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ABSTRACT

Ordinal classification (OC) is widely used in real-world applications to categorize
instances into ordered discrete classes. In risk-sensitive scenarios, ordinal confor-
mal prediction (OCP) is used to obtain a small contiguous prediction set containing
ground-truth labels with a desired coverage guarantee. However, OC models often
fail to accurately model the posterior distribution, which harms the prediction set
obtained by OCP. Therefore, we introduce a new method called Adaptive Posterior
Alignment Step-by-Step (APASS), which reduces the distribution discrepancy to
improve the downstream OCP performance. It is designed as a versatile, plug-and-
play solution that is easily integrated into any OC model before OCP. APASS first
employs an attention-based estimator to adaptively estimate the variance of the
posterior distribution using the information in the calibration set, then utilizes a
stepwise temperature scaling algorithm to align the posterior variance predicted
by OC models to the better variance estimation. Extensive evaluations on 10 real-
world datasets demonstrate that APASS consistently boosts the OCP performance
of 5 popular OC models.

1 INTRODUCTION

Ordinal classification (OC) (Diaz & Marathe, 2019; Gao et al., 2017; Geng, 2016; Guo et al., 2008;
Can Malli et al., 2016; Huo et al., 2016; Wen et al., 2020) plays a crucial role in high-stakes domains
like healthcare (Liu et al., 2019) and finance (Manthoulis et al., 2020) by categorizing instances
into ordered discrete classes. Robust uncertainty quantification is critical beyond accurate point
predictions to avoid costly or dangerous outcomes caused by prediction errors. To this end, various
methods have been developed for estimating predictive uncertainty in deep neural networks, such as
confidence calibration (Guo et al., 2017), MC-Dropout (Gal & Ghahramani, 2016), and Bayesian
neural networks (Smith, 2013), but they lack formal guarantees. Conformal Prediction (CP) (Vovk
et al., 1999; 2005; Lei et al., 2018; Wen et al., 2020; Romano et al., 2020; Angelopoulos & Bates,
2021; Angelopoulos et al., 2021) addresses this gap by providing a distribution-free, post-processing
approach that generates prediction sets (PS) guaranteed to contain the true label with a specified
coverage probability, which generally design non-conformity scores to quantify the deviation the
degree between the model’s predictive outcomes and the data distribution.

Recent works on OC demonstrate substantial benefits of assuming the underlying conditional dis-
tribution to be unimodal for OC tasks (Diaz & Marathe, 2019; Gao et al., 2017; Guha et al., 2024;
Belharbi et al., 2019; Cardoso et al., 2023). Some rely on label smoothing methods, which convert
one-hot target labels into unimodal prior distributions to be used as the reference for the training loss.
Some works learn a non-parametric unimodal distribution as a constraint optimization problem in
the loss function. In the unimodal context of ordinal classification, Ordinal Conformal Prediction
(OCP) (Lu et al., 2022; Xu et al., 2023) is designed to generate contiguous prediction sets using
the posterior distribution predicted by OC models. In contrast to Adaptive Prediction Sets (APS),
which calculate the scores by accumulating the sorted softmax probabilities in descending order,
Ordinal-APS calculates the score by accumulating softmax probabilities of the contiguous prediction
set with the minimum set size. However, the existing OCP methods neglect the possible variance
misalignment of the OC models, which leads to inefficient PS.

In this work, we empirically observe the variance misalignment between the predicted posterior
distribution and the oracle posterior distribution in a synthetic dataset. Specifically, a noticeable
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reduction in the size of PS is observed when we align the predicted posterior to the oracle posterior.
Further, our theoretical analysis supports the empirical findings by demonstrating a decrease in the
upper bound of the prediction set size as the predicted posterior approaches the oracle posterior.

Inspired by our analytical findings, we introduce the Adaptive Posterior Alignment Step-by-Step
(APASS), which serves as a plug-and-play component that can be integrated into any OCP framework
to enhance its performance. The method consists of two key parts: 1) We introduce an attention-based
estimator that adaptively estimates the variance misalignment of an input sample by examining
similar samples in the calibration set; 2) a stepwise alignment algorithm that optimizes the calibrate
the variance misalignment. The stepwise method can gradually amend the variance misalignment
and produce more compact prediction sets.

To evaluate the effectiveness of APASS, we conduct extensive empirical assessments on real-world
benchmarks, showing that APASS consistently improves the performance of OCP on 10 real-world
datasets by 14.2% on average with 5 typical ordinal classification methods. The unstable performance
of non-stepwise alignment baselines highlights the superiority of consistent improvement.

The contributions of this paper are summarized as follows:

• We identify the variance misalignment issue in current OC models that the existing OCP
method neglects and theoretically prove that ignoring the misalignment will harm the
efficiency of PSs in the context of OCP.

• We introduce the Adaptive Posterior Alignment Step-by-Step (APASS) method, a stepwise
approach designed to reduce the PS size by reducing the distribution discrepancy using
posterior variance alignment.

• We conduct extensive evaluations to show that APASS consistently improves the existing
OCP method on various OC models. Specifically, the empirical results show the superiority
of stepwise design to one-step baselines.

2 BACKGROUND

2.1 ORDINAL CLASSIFICATION.

In this study, we explore ordinal classification, which assigns labels to input instances based on a
naturally ordered set of classes. We define the input space as X ⊂ Rd and the ordered set of classes
as Y = {1, 2, . . . ,K}. The primary objective is to accurately predict the class label of input data
using an OC model, denoted as f̂ : X → RK . Consider a scenario where the random variables X
and Y are drawn from the combined space X × Y under a joint distribution PX,Y . It is assumed that
the true conditional distribution PY |X is unimodal. This implies that for any given input instance
x ∈ X , the probability distribution P (Y = y|X = x) peaks at a certain class y. The prediction of
our model, therefore, hinges on ŷ = argmax

y∈Y
p̂y(x), where p̂(y|x) = softmax(f̂θ(y|x)) represents

the estimated probability that the input x corresponds to class y.

2.2 ORDINAL CONFORMAL PREDICTION.

Ordinal Conformal Prediction (OCP) leverages the output of ordinal classifiers, symbolized by p̂(x),
to construct a function C : X → 2Y . This function maps input instances to a set of potential classes,
ensuring a specific, user-defined confidence level. As a distribution-free methodology, OCP generates
reliable prediction sets without making assumptions about the underlying data distribution. Formally,
consider the following setup: 1) A calibration set comprising n i.i.d. data points {(Xi, Yi)}ni=1.
These data points differ from the training data used to develop the ordinal classifier. 2) A new
test instance Xn+1 ∈ X and a target variable Yn+1 ∈ Y . The primary objective is to construct a
prediction set Cn,1−α(Xn+1) that remains minimal yet while ensuring that it satisfies marginal
coverage at the confidence level 1− α:

P
(
Yn+1 ∈ Cn,1−α(Xn+1)

)
≥ 1− α, (1)
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Furthermore, the prediction set should provide conditional coverage at the same confidence level:

P
(
Yn+1 ∈ Cn,1−α(Xn+1)|Xn+1 = x

)
≥ 1− α, ∀x ∈ X . (2)

Oracle Prediction Set. In ideal settings, accessing the oracle conditional distribution, denoted as
p(y|x), we construct an optimal prediction set satisfying Eq (2). It is formalized by:

Coracle
1−α (x) =

[
loracle
1−α (x), uoracle

1−α (x)
]
, (3)

where for any confidence level τ ∈ (0, 1], the boundaries of the prediction set are calculated as:

(
loracle
τ (x), uoracle

τ (x)
)
:= argmin

(l,u)∈R2:l≤u

u− l :
u∑
j=l

p(yj |x) ≥ τ

 . (4)

Practical Solution. In practice, direct access to the Oracle conditional distribution, p(y|x), is often
infeasible. Instead, the trained ordinal classifier is utilized to approximate this function, which we
denote as p̂(y|x). Among various OCP methods that utilize p̂(y|x) to determine prediction sets, our
research adopts the Ordinal-APS method (Lu et al., 2022). This approach integrates CP techniques to
generate contiguous prediction sets using a calibrated threshold τ̂ to meet the desired coverage at the
level of 1− α:

Ĉn,1−α(x) =
[
l̂τ̂ (x), ûτ̂ (x)

]
. (5)

However, the estimated distribution p̂(y|x) often exhibits discrepancies, such as variance misalign-
ment, compared to the oracle. Current OCP methods neglect these discrepancies, which can affect
the efficiency of the PSs generated by the OCP method.

2.3 PROBABILITY CALIBRATION

Probability calibration, also known as confidence calibration (Guo et al., 2017), aims to ensure that
the softmax probabilities predicted by neural networks accurately reflect the actual probabilities
of correctness. To measure the degree of miscalibration, the Expected Calibration Error (ECE) is
commonly used, quantifying the discrepancy between accuracy and confidence. ECE partitions the
predictions into M equally spaced bins and calculates a weighted average of the difference between
the accuracy and confidence within each bin. Formally, ECE is defined as:

ECE =

M∑
m=1

|Bm|
n
|acc (Bm)− conf (Bm)| , (6)

where acc(·) and conf(·) denotes the average accuracy and confidence in bin Bm.

In prior works, it has been generally assumed that probability calibration improves the quality of
conformal prediction sets (Angelopoulos et al., 2021; Gibbs et al., 2023). However, the specific impact
of calibration methods on conformal prediction remains uncertain (Xi et al., 2024). Furthermore,
existing calibration techniques are not explicitly tailored to OC models, which often assume unimodal
distributions. The influence of these methods on OCP is thus still an open question.

3 RELATED WORK

Ordinal Classification. Recent works on ordinal classification demonstrate substantial benefits of
assuming the underlying conditional distribution to be unimodal. Label smoothing methods convert
one-hot target labels into unimodal prior distributions to be used as the reference for the training
loss. SORD (Diaz & Marathe, 2019) constructs the ground-truth probability distribution using linear
exponentially decaying distributions based on a metric loss function ℓ(yt, yi) that penalizes the
distance between the actual value yt and the i-th prediction value yi. This method uses the cross-
entropy loss to train a neural network model. DLDL (Gao et al., 2017), on the other hand, constructs
the probability of the i-th prediction using a normal probability density function and minimizes the
Kullback-Leibler divergence between the predicted probability distribution and the ground-truth
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Figure 1: Overview of APASS. APASS is a plug-and-play module that adjusts the conditional
distribution as predicted by ordinal classifiers before applying the OCP approach. This versatility
allows it to be integrated seamlessly with various ordinal classifiers and OCP methods. Details of
APASS-Calibration and APASS-Prediction are presented in Algorithm 1 & 2.

labels. R2CCP (Guha et al., 2024) proposes a loss function similar to label smoothing losses, which
penalizes the probability based on the distance between the actual value yt and the i-th prediction
value yi and uses a Shannon entropy regularizer to prevent the density estimator from collapsing to a
Dirac distribution. But these methods are often sub-optimal since the assumed priors might not reflect
the true distribution, classes might not be equispaced categories, and additionally, test predictions
might not necessarily be unimodal. Some other methods (Belharbi et al., 2019; Cardoso et al., 2023)
learn a non-parametric unimodal distribution as a constraint optimization problem in the loss function,
which is not only difficult to optimize but also does not guarantee unimodality on testing data.

Conformal Prediction Conformal prediction is a statistical framework characterized by a finite-
sample coverage guarantee. One of the main goals of CP methods is to generate a compact prediction
set. APS (Romano et al., 2020) introduces techniques aimed at achieving coverage that is similar
across regions of feature space. RAPS (Angelopoulos et al., 2020) presents a regularized version of
APS for Imagenet. The first work proposing the CP method for ordinal classification is Ordinal-APS
(Lu et al., 2022), and another work proposes a similar approach in the context of ordinal conformal
risk control (Xu et al., 2023).

The primary focal points of CP are reducing prediction set size and enhancing coverage rate. COPOC
(Dey et al., 2023) proposes a special neural network model to ensure the ordinal classifier outputs
an unimodal distribution and thus reduces the size of the ordinal prediction set size. In contrast, our
model-agnostic method can be applied to different ordinal classifiers. Closely related to our insight,
some works also utilize the information in the calibration set to generate compact prediction sets
NCP (Ghosh et al., 2023) proposes to use non-parametric nearest neighbors for calibration, and in the
context of sequential data, HopCPT (Auer et al., 2024) uses Modern Hopfield Networks to model the
data similarity, and reweight the non-conformity score based on the similarity.

Probability Calibration Guo et al. (2017) investigates the problem of confidence calibration
in modern neural networks and finds post-processing methods like TS can effectively calibrate
predictions. Standard TS improves average calibration but reduces confidence for all predictions.
AdaTS (Joy et al., 2023) predicts a different temperature value for each input, allowing it to selectively
increase or decrease confidence as needed. Esaki et al. (2024) proposes an accuracy-preserving
calibration method using the Concrete distribution as a probabilistic model on the probability simplex,
which outperforms previous TS methods in accuracy-preserving calibration tasks.

4 METHOD

In this section, we empirically and theoretically analyze the influence of distribution discrepancies on
the efficiency of PSs generated by the OCP method: PSs will be smaller if distribution discrepancies
are smaller. Therefore, we propose a plug-and-play method to optimize the PS efficiency, named
Adaptive Posterior Alignment Step-by-Step (APASS). APASS first employs a variance estimator
(attention-based or kNN-based, see Section 4.2) to estimate the distribution discrepancies using data
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Figure 2: Empirical Evidence for Variance Alignment. (a) Variance discrepancy between oracle and
predicted distribution. (b) Distributions after variance alignment using temperature scaling

in the calibration set. Then, to make use of the estimated variance misalignment, we proposed a
stepwise method that gradually adjusts the predicted posterior using temperature scaling (TS) with a
small step size to ensure a monotonic decrease in PS size in Section 4.3.

4.1 MOTIVATION

Recent works on OC demonstrate substantial benefits of assuming the underlying conditional distri-
bution to be unimodal for OC tasks. To encourage unimodality, label-smoothing methods convert
one-hot target labels into unimodal prior distributions to be used as the reference for the training loss,
and some other methods use non-parametric unimodal distribution as a constraint in the loss function.
However, these methods are optimized for accuracy, not posterior distribution discrepancy.

To investigate the impact of distribution discrepancies between the prediction posterior distribution,
p̂(y|x), and the oracle distribution, p(y|x). We first generated a heteroscedastic synthetic dataset,
then trained an OC model in this dataset. This allows us to access the Oracle distribution p(y|x) and
better mirror real-world data scenarios. Figure 2 (a) highlights the existing discrepancies: the OC
models tend to overestimate the variance when the actual variance is low and underestimate it when
the actual variance is high. Moreover, the oracle prediction set has an average size of 8.54, contrasting
with 9.62 for the set derived from p̂(y|x). This considerable difference highlights a critical variance
misalignment problem, which compromises the efficiency of the prediction set size.

Inspired by the probability calibration method, we then employ temperature scaling to align the
prediction distribution to the oracle distribution. Specifically, we use a grid-search strategy to
minimize the discrepancy between the variance of the predicted posterior distribution and the variance
of the oracle posterior distribution. In Figure 2 (b), we illustrate the aligned distribution. The results
show a more closely aligned distribution, with the average size of the prediction set reduced to 8.84.
These findings demonstrate that temperature scaling not only facilitates variance alignment but also
enhances the efficiency of the prediction set, effectively resolving issues of variance misalignment.
Then, we establish a theoretical explanation for our empirical finding, which explains how distribution
discrepancy affects the relationship between the estimated prediction set, Ĉn,1−α(Xn+1), and the
oracle prediction set, Coracle

1−α (Xn+1). We begin by defining some necessary assumptions:

Assumption 1 (i.i.d. data). The data {(Xi, Yi)}n+1
i=1 are i.i.d. from some unknown joint distribution.

Assumption 2 (Unimodality). For any x ∈ Rm, the conditional distribution of Y |X = x is unimodal;
i.e. there exists y0 ∈ R (depending on x), such that p(y0 + y′′|x) ≤ p(y0 + y′) if y′′ ≥ y′ ≥ 0, and
p(y0 + y′′|x) ≤ p(y0 + y′) if y′′ ≤ y′ ≤ 0.

Assumption 3 (η-inconsistency). Let F (y|x) denote the cumulative distribution function of Y |X = x,
and define F̂ (y|x) as the estimate of cumulative distribution function, i.e., F̂ (yj |x) :=

∑j
i=1 p̂θ(y

i|x).
Then, we assume for all j ∈ 1, . . . ,K,

P

[
sup

j∈{1,...,K}

[
|F̂ (yj |X)− F (yj |X)|

]
≤ η

]
≥ 1− η. (7)

Assumption 4 (Regularity). For any x ∈ Rm and j ∈ {1, 2, . . . ,K}, 1/H < p(yj |x) < 2/H , for
some H > 0.
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Algorithm 1 APASS Calibration

Input: logits of calibration data f̂1:n = f̂θ(x1:n) and variance estimator V̂arψ(Y |X,Dcalib)
Output: aligned posterior p̂APASS

1:n and the TS steps ŝ
1: Calculate t(x1:n) by Eq 9, 10, 12 ▷ distribution discrepancy on the calibration set
2: p̂1:n ← softmax(f̂1:n)

3: |Ĉn,1−α(x1:n)| ← OCP-Calibration(f̂1:n) ▷ run OCP-Calibration to get average PS size
4: best← |Ĉn,1−α(x1:n)| ▷ initialize best PS size
5: for s ∈ {1, . . . , smax} do
6: f̂1:n ← f̂1:n/t(x1:n) ▷ perform TS(t(x1:n))

7: |Ĉn,1−α(x1:n)| ← OCP-Calibration(f̂1:n) ▷ get new PS size
8: if |Ĉn,1−α(x1:n)| ≤ best then ▷ stop until PS size does not reduce
9: best← |Ĉn,1−α(x1:n)|

10: else
11: Break
12: end if
13: end for
14: p̂APASS

1:n ← softmax(f̂1:n ∗ t(x1:n)), ŝ← s− 1
15: return p̂APASS

1:n , ŝ

Assumption 4 allows us to quantify the distribution discrepancy using η, where a higher η value
signifies a greater discrepancy. We leverage this quantification to theoretically analyze and establish
an upper bound for |Ĉn,1−α(Xn+1)|:

Theorem 1. For any α ∈ (0, 1], let Ĉn,1−α(Xn+1) denote the prediction set at level 1− α for Yn+1

obtained by applying OCP. The size prediction set Ĉn,1−α(Xn+1) is bounded by the set of oracle
prediction set Coracle

n,1−α(Xn+1) as

P

[∣∣∣Ĉn,1−α(Xn+1)
∣∣∣ ≤ ∣∣∣Coracle

n,1−α(Xn+1)
∣∣∣+ γn

]
≥ 1− ξn, (8)

where γn = 2 +H(3/n+ 2
√

(log n)/n+ 5η) and ξn = η + 2n−2.

This theorem demonstrates that decreasing η, the measure of the discrepancy between estimated
and actual distributions, results in a tighter upper bound for |Ĉn,1−α(Xn+1)|. Consequently, this
reduction can effectively decrease the size of the prediction set Ĉn,1−α(Xn+1). This provides
theoretical guidance to find a practical way to enhance the efficiency of the PS by using probability
calibration methods to reduce the distribution discrepancy. However, the straightforward application
of probability calibration poses a challenge: we empirically find that probability calibration may
harm the PS efficiency in the OCP setting (see Section 5.1). In the following sections, we address
this challenge by introducing a novel stepwise distribution alignment method.

4.2 MEASURE DISTRIBUTION DISCREPANCY WITH POSTERIOR VARIANCE ESTIMATOR

To optimize the PS efficiency by reducing distribution discrepancy, we need to measure it by
comparing the posterior variance predicted by the OC model V̂arθ(Y |X) and the posterior variance
estimated using data from the calibration set V̂ar(Y |X,Dcalib). It is straightforward to calculate the
posterior variance predicted by the OC model:

V̂arθ(Y |X = x) =

K∑
j=1

p̂(yj |x) ·

yj − N∑
j=1

p̂(yj |x) · yj
2

. (9)

Inspired from Auer et al. (2024), we estimate the posterior variance considering the calibration set
using a weighted sum of prediction errors derived from calibration data. This sum prioritizes points
similar to the test sample and aggregates their deviations. Specifically, we define the squared residual

6
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Algorithm 2 APASS Prediction

Input: logits of testing data f̂n+1 = f̂θ(xn+1), variance estimator V̂arψ(Y |X,Dcalib), TS steps ŝ
Output: logits after APASS f̂APASS

n+1
1: Calculate t(xn+1) by Eq 9, 10, 12 ▷ distribution discrepancy of the testing sample
2: for s ∈ {1, . . . , ŝ} do
3: f̂n+1 ← f̂n+1/t(xn+1))
4: end for
5: f̂APASS

n+1 ← softmax(f̂n+1)

6: return f̂APASS
n+1

error in the calibration set as ϵi2 = (yi − ŷi)2, For a new sample point X = x, the posterior variance
considering the calibration set is estimated by:

V̂arψ(Y |X = x,Dcalib) = softmax
(
βϕT (x)W T

q Wkϕ (x1:n)
)
ϵ21:n, (10)

where x1:n are samples’ features and ϵ21:n are also squared residual errors in the calibration set,
Wq and Wk are learned transformations applied before associating the query with the calibration
data’s keys, ϕ is an encoder, transforming raw features into appropriate representation vectors, and ψ
represents all model parameters. To effectively train the variance estimator, we utilize a leave-one-out
(LOO) training strategy. The primary objective in the training phase is to minimize the mean squared
error between the predicted squared errors ϵ̂21:n and the actual squared errors ϵ21:n. The training loss,
therefore, is formulated as follows:

Lψ = MSE
(

V̂arψ(Y |x1:n,Dcalib), ϵ21:n
)

(11)

During the computation of V̂arψ(Y |xi,Dcalib), the weight of ϵi is masked as 0 to prevent leakage of
actual error values into the model training process following LOO. With the two posterior variance
estimators, we can finally define the distribution discrepancy of a sample x as:

t(x) =

(
V̂arψ(Y |X = x,Dcalib)

V̂arθ(Y |X = x)

)q
(12)

We then use t(x) as the temperature in TS, which we refer to as TS(t). There is no variance
discrepancy if t(x) = 1, which means no need to scale the distribution. If t(x) > 1, indicating the
OC model underestimates the posterior variance, TS will make the distribution more even; and if
t(x) < 1, indicating the OC model overestimates the posterior variance, TS will make the distribution
more narrow. q > 0 is a hyper-parameter to determine the step size of TS: larger q means a larger TS
step given to same variance discrepancy.

4.3 STEPWISE POSTERIOR ALIGNMENT WITH TEMPERATURE SCALING

The next question is how to determine the step size q. A straightforward solution is to find the optimal
q∗ by minimizing the ECE as other probability calibration methods do, named Adaptive Posterior
Alignment by Confidence Calibration (APACC). However, we find this approach may harm the
efficiency of PSs in practice. Therefore, inspired by gradient descent, we propose a sstepwisemethod
that uses a small constant step size q but looks for the optimal steps reducing the PSs’ size.

Corresponding to CP methods, APASS comprises 2 components: APASS-Calibration (Algorithm 1)
and APASS-Prediction (Algorithm 2), as illustrated in Figure 1. APASS-Calibration calibrates the
posterior distribution of calibration data predicted by the OC model using distribution discrepancy
measure (Eq. 12) step by step and outputs the steps of TS ŝ. The aligned distributions p̂APASS

1:n
are then fed to OCP-Calibration to calculate the non-conformity score and the conformal threshold
τ̂ . During test time, APASS-Prediction will first estimate the distribution discrepancy of a testing
sample xn+1 as t(xn+1), then run TS(t(xn+1)) for ŝ steps to get aligned posterior p̂APASS

n+1 , which
OCP-Prediction will take to generate PS for the testing sample xn+1.

7
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Table 1: Averaged results of ∆Cov comparing our method with baselines on 10 datasets and across
5 distinct OC models.

Dataset Original One-step method Stepwise method (Ours)
AdaTS APACC-Att APASS-kNN APASS-Att

Breastcancer 0.031±0.054 0.028±0.055 0.03±0.051 0.033±0.05 0.033±0.051

Community 0.005±0.029 0.005±0.034 0.005±0.029 0.005±0.032 0.005±0.031

Concrete 0.012±0.031 0.012±0.034 0.013±0.033 0.011±0.033 0.013±0.032

Diabetes 0.025±0.046 0.025±0.055 0.023±0.053 0.023±0.052 0.026±0.054

Energy 0.014±0.036 0.013±0.037 0.015±0.036 0.014±0.04 0.013±0.041

Forest 0.011±0.038 0.011±0.036 0.011±0.035 0.012±0.037 0.012±0.036

Parkinsons 0.002±0.015 0.002±0.015 0.002±0.014 0.002±0.015 0.002±0.014

Pendulum 0.035±0.045 0.037±0.04 0.033±0.039 0.037±0.044 0.034±0.042

Solar 0.017±0.055 0.017±0.054 0.018±0.048 0.019±0.047 0.018±0.047

Stock 0.015±0.065 0.014±0.057 0.015±0.06 0.014±0.059 0.016±0.054

5 EXPERIMENTS

This section presents the evaluation of APASS, designed to efficiently generate prediction sets with
specified coverage for OC tasks. We tested APASS across diverse real-world datasets and established
OC models, demonstrating consistent performance improvements over all baselines. An ablation
study confirmed the essential contribution of each component, enhancing APASS’s robustness and
reducing its sensitivity to hyperparameter changes. The results affirm APASS’s effectiveness and
practicality in real-world applications.

OC models. To validate the effectiveness of APASS across different base OC models, we tested 5
popular OC models, including 3 label-smoothing methods and 2 methods that promote unimodality
non-parametrically. Specifically, SORD, DLDL, R2CCP build different smoothed labels to encour-
age unimodal. ELB (Belharbi et al., 2019) enforces unimodality and label-order consistency via a set
of non-parametric inequality constraints over all pairs of adjacent labels. UN (Cardoso et al., 2023)
proposed a new neural network architecture that directly constrains the output to be unimodal.

Baselines. We compared our models against four baselines: 1) Original: The original Ordinal-APS
model without adaptive calibration. 2) APACC-Attn: A one-step variant of our APASS method,
which uses grid search to find the optimal step size q̂ that minimizes ECE. This q̂ is then applied
to adjust the posterior during testing. 3) AdaTS: A state-of-the-art adaptive probability calibration
method (Joy et al., 2023), which is incorporated into OC models before applying CP. 4) APASS-kNN:
A variation that substitutes our attention-based variance measure with a distance-based alternative.
Specifically, we use a kNN estimator to assess posterior variance Formally,

V̂arkNN (Y |X = xn+1,Dcalib) =

∑
i∈NN(xn+1)

wki |ŷi − yi|∑
i∈NN(xn+1)

wki
+

min
i∈NN(xn+1)

d(xi, xn+1)

max
i,j∈Dcalib

d(xi, xj)
σ̂ (13)

where NN(xn+1) is the set of the nearest k samples, wi = 1 − d(xi,xn+1)∑
i∈NN(xn+1)

d(xi,x)
and σ̂ =√

Var
[
{yi}i∈NN(xn+1) ∪ {ŷn+1}

]
. In our experiment, k = 5 and d(·, ·) is the Mahalanobis distance.

Metrics. The metrics used in our evaluation include ∆Cov, defined as the absolute difference
between the actual and target coverage given a specific target coverage level 1− α, where smaller
values indicate better validity and a value of zero implies perfect alignment. Additionally, we assess
the average size of the prediction set, denoted as |PS|, to evaluate the efficiency of different methods.

Datasets. We evaluate our method using 10 popular real-world datasets to ensure the robustness and
applicability of our approach. Specifically, these datasets include several from the 10 UCI Machine
Learning Repository (Kolby et al., 2024). These datasets encompass a diverse range of domains and
data characteristics.
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Table 2: Averaged results of |PS| comparing our method with baselines on 10 datasets and across 5
distinct OC models. The last raw is the average percentage reduction. See Table 4 in the Appendix
for complete results.

Dataset Original One-step method Stepwise method (Ours)
AdaTS APACC-Att APASS-kNN APASS-Att

Breastcancer 43.5±3.5 40.6±4.6(-6.8%) 44.0±3.8(+1.2%) 41.3±4.1(-5.0%) 40.0±4.9(-8.2%)
Community 21.2±1.6 21.7±1.8(+2.1%) 23.9±2.2(+12.7%) 19.9±1.8(-6.2%) 19.1±1.7(-9.9%)
Concrete 17.1±1.7 17.1±2.0(+0.2%) 17.6±1.7(+2.7%) 16.0±2.0(-6.6%) 15.0±1.6(-12.4%)
Diabetes 35.7±3.6 35.8±3.6(+0.0%) 33.0±3.7(-7.8%) 34.1±3.3(-4.7%) 33.5±3.6(-6.4%)
Energy 11.0±0.3 11.1±0.5(+0.7%) 10.8±0.2(-1.2%) 9.1±0.4(-17.1%) 8.1±0.3(-26.5%)
Forest 29.6±2.8 29.2±3.1(-1.3%) 32.3±3.1(+9.2%) 27.6±2.6(-6.7%) 26.0±3.0(-12.1%)
Parkinsons 9.4±0.1 9.6±0.6(+2.7%) 9.0±−0.6(-3.9%) 8.0±0.4(-14.0%) 6.8±0.1(-27.9%)
Pendulum 10.4±1.2 10.2±0.6(-2.4%) 11.0±0.7(+5.8%) 9.8±0.7(-6.3%) 9.5±1.0(-9.0%)
Solar 17.4±3.1 17.9±3.2(+2.8%) 24.6±3.6(+41.2%) 14.9±3.6(-14.6%) 13.4±3.9(-23.2%)
Stock 13.2±1.0 13.6±0.9(+3.2%) 12.9±0.6(-1.8%) 12.7±0.4(-4.0%) 12.3±1.0(-6.4%)

Averaged Reduction ↓ 0.12% 5.81% -8.52% -14.20%

Evaluation Setup. For each OCP method in one dataset, we randomly split the data into folds with
70% / 30% as Dtrain/Dcalib ∪ Dtest for 3 times to train 3 different models. We conduct 10 random
splits of calibration/testing sets for each OC model to estimate the empirical coverage and PS size.
For all APASS experiments, we use the same step size q = 0.05

5.1 EMPIRICAL RESULTS

Effectiveness of APASS across Multiple OC Models on Real-World Datasets. We begin by
comparing our method with several baselines on a diverse set of real-world datasets across five
distinct OC models. As shown in Table 1, APASS-Att maintains a consistently low ∆Cov value,
indicating strong alignment between the predicted labels and the target labels. In terms of |PS|, as
reported in Table 2, APASS-Att achieves significant reductions. On average, it reduces the size of
the prediction sets by 14.20%, with reductions ranging from 6.4% to 27.9%. APASS-kNN using a
less competitive non-parametric variance estimator brings an 8.52% reduction in average. Moreover,
APASS-Att and APASS-kNN never increase the prediction set size compared to the original models,
demonstrating their robustness and adaptability across various datasets and models.

Superiority of Stepwise vs. One-Step Approaches. As reported in Table 2, both stepwise methods,
APASS-Attn and APASS-kNN, consistently outperform one-step baselines, including the state-of-
the-art probability calibration method AdaTS and our one-step variant APACC-Att, which fail to
reduce |PS| across all datasets. These one-step approaches fail to reduce the |PS| in 60% of cases.
In contrast, the stepwise approach consistently reduces prediction set sizes, showcasing its superior
ability to optimize prediction efficiency while maintaining strong model alignment. This advantage
reinforces the value of the stepwise framework in real-world applications.

Empirical Evidence of Synchronous Changes of PS Size. One of the critical contributions
of this work is the stepwise alignment approach, which uses the calibration set to determine the
optimal TS steps. We validate this empirically by analyzing how prediction set sizes evolve during
stepwise temperature scaling. Figure 3 demonstrates that prediction set sizes on both calibration
and testing sets change synchronously across three OC models on the Community and Stock dataset.
This validates that the stepwise method can accurately determine the TS steps based solely on the
calibration set. The same synchronous behavior is consistently observed across other datasets, with
comprehensive results included in Appendix B.

Robust Performance of APASS and Computation Cost. Hyperparameter sensitivity is crucial
in real-world deployment, as hyperparameter selection typically requires human expertise and
can be resource-intensive. Our empirical results demonstrate that APASS is largely insensitive
to hyperparameter variation. Specifically, Table 3 shows the percentage reduction in |PS| when
applying APASS with various step sizes q. While larger step sizes (e.g., 0.5 and 1.0) lead to
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Figure 3: The sizes of the prediction set change synchronously on calibration and testing sets.

suboptimal results, using a step size below 0.1 consistently yields near-optimal outcomes. APASS is
also computationally efficient. The posterior variance estimator and calibration training should be
complete before deployment, so this part of the computation cost is not crucial. The following table
illustrates that our method only costs about 9.2% computation overhead with q = 0.05 (our setting).
However, if the step size q is set to 0.01, the computation overhead will be 62% but only bring 0.1%
extra reduction.

Table 3: Average size reduction after APASS-Att and computation cost in testing time with different
step sizes q. The last raw is the result of the original Ordinal-APS.

q 0.01 0.02 0.05 0.1 0.2 0.5 1.0 /

Averaged Reduction -14.3% -14.2% -14.2% -13.8% -8.7% -5.3% -1.7% /
Running time (s) 42.3 34.2 28.5 27.8 27.2 26.5 26.2 26.1

Overhead 62.1% 31.0% 9.2% 6.5% 4.2% 1.5% 0.4% /

6 CONCLUSION

In this paper, we find the issue of variance misalignment in popular ordinal classifiers, which will
harm OCP. We empirically and theoretically show the efficiency of OCP can be improved if ordinal
classifiers predict a more accurate conditional distribution. Thus, we introduce the APASS technique,
which employs an attention-based variance estimator and stepwise temperature scaling to align
the posterior variance modeled by ordinal classifiers with better variance estimation. Empirical
evaluations on benchmark datasets demonstrated that APASS significantly enhances the performance
of OCP methods without the need for hyperparameter tuning, offering a robust framework for high-
stakes healthcare, finance, and beyond applications. Limitation of our methods is we only use
variance to align the posterior, high-order moment such as skewness and kurtosis can be considered
in future works.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets for
image classifiers using conformal prediction. arXiv preprint arXiv:2009.14193, 2020.

Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Anastasios Nikolas Angelopoulos, Stephen Bates, Michael Jordan, and Jitendra Malik. Uncertainty
sets for image classifiers using conformal prediction. In International Conference on Learning
Representations, ICLR, 2021.

Andreas Auer, Martin Gauch, Daniel Klotz, and Sepp Hochreiter. Conformal prediction for time
series with modern hopfield networks. Advances in Neural Information Processing Systems, 2024.

Soufiane Belharbi, Ismail Ben Ayed, Luke McCaffrey, and Eric Granger. Non-parametric uni-modality
constraints for deep ordinal classification. arXiv preprint arXiv:1911.10720, 2019.

Refik Can Malli, Mehmet Aygun, and Hazim Kemal Ekenel. Apparent age estimation using ensemble
of deep learning models. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2016.

Jaime S Cardoso, Ricardo Cruz, and Tomé Albuquerque. Unimodal distributions for ordinal regression.
arXiv preprint arXiv:2303.04547, 2023.

Prasenjit Dey, Srujana Merugu, and Sivaramakrishnan R Kaveri. Conformal prediction sets for
ordinal classification. In Advances in Neural Information Processing Systems, 2023.

Raul Diaz and Amit Marathe. Soft labels for ordinal regression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

Yasushi Esaki, Akihiro Nakamura, Keisuke Kawano, Ryoko Tokuhisa, and Takuro Kutsuna. Accuracy-
preserving calibration via statistical modeling on probability simplex. In International Conference
on Artificial Intelligence and Statistics, pp. 1666–1674. PMLR, 2024.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning, pp. 1050–1059.
PMLR, 2016.

Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu, and Xin Geng. Deep label distribution learning
with label ambiguity. IEEE Transactions on Image Processing, 2017.

Xin Geng. Label distribution learning. IEEE Transactions on Knowledge and Data Engineering,
2016.

Subhankar Ghosh, Taha Belkhouja, Yan Yan, and Janardhan Rao Doppa. Improving uncertainty
quantification of deep classifiers via neighborhood conformal prediction: Novel algorithm and
theoretical analysis. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2023.

Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional
guarantees. arXiv preprint arXiv:2305.12616, 2023.

Etash Kumar Guha, Shlok Natarajan, Thomas Möllenhoff, Mohammad Emtiyaz Khan, and Eugene
Ndiaye. Conformal prediction via regression-as-classification. In International Conference on
Learning Representations, ICLR, 2024.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Guodong Guo, Yun Fu, Charles R Dyer, and Thomas S Huang. Image-based human age estimation by
manifold learning and locally adjusted robust regression. IEEE Transactions on Image Processing,
2008.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zengwei Huo, Xu Yang, Chao Xing, Ying Zhou, Peng Hou, Jiaqi Lv, and Xin Geng. Deep age
distribution learning for apparent age estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2016.

Tom Joy, Francesco Pinto, Ser-Nam Lim, Philip HS Torr, and Puneet K Dokania. Sample-dependent
adaptive temperature scaling for improved calibration. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 14919–14926, 2023.

Nottingham Kolby, Longjohn Rachel, and Kelly Markelle. Uci machine learning repository. 2024.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-free
predictive inference for regression. Journal of the American Statistical Association, 2018.

Xiaofeng Liu, Xu Han, Yukai Qiao, Yi Ge, Site Li, and Jun Lu. Unimodal-uniform constrained wasser-
stein training for medical diagnosis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, 2019.

Charles Lu, Anastasios N Angelopoulos, and Stuart Pomerantz. Improving trustworthiness of ai
disease severity rating in medical imaging with ordinal conformal prediction sets. In International
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2022.

Georgios Manthoulis, Michalis Doumpos, Constantin Zopounidis, and Emilios Galariotis. An ordinal
classification framework for bank failure prediction: Methodology and empirical evidence for us
banks. European Journal of Operational Research, 2020.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive coverage.
Advances in Neural Information Processing Systems, 2020.

Matteo Sesia and Yaniv Romano. Conformal prediction using conditional histograms. In Advances
in Neural Information Processing Systems, 2021.

Ralph C Smith. Uncertainty quantification: theory, implementation, and applications, volume 12.
Siam, 2013.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world.
Springer, 2005.

Volodya Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of
algorithmic randomness. 1999.

Xin Wen, Biying Li, Haiyun Guo, Zhiwei Liu, Guosheng Hu, Ming Tang, and Jinqiao Wang. Adaptive
variance based label distribution learning for facial age estimation. In European Conference on
Computer Vision. Springer, 2020.

Huajun Xi, Jianguo Huang, Lei Feng, and Hongxin Wei. Does confidence calibration help conformal
prediction? arXiv preprint arXiv:2402.04344, 2024.

Yunpeng Xu, Wenge Guo, and Zhi Wei. Conformal risk control for ordinal classification. In The
Conference on Uncertainty in Artificial Intelligence. PMLR, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOF OF THEORY

The theoretical proof strikes the idea from Sesia & Romano (2021), which focuses on regression
problems with continuous variables, whereas we concentrate on ordinal classification with discrete
variables.

Lemma 1. Def the event A as

A :=

{
x : sup

j∈{1,...,K}
|F̂ (yj |x)− F (yj |x)| > η

}
(14)

Then, under Assumptions 1-3, for any X ⊥⊥ Dtrain ,

P [X ∈ A] ≤ η (15)

Furthermore, partitioning the calibration data points into

Dcal,a := {i ∈ {1, . . . , n} : Xi ∈ A} , Dcal,b := {i ∈ {1, . . . , n} : Xi ∈ Ac} (16)

we have that, for any constant c > 0

P
[
|Dcal ,a| ≥ nη + c

√
n log n

]
≤ n−2c2 (17)

Lemma 2. Under Assumptions 1–3, for any τ ∈ (0, 1) and X ⊥⊥ Dtrain ,

P
[
|Ĉn,τ (X)| ≤ |Cn,τ+2η(X)|+ 2

]
≥ 1− η, (18)

Lemma 3. For any τ ∈ (0, 1), let Q̂τ (Ei) denote the ⌈τ(n+1)⌉ smallest value among the conformity
scores {Ei} for i ∈ Dcal , where i ∈ Dcal and

Ei := min
{
τt ∈ {0, 1/Tn, . . . , (Tn − 1)/Tn, 1} : Yi ∈ Ĉn,τt(Xi)

}
(19)

Then, under Assumptions 1-3, for any c > 0,

P
[
Q̂τ (Ei) ≤ τ + ϵn

]
≥ 1− 2n−2c2 , (20)

where ϵn := 3/n+ 3η + 2c
√
(log n)/n

Proof of Theorem 1. Define ϵn := 3/n+ 3η + 2c
√
(log n)/n for any c > 0, as in Lemma 3. In the

event that Q̂1−α(Ei) ≤ 1− α+ ϵn,

P
[
|Ĉn,Q̂1−α(Ei)

(X)| ≤ |Cn,1−α+ϵn+2η(X)|+ 2
]

≥ P
[
|Ĉn,1−α+ϵn(X)| ≤ |Cn,1−α+ϵn+2η(X)|+ 2

]
≥ 1− η,

(21)

where the second inequality follows by applying Lemma 2 with τ = 1− α+ ϵn. Further, as Lemma
3 tells us, the above event occurs with a high probability,

P
[
Q̂1−α(Ei) ≤ 1− α+ ϵn

]
≥ 1− 2n−2c2 (22)

in general, we have that

P
[
|Ĉn,Q̂1−α(Ei)

(X)| ≤ |Cn,1−α+ϵn+2η(X)|+ 2
]
≥ 1− η − 2n−2c2 (23)

By Assumption 4, p(yj |x) > 1/H for all j ∈ {1, 2, . . . ,K}. This implies Cn,τ (X) is H-Lipschitz
as a function of τ . Therefore,

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

P
[
|Ĉn,Q̂1−α(Ei)

(X)| ≤ |Cn,1−α(X)|+ 2 +H(ϵn + 2η)
]

≥ P
[
|Ĉn,Q̂1−α(Ei)

(X)| ≤ |Cn,1−α+ϵn+2η(X)|+ 2
]

≥ 1− η − 2n−2c2 .

(24)

Hence, setting c = 1 we have proved that

P
[
|Ĉn,Q̂1−α(Ei)

(X)| ≤ |Cn,1−α(X)|+ γn

]
≥ 1− ξn. (25)

Proof of Lemma 1. Inequation 15 and easily derived from definition of A in Eq. 14 and Assumption
3. As we know from the above that P [X ∈ An] ≤ η, for any ϵ > 0, following Hoeffding’s inequality,

P
[∣∣Dcal,a

∣∣ ≥ nη + ϵ
]
≤ P

[∣∣Dcal,a
∣∣ ≥ nP [X ∈ An] + ϵ

]
≤ P

[
1

n

2n∑
i=n+1

1 [Xi ∈ An] ≥ P [Xi ∈ An] +
ϵ

n

]

≤ exp

(
−2ϵ2

n

)
.

(26)

Therefore, setting ϵ = c
√
n log n, for some constant c > 0, yields

P
[∣∣Dcal ,a

∣∣ ≥ nη + c
√
n log n

]
≤ n−2c2 . (27)

Proof of Lemma 2. Consider the eventA defined in Lemma 1. Let’s consider the case whereX ∈ Ac.
We can write Ĉn,τ (X) = [ĵ1, ĵ2] for some ĵ1, ĵ2 ∈ {1, . . . ,K} such that F̂

(
yĵ2
)
− F̂

(
yĵ1−1

)
≥ τ .

Then, the triangle inequality implies F
(
yĵ2
)
− F

(
yĵ1−1

)
≥ τ − 2η. Consider the oracle set

Cn,τ+2η(X), which we can write in short as [l∗, u∗] for some l∗, u∗ ∈ R such that F (u∗)−F (l∗) ≥
τ + 2η. Define j′1, j

′
2 ∈ {1, . . . ,K} as the indices of the label immediately below and above l∗, u∗:

j′1 := max
{
j ∈ {1, . . . ,mn} : yj < l∗

}
j′2 := min

{
j ∈ {1, . . . ,mn} : yj > u∗

} (28)

This definition implies
yj

′
2 − yj

′
1 ≤ u∗ − l∗ + 2, (29)

Furthermore,
F̂
(
yj

′
2

)
− F̂

(
yj

′
1

)
≥ F̂ (u∗)− F̂ (l∗)

≥ F (u∗)− F (l∗)− 2η

≥ τ.

(30)

The result implies that ĵ2 − ĵ1 ≤ j′2 − j′1 because ĵ2 − ĵ1 is the minimal of Ĉn,τ (X). Then,

|Ĉn,τ (X)| = yĵ2 − yĵ1 ≤ yj
′
2 − yj

′
1

≤ |Cn,τ+2η (X)|+ 2
(31)

if X ∈ Ac. Finally, by applying Lemma 1,

P
[∣∣∣Ĉn,τ (X)

∣∣∣ ≤ |Cn,τ+2η(X)|+ 2
]
= P[X ∈ Ac] ≥ 1− η (32)
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Proof of Lemma 3. Take any i ∈ Dcal,b, where Dcal,b is defined as in Lemma 1:

Dcal ,b := {i ∈ {1, . . . , n} : Xi ∈ Ac} , (33)

For any fixed t ∈ {0, . . . , n} and τt = t/n, omitting the explicit dependence on X and p̂, we can
write Ĉn,τt(X) =

[
ĵ1, ĵ2

]
, for some ĵ1, ĵ2 ∈ {1, . . . ,K} such that F̂ (yĵ2)− F̂ (yĵ1−1) ≥ τt. Then

P [Ei ≤ τt] = P
[
Yi ∈ Ĉn,τt(X)

]
= F (yĵ2)− F (yĵ1−1)

≥ F̂ (yĵ2)− F̂ (yĵ1−1)− 2η

≥ τt − 2η.

(34)

Above, the first inequality follows from the definition of Dcal ,b. Equivalently, we can rewrite this as

P [Ei > τt + 2η + δ] ≤ 1− τt − δ, (35)

for any δ > 0. Now, partition Dcal ,b into the following two disjoint subsets:

Dcal,b1 :=
{
i ∈ Dcal,b : Ei ≤ τt + 2η + δ

}
Dcal,b2 :=

{
i ∈ Dcal,b : Ei > τt + 2η + δ

} (36)

We bound |Dcal,b2| with Hoeffding’s inequality. For any i ∈ Dcal , define Ẽi = Ei if i ∈ Dcal ,b and
Ei = τt otherwise. For any ϵ > 0,

P
[
|Dcal,b2| ≥ n(1− τt − δ) + ϵ

]
≤ P

 1

n

∑
i∈Dcal,b

1

[
Ẽi > τt + 2η + δ

]
≥ P [Ei > τt + 2η + δ] +

ϵ

n


= P

[
1

n

n∑
i=1

1

[
Ẽi > τt + 2η + δ

]
≥ P [Ei > τt + 2η + δ] +

ϵ

n

]

≤ P

[
1

n

n∑
i=1

1

[
Ẽi > τt + 2η + δ

]
≥ P

[
Ẽi > τt + 2η + δ

]
+
ϵ

n

]

≤ exp

(
−2ϵ2

n

)
(37)

Therefore, setting ϵ = c
√
n log n, for some constant c > 0, yields

P
[
|Dcal ,b2| ≥ n(1− τt − δ) + c

√
n log n

]
≤ n−2c2 (38)

As |Dcal,b1| = n− |Dcal,a| − |Dcal,b2, combining the above result with that of Lemma 1 yields:

P
[
|Dcal ,b1| ≥ nτt + nδ − nη − 2c

√
n log n

]
≥ 1− 2n−2c2 (39)

If we choose δ = τt/n+ η + 2c
√
(log n)/n

P
[
|Dcal ,b1| ≥ τt(n+ 1)

]
≥ 1− 2n−2c2 , (40)

which means

P
[
Q̂τt(Ei) ≤ τt + τt/n+ 3η + 2c

√
(log n)/n

]
≥ 1− 2n−2c2 (41)
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Now, consider any continuous τ ∈ (0, 1], and t′ = min {t ∈ {0, . . . , Tn} : τt ≥ τ}. As τt′ ≥ τ , we
know Q̂τt′ (Ei) ≥ Q̂τ (Ei). Therefore,

P
[
Q̂τ (Ei) ≤ τt′ + τt′/n+ 3η + 2c

√
(log n)/n

]
≥ P

[
Q̂τt′ (Ei) ≤ τt′ + τt′/n+ 3η + 2c

√
(log n)/n

]
≥ 1− 2n−2c2 .

(42)

As τt′ = τ + 1. Therefore,

P
[
Q̂τ (Ei) ≤ τ + 1/n+ τ/n+ 1/n2 + 3η + 2c

√
(log n)/n

]
≥ 1− 2n−2c2 .

(43)

Finally, as τ ≤ 1 and n ≥ 1, replacing 1/n+ τ/n+ 1/n2 with 3/n will preserve the inequality and
Lemma 3 is proved.

B EXPERIMENT

B.1 SYNTHETIC DATASET

We employed a method involving multivariate normal distributions and linear combinations to
generate synthetic data for our experiment. Initially, we created a random mean vector and a
symmetric positive-definite covariance matrix to define the multivariate normal distribution. This
distribution is used to generate a dataset of features. We computed the output means and variances
by applying linear combinations of the generated features with randomly generated coefficients to
produce output values. Precisely, the means are calculated as a linear combination of the features,
while the variances are determined by squaring another linear combination of these features, ensuring
non-negativity. Finally, output values are sampled from a normal distribution using the calculated
means and variances, resulting in a comprehensive synthetic dataset for experimental analysis.

B.2 ORDINAL CLASSIFIER

Vanilla cross-entropy loss ignores the ordinal relationship and non-uniform separation among labels.
To learn better conditional mass function approximation p̂(y|x), many label smoothing methods
convert one-hot target labels into unimodal prior distributions to be used as the reference for the
training loss. Soft ordinal classification (SORD) constructs the ground-truth p.m.f. based on a metric
loss function ℓ(yt, yi) that penalizes how far the true value yt is from the i-th prediction value yi
(Diaz & Marathe, 2019):

p(yi) =
e−ℓ(y

t,yi)∑K
k=1 e

−ℓ(yt,yk)
∀yi ∈ Y, (44)

and use cross-entropy loss to train the neural network model. Deep Label Distribution Learning
(DLDL) minimizes the KL divergence between the predicted probability and the ground-truth labels
in a similar way:

p(yi) =
K(yi|µ, σ)∑K
k=1K(yk|µ, σ)

∀yi ∈ Y. (45)

whereK(yi|µ, σ) is a normal p.d.f. The mean µ is set to the actual value, i.e., µ = yt, and σ is usually
determined by the data distribution. For the continuous label in the regression setting, Regression-
to-Classification Conformal Prediction (R2CCP) converts regression into ordinal classification by
discretizing the label space into K bins. They proposed a loss similar to label smoothing losses with a
Shannon entropy regularizer, which prevents the density estimator from collapsing to one-hot output
(Guha et al., 2024):

L(θ) =
K∑
k=1

ℓ(yt, yk)p̂θ(y
k|x)− τH(p̂θ(·|x)). (46)
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Table 4: Full results of |PS| on 10 dataset with 5 OC models.

Dataset OC Original One-step method Stepwise method (Ours)
Model AdaTS APACC-Att APASS-kNN APASS-Att

Breastcancer

DLDL 42.53±4.36 45.3±4.62 43.13±2.5 39.35±2.97 36.35±3.99

ELB 41.9±3.74 30.17±6.02 42.48±4.95 41.83±4.12 41.7±5.46

R2CCP 43.0±2.05 49.61±4.76 43.95±3.95 41.03±4.68 39.96±5.49

SORD 43.77±3.72 28.93±2.73 43.38±2.47 40.08±4.31 39.05±5.09

UN 46.4±3.85 48.82±4.69 47.21±5.18 44.41±4.31 42.8±4.59

Community

DLDL 18.77±1.45 19.54±2.11 21.79±2.73 18.51±1.23 18.4±1.54

ELB 16.4±1.56 17.94±1.14 17.83±2.1 16.22±2.06 16.0±1.93

R2CCP 17.98±1.26 18.73±1.97 22.81±2.41 17.55±1.62 17.35±1.28

SORD 20.9±1.85 18.33±1.72 20.98±1.46 19.6±2.48 19.27±2.59

UN 32.1±1.83 33.85±2.25 36.21±2.22 27.7±1.57 24.6±1.38

Concrete

DLDL 10.31±1.96 9.26±1.5 10.66±−0.07 10.19±1.14 10.14±1.92

ELB 15.4±1.75 10.0±2.38 15.74±3.55 15.35±3.41 15.2±1.73

R2CCP 9.86±1.3 9.72±0.49 10.12±1.18 9.7±1.79 9.65±1.17

SORD 11.35±1.65 13.38±2.44 11.42±2.61 11.31±1.35 11.27±1.7

UN 38.6±1.89 43.29±3.38 39.89±1.22 33.36±2.12 28.7±1.39

Diabetes

DLDL 35.05±3.28 40.13±2.18 34.19±3.02 33.21±3.43 32.81±3.58

ELB 33.3±3.89 37.04±1.71 31.22±2.99 33.18±2.68 33.1±3.56

R2CCP 38.16±4.42 39.42±4.97 32.5±3.84 33.76±3.28 32.21±3.65

SORD 34.89±2.99 22.7±2.39 35.03±4.04 34.03±4.32 33.48±3.5

UN 37.3±3.68 39.45±6.63 31.91±4.7 36.18±2.92 35.7±3.52

Energy

DLDL 2.88±0.23 2.5±−0.57 2.9±−1.36 2.85±−1.23 2.83±0.27

ELB 8.38±0.26 8.95±0.98 8.17±0.79 8.01±1.62 7.76±0.28

R2CCP 3.07±0.26 2.14±2.37 2.96±1.93 3.03±−0.11 3.02±0.29

SORD 2.95±0.31 3.33±0.15 3.06±0.31 2.94±1.04 2.93±0.3

UN 37.6±0.24 38.36±−0.48 37.16±−0.68 28.66±0.51 23.8±0.28

Forest

DLDL 31.18±2.45 23.25±1.67 38.13±2.89 30.29±2.35 29.55±2.51

ELB 27.0±3.16 27.31±3.75 26.87±3.08 26.45±2.38 26.2±2.57

R2CCP 30.91±1.45 35.76±1.48 35.83±1.88 28.85±1.85 27.79±2.5

SORD 33.57±3.72 36.56±3.61 33.22±4.81 31.02±3.02 29.23±4.45

UN 25.4±3.0 23.32±4.86 27.64±2.88 21.47±3.59 17.4±2.99

Parkinsons

DLDL 2.1±0.08 1.56±0.92 2.0±−0.85 2.09±0.18 2.09±0.08

ELB 6.91±0.06 7.59±0.37 6.78±−1.11 6.69±−0.21 6.8±0.07

R2CCP 2.12±0.04 2.22±1.29 2.05±−0.5 2.05±0.21 2.01±0.04

SORD 2.04±0.04 1.83±0.82 2.03±0.91 2.04±1.69 2.04±0.04

UN 33.6±0.06 34.85±−0.61 32.09±−1.23 27.37±−0.03 20.8±0.07

Pendulum

DLDL 7.15±1.12 6.04±0.39 6.68±1.02 6.77±1.82 6.38±1.06

ELB 12.9±1.27 14.51±0.71 12.39±0.63 12.77±1.39 12.7±0.8

R2CCP 6.67±0.95 7.15±0.76 9.06±0.45 6.21±−1.02 5.86±0.77

SORD 9.23±1.35 10.27±1.43 9.43±−0.05 8.37±−0.75 8.08±1.22

UN 16.3±1.3 13.04±−0.19 17.71±1.23 14.83±2.11 14.5±1.22

Solar

DLDL 22.22±2.81 24.47±2.42 19.4±2.36 20.97±2.68 20.03±3.17

ELB 25.1±3.91 21.17±2.86 26.02±3.65 21.54±3.42 18.3±3.55

R2CCP 6.22±0.78 6.51±−0.95 26.99±1.19 3.66±1.09 1.8±0.68

SORD 21.98±6.23 25.38±5.69 21.24±4.59 18.22±6.3 17.53±6.08

UN 11.6±1.86 12.03±5.88 29.34±6.03 9.98±4.75 9.29±5.96

Stock

DLDL 9.14±1.04 9.83±−0.36 9.25±1.25 8.65±−0.21 8.37±0.95

ELB 11.4±0.91 10.57±0.79 11.07±0.11 11.34±−0.42 11.3±1.03

R2CCP 9.74±1.15 7.88±1.14 9.42±1.68 9.01±2.42 8.86±1.25

SORD 9.73±0.83 9.32±1.03 9.83±−1.55 9.34±−0.45 9.25±0.98

UN 25.9±0.87 30.41±1.77 25.14±1.25 24.94±0.55 23.9±0.98
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B.3 ADDITIONAL EXPERIMENT RESULTS

In this section, we provide all experiment results of how the sizes of the prediction set change in the
calibration and testing sets as we do stepwise posterior alignment.
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Figure 4: The prediction set size change on Breastcancer, Community, Concrete, and Diabetes
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Figure 5: The prediction set size change on Energy, Forest, Parkinsons, and Pendulum
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Figure 6: The prediction set size change on Solar and Stock
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