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ABSTRACT

Ordinal classification (OC) is widely used in real-world applications to categorize
instances into ordered discrete classes. In risk-sensitive scenarios, ordinal confor-
mal prediction (OCP) is used to obtain a small contiguous prediction set containing
ground-truth labels with a desired coverage guarantee. However, OC models often
fail to accurately model the posterior distribution, which harms the prediction set
obtained by OCP. Therefore, we introduce a new method called Adaptive Posterior
Alignment Step-by-Step (APASS), which reduces the distribution discrepancy to
improve the downstream OCP performance. It is designed as a versatile, plug-and-
play solution that is easily integrated into any OC model before OCP. APASS first
employs an attention-based estimator to adaptively estimate the variance of the
posterior distribution using the information in the calibration set, then utilizes a
stepwise temperature scaling algorithm to align the posterior variance predicted
by OC models to the better variance estimation. Extensive evaluations on 10 real-
world datasets demonstrate that APASS consistently boosts the OCP performance
of 5 popular OC models.

1 INTRODUCTION

Ordinal classification (OC) (Diaz & Marathe, |2019;|Gao et al., 2017;|Geng, |2016; |Guo et al., 2008
Can Malli et al.| 20165 Huo et al., 20165 Wen et al., |2020) plays a crucial role in high-stakes domains
like healthcare (Liu et al., |[2019) and finance (Manthoulis et al., [2020) by categorizing instances
into ordered discrete classes. Robust uncertainty quantification is critical beyond accurate point
predictions to avoid costly or dangerous outcomes caused by prediction errors. To this end, various
methods have been developed for estimating predictive uncertainty in deep neural networks, such as
confidence calibration (Guo et al.,|2017), MC-Dropout (Gal & Ghahramani, |2016), and Bayesian
neural networks (Smith, [2013), but they lack formal guarantees. Conformal Prediction (CP) (Vovk
et al., [1999; 2005} [Lei et al.,[2018; Wen et al.| 2020; [Romano et al., [2020; |/Angelopoulos & Bates,
2021} |Angelopoulos et al.,|2021)) addresses this gap by providing a distribution-free, post-processing
approach that generates prediction sets (PS) guaranteed to contain the true label with a specified
coverage probability, which generally design non-conformity scores to quantify the deviation the
degree between the model’s predictive outcomes and the data distribution.

Recent works on OC demonstrate substantial benefits of assuming the underlying conditional dis-
tribution to be unimodal for OC tasks (Diaz & Marathel, [2019;|Gao et al.,|2017;|Guha et al., 2024}
Belharbi et al.| 2019; Cardoso et al.,[2023)). Some rely on label smoothing methods, which convert
one-hot target labels into unimodal prior distributions to be used as the reference for the training loss.
Some works learn a non-parametric unimodal distribution as a constraint optimization problem in
the loss function. In the unimodal context of ordinal classification, Ordinal Conformal Prediction
(OCP) (Lu et al.| [2022; Xu et al.l [2023)) is designed to generate contiguous prediction sets using
the posterior distribution predicted by OC models. In contrast to Adaptive Prediction Sets (APS),
which calculate the scores by accumulating the sorted softmax probabilities in descending order,
Ordinal-APS calculates the score by accumulating softmax probabilities of the contiguous prediction
set with the minimum set size. However, the existing OCP methods neglect the possible variance
misalignment of the OC models, which leads to inefficient PS.

In this work, we empirically observe the variance misalignment between the predicted posterior
distribution and the oracle posterior distribution in a synthetic dataset. Specifically, a noticeable



Under review as a conference paper at ICLR 2025

reduction in the size of PS is observed when we align the predicted posterior to the oracle posterior.
Further, our theoretical analysis supports the empirical findings by demonstrating a decrease in the
upper bound of the prediction set size as the predicted posterior approaches the oracle posterior.

Inspired by our analytical findings, we introduce the Adaptive Posterior Alignment Step-by-Step
(APASS), which serves as a plug-and-play component that can be integrated into any OCP framework
to enhance its performance. The method consists of two key parts: 1) We introduce an attention-based
estimator that adaptively estimates the variance misalignment of an input sample by examining
similar samples in the calibration set; 2) a stepwise alignment algorithm that optimizes the calibrate
the variance misalignment. The stepwise method can gradually amend the variance misalignment
and produce more compact prediction sets.

To evaluate the effectiveness of APASS, we conduct extensive empirical assessments on real-world
benchmarks, showing that APASS consistently improves the performance of OCP on 10 real-world
datasets by 14.2% on average with 5 typical ordinal classification methods. The unstable performance
of non-stepwise alignment baselines highlights the superiority of consistent improvement.

The contributions of this paper are summarized as follows:

* We identify the variance misalignment issue in current OC models that the existing OCP
method neglects and theoretically prove that ignoring the misalignment will harm the
efficiency of PSs in the context of OCP.

* We introduce the Adaptive Posterior Alignment Step-by-Step (APASS) method, a stepwise
approach designed to reduce the PS size by reducing the distribution discrepancy using
posterior variance alignment.

* We conduct extensive evaluations to show that APASS consistently improves the existing
OCP method on various OC models. Specifically, the empirical results show the superiority
of stepwise design to one-step baselines.

2 BACKGROUND

2.1 ORDINAL CLASSIFICATION.

In this study, we explore ordinal classification, which assigns labels to input instances based on a
naturally ordered set of classes. We define the input space as X C R? and the ordered set of classes
as Y = {1,2,..., K}. The primary objective is to accurately predict the class label of input data

using an OC model, denoted as f : X — RX . Consider a scenario where the random variables X
and Y are drawn from the combined space X' x ) under a joint distribution Px y. It is assumed that
the true conditional distribution Py|x is unimodal. This implies that for any given input instance
x € X, the probability distribution P(Y = y|X = x) peaks at a certain class y. The prediction of

our model, therefore, hinges on §j = arg max p, (), where p(y|x) = softmax(fy(y|x)) represents
yey

the estimated probability that the input = corresponds to class y.

2.2  ORDINAL CONFORMAL PREDICTION.

Ordinal Conformal Prediction (OCP) leverages the output of ordinal classifiers, symbolized by p(z),
to construct a function C : X — 2%, This function maps input instances to a set of potential classes,
ensuring a specific, user-defined confidence level. As a distribution-free methodology, OCP generates
reliable prediction sets without making assumptions about the underlying data distribution. Formally,
consider the following setup: 1) A calibration set comprising n i.i.d. data points {(X;,Y;)}™,.
These data points differ from the training data used to develop the ordinal classifier. 2) A new
test instance X, 11 € X and a target variable Y,,.; € ). The primary objective is to construct a
prediction set C,, 1_,(X,,+1) that remains minimal yet while ensuring that it satisfies marginal
coverage at the confidence level 1 — a:

P(Yas1 € Cota(Xai1)) 21— 0, (1)
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Furthermore, the prediction set should provide conditional coverage at the same confidence level:

P(Yos1 € CopoalXnp)[Xu =) 21-0a, Ve e, ¥

Oracle Prediction Set. In ideal settings, accessing the oracle conditional distribution, denoted as
p(y|z), we construct an optimal prediction set satisfying Eq . It is formalized by:
Ci)racle (l‘) _ [lcl)racle (l‘), ufl)rﬁxie (l‘)} ; (3)

—Q —Q

where for any confidence level 7 € (0, 1], the boundaries of the prediction set are calculated as:

(lfme (z), uoracte (:c)) = argmin Su—1: Zp(y”x) >T 5. 4)
(Liu)eR2:1<u =1

Practical Solution. In practice, direct access to the Oracle conditional distribution, p(y|z), is often
infeasible. Instead, the trained ordinal classifier is utilized to approximate this function, which we
denote as p(y|z). Among various OCP methods that utilize p(y|z) to determine prediction sets, our
research adopts the Ordinal-APS method (Lu et al., [2022)). This approach integrates CP techniques to
generate contiguous prediction sets using a calibrated threshold 7 to meet the desired coverage at the
level of 1 —

Cotal) = [1+(2), ds(2)] )

However, the estimated distribution p(y|z) often exhibits discrepancies, such as variance misalign-
ment, compared to the oracle. Current OCP methods neglect these discrepancies, which can affect
the efficiency of the PSs generated by the OCP method.

2.3 PROBABILITY CALIBRATION

Probability calibration, also known as confidence calibration (Guo et al.,[2017)), aims to ensure that
the softmax probabilities predicted by neural networks accurately reflect the actual probabilities
of correctness. To measure the degree of miscalibration, the Expected Calibration Error (ECE) is
commonly used, quantifying the discrepancy between accuracy and confidence. ECE partitions the
predictions into M equally spaced bins and calculates a weighted average of the difference between
the accuracy and confidence within each bin. Formally, ECE is defined as:

o~ |Bu
ECE = Z T"’ lacc (By,) — conf (By,)] , ©)
m=1

where acc(-) and conf(-) denotes the average accuracy and confidence in bin B,,.

In prior works, it has been generally assumed that probability calibration improves the quality of
conformal prediction sets (Angelopoulos et al.,[2021;|Gibbs et al., 2023). However, the specific impact
of calibration methods on conformal prediction remains uncertain (Xi et al., [2024). Furthermore,
existing calibration techniques are not explicitly tailored to OC models, which often assume unimodal
distributions. The influence of these methods on OCP is thus still an open question.

3 RELATED WORK

Ordinal Classification. Recent works on ordinal classification demonstrate substantial benefits of
assuming the underlying conditional distribution to be unimodal. Label smoothing methods convert
one-hot target labels into unimodal prior distributions to be used as the reference for the training
loss. SORD (Diaz & Marathe} 2019) constructs the ground-truth probability distribution using linear
exponentially decaying distributions based on a metric loss function £(y*, ") that penalizes the
distance between the actual value 3" and the i-th prediction value y°. This method uses the cross-
entropy loss to train a neural network model. DLDL (Gao et al., 2017), on the other hand, constructs
the probability of the i-th prediction using a normal probability density function and minimizes the
Kullback-Leibler divergence between the predicted probability distribution and the ground-truth
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Figure 1: Overview of APASS. APASS is a plug-and-play module that adjusts the conditional
distribution as predicted by ordinal classifiers before applying the OCP approach. This versatility
allows it to be integrated seamlessly with various ordinal classifiers and OCP methods. Details of
APASS-Calibration and APASS-Prediction are presented in Algorithm 1] &

labels. R2CCP (Guha et al.,|2024) proposes a loss function similar to label smoothing losses, which
penalizes the probability based on the distance between the actual value y* and the i-th prediction
value y* and uses a Shannon entropy regularizer to prevent the density estimator from collapsing to a
Dirac distribution. But these methods are often sub-optimal since the assumed priors might not reflect
the true distribution, classes might not be equispaced categories, and additionally, test predictions
might not necessarily be unimodal. Some other methods (Belharbi et al.l|2019; |Cardoso et al.| [2023)
learn a non-parametric unimodal distribution as a constraint optimization problem in the loss function,
which is not only difficult to optimize but also does not guarantee unimodality on testing data.

Conformal Prediction Conformal prediction is a statistical framework characterized by a finite-
sample coverage guarantee. One of the main goals of CP methods is to generate a compact prediction
set. APS (Romano et al.| [2020) introduces techniques aimed at achieving coverage that is similar
across regions of feature space. RAPS (Angelopoulos et al., 2020) presents a regularized version of
APS for Imagenet. The first work proposing the CP method for ordinal classification is Ordinal-APS
(Lu et al.| 2022), and another work proposes a similar approach in the context of ordinal conformal
risk control (Xu et al., |2023)).

The primary focal points of CP are reducing prediction set size and enhancing coverage rate. COPOC
(Dey et al.,[2023)) proposes a special neural network model to ensure the ordinal classifier outputs
an unimodal distribution and thus reduces the size of the ordinal prediction set size. In contrast, our
model-agnostic method can be applied to different ordinal classifiers. Closely related to our insight,
some works also utilize the information in the calibration set to generate compact prediction sets
NCP (Ghosh et al.| [2023)) proposes to use non-parametric nearest neighbors for calibration, and in the
context of sequential data, HopCPT (Auer et al.| | 2024) uses Modern Hopfield Networks to model the
data similarity, and reweight the non-conformity score based on the similarity.

Probability Calibration |Guo et al|(2017) investigates the problem of confidence calibration
in modern neural networks and finds post-processing methods like TS can effectively calibrate
predictions. Standard TS improves average calibration but reduces confidence for all predictions.
AdaTS (Joy et al.,|2023)) predicts a different temperature value for each input, allowing it to selectively
increase or decrease confidence as needed. [Esaki et al.| (2024) proposes an accuracy-preserving
calibration method using the Concrete distribution as a probabilistic model on the probability simplex,
which outperforms previous TS methods in accuracy-preserving calibration tasks.

4 METHOD

In this section, we empirically and theoretically analyze the influence of distribution discrepancies on
the efficiency of PSs generated by the OCP method: PSs will be smaller if distribution discrepancies
are smaller. Therefore, we propose a plug-and-play method to optimize the PS efficiency, named
Adaptive Posterior Alignment Step-by-Step (APASS). APASS first employs a variance estimator
(attention-based or kKNN-based, see Section[4.2)) to estimate the distribution discrepancies using data
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Figure 2: Empirical Evidence for Variance Alignment. (a) Variance discrepancy between oracle and
predicted distribution. (b) Distributions after variance alignment using temperature scaling

in the calibration set. Then, to make use of the estimated variance misalignment, we proposed a
stepwise method that gradually adjusts the predicted posterior using temperature scaling (TS) with a
small step size to ensure a monotonic decrease in PS size in Section[d.3]

4.1 MOTIVATION

Recent works on OC demonstrate substantial benefits of assuming the underlying conditional distri-
bution to be unimodal for OC tasks. To encourage unimodality, label-smoothing methods convert
one-hot target labels into unimodal prior distributions to be used as the reference for the training loss,
and some other methods use non-parametric unimodal distribution as a constraint in the loss function.
However, these methods are optimized for accuracy, not posterior distribution discrepancy.

To investigate the impact of distribution discrepancies between the prediction posterior distribution,
p(y|x), and the oracle distribution, p(y|x). We first generated a heteroscedastic synthetic dataset,
then trained an OC model in this dataset. This allows us to access the Oracle distribution p(y|z) and
better mirror real-world data scenarios. Figure [2|(a) highlights the existing discrepancies: the OC
models tend to overestimate the variance when the actual variance is low and underestimate it when
the actual variance is high. Moreover, the oracle prediction set has an average size of 8.54, contrasting
with 9.62 for the set derived from {(y|x). This considerable difference highlights a critical variance
misalignment problem, which compromises the efficiency of the prediction set size.

Inspired by the probability calibration method, we then employ temperature scaling to align the
prediction distribution to the oracle distribution. Specifically, we use a grid-search strategy to
minimize the discrepancy between the variance of the predicted posterior distribution and the variance
of the oracle posterior distribution. In Figure 2](b), we illustrate the aligned distribution. The results
show a more closely aligned distribution, with the average size of the prediction set reduced to 8.84.
These findings demonstrate that temperature scaling not only facilitates variance alignment but also
enhances the efficiency of the prediction set, effectively resolving issues of variance misalignment.
Then, we establish a theoretical explanation for our empirical finding, which explains how distribution
discrepancy affects the relationship between the estimated prediction set, CAn’l,a(X n+1), and the

oracle prediction set, C{"™¢(X,, ). We begin by defining some necessary assumptions:

Assumption 1 (i.i.d. data). The dara {(X;, Yl)}?jll are i.i.d. from some unknown joint distribution.
Assumption 2 (Unimodality). For any x € R™, the conditional distribution of Y| X = x is unimodal;
i.e. there exists y° € R (depending on x), such that p(y° +y"|z) < p(y° + ') ify” >y’ >0, and
p(y° +y"|2) <p(y° +y) ify" <y <0

Assumption 3 (n-inconsistency). Let F'(y|x) denote the cumulative distribution function of Y| X = z,

and define F (y|x) as the estimate of cumulative distribution function, i.e., F(y7|x) :== Y>7_, po(y'|x).
Then, we assume forall j € 1,... K,

P sup

1w 1X) = FG/IX)]] <0 2 1-n. )
je{1,....K}

Assumption 4 (Regularity). Forany x € R™ and j € {1,2,...,K}, 1/H < p(y’|z) < 2/H, for
some H > 0.
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Algorithm 1 APASS Calibration

Input: logits of calibration data fl = fg(:cl ) and variance estimator \72Tr¢(Y|X » Deativ)
Output: aligned postenor pPASS and the TS steps §

1: Calculate t(xq., by Eq @i > distribution discrepancy on the calibration set
2 Pl — softmax(fl,n) )

3: |én,1,a(w1;n)\ + OCP-Calibration(f1.,,) > run OCP-Calibration to get average PS size
4: best < \én,l,a(wlzn)\ > initialize best PS size
5: for s € {1,..., Simaz} do

6: fl:n — fl:n/t(wlzn) Dperform TS(t(wln))
7: \CAn,l_a(azlmﬂ — OCP-Calibration(fl:n) > get new PS size
8: if |CAn,1,a (1.)| < best then > stop until PS size does not reduce
9: best < |Cr1—al(T1m)]
10: else
11: Break
12: end if
13: end for
14: pAPASS — boftmax(fl:n *t(X1.m)), § ¢ s—1
15: return p{EASS 3

Assumption 4 allows us to quantify the distribution discrepancy using 7, where a higher n value
signifies a greater discrepancy. We leverage this quantification to theoretically analyze and establish

an upper bound for [Cp, 1o (X,11)]:

Theorem 1. For any o € (0, 1], let (fn,l,a (Xt1) denote the prediction set at level 1 — o for Yy, 11
obtained by applying OCP. The size prediction set CAn,l_oé(Xn_H) is bounded by the set of oracle

oracle

prediction set C;'1" (X 41) as

P[
where v, = 2 + H(3/n + 24/(logn)/n + 5n) and &, = n + 2n2.

This theorem demonstrates that decreasing 7, the measure of the discrepancy between estimated
and actual distributions, results in a tighter upper bound for |C,, 1—o(Xpn+1)]. Consequently, this

reduction can effectively decrease the size of the prediction set CAn,l_a(Xn_s_l). This provides
theoretical guidance to find a practical way to enhance the efficiency of the PS by using probability
calibration methods to reduce the distribution discrepancy. However, the straightforward application
of probability calibration poses a challenge: we empirically find that probability calibration may
harm the PS efficiency in the OCP setting (see Section[5.1). In the following sections, we address
this challenge by introducing a novel stepwise distribution alignment method.

én,lfoz(Xn+1)‘ S

Corsley (Xnsn)| 47 | 2 1= 6o ®)

4.2 MEASURE DISTRIBUTION DISCREPANCY WITH POSTERIOR VARIANCE ESTIMATOR

To optimize the PS efficiency by reducing distribution discrepancy, we need to measure it by
comparing the posterior variance predicted by the OC model Vary (Y| X) and the posterior variance

estimated using data from the calibration set \/gr(Y|X » Deatip)- It is straightforward to calculate the
posterior variance predicted by the OC model:

K

N
Varg(Y|X = z) = Z ylz) - [y — Zﬁ(yﬂx) T )

Inspired from Auer et al.| (2024)), we estimate the posterior variance considering the calibration set
using a weighted sum of prediction errors derived from calibration data. This sum prioritizes points
similar to the test sample and aggregates their deviations. Specifically, we define the squared residual
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Algorithm 2 APASS Prediction

Input: logits of testing data fn+1 = f9($n+1), variance estimator Vgrd,(Y\X , Deativ), TS steps &

Output logits after APASS FAPASS
: Calculate ¢( an by Eq @Li . > distribution discrepancy of the testing sample
for s € {1,.

fot1 fn+1/t($n+1))
end for

APASS « softmax(fn+1)

£APASS
return f

AR

error in the calibration set as ¢;> = (y; — ¥;)?, For a new sample point X = x, the posterior variance
considering the calibration set is estimated by:

\75r¢(Y|X = @, Deqrip) = softmax (ﬁng (2) WqTWde (wlm)) ein, (10)

where xi., are samples’ features and e%:n are also squared residual errors in the calibration set,
W, and W}, are learned transformations applied before associating the query with the calibration
data’s keys, ¢ is an encoder, transforming raw features into appropriate representation vectors, and
represents all model parameters. To effectively train the variance estimator, we utilize a leave-one-out
(LOO) training strategy. The primary objective in the training phase is to minimize the mean squared
error between the predicted squared errors €2.,, and the actual squared errors €?.,,. The training loss,
therefore, is formulated as follows:

[,w = MSE (\//;I'w(Y|$1;n, Dcalib)? e?:n) (11)

During the computation of \//grw (Y2, Dearin), the weight of ¢; is masked as 0 to prevent leakage of
actual error values into the model training process following LOO. With the two posterior variance
estimators, we can finally define the distribution discrepancy of a sample z as:

t(ZC) _ \//z?rd,/(\Y\X = x,Dcalib) ! (12)
Varyg(Y|X = z)

We then use ¢(x) as the temperature in TS, which we refer to as T'S(¢). There is no variance
discrepancy if ¢(x) = 1, which means no need to scale the distribution. If ¢(z) > 1, indicating the
OC model underestimates the posterior variance, TS will make the distribution more even; and if
t(x) < 1, indicating the OC model overestimates the posterior variance, TS will make the distribution
more narrow. ¢ > 0 is a hyper-parameter to determine the step size of TS: larger ¢ means a larger TS
step given to same variance discrepancy.

4.3  STEPWISE POSTERIOR ALIGNMENT WITH TEMPERATURE SCALING

The next question is how to determine the step size q. A straightforward solution is to find the optimal
¢* by minimizing the ECE as other probability calibration methods do, named Adaptive Posterior
Alignment by Confidence Calibration (APACC). However, we find this approach may harm the
efficiency of PSs in practice. Therefore, inspired by gradient descent, we propose a sstepwisemethod
that uses a small constant step size g but looks for the optimal steps reducing the PSs’ size.

Corresponding to CP methods, APASS comprises 2 components: APASS-Calibration (Algorithm [T)
and APASS-Prediction (Algorithm 2)), as illustrated in Figure[I] APASS-Calibration calibrates the
posterior dlstrlbutlon of calibration data predicted by the OC model using distribution discrepancy
measure (Eq. [12) step by step and outputs the steps of TS 3. The aligned distributions p:LAS>
are then fed to OCP Calibration to calculate the non-conformity score and the conformal threshold
7. During test time, APASS-Prediction will first estimate the distribution discrepancy of a testing
sample ;.41 as t(x,,41), then run TS(¢(,,41)) for § steps to get aligned posterior py 7455, which
OCP-Prediction will take to generate PS for the testing sample x,, 1.
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Table 1: Averaged results of ACov comparing our method with baselines on 10 datasets and across

5 distinct OC models.

Dataset Original One-step method Stepwise method (Ours)
AdaTS APACC-Att | APASS-kNN  APASS-Att
Breastcancer 0.031:|:0_054 0.028:‘:0.055 0.03;‘;0_051 0.033:‘:0.05 0.033:‘:0,051
Community 0.005:&0.029 0.005:‘:0‘034 0.005:‘:0‘029 0.005:‘:0.032 0.005:‘:0.031
Concrete 0-012i0.031 0.012104034 0.013104033 0-011i0.033 0~013i0.032
Diabetes 0-025:|:0.046 0.025:‘:0.055 0.023:‘:0.053 0.023;‘;0_052 0.026:‘:0,054
Energy 0~014:|:0.036 0.013:‘:0‘037 0015:&0‘036 0.014:‘:0.04 0.013:‘:0.041
Forest 0-011i0.038 0.011104036 0-011i04035 0-012i0.037 O~012i0.036
Parkinsons 0.002:|:0_015 0.002:‘:0.015 0.002:‘:0,014 0.002:‘:0_015 0.002:‘:0,014
Pendulum 0.035:&0,045 0.037:&0,04 0.033:‘:0‘039 0.037:‘:0.044 0.034:‘:0.042
Solar 0-017i0.055 0.017104054 0.018104048 0-019i0.047 0.018i0.047
Stock 0-015:|:0.065 0.014:‘:0.057 0~015:|:0.06 0.014:‘:0_059 0.016:‘:0,054

5 EXPERIMENTS

This section presents the evaluation of APASS, designed to efficiently generate prediction sets with
specified coverage for OC tasks. We tested APASS across diverse real-world datasets and established
OC models, demonstrating consistent performance improvements over all baselines. An ablation
study confirmed the essential contribution of each component, enhancing APASS’s robustness and
reducing its sensitivity to hyperparameter changes. The results affirm APASS’s effectiveness and
practicality in real-world applications.

OC models. To validate the effectiveness of APASS across different base OC models, we tested 5
popular OC models, including 3 label-smoothing methods and 2 methods that promote unimodality
non-parametrically. Specifically, SORD, DLDL, R2CCP build different smoothed labels to encour-
age unimodal. ELB (Belharbi et al.,|2019) enforces unimodality and label-order consistency via a set
of non-parametric inequality constraints over all pairs of adjacent labels. UN (Cardoso et al., [2023))
proposed a new neural network architecture that directly constrains the output to be unimodal.

Baselines. We compared our models against four baselines: 1) Original: The original Ordinal-APS
model without adaptive calibration. 2) APACC-Attn: A one-step variant of our APASS method,
which uses grid search to find the optimal step size ¢ that minimizes ECE. This ¢ is then applied
to adjust the posterior during testing. 3) AdaTS: A state-of-the-art adaptive probability calibration
method (Joy et al2023)), which is incorporated into OC models before applying CP. 4) APASS-kNN:
A variation that substitutes our attention-based variance measure with a distance-based alternative.
Specifically, we use a kNN estimator to assess posterior variance Formally,

ko .
2(: )wi Ui — yil m(ln )d($i7$n+1)
— 1ENN(zp 41 1ENN(zp 41 Y
Vargyn (Y| X = Tny1, Deativ) = - (13)
w - max  d(x;,x;)
iENN(zn41) 4,J€Deativ
where NN(x,,11) is the set of the nearest k samples, w; = 1 — d(w“w"&i_ -y and o =
PENN(zp 1)

\/Var [{i}ienN(znir) U {Gn41}]. In our experiment, k = 5 and d(, -) is the Mahalanobis distance.

Metrics. The metrics used in our evaluation include ACov, defined as the absolute difference
between the actual and target coverage given a specific target coverage level 1 — «, where smaller
values indicate better validity and a value of zero implies perfect alignment. Additionally, we assess
the average size of the prediction set, denoted as |PS|, to evaluate the efficiency of different methods.

Datasets. We evaluate our method using 10 popular real-world datasets to ensure the robustness and
applicability of our approach. Specifically, these datasets include several from the 10 UCI Machine
Learning Repository (Kolby et al.l 2024). These datasets encompass a diverse range of domains and
data characteristics.
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Table 2: Averaged results of |[PS| comparing our method with baselines on 10 datasets and across 5
distinct OC models. The last raw is the average percentage reduction. See Tabled]in the Appendix
for complete results.

Dataset Original One-step method Stepwise method (Ours)
AdaTS APACC-Att APASS-KNN APASS-Att
Breastcancer | 43.5135 | 40.6446(-68%  44.0438+12%) | 41.3441-50%)  40.0414 9(-82%)
Community | 21.241¢ | 21.741.8+21%) 23.9499+127%) | 19.947 8¢62%  19.111 7(-9.9%)
Concrete 171417 | 17.14000+02%)  17.641.7+27%) | 16.042.0¢66%)  15.041 6(-12.4%)
Diabetes 35.743¢6 | 35.8436+0.0%)  33.043.7(-7.8%) 34.1433(-47%)  33.543(-6.4%)
Energy 11.0403 | 11.1405+0.7%  10.840.2(-1.2%) 9.140.4(-17.1%) 8.1 0 3(-26.5%)
Forest 2964958 | 29.2431¢13%)  32.343.1(+92%) | 27.6426(-6.7%)  26.04+3.0(-12.1%)
Parkinsons 94401 9.640.6(+2.7%) 9.04_0.6(-3.9%) 8.040.4(-14.0%) 6.81.1(27.9%)
Pendulum 104419 | 10.240.6¢24%  11.040.7(+5.8%) 9.8.40.7(-6.3%) 9.5 1.0(:9.0%)
Solar 174431 | 17.94300+28%) 24.643 6+41.2%) | 14.9436¢146%) 13.413 9(-23.2%)
Stock 132410 | 13.640.9032%  12.940.6(-1.8%) 12.740.4¢40%)  12.341.0(-6.4%)
Averaged Reduction | | 0.12% 5.81% ‘ -8.52% -14.20%

Evaluation Setup. For each OCP method in one dataset, we randomly split the data into folds with
70% / 30% as Dirqin/Deativ U Diese for 3 times to train 3 different models. We conduct 10 random
splits of calibration/testing sets for each OC model to estimate the empirical coverage and PS size.
For all APASS experiments, we use the same step size ¢ = 0.05

5.1 EMPIRICAL RESULTS

Effectiveness of APASS across Multiple OC Models on Real-World Datasets. We begin by
comparing our method with several baselines on a diverse set of real-world datasets across five
distinct OC models. As shown in Table E], APASS-Att maintains a consistently low ACov value,
indicating strong alignment between the predicted labels and the target labels. In terms of |PS|, as
reported in Table 2] APASS-Att achieves significant reductions. On average, it reduces the size of
the prediction sets by 14.20%, with reductions ranging from 6.4% to 27.9%. APASS-kNN using a
less competitive non-parametric variance estimator brings an 8.52% reduction in average. Moreover,
APASS-Att and APASS-KNN never increase the prediction set size compared to the original models,
demonstrating their robustness and adaptability across various datasets and models.

Superiority of Stepwise vs. One-Step Approaches. As reported in Table[2] both stepwise methods,
APASS-Attn and APASS-kNN, consistently outperform one-step baselines, including the state-of-
the-art probability calibration method AdaTS and our one-step variant APACC-Att, which fail to
reduce |PS| across all datasets. These one-step approaches fail to reduce the |PS| in 60% of cases.
In contrast, the stepwise approach consistently reduces prediction set sizes, showcasing its superior
ability to optimize prediction efficiency while maintaining strong model alignment. This advantage
reinforces the value of the stepwise framework in real-world applications.

Empirical Evidence of Synchronous Changes of PS Size. One of the critical contributions
of this work is the stepwise alignment approach, which uses the calibration set to determine the
optimal TS steps. We validate this empirically by analyzing how prediction set sizes evolve during
stepwise temperature scaling. Figure [3| demonstrates that prediction set sizes on both calibration
and testing sets change synchronously across three OC models on the Community and Stock dataset.
This validates that the stepwise method can accurately determine the TS steps based solely on the
calibration set. The same synchronous behavior is consistently observed across other datasets, with
comprehensive results included in Appendix[B]

Robust Performance of APASS and Computation Cost. Hyperparameter sensitivity is crucial
in real-world deployment, as hyperparameter selection typically requires human expertise and
can be resource-intensive. Our empirical results demonstrate that APASS is largely insensitive
to hyperparameter variation. Specifically, Table [3| shows the percentage reduction in |PS| when
applying APASS with various step sizes ¢q. While larger step sizes (e.g., 0.5 and 1.0) lead to
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Figure 3: The sizes of the prediction set change synchronously on calibration and testing sets.

suboptimal results, using a step size below 0.1 consistently yields near-optimal outcomes. APASS is
also computationally efficient. The posterior variance estimator and calibration training should be
complete before deployment, so this part of the computation cost is not crucial. The following table
illustrates that our method only costs about 9.2% computation overhead with ¢ = 0.05 (our setting).
However, if the step size g is set to 0.01, the computation overhead will be 62% but only bring 0.1%
extra reduction.

Table 3: Average size reduction after APASS-Att and computation cost in testing time with different
step sizes g. The last raw is the result of the original Ordinal-APS.

q 0.01 0.02 0.05 0.1 0.2 0.5 1.0 /
Averaged Reduction -143% -142% -142% -13.8% -87% -53% -1.7% /

Running time (s) 423 34.2 28.5 27.8 27.2 26.5 262 26.1
Overhead 62.1% 31.0% 9.2% 6.5% 42% 15% 0.4% /

6 CONCLUSION

In this paper, we find the issue of variance misalignment in popular ordinal classifiers, which will
harm OCP. We empirically and theoretically show the efficiency of OCP can be improved if ordinal
classifiers predict a more accurate conditional distribution. Thus, we introduce the APASS technique,
which employs an attention-based variance estimator and stepwise temperature scaling to align
the posterior variance modeled by ordinal classifiers with better variance estimation. Empirical
evaluations on benchmark datasets demonstrated that APASS significantly enhances the performance
of OCP methods without the need for hyperparameter tuning, offering a robust framework for high-
stakes healthcare, finance, and beyond applications. Limitation of our methods is we only use
variance to align the posterior, high-order moment such as skewness and kurtosis can be considered
in future works.

10
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A PROOF OF THEORY

The theoretical proof strikes the idea from |Sesia & Romano| (2021)), which focuses on regression
problems with continuous variables, whereas we concentrate on ordinal classification with discrete
variables.

Lemma 1. Def the event A as

A= { sup [E(y]e) - F(y/la)]| > n} (14)

je{l,....K}
Then, under Assumptions 1-3, for any X 11 D'
PIX c Al <n (15)
Furthermore, partitioning the calibration data points into

Db .= Lic{l,....n}: X; € A}, D .={ic{l,...,n}: X, € A%} (16)
we have that, for any constant ¢ > 0
P[P = np + ey/nlogn]| < n-2 (17)
Lemma 2. Under Assumptions 1-3, for any 7 € (0,1) and X 1L D",
P [[Cor (0] < [Crrs2a(X) | +2] 2 1=, (18)

Lemma 3. Foranyt € (0,1), let Q. (E;) denote the [1(n+1)] smallest value among the conformity
scores {E;} fori € D!, where i € D! and

E; := min {Tt € {0,1/Ty, ..., (T — 1)/T0,1} - Y; € CAM(Xi)} (19)
Then, under Assumptions 1-3, for any ¢ > 0,
P[Q-(E) <7+en] 212072, (20)
where €, = 3/n + 3n+ 2cy/(logn)/n
Proof of Thforemm Define ¢, := 3/n + 31 + 2¢y/(logn)/n for any ¢ > 0, as in Lemma In the
event that Q1_o(E;) <1 —a+ €,

P[1C, 01 (] < Crt-aten2n(X)] +2]

> P [[Cot-aten ()] < [Cait-arrens2(X)] +2] @n
> 1- ,

where the second inequality follows by applying Lemma[]with 7 = 1 — « + €,,. Further, as Lemma
[ tells us, the above event occurs with a high probability,

P [Ql,a(Ei) <l-a+ en} >1- 2% 22)
in general, we have that
~ 2
P[1C0 0o (] < Cntatenrzn(X) +2] 21—y —207% (23)

By Assumption p(y/|z) > 1/H forall j € {1,2,..., K}. This implies C, - (X) is H-Lipschitz
as a function of 7. Therefore,

13
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P[IC.0, ) ()] < [Cata(X)| +2+ Hien +21)]
>P[1C, 0,5 K] < Cntatenrzn(X)] +2] 24
>1—n— on 2
Hence, setting ¢ = 1 we have proved that
P[1C, 0,y (] < Cnp—alX)| + ] 2 1= 0. (25)
O

Proof of Lemmal[l] Inequation[I5]and easily derived from definition of A in Eq. [I4]and Assumption
As we know from the above that P[X € A, ] <), for any € > 0, following Hoeffding’s inequality,

P [’Dcal’a‘ >nn+ e] <P HDcal’“| >nP[X € A,]+ e]

2n
1 €
<P|- 1[X, €A, >P[X, €A —
< [n E (Xie A 2 P[X; € n]+n]

i=n—+1 (26)
(=55)
<exp|——].
n
Therefore, setting € = c+/n log n, for some constant ¢ > 0, yields
P [{Dcal ’“| > nn+ cy/nlog n] < n=2, 27
O

Proof of Lemma[Z] Consider the event A defined in Lemmal[T] Let’s consider the case where X € A°.
We can write C,, - (X) = [J1, 2] for some J1, 2 € {1,..., K} such that F (yj?) —F (yjl_l) > T

Then, the triangle inequality implies F' (y32) - F (y31_1) > 7 — 2n. Consider the oracle set
Cn,r+2,(X), which we can write in short as [I*, u*] for some I*, u* € R such that F' (u*) — F (I*) >

*

T + 2n. Define ji, j5 € {1,..., K} as the indices of the label immediately below and above [*, u*:

J1 ::maX{jE{l,...,mn}:yj <l*}

: (28)
jy i=min{j € {1,...,m,} : ¢/ >u*}
This definition implies
Yz — oyt <uF -1 42, (29)
Furthermore,
F(y%) = F (yh) 2 F ) = F ()
> F(u')— F(*) -2y (30)
>T.
The result implies that j, — j; < j5 — j; because jo — 7, is the minimal of CA,M(X). Then,
< |Cn,7'+2n (X)| +2
if X € A°. Finally, by applying Lemmal[I]
P [ ém(X)‘ < [Crrtan (X)) + 2] —PX €A >1—19 (32)
O
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Proof of Lemma[B] Take any i € D%?, where D? is defined as in Lemma[l}
DAl .= fie{l,...,n}: X; € A°}, (33)
For any fixed t € {0,...,n} and 74 = t/n, omitting the explicit dependence on X and p, we can

write Cp, 7, (X) = [51,32}, for some j1, j2 € {1,..., K} such that F(yﬁ) - F(yjl*l) > 7¢. Then

PE, <7|=P [)@ €Cor, (X)}

= F(y*) - F(y ") (34)
> F(y) — Py ) — 21
> Tt — 277

Above, the first inequality follows from the definition of D! *. Equivalently, we can rewrite this as
PE,>n+2n+0]<1—7—0, (35)
for any 0 > 0. Now, partition D" into the following two disjoint subsets:

Dcal,bl = {Z c Dcal,b . El S Tt + 277+5}

(36)
pealb2 . {z e DY B> 420+ 5}

We bound | D¥2| with Hoeffding’s inequality. For any i € D, define E; = E; if i € D and
FE; = 1 otherwise. For any € > 0,

P[|D?] > n(l — 7 — 6) + €]
3 ]l[Ei>Tt+2n+6} ZP[Ei>Tt+2n+5]+%

ie'Dcal,b

3=

o
=P *Zl{Ei>Tt+2n+5} >P[E; >+ 20+ 0]+ —
nz_zl n

(37)
o ] ]
<P —Z]l [Ei >Tt+2n+(5} EP[Ei>n+2n+6} + £
k= n
€2
e
n
Therefore, setting € = c+/n log n, for some constant ¢ > 0, yields
P [|D°all ’b2| >n(l—7m—0)+ c\/nlogn] < n~2 (38)

As | DY = p — |Deaba| — |Dalb2 | combining the above result with that of Lemmayields:

IP |:|Dcal ,b1| 2 nTt + né’ . nrr] — 26\/@} Z ]_ — 2’)7,—202 (39)

If we choose § = 7. /n + n + 2¢/(logn)/n

P [[D Y > r(n+1)] > 1— 2072, (40)
which means
P [Qn (E)) <7 + 7 /n + 30+ 2¢y/(log n)/n] >1—op 2 (41)
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Now, consider any continuous 7 € (0,1],and ¢’ = min{¢t € {0,...,T,} : 7+ > 7}. As7p > 7, we
know Q;,, (E;) > Q- (E;). Therefore,

P [Qr(B:) < 7 + 7o/ + 31+ 2¢/(log n) /1]
>P [Qrt, (Ei) < 1o + 7w /n+ 30+ 2¢y/(log n)/n} (42)

>1—2p 2,
As 1y = 7 + 1. Therefore,

P[Q-(Ei) <7+ 1/n+7/n+1/n%+ 3y + 2cy/(log ) /n] )
>1— 2072,

Finally, as 7 < 1 and n > 1, replacing 1/n + 7/n + 1/n? with 3/n will preserve the inequality and
Lemma 3 is proved. O

B EXPERIMENT

B.1 SYNTHETIC DATASET

We employed a method involving multivariate normal distributions and linear combinations to
generate synthetic data for our experiment. Initially, we created a random mean vector and a
symmetric positive-definite covariance matrix to define the multivariate normal distribution. This
distribution is used to generate a dataset of features. We computed the output means and variances
by applying linear combinations of the generated features with randomly generated coefficients to
produce output values. Precisely, the means are calculated as a linear combination of the features,
while the variances are determined by squaring another linear combination of these features, ensuring
non-negativity. Finally, output values are sampled from a normal distribution using the calculated
means and variances, resulting in a comprehensive synthetic dataset for experimental analysis.

B.2 ORDINAL CLASSIFIER

Vanilla cross-entropy loss ignores the ordinal relationship and non-uniform separation among labels.
To learn better conditional mass function approximation p(y|z), many label smoothing methods
convert one-hot target labels into unimodal prior distributions to be used as the reference for the
training loss. Soft ordinal classification (SORD) constructs the ground-truth p.m.f. based on a metric
loss function £(y*, y*) that penalizes how far the true value y' is from the i-th prediction value 7
(Diaz & Marathe, 2019):

ety

= K —0(yt yk
Zk:le (y*,y*)

and use cross-entropy loss to train the neural network model. Deep Label Distribution Learning
(DLDL) minimizes the KL divergence between the predicted probability and the ground-truth labels
in a similar way:

p(y") Vy' ey, (44)

__ K@'lp.o)
Sy Kk, o)

where K (|, o) is a normal p.d.f. The mean 1 is set to the actual value, i.e., u = y, and o is usually
determined by the data distribution. For the continuous label in the regression setting, Regression-
to-Classification Conformal Prediction (R2CCP) converts regression into ordinal classification by
discretizing the label space into K bins. They proposed a loss similar to label smoothing losses with a
Shannon entropy regularizer, which prevents the density estimator from collapsing to one-hot output
(Gubha et al., [2024):

p(yi) Yyt e ). (45)

K

L) =y, v )po(y* ) — TH(Po(|x)). (46)

k=1
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Table 4: Full results of [PS| on 10 dataset with 5 OC models.
Dataset ocC Original One-step method Stepwise method (Ours)
Model AdaTS APACC-Att | APASS-KNN  APASS-Att
DLDL | 42.5314.36 45.314.62 43.13425 39.3542.97 36.3513.99
Breastcancer R2CCP 43~0i2.05 49-61i4.76 43-95i3.95 41~O3i4.68 39.96i5_49
SORD | 43.774372 | 28.931273 43.3812 47 40.0814.31 39.0515.09
DLDL | 18.77411.45 | 19.5449211 21.7949.73 18.5141 93 1841 54
ELB 16.441 56 17.9411 14 17.8319.1 16.22_15 06 16.01 93
Community RZCCP 17-98i1.26 18-73i1.97 22-81i2.41 17~55i1.62 17-35i1.28
SORD 20.941 85 18.3311.72 20.9841.46 19.642 .48 19.27 19 59
UN 32.141.83 33.85492.05 36.2149 .99 27.711 57 24.61 35
DLDL | 10.3141.96 9.2641.5 10.664+_0.07 10.1941 14 10.14 ., o
ELB 1544175 10.042.38 15.7413.55 15.3543.41 1524173
Concrete R2CCP 9.86i1_3 9~72i0.49 10-12i1.18 9~7i1.79 9.6511417
SORD | 11.354165 | 13.3842.44 11424561 11.3141 35 11.27 44 7
UN 38.611.89 43.2913 38 39.8941 29 33.3642.12 28.7 1139
DLDL | 35.054308 | 40.131018  34.19:300 | 33214545  32.81u35s
ELB 33~3i3.89 37.O4i1.71 31-22i2.99 33~18i2.68 33-113‘56
Diabetes R2CCP 38.16i4_42 39-42i4.97 32-513.84 33~76i3.28 32-21i3.65
SORD | 34.891099 | 2274930  35.031404 | 34.031430  33.48.55
UN 3731568 | 39454663  31.91447 36.1840092 3571550
DLDL | 2884023 | 2.9+-057 2.9+ 136 2.854-1.23 2.831027
ELB 8.38i0.26 8~95i0.98 8.17i0.79 8-01i1,62 7.7610‘28
Energy R2CCP 3-07i0.26 2~14i2.37 2.9611.93 3-03i—0.11 3.0210429
SORD 2.9510.31 3.3310.15 3.0640.31 2.9411 04 293,93
UN 37.64024 | 38.364_048 37.164_0¢s 28.6610.51 23.810.28
DLDL | 31.184045 | 23254167 38134089 | 30.294035  29.55.05;
ELB | 27.04316 | 27.31is75  26.87430s | 26454935 2621057
Forest R2CCP | 30.9141 45 35.7641 48 35.8341 88 28.8541 85 27.7945 5
SORD | 33.571572 | 36.564361  33.224481 | 31.024302  29.2314.45
UN 25-4i3.0 23-32i4.86 27-64i2.88 21~47i3.59 17.412‘99
ELB 6~91i0.06 7~59i0.37 6.78171.11 6.69i,0,21 6.8i0,07
Parkinsons R2CCP 2-12i0.04 2~22i1.29 2-O5i—0.5 2-05i0.21 2.0110404
SORD 2.0410.04 1.8310.82 2.0310.01 2.0411 69 2.04_ .04
UN 33~6i0.06 34-85i—0.61 32-09i71.23 27~37i70.03 20.810‘07
DLDL 7.1541.12 6.0410.39 6.6811.02 6.7741.82 6.38.1.06
ELB 12.941 97 14.5140.71 12.3940.63 12.7711.39 12.7 198
Pendulum R2CCP 6.67i0_95 7~15i0.76 9.0610.45 6.21i_1,02 5.8610477
SORD 9.2311.35 10.2741 43 9.431 _0.05 8.371_0.75 8.08.:1 22
UN 16.31413 13.044 _¢19 17.7147 93 14.8349.11 14.511 20
DLDL | 22.22401 | 24474940  19.44936 20974065  20.031517
ELB 25.143.091 21.1749.86 26.0213.65 21.5443 49 18.31355
Solar R2CCP 6-22i0.78 6.51i_0_95 26.99i1_19 3.66i1,09 1-8i0.68
SORD | 21.98:693 | 25.384560  21.244459 1822165  17.53.6.0s
UN 11~6i1.86 12-03i5,88 29-34i6.03 9.98i4,75 9-2915‘96
DLDL | 9.141104 | 9834 036  9.2511.05 8651 021 83710095
ELB 11.440.01 10.57+0.79 11.0710.11 11.344 .42 11.311 03
Stock R2CCP 9-74i1.15 7.88i1_14 94211.68 9-01i2.42 8.8611425
SORD | 9.731 083 | 9.324103  9834_155 | 9.341_045  9.25i00s
UN 25~9i0.87 30-41i1.77 25-14i1.25 24~94i0.55 23-910‘98
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B.3 ADDITIONAL EXPERIMENT RESULTS

In this section, we provide all experiment results of how the sizes of the prediction set change in the
calibration and testing sets as we do stepwise posterior alignment.
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Figure 4: The prediction set size change on Breastcancer, Community, Concrete, and Diabetes
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Figure 6: The prediction set size change on Solar and Stock
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