′t]]
= E[< E[ēt(θt)− ēt(θ′t)|θt, θ′t], θt − θ′t − γt(∇f(θt)−∇f(θ′t)) >]

= E[< 0, θt − θ′t − γt(∇f(θt)−∇f(θ′t)) >] = 0

as Eēt(θ) = 0 for any fixed θ. Correspondingly,

E‖θt+1 − θ′t+1‖2 = E‖θt − θ′t‖2 + γ2
t E‖∇f(θt)−∇f(θ′t)‖2 + γ2

t E‖ēt(θt)− ēt(θ′t)‖2

+
γ2
t

N2
E‖(αit − (αit)

′)ξit‖2 + 2γtE < θt − θ′t,∇f(θ′t)−∇f(θt) >

= E‖θt − θ′t‖2 + γ2
t E‖∇f(θt)−∇f(θ′t)‖2 + γ2

t E‖ēt(θt)− ēt(θ′t)‖2 +
γ2
t

N2
δit

+ 2γtE < θt − θ′t,∇f(θ′t) > +2γtE < θ′t − θt,∇f(θt) >

≤ E‖θt − θ′t‖2 + γ2
t E‖∇f(θt)−∇f(θ′t)‖2 + γ2

t E‖ēt(θt)− ēt(θ′t)‖2 +
γ2
t

N2
δit

+ 2γtE(f(θt)− f(θ′t)−
m

2
‖θt − θ′t‖2 + f(θ′t)− f(θt)−

m

2
‖θt − θ′t‖2)

= E‖θt − θ′t‖2 + γ2
t E‖∇f(θt)−∇f(θ′t)‖2 + γ2

t E‖ēt(θt)− ēt(θ′t)‖2 +
γ2
t

N2
δit

− 2γtmE‖θt − θ′t‖2

≤ E‖θt − θ′t‖2 + γ2
tB

2E‖θt − θ′t‖2 + γ2
t (B′)2E‖θt − θ′t‖2 +

γ2
t

N2
δit

− 2γtmE‖θt − θ′t‖2

= (1 + γ2
t (B2 +B′2)− 2γtm)E‖θt − θ′t‖2 +

γ2
t

N2
δit (25)

Where the first inequality follows from strong convexity.

29



Now for a constant learning rate γ = γt and c = (1 + γ2(B2 +B′2)− 2γm):

(E
1

L
|f(θT+1)− f(θ′T+1)|)2 ≤ (E‖θT+1 − θ′T+1‖)2

≤ E‖θT+1 − θ′T+1‖2

≤ cTE‖θ1 − θ′1‖2 +

T∑
t=1

cT−t
γ2

N2
δit

=

T∑
t=1

cT−t
γ2

N2
δit

so that

E|f(θT+1)− f(θ′T+1)| ≤ L

√√√√ T∑
t=1

cT−t
γ2

N2
δit ≤ L

T∑
t=1

γ

N
c
T−t
2

√
δit =

Lγ

N

T∑
t=1

c
T−t
2 |αit − (αit)

′|.

Where the last inequality follows from the general inequality
√∑

i xi ≤
∑
i

√
xi for xi ≥ 0, which

inductively follows from
√
x+ y =

√
(
√
x+
√
y)2 − 2

√
xy ≤

√
(
√
x+
√
y)2 =

√
x+
√
y.

In particular if we set θ′t to the trajectory in which player i is honest ((αit)
′ = 0), we obtain

E|f(θT+1)− f(θ′T+1)| ≤ Lγ

N

T∑
t=1

c
T−t
2 αit. (26)

The same inequalities holds for players’ final estimates θjT+1 and (θjT+1)′, as the noise correction

step θiT+1 = θT+1 − αiT
N ξi is the same in both cases, so that

E‖θiT+1 − (θiT+1)′‖2 = E‖θT+1 − (θT+1)′‖2.

It is worth noting, that the contribution of noise at early time steps to the sum diminishes exponentially
as long as c < 1 which is true for γ2(B2 +B′2)− 2γm < 0, i.e. γ < 2m

B2+B′2 .

Next, we consider the expected difference in penalties received by player i at time t if they use (αit)
′

rather than αit and thus send message (mi
t)
′ rather than mi

t:

Epti(m1
t , . . . , (m

i
t)
′, . . . ,mN

t )− pti(m1
t , . . . ,m

i
t, . . . ,m

N
t )

= E‖N − 1

N
(mi

t)
′ − 1

N

∑
j 6=i

mj
t‖2 − E‖N − 1

N
mi
t −

1

N

∑
j 6=i

mj
t‖2

= E‖N − 1

N
((αit)

′ξit + git)−
1

N

∑
j 6=i

mj
t‖2 − E‖N − 1

N
(αitξ

i
t + git)−

1

N

∑
j 6=i

mj
t‖2

= E‖N − 1

N
(αit)

′ξit‖2 − E‖N − 1

N
(αit)

′ξit‖2

+ E‖N − 1

N
(git)−

1

N

∑
j 6=i

mj
t‖2 − E‖N − 1

N
(git)−

1

N

∑
j 6=i

mj
t‖2

= (
N − 1

N
(αit)

′)2 − (
N − 1

N
αit)

2

for git = gt(θ
s
t−1, x

i).

In particular, we can bound the difference between expected penalized rewards for two trajectories
with all αik fixed but two different values αit and (αit)

′ varying for k = t as follows:
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E

(
Ri(θT+1)−

∑
k

Ckp
i
k(m1

k, . . . ,m
i
k, . . . ,m

N
k )

−Ri((θT+1)′) +
∑
k

Ckp
i
k(m1

k, . . . , (m
i
k)′, . . . ,mN

k )

)

=
1

N − 1

∑
j 6=i

(f(θjT+1)− f((θjT+1)′)) + Ct((
N − 1

N
(αit)

′)2 − (
N − 1

N
αit)

2)

≤ L γ
N
c
T−t
2 |αit − (αit)

′|+ Ct((
N − 1

N
(αit)

′)2 − (
N − 1

N
αit)

2)

In particular, for (αti)
′ = 0, we obtain

E

(
Ri(θT )−

∑
k

Ckp
t
i(m

1
k, . . . ,m

i
k, . . . ,m

N
k )−Ri((θT )′) +

∑
t

Ckp
i
k(m1

k, . . . , (m
i
k)′, . . . ,mN

k )

)

≤ L γ
N
c
T−t
2 αit − Ct((

N − 1

N
αit)

2)

By the quadratic formula, this is zero at zero and at

αit =
−2L γ

N c
T−t
2

−2Ct(
N−1
N )2

=
LNc

T−t
2 γ

Ct(N − 1)2
(27)

and because of the negative quadratic term negative whenever αit >
LNc

T−t
2 γ

Ct(N−1)2 . Correspondingly, in
terms of penalized reward players are always better off by not adding any noise at all αit = 0 compared

to adding large noise, such that rational players will never choose αit >
LNc

T−t
2 γ

Ct(N−1)2 . Therefore, the
noise αit added by any player i at a given time step t can be limited to any fixed constant ε > 0 by

choosing Ct such that LNc
T−t
2 γ

Ct(N−1)2 ≤ ε, i.e. Ct ≥ LNc
T−t
2 γ

ε(N−1)2 .

Applying this observation to each player, substituting into Equation (26) and using the triangle
inequality, the overall damage caused by all N players compared to full honesty can then be bounded
by

E|f(θT+1)− f(θ′T+1)| ≤ Lγ
T∑
t=1

c
T−t
2 ε

where θ′t represents the fully honest strategy and θt represents a strategy in which all players act
rationally given the penalty magnitude Ct. Using a geometric series bound, we obtain E|f(θT+1)−
f(θ′T+1)| ≤ 1

1−
√
c
Lγε.

Lastly, for a global bound on the "variance" of the gradients ‖eit(θ)‖2 ≤ G2 we get,

Epti(m1
t , . . . ,m

i
t, . . . ,m

N
t )

= E‖N − 1

N
mi
t −

1

N

∑
j 6=i

mj
t‖2

= E‖N − 1

N
(git + αitξ

i
t)−

1

N

∑
j 6=i

(gjt + αjtξ
j
t )‖2

= E‖N − 1

N
git −

1

N

∑
j 6=i

gjt ‖2 + (
N − 1

N
)2(αit)

2 +
1

N2

∑
j 6=i

(αjt )
2

≤ E‖N − 1

N
(git(θ)−∇f(θ))− 1

N

∑
j 6=i

(gjt (θ)−∇f(θ)) + (
N − 1

N
− N − 1

N
)∇f(θ)‖2
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+ (
N − 1

N
)ε2

= E[E[‖N − 1

N
eit(θ)−

1

N

∑
j 6=i

ejt (θ)‖2|θ]] + (
N − 1

N
)ε2

= (
N − 1

N
)2E[E[‖eit(θ)‖2|θ] +

1

N2

∑
j 6=i

E[E[‖(ejt (θ)‖2|θ]] + (
N − 1

N
)ε2

≤ (
N − 1

N
)(G2 + ε2)

as the ξit are independent with zero mean, and the gradient noise eit(θ) are independent with zero

mean, given θ. Correspondingly, for Ct = LNc
T−t
2 γ

ε(N−1)2 the total expected penalties paid by player i can
be bounded as

E
T∑
t

Ctp
t
i(m

1
t , . . . ,m

i
t, . . . ,m

N
t )

≤
T∑
t

Lc
T−t
2 γ

ε(N − 1)
(K2 + ε2)

≤ 1

1−√c
Lγ

(N − 1)
(
K2

ε
+ ε)

Next, we prove the budget-balanced version of E.1
Proposition E.2. Under the assumptions of E.1, in the balanced penalized game with reward

Rip(θ1
T+1, . . . , θ

N
T+1, f) =

 1

N − 1

∑
j 6=i

f(θjT+1)

− T∑
t=1

Ct‖mi
t −

1

N

∑
j

mj
t‖2

+
1

N − 1

∑
k 6=i

T∑
t=0

Ct‖mk
t −

1

N

∑
j

mj
t‖2,

any player’s best response strategy fulfills αit ≤ Lc
T−t
2 γ

Ct(N−2) ≤
Lγ

Ct(N−2) for c = (1 + γ2(B2 +B′2)−
2γm), independent of other players’ strategies.

Given ε > 0, the expected absolute change in function values f(θjT ) due to noise added by players
playing best responses compared to full honesty can be bounded by 1

1−
√
c
Lγε by choosing Ct ≥

Lc
T−t
2 γ

ε(N−2) ≤
Lγ

ε(N−2) . As long as all players i choose the same strategy (αit = αjt ∀i, j, t), the expected
total penalty paid by each player equals zero.

Proof. We begin by considering the expected difference in penalties received by player l at time t if
player i uses (αit)

′ rather than αit and thus send message (mi
t)
′ rather than mi

t:

Eplt(m1
t , . . . , (m

i
t)
′, . . . ,mN

t )− plt(m1
t , . . . ,m

i
t, . . . ,m

N
t )

= E‖ml
t −

1

N

∑
j 6=i

mj
t −

1

N
(mi

t)
′‖2 − E‖ml

t −
1

N

∑
j 6=i

mj
t −

1

N
mi
t‖2

= E‖ml
t −

1

N

∑
j 6=i

mj
t −

1

N
((αit)

′ξit + git)‖2 − E‖ml
t −

1

N

∑
j 6=i

mj
t −

1

N
(αitξ

i
t + git)‖2

= E‖ml
t −

1

N

∑
j 6=i

mj
t −

1

N
git‖2 + E

1

N2
‖(αit)′ξit‖2
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− E‖ml
t −

1

N

∑
j 6=i

mj
t −

1

N
git‖2 − E

1

N2
‖αitξit‖2

= (
(αit)

′

N
)2 − (

αit
N

)2

Again, we can bound the difference between expected penalized rewards for two trajectories with all
αik fixed but two different values αit and (αit)

′ varying for k = t as follows:

E(Ri(θT+1)−
∑
k

Ckp
i
k(m1

k, . . . ,m
i
k, . . . ,m

N
k )

+
1

N − 1

∑
j 6=i

∑
k

Ckp
j
k(m1

k, . . . ,m
i
k, . . . ,m

N
k )

−Ri((θT+1)′) +
∑
t

Ckp
i
k(m1

k, . . . , (m
i
k)′, . . . ,mN

k )

− 1

N − 1

∑
j 6=i

∑
t

Ckp
j
k(m1

k, . . . , (m
i
k)′, . . . ,mN

k ))

=
1

N − 1

∑
j 6=i

(f(θjT+1)− f((θjT+1)′))

+ Ct((
N − 1

N
(αit)

′)2 − (
1

N
(αit)

′)2 − (
N − 1

N
αit)

2) + (
1

N
αit)

2)

=
1

N − 1

∑
j 6=i

(f(θjT+1)− f((θjT+1)′))

+ Ct((
N − 1

N
(αit)

′)2 − (
1

N
(αit)

′)2 − (
N − 1

N
αit)

2) + (
1

N
αit)

2)

≤ L γ
N
c
T−t
2 |αit − (αit)

′|+ Ct(
N − 2

N
((αit)

′)2 − N − 2

N
(αit)

2)

Again, for (αit)
′ = 0 we obtain

E(Ri(θT+1)−
∑
k

Ckp
i
k(m1

k, . . . ,m
i
k, . . . ,m

N
k )

+
1

N − 1

∑
j6=i

∑
k

Ckp
j
k(m1

k, . . . ,m
i
k, . . . ,m

N
k )

−Ri((θT + 1)′) +
∑
k

Ckp
i
k(m1

k, . . . , (m
i
k)′, . . . ,mN

k )

− 1

N − 1

∑
j6=i

∑
k

Ckp
j
k(m1

k, . . . , (m
i
k)′, . . . ,mN

k ))

≤ L γ
N
c
T−t
2 αit − Ct(

(N − 2)

N
(αit)

2)

which is zero at zero and at

αit =
−2L γ

N c
T−t
2

−2Ct
N−2
N

=
Lc

T−t
2 γ

Ct(N − 2)
(28)

and negative for αit >
Lc

T−t
2 γ

Ct(N−2) as long as N > 2. Players are thus again incentivized to select αit
that do not fulfill that inequality.

As in E.1, the overall damage caused by all N players compared to full honesty can then be bounded

by E|f(θT+1) − f(θ′T+1)| ≤ 1
1−
√
c
Lγε by choosing Ct ≥ Lc

T−t
2 γ

ε(N−2) where θ′T represents the fully
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honest strategy and θT represents a strategy in which all players act rationally given the penalty
magnitude Ct, and the same is true for player’s estimates θjT+1 and (θjT+1)′. By symmetry, as long
as all players i choose the same strategy (αit = αjt ∀i, j, t), the expected penalties paid by each player
equal 0.

To prove 6.1, we adapt a classic result from convex optimization to give convergence rates for SGD
with bounded perturbations from the clients and with a linearly decaying learning rate.

Lemma E.1. In the settings of E.2, assume that all players use bounded attacks, so that (αit)
2 ≤ ε2

for all i, t. Also, assume that there exist scalars M ≥ 0 and MV ≥ 0, such that for all t:

Esi(‖eit(θst )‖2) = Exi(‖gt(θst , xi)‖2)− ‖Exigt(θst , xi)‖2 ≤M +MV ‖∇f(θst )‖22. (29)

Assume that for some integer constant η > 0, such that 4
ηm+m ≤ 1

B(MV /N+1) , the learning rate is
set as γt = 4

ηm+tm . In that case, if P (∃t ≤ T : ΠW (θst − γtm̄t) 6= θst − γtm̄t) ∈ O( 1
NT ) we get

E (f(θt)− f(θ∗)) ∈ O( 1+M+ε2

Nt ) +O( 1
t2 ), we have:

E (f(θT )− f(θ∗)) ≤ 8B(M + ε2)

3m2NT
+O

(
1

NT

)
+O

(
1

T 2

)
(30)

for any T ≥ η.

Proof. We first condition on the case in which there is no t ≤ T with ΠW (θst − γtm̄t) 6= θst − γtm̄t,
so that we do not have to worry about projections. Then, for a random vector g, denote V(g) =
E
(
‖g‖2

)
− ‖E(g)‖2. Note that, by the independence of the stochastic gradients and players’ noise,

it follows that:

V

(
1

N

N∑
i=1

mt
i

)
= E‖ 1

N

N∑
i=1

(∇f(θt) + eit(θ
s
t ) + αitξ

i
t)‖2 − ‖E(

1

N

N∑
i=1

(∇f(θt) + eit(θ
s
t ) + αitξ

i
t))‖2

=
1

N2
E‖

N∑
i=1

(∇f(θt) + eit(θ
s
t ) + αitξ

i
t)‖2 −

1

N2
||∇f(θt)||2

=
1

N2
(E‖

N∑
i=1

eit(θ
s
t )‖2 + E‖

N∑
i=1

αitξ
i
t‖2 + ||∇f(θt)||2)− 1

N2
||∇f(θt)||2

=
1

N2
(

N∑
i=1

E‖eit(θst )‖2 +

N∑
i=1

(αit)
2E‖ξit‖2)

≤ 1

N2
(

N∑
i=1

M +MV ‖∇f(θst ))‖22 +

N∑
i=1

(αit)
2)

≤ M + ε2

N
+
MV

N
‖∇F (θst )‖22

Additionally, since f is strongly convex, it has a unique minimizer θ∗ ∈ Rd. Now since the learning
rate is of the form γt = 4/m

η+t , with 4
m > 1

m , η > 0 and γ1 = β
η+1 ≤ 1

B(MV /N+1) , the conditions of
Theorem 4.7 in Bottou et al. (2018) hold with µ = 1,MV = MV /N,M = (M + ε2)/N,MG =
MV /N + 1. Using equation 4.23 in their proof gives:

E (f(θt+1)− f(θ∗)) ≤
(

1− 4

η + t

)
E (f(θt)− f(θ∗)) +

8B(M + ε2)

Nm2(η + t)2
(31)

for any t ≥ 1. We now use a classic result by Chung:
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Lemma E.2 (Chung (1954)). Let {bn}n≥1 be a sequence of real numbers, such that for some n0 ∈ N,
it holds that for all n ≥ n0,

bn+1 ≤
(

1− d

n

)
bn +

c

n2
,

where c > 1, c1 > 0. Then

bn ≤
c

d− 1

1

n
+O

(
1

n2
+

1

nd

)
.

We set xt+η := E (f(θt)− f(θ∗)) for t ≥ 1 and xk = E (f(θ1)− f(θ∗)) for k ≤ η. Using 31 and
k = t+ η we get

xk+1 ≤ (1− 4

k
)xk +

8B(M + ε2)

Nm2k2

Now using d = 4 and c = 8B(M+ε2)
Nm2 , we have xk+1 ≤ (1− d

k )xk + c
k2 such that E.2 yields

xt ≤
8B(M + ε2)

3Nm2t
+O

(
1

t2
+

1

td

)
and thus

E (f(θt)− f(θ∗)) ≤ 8B(M + ε2)

3Nm2(t+ η)
+O

(
1

t2
+

1

td

)
≤ 8B(M + ε2)

3Nm2t
+O

(
1

t2
+

1

t4

)
Now, if there is a t with ΠW (θst − γtm̄t) 6= θst − γtm̄t, we can still bound E (f(θt)− f(θ∗))
by some constant because W is bounded and f is Lipschitz. Correspondingly, as P (∃t ≤ T :
ΠW (θst − γtm̄t) 6= θst − γtm̄t) ∈ O( 1

NT ), the total expectation for both cases combined is bounded

by 8B(M+ε2)
3m2NT +O

(
1
NT

)
+O

(
1
T 2

)
.

To prove theorem 6.1, we use a non-asymptotic version of Chung’s Lemma Chung (1954) similar to
the one used in the proof of Lemma 1 in Rakhlin et al. (2012):

Lemma E.3. For constants c > 0 and d > 1, whenever t+ 1 ≥ d and the recursive inequality

xt+1 ≤ (1− d

t+ 1
)xt +

c

(t+ 1)2
,

holds we get that if

xt ≤
2d2c

t(d3 − d2)

for t = k the same is true for t = k + 1.

Proof. Using the condition on xt, we obtain

xt+1 ≤ (1− d

t+ 1
)xt +

c

(t+ 1)2

≤ 2d2c

t(d3 − d2)
− 2d3c

t(t+ 1)(d3 − d2)
+

c

(t+ 1)2

as by assumption d
t+1 ≤ 1. As d > 1, 2d2c

(t+1)(d3−d2) is positive and we can divide the equation above
by it to obtain

xt+1(t+ 1)(d3 − d2)

2d2c
≤ t+ 1

t
− d

t
+

(d3 − d2)

(t+ 1)2d2
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for which we want to show that it is bounded above by 1. Multiplying the equation

t+ 1

t
− d

t
+

(d3 − d2)

(t+ 1)2d2
≤ 1

by t(t+ 1) for t ≥ 1 we get

t2 + 2t+ 1− dt− d+ t
(d3 − d2)

2d2
≤ t2 + t

which is equivalent to

t+ 1− dt− d+
t

2
(d− 1) ≤ 0,

i.e.
1

2
(1− d)t+ 1− d ≤ 0,

and
(1− d)t ≤ 2(d− 1),

which is true whenever
t ≥ −2.

Theorem E.1. In the settings of E.2, assume that there exist scalars M ≥ 0 and MV ≥ 0, such that
for all t:

Esi(‖(eit(θst )‖2) ≤M +MV ‖∇f(θst ))‖22. (32)

Assume that for some integer constant η > 1, such that 4
ηm+m ≤ 1

B(MV /N+1) , the learning rate is
set as γt = 4

ηm+tm .

Then any player’s best response strategy fulfills αti ≤ 8L
Ct(N−2)m

√
T1+η

independent of other players’

strategies, such that for any given ε > 0, Ct ≥ 8L
ε(N−2)m

√
T+η

yields αti ≤ ε for rational players. In
that case, as long as W is bounded and we have that P (∃t ≤ T : ΠW (θst − γtm̄t) 6= θst − γtm̄t) ∈
O( 1

NT ) we get E (f(θt)− f(θ∗)) ∈ O( 1+M+ε2

Nt ) +O( 1
t2 ).

Proof. We make use of inequality 25 from the proof of E.1 to analyse the difference between two
trajectories that are identical except for the actions of player i.

E‖θt+1 − θ′t+1‖2

≤ (1 + γ2
t (B2 +B′2)− 2γtm)E‖θt − θ′t‖2 +

γ2
t

N2
δti

= (1 +
16

m2(η + t)2
(B2 +B′2)− 8

η + t
)E‖θt − θ′t‖2 +

16

(η + t)2N2m2
δti .

≤ (1 +
16

m2(η + t)2
(B2 +B′2)− 8

η + t
)E‖θt − θ′t‖2 +

16

(η + t)2N2m2
δti .

For t ≥ 0 and η ≥ max{ 32(B2+B′2)
13m2 , 1} we get

16
B2 +B′2

m2(t+ η)2
− 8

t+ η
≤ − 1.5

t+ η
(33)

by calculating

η ≥ 32(B2 +B′2)

13m2

=⇒ 6.5η + 6.5t ≥ 16(B2 +B′2)

m2

=⇒ 8η + 8t− 16(B2 +B′2)

m2
≥ 1.5η + 1.5t
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=⇒ 8η + 8t− 16(B2 +B′2)

m2
≥ 1.5

(t+ η)2

t+ η

=⇒ 8

η + t
− 16(B2 +B′2)

(η + t)2m2
≥ 1.5

t+ η

=⇒ 16(B2 +B′2)

(η + t)2m2
− 8

η + t
≤ − 1.5

t+ η

We now set xt+η := E‖θt+1 − θ′t+1‖2 for t ≥ 0 and xk = 0 for k ≤ η. These definitions are
consistent for t = 0 because E‖θ1 − θ′1‖2 = 0.

Using 33 and k = t− 1 + η, we get

xk+1 ≤ (1− 1.5

k + 1
)xk +

16

(k + 1)2N2m2
δti .

At the same time, xη = E‖θ1 − θ′1‖2 = 0 ≤ 4c
η−1 for any c > 0. Correspondingly, E.3 with d = 1.5

and c = 16
N2m2 maxt{δti} implies that for k ≥ η and k + 1 ≥ 1.5 we get

xk ≤
4c

k

and thus
E‖θt − θ′t‖2 ≤

4c

t− 1 + η

for t ≥ 1. This yields

E‖θT+1 − θ′T+1‖2 ≤
64 maxt{δti}

(T + η)N2m2
.

Consequentially, we obtain

E|f(θT+1)− f(θ′T+1)| ≤ L
√

64 maxt{δti}
(T + η)N2m2

.

Again, we can bound the difference between expected penalized rewards for two trajectories with all
αik fixed but two different values αit and (αit)

′ varying for k = t by considering δk = 0 for all k 6= t.
This yields

E|f(θT+1)− f(θ′T+1)| ≤ L
√

64δti
(T + η)N2m2

= L

√
64|αit − (αit)

′|2
(T + η)N2m2

.

As in E.2, this allows us to upper bound the gains in penalized reward from changing αit to (αit)
′ by

8L

Nm
√
T + η

|αit − (αit)
′|+ Ct(

N − 2

N
((αit)

′)2 − N − 2

N
(αit)

2).

In particular, for (αit)
′ = 0 this bound becomes

8L

Nm
√
T + η

αit − Ct(
N − 2

N
(αit)

2)

which is zero at αit = 0 and at

αit =
−2 8L

Nm
√
T+η

−2Ct
N−2
N

=
8L

Ct(N − 2)m
√
T + η

(34)

and negative for αit larger than that as long as N > 2.

Again the noise αit added by any rational player i at a given time step t can therefore be limited to
any fixed constant ε > 0 by choosing Ct such that 8L

Ct(N−2)m
√
T+η

≤ ε, i.e. Ct ≥ 8L
ε(N−2)m

√
T+η

.

We conclude by using E.1 to obtain the convergence rate.
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As a final step, we show that a version of E.1 also holds for more general reward functions, thus
proving 6.1.
Theorem E.2. Up to constants, theorems E.2 and E.1 also hold for the reward
RiUp(θ1

T+1, . . . , θ
N
T+1, f) = U i(f(θiT+1), . . . , f(θNT+1)) − ∑T

t=1 C
U
t ‖mi

t − 1
N

∑
jm

j
t‖2 +

1
N−1

∑
k 6=i
∑T
t=1 C

U
t ‖mk

t − 1
N

∑
jm

j
t‖2 for arbitrary l1-Lipschitz U i with common Lipschitz con-

stant LU . Any bound on αit can be achieved by setting CUt = LUNCt for the Ct achieving the same
bound in E.2 or E.1 respectively.

Proof. We first note that for any pointwise bound E|f(θjT+1)− f((θjT+1))′| ≤ K

E|U i(f(θiT+1), . . . , f(θNT+1))− U i(f((θiT+1)′), . . . , f((θNT+1)′))|
≤ ELU

∑
j

|f(θjT+1)− f((θjT+1))′|

= LU
∑
j

E|f(θjT+1)− f((θjT+1))′|

≤ LUNK.

This means that the gains |U i(f(θiT+1), . . . , f(θNT+1))− U i(f((θiT+1)′), . . . , f((θNT+1)′))| in unpe-
nalized reward player i can achieve by using a given αit at time t instead of αit = 0 is multiplied by
LUN compared to 28 and 34. Thus, for a given CUt , the bound on αit for rational players is multiplied
by NLU as well, as the quadratic formula solution for αit is linear in the linear term. Correspondingly,
we need to set CUt = LUNCt to achieve the same bounds on αit as in E.2 or E.1.

Now, for αit ≤ ε, the bound on the expected absolute change in U i(f(θiT+1), . . . , f(θNT+1)) is LUN
times higher than for f(θjT+1) using the bounds above. Because these bounds are linear in ε for E.2,
we can achieve a bound of δ for U i(f(θiT+1), . . . , f(θNT+1)) by ensuring αit ≤ ε

NLU
for ε achieving

a bound of δ for f(θiT ). In total, we thus need to multiply the corresponding Ct by NLU twice to
achieve a given bound on the gains in unpenalized reward from cheating: Once because we need a
smaller bound on αit to achieve the same bound on the unpenalized reward, and once to ensure that
rational players are incentivized to use that smaller bound.

Discussion on the projection assumptions We note that the assumption P (∃t ≤ T : ΠW (θst −
γtm̄t) 6= θst − γtm̄t) ∈ O( 1

NT ) in particular holds if W is chosen such that ‖w − θs0‖ ∈ Ω(T ) for
all w in the boundary of W while ‖m̄t‖ ∈ O(‖θst − θs0‖) with probability one for all t ≤ T . In that
case, the linearly decaying learning rate ensures that (‖θst − θs0‖) stays in O(T ) and thus in W (for
appropriately chosen constants) with probability one.

Similarly, Lemma 5 in Rakhlin et al. (2012) states that for a probability one bound on the gradient
norm ‖m̄t‖ ≤ G,∀t, we have that ‖θst − θ?‖ < 2G

m with probability one, such that the iterates stay in
W without the need for any projections, as long as G grows slower in T than inf w∈δ(W )‖w − θ?‖.
In particular, if f grows quadratically in θ − θ? and noise is proportional to the gradient norm, G
grows linearly in the distance between θ? and the boundary of W , such that the condition holds for
the right proportionality constants.
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